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ABSTRACT

This paper presents an experimental and numerical study of the effect of specimen thickness on the 
effective notch toughness  for cleavage fracture measured using Single Edge Notch Bend 𝐾 𝜌

𝑚𝑎𝑡
(SENB) specimens containing a U-notch instead of a fatigue pre-crack. These specimens are typically 
used to measure a material's effective notch toughness  and to assess failure of a structure 𝐾 𝜌

𝑚𝑎𝑡
containing a non-sharp defect using the Notch Failure Assessment Diagram (NFAD). Both the 
experimental data and the Finite Element (FE) failure predictions show a significant influence of 
specimen thickness on , over and above the microstructural weakest link effect arising from 𝐾 𝜌

𝑚𝑎𝑡
differences in the volume of the plastic zone.  is a function of not only the in-plane effect of the 𝐾 𝜌

𝑚𝑎𝑡
notch radius, but also an out-of-plane constraint loss which itself is enhanced by the presence of the 
notch radius. Significant out-of-plane constraint loss occurred for notched specimens with a ratio of 
thickness  to width  of 0.5, a geometry that if pre-cracked would have met the minimum thickness 𝐵 𝑊
requirement mandated by ASTM E1820. Doubling the thickness to =1.0 was sufficient to 𝐵/𝑊
eliminate the out-of-plane constraint loss. The use of experimentally measured  values in an 𝐾 𝜌

𝑚𝑎𝑡
NFAD assessment of a structure may therefore be non-conservative if <1.0.𝐵/𝑊
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NOMENCLATURE

Crack or notch depth (from the notch mouth to the tip of the notch)𝑎
Specimen thickness𝐵
Elastic modulus𝐸
Strain at maximum load𝑒𝑚𝑎𝑥
Failure assessment curve on the FAD𝑓(𝐿𝑟)
Failure assessment curve on the NFAD𝑓(𝐿𝜌

𝑟)
ith toughness value in a dataset (out of a total of  values)𝑖 𝑁
Elastic-plastic energy release rate𝐽
 for a notch𝐽𝜌 𝐽
 obtained from load-displacement data using ESIS P2-92, Equation 7𝐽𝐸𝑆𝐼𝑆 𝐽

Linear elastic stress intensity factor𝐾𝐼
Linear elastic stress intensity factor for a notch𝐾𝜌

𝐼
 expressed in dimensions of 𝐾𝐽 𝐽 𝐾
 expressed in dimensions of 𝐾𝜌

𝐽 𝐽𝜌 𝐾
Critical value of  for an individual test specimen containing a notch𝐾 𝜌

𝐽𝐶 𝐾𝜌
𝐽

 measured using pre-cracked specimens at a defined 𝐾𝑚𝑎𝑡 𝐾𝐽𝐶 𝑃𝑓
 measured using notched specimens at a defined 𝐾 𝜌

𝑚𝑎𝑡 𝐾𝐽𝐶 𝑃𝑓
Minimum possible value of , defined as 20 MPa√m in ASTM E1921𝐾𝑚𝑖𝑛 𝐾𝑚𝑎𝑡
Fracture ratio, plotted on ordinate axis of the FAD𝐾𝑟
Fracture ratio for a notch, plotted on ordinate axis of the NFAD𝐾𝜌

𝑟
Element size𝐿
Load ratio, plotted on the abscissa axis of the FAD𝐿𝑟
Load ratio for a notch, plotted on abscissa axis of the NFAD𝐿𝜌

𝑟
Maximum value of  defining vertical cut-off on the FAD𝐿𝑟(𝑚𝑎𝑥) 𝐿𝑟
Material parameter describing sensitivity of /  to /𝑙 𝐾 𝜌

𝑚𝑎𝑡 𝐾𝑚𝑎𝑡 𝜎𝑁 𝜎𝑦
Weibull modulus𝑚
Strain hardening exponent𝑛
Total number of toughness values in a dataset𝑁
Distance from the centre of curvature of the notch root radius 𝑟
Applied load𝑃



Failure probability𝑃𝑓
Limit load𝑃𝐿
Limit load for a notch𝑃𝜌

𝐿
Radius of boundary layer model𝑅
Error function defined in Section 4.3.1𝑅(𝑚)
Temperature𝑇
Master Curve Reference Temperature𝑇0

, Displacements in the  and  directions respectively𝑢1  𝑢2 𝑥1  𝑥2
Plastic zone𝑉
Reference volume taken as unity𝑉0
Specimen width𝑊

, , Co-ordinate system 𝑥1  𝑥2  𝑥3
Geometry factor used to define 𝑌 𝐾𝐼
Material parameter describing sensitivity of /  to /𝛾 𝐾 𝜌

𝑚𝑎𝑡 𝐾𝑚𝑎𝑡 𝜎𝑁 𝜎𝑦
Proportionality constant to evaluate  from load vs. displacement𝜂 𝐽
Poisson’s ratio𝜈
Estimate of the SSY scale factor𝜉𝐴,𝐵

Notch root radius𝜌
Angle subtended at the centre of curvature of the notch root radius 𝜃
Applied tensile stress𝜎

 Flow stress, defined as the mean of  and UTS𝜎 𝜎𝑦
Maximum principal stress𝜎1
Elastic notch tip opening stress𝜎𝑁
Stress at the limit of proportionality𝜎0
Weibull parameter, defined as  at =0.632𝜎𝑢 𝜎𝑤 𝑃𝑓
Weibull stress𝜎𝑤
Minimum value of Weibull stress in SSY corresponding to =20MPa√m 𝜎𝑤,𝑚𝑖𝑛 𝐾𝑚𝑖𝑛
Yield stress defined at 0.2% plastic strain𝜎𝑦

CMOD Crack Mouth Opening Displacement
CT Compact Tension
FAD Failure Assessment Diagram
FE Finite Element
LLD Load-Line Displacement
NFAD Notch Failure Assessment Diagram
SSY Small Scale Yielding
SSYN Small Scale Yielding for a notch
UTS Ultimate Tensile Stress



1. INTRODUCTION

The structural integrity of engineering structures is conventionally assessed using defect or flaw 
assessment procedures based on fracture mechanics approaches [e.g. 1-3]. For a real or postulated 
defect, the crack driving force (e.g. the elastic-plastic energy release rate  or the elastic-plastic stress 𝐽
intensity factor ) under the loading conditions and temperature of interest is compared with the 𝐾𝐽
material fracture toughness. Such procedures assume flaws to be infinitely sharp. While this 
assumption may be appropriate for fatigue cracks, in other cases such as porosity, lack-of-fusion, 
corrosion damage, mechanical damage, or even design features such a crevices in tube-to-tubeplate 
assemblies, it can be an over-conservative assumption that can lead to a pessimistic assessment of the 
structure and a significant under-estimation of the safety margin against fracture.

Structural integrity assessments undertaken in accordance with [1-3] are carried out using a Failure 
Assessment Diagram (FAD) in which the ordinate  indicates the proximity to fracture. For primary 𝐾𝑟
loading only,  is defined as / , where  is the linear elastic stress intensity factor and  is 𝐾𝑟 𝐾𝐼 𝐾𝑚𝑎𝑡 𝐾𝐼 𝐾𝑚𝑎𝑡
the material toughness typically derived from fatigue pre-cracked fracture toughness specimens tested 
according to well-defined standards, e.g. [4-6]. The abscissa  indicates the proximity to failure by 𝐿𝑟
plastic collapse and is defined as / , where  is the applied load and  is the elastic-perfectly 𝑃 𝑃𝐿 𝑃 𝑃𝐿
plastic limit load.  and  are both proportional to  and a linear loading line can be plotted on the 𝐾𝑟 𝐿𝑟 𝑃
FAD. When all inputs are best-estimate values, failure is predicted at its intersection with the failure 
assessment curve which is represented by  for <  where  is the failure 𝐾𝑟 = 𝑓(𝐿𝑟) 𝐿𝑟 𝐿𝑟(𝑚𝑎𝑥) 𝑓(𝐿𝑟)
assessment curve,  is the ratio of the uniaxial flow stress  to the uniaxial yield stress  𝐿𝑟(𝑚𝑎𝑥) 𝜎 𝜎𝑦
defined at 0.2% plastic strain, and   is defined as the mean of  and the ultimate tensile stress 𝜎 𝜎𝑦
(UTS).

Over the last 25 years or so, several engineering assessment methodologies have been published in the 
literature for assessing structures that contain non-sharp defects using a modified form of the FAD 
called the Notch Failure Assessment Diagram (NFAD) [e.g. 7-12]. The exact form of the NFAD 
varies from approach to approach. Taking the approach described in [7] and [12] as an example, 
proximity to the two failure limits of plastic collapse and fracture is quantified by the parameters  𝐿𝜌

𝑟
and .  is defined as / , where  is the elastic-perfectly plastic limit load for a component 𝐾𝜌

𝑟 𝐿𝜌
𝑟 𝑃 𝑃𝜌

𝐿 𝑃𝜌
𝐿

containing a notch of root radius .  is defined as / , where  is the linear-elastic notch 𝜌 𝐾𝜌
𝑟 𝐾𝜌

𝐼 𝐾 𝜌
𝑚𝑎𝑡 𝐾𝜌

𝐼
stress intensity factor and  is the effective notch toughness. The condition that the component 𝐾 𝜌

𝑚𝑎𝑡
does not fail is indicated by  for < . Several authors [7, 12-14] have shown that 𝐾𝜌

𝑟 < 𝑓(𝐿𝜌
𝑟) 𝐿𝜌

𝑟 𝐿𝑟(𝑚𝑎𝑥)
when the NFAD axes are defined by  and  instead of  and , failure assessment curves are 𝐿𝜌

𝑟 𝐾𝜌
𝑟 𝐿𝑟 𝐾𝑟

broadly independent of . This enables the same failure assessment curve to be used in the NFAD as 𝜌
for the FAD. 

Although the precise definitions of the parameters used in the various forms of NFAD vary between 
the different approaches, one similarity common to all NFAD approaches is the requirement to use an 
effective notch toughness  in place of the material toughness , to calculate . No testing 𝐾 𝜌

𝑚𝑎𝑡 𝐾𝑚𝑎𝑡 𝐾𝜌
𝑟

standards are currently available to provide guidance on how  can be measured using fracture 𝐾 𝜌
𝑚𝑎𝑡

toughness specimens that contain notches instead of pre-cracks. In the absence of dedicated test 
standards for notched specimens, test standards originally designed for pre-cracked specimens such as 
[4-6] have been used widely in the literature [e.g. 7, 11, 17-22] to obtain values of  for notched 𝐾 𝜌

𝑚𝑎𝑡
specimens. It has recently been shown [15, 16] that in most cases, such testing standards can provide 
reasonably accurate values of  for notched specimens.𝐾 𝜌

𝑚𝑎𝑡

More recent work [23] has shown that the values of  measured on laboratory specimens 𝐾 𝜌
𝑚𝑎𝑡

containing notches are not only dependent on the in-plane effect of the notch radius, but are also 
significantly affected by an out-of-plane constraint loss which is itself enhanced by the presence of the 
notch radius. The effect of out-of-plane constraint loss is an active research topic for sharp cracks 



[24,25]. For notches this out-of-plane constraint loss can have a greater effect on toughness than that 
of the in-plane effect of the notch radius alone. The use of experimentally measured  values in an 𝐾 𝜌

𝑚𝑎𝑡
NFAD assessment of a notched structure may therefore be non-conservative if the out-of-plane 
constraint loss in the test specimen is more significant than that in the structure. The work in [23] was 
based solely on mechanistic modelling, and to the authors' knowledge there are no experimental data 
available for notched specimens to confirm the conclusions where one thickness is compared with 
another. The objective of the work presented in this paper is to demonstrate experimentally whether 

 values for cleavage fracture are dependent on specimen thickness, and whether the effect can be 𝐾 𝜌
𝑚𝑎𝑡

successfully described using mechanistic modelling.



2. BACKGROUND

The NFAD approaches in [7-12] describe the increase in effective notch toughness either as a function 
of , or another parameter that characterises the notch radius. The approach described in [12] relates 𝜌

 to the component of the elastic notch tip stress  acting in a direction perpendicular to the 𝐾 𝜌
𝑚𝑎𝑡 𝜎𝑁

plane of the notch.  scales with load: a given value of  could correspond to an acute notch under 𝜎𝑁 𝜎𝑁
low load, or a blunter notch subject to a higher load. An expression for  was derived by Shin [27] 𝜎𝑁
based on the Creager-Paris elastic stress distribution ahead of a slender notch in a uniform stress field 
[28]:

𝜎𝑁 = 𝜎(1 + 2𝑌
𝑎
𝜌) 1 

where  is the applied tensile stress remote from the notch and  is a geometry factor used to define 𝜎 𝑌
 via .𝐾𝐼 𝐾𝐼 = 𝑌𝜎 𝜋𝑎

The following empirical power law expression was found to describe the increase in effective 
cleavage toughness with increasing notch radius in [12], and preliminary work in [29] indicated that 
the same expression may be used to describe the increase in ductile tearing initiation toughness with 
notch radius:

𝐾 𝜌
𝑚𝑎𝑡

𝐾𝑚𝑎𝑡
= 1 + 𝛾[𝜎𝑁

𝜎0]
‒ 𝑙

2 

where  and  are non-dimensional material parameters that describe the sensitivity of material 𝛾 𝑙
toughness to the notch root radius.  can be normalised using any convenient parameter, in 𝜎𝑁
Equation 2 it is normalised by , the yield stress defined as the stress at the limit of proportionality. 𝜎0
Equation 2 defines the failure locus shown in Figure 1. A loading line may be plotted on the diagram 
for a notched component of interest, with failure being predicted by its intersection with the failure 
locus. For the loading lines, the vertical axis is defined as  where  is  for a notch, , 𝐾𝜌

𝐽/𝐾𝑚𝑎𝑡 𝐾𝜌
𝐽 𝐽 𝐽𝜌

expressed in dimensions of .  can be obtained from either the -integral, or the area under the load 𝐾  𝐾𝜌
𝐽 𝐽

vs. displacement curve, using the methods described in Section 4.1. For blunt notches the loading 
curve rises steeply and failure is predicted at high  values, and for acute notches the loading 𝐾 𝜌

𝑚𝑎𝑡
curve is less steep and failure is predicted at lower  values. As  → 0, the gradient of the failure 𝐾 𝜌

𝑚𝑎𝑡 𝜌
locus at its intersection with the loading line approaches the horizontal and → .𝐾 𝜌

𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

Depending on failure mechanism, values of  and  that define the failure locus in Figure 1 can be 𝛾 𝑙
obtained using one of several methods:

(a) For initiation by cleavage and ductile tearing, curve fitting to test data plotted in the form of 
 vs.  can be performed, where  is the value of  at failure for an 𝐾 𝜌

𝐽𝐶 𝐾𝑚𝑎𝑡
𝜎𝑁 𝜎0 𝐾 𝜌

𝐽𝐶 𝐾𝜌
𝐽

individual test specimen containing a notch. This is straightforward for cleavage fracture, but 
is less so for ductile tearing initiation due to the lack of test guidance and the practical 
challenges of measuring and defining tearing initiation from a notch tip.

(b) For initiation by cleavage only, the lookup table presented in [12] can be used based on a 
knowledge of Weibull modulus  and strain hardening exponent .𝑚 𝑛

(c) For initiation by cleavage only, a combination of (a) and (b) can be used, useful for when  is 𝑚
unknown but  is known.𝑛

(d) For initiation by cleavage and ductile tearing, micromechanical modelling using an 
appropriate local approach failure criterion can be used.
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Figure 1: Loading lines and failure locus in toughness-  space 𝝈𝑵

The lookup table for use in option (b) requires a knowledge of the Weibull modulus , a parameter 𝑚
used in the Beremin model [30] which describes the proximity to cleavage fracture by use of the 
scalar Weibull stress, . In its simplest form the probability of fracture  is described by a two-𝜎𝑤 𝑃𝑓
parameter Weibull distribution:

𝑃𝑓 = 1 ‒ exp [ ‒ (𝜎𝑤

𝜎𝑢)
𝑚] 3 

where  and  are the Weibull parameters.  is the shape parameter describing the scatter, and  is 𝜎𝑢 𝑚 𝑚 𝜎𝑢
the scale parameter, defined as the value of  at =0.632. The Weibull stress is calculated by 𝜎𝑤 𝑃𝑓
integrating a weighted value of the maximum principal stress  over the plastic zone  ahead of the 𝜎1 𝑉
stress concentration:

𝜎𝑤 = [ 1
𝑉0

∫
𝑉

𝜎𝑚
1 𝑑𝑉]

1 𝑚

4 

The constant  is a reference volume required to ensure dimensional consistency and in the current 𝑉0

work is taken as unity. The Weibull parameters  and  are determined by matching values 𝑚 𝜎𝑢

calculated from the Beremin model to experimental values of cleavage fracture toughness. Reliable 
estimation of the Weibull parameters is only possible using experimental data of sufficient quantity 
that cover two different constraint levels. The method proposed by Gao et al [31] is suitable. A 
detailed description of the method and its application to the current work is described later in Section 
4.3.1 of this paper.

One of the useful aspects of this approach, as shown in [12],  is that for a given value of / , the 𝜎𝑁 𝜎0

ratio /  remains independent of load, independent of , independent of , and independent 𝐾 𝜌
𝑚𝑎𝑡 𝐾𝑚𝑎𝑡 𝐽 𝜎𝑤

of cleavage fracture probability . The cleavage fracture probability is introduced into the approach 𝑃𝑓



when a value is assigned to . For example, a  value corresponding to a 5% cleavage fracture 𝐾𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

probability would enable  at that same cleavage fracture probability to be defined. 𝐾 𝜌
𝑚𝑎𝑡

3. MATERIAL

The material selected for the experimental programme was a 15mm thick structural steel plate of 
grade S460M [32] which has been used previously for studying notch effects on fracture [33,34]. 
Table 1 summarises the chemical composition of the material, performed by means of chemical 
emission spectroscopy, and Figure 2 shows the microstructure, which comprises alternate bands of 
pearlite and ferrite.

Table 1. Chemical composition of steel S460M.
C Si Mn P S Cr Mo Ni Al Cu Nb Ti V

S460
M

0.1
2

0.4
5

1.4
9

0.01
2

0.00
1

0.06
2

0.00
1

0.01
6

0.04
8

0.01
1

0.03
6

0.00
3

0.06
6

Transverse Longitudinal

Thickness

Figure 2: Microstructure of steel S460M, with ferritic-pearlic microstructure (sample polished 
and etched with Nital 2%).

The elastic modulus  was defined using the following expression due to Ingham et al [36]:𝐸

 𝐸 = 210000 (𝑀𝑃𝑎) ‒ 54𝑇 5 



where  is the temperature in ºC. The value of  at the test temperature of -100ºC was therefore taken 𝑇 𝐸
as 215400MPa. Poisson's ratio  was assumed to be 0.3.𝜈

Tensile properties were measured using cylindrical tensile specimens 10mm in diameter and 
machined from the centre of the plate thickness, parallel to the rolling direction (i.e. longitudinal). 
Four repeat tensile tests were performed at -100ºC in accordance with ASTM E8 [35]. Tensile curves 
were found to be discontinuous, exhibiting yield plateaus prior to strain hardening. Table 2 
summarises the tensile properties  (defined at 0.2% plastic strain), Ultimate Tensile Strength (UTS), 𝜎𝑦

and the strain at maximum load . 𝑒𝑚𝑎𝑥

Table 2: Tensile properties of steel S460M at -100 ºC.

Test No.  (MPa)𝜎𝑦 UTS (MPa)  (%)𝑒𝑚𝑎𝑥
1 632.0 724.5 12.0
2 590.1 719.7 14.2
3 622.8 722.4 11.5
4 618.2 710.8 14.2

S460M

Average values 615.7 719.3 12.9

Fracture toughness properties of the same plate were determined in previous work [33,34] where the 
Master Curve Reference Temperature, T0 [37,38], was calculated as -91.8 ºC. The fracture toughness 

 as defined using the Master Curve approach includes a crack front length correction to account 𝐾𝑚𝑎𝑡

for the microstructural weakest link effect in pre-cracked specimens. For a given ,  for any 𝑇0 𝐾𝑚𝑎𝑡

specimen thickness , cleavage fracture probability  and temperature  within the transition region 𝐵 𝑃𝑓 𝑇
is defined as follows:

𝐾𝑚𝑎𝑡 = 20(𝑀𝑃𝑎) + [𝑙𝑛( 1
1 ‒ 𝑃𝑓)]1/4

{11 + 77𝑒𝑥𝑝[0.019(𝑇 ‒ 𝑇0)]}(25
𝐵 )1/4

6 

The experimental programme focused on two specimen thicknesses, the full plate thickness of 𝐵
=15mm, and =9mm. This latter thickness was selected as the thinnest  possible specimen that, if pre-𝐵
cracked, would still meet the minimum thickness criterion required to ensure plane strain conditions 
as defined in [39]. This is discussed further in Section 6 below. For this material's  value of -91.8ºC, 𝑇0

the median fracture toughness  at the chosen test temperature of =-100ºC is 110.6MPa√m for 𝐾𝑚𝑎𝑡 𝑇 𝐵
=9mm and 99.7MPa√m for =15mm. A median fracture toughness was used for convenience for 𝐵
comparing with test data. 



4. METHODOLOGY

4.1. Experimental Programme

The experimental fracture programme reported in this paper comprises 24 Single Edge Notch Bend 
(SENB) specimens containing notches instead of fatigue pre-cracks. This does not include the pre-
cracked specimens used to determine , reported in [33,34], or the notched specimens from the same 𝑇0

papers. All specimens were machined from the same 15 mm thick plate from which the tensile 
specimens were machined, oriented parallel to the rolling direction, and notched in the through-
thickness direction. As for the tensile tests, the fracture tests were performed at -100ºC, just below the 
T0 value of -91.8ºC. U-shaped notches were machined into the specimens using Electro-Discharge 
Machining (EDM) and the fracture tests were performed in accordance with ASTM E1820 [39]. In 
order to achieve the required test temperature, liquid nitrogen was used in combination with an 
insulating chamber. 

The work reported in [33,34] did not consider the effect of thickness  on effective notch toughness 𝐵
. As the aim of the current work is to compare test results from specimens of two different 𝐾 𝜌

𝑚𝑎𝑡

thicknesses  but with all other geometrical dimensions kept the same, 24 new tests have been 𝐵
specifically performed for this work, with the geometrical dimensions summarised in Table 3. Six 
repeat tests were performed for each of the four geometries. The specimens with B=9mm were 
machined from the plate centreline. Figure 3 shows the geometry of one type of specimen, D11-D16. 

Table 3: Test Matrix with Geometrical Dimensions

Codes Description Specimen 
Type

B 
(mm)

W 
(mm)

a 
(mm)

ρ 
(mm)

B/W a/W ρ/a

D11-D16 Thin Acute SENB 9 18 9 0.15 0.5 0.5 0.017
D21-D26 Thin Blunt SENB 9 18 9 1.20 0.5 0.5 0.133
E11-E16 Thick Acute SENB 15 18 9 0.15 0.833 0.5 0.017
E21-E26 Thick Blunt SENB 15 18 9 1.20 0.833 0.5 0.133

Figure 3: SENB fracture specimens D11 to D16 (see Table 3). Dimensions in mm.

Table 3 shows that the experimental program combines two different thicknesses  (9mm and 15mm) 𝐵
and notch radii  (0.15mm and 1.2mm), but all other dimensions are kept constant. During the different 𝜌
tests, the applied load, the Crack Mouth Opening Displacement (CMOD) and the crosshead 
displacement were recorded. For some tests, the clip gauges measuring CMOD reached their maximum 
opening shortly before the end of the test, so in these cases CMOD for the final portion of the test was 



estimated. This was achieved by extrapolating the CMOD vs. time trend recorded during the mid-
portion of the test. This trend was very close to being linear, but a 2nd order polynomial fit provided a 
more accurate fit, and this was used to extrapolate CMOD values up to the end of the test.

Load Line Displacement (LLD) was not measured in the tests, but estimates of LLD were obtained 
using correlations between CMOD and LLD obtained from the Finite Element (FE) models reported in 
the next section below. Although the relationship between CMOD and LLD in each FE model was 
approximately linear and approximately the same for all four geometries shown in Table 3, a second 
order polynomial fitted to each individual geometry provided the most accurate relationship, and these 
polynomial expressions were used to estimate LLD from the CMOD measured in each test.   

Although the tests were performed in accordance with the ASTM procedure, ESIS P2-92 [40] was 
used to calculate , denoted here as , from the area under the load vs. LLD curve using 𝐽 𝐽𝐸𝑆𝐼𝑆

Equation 7:

𝐽𝐸𝑆𝐼𝑆 =
𝜂𝑈

𝐵(𝑊 ‒ 𝑎) 7 

where 𝜂 = 2
 = area under load vs. LLD curve.𝑈

Although Equation 7 was derived for use with pre-cracked specimens, as is the case for similar 
expressions in other fracture toughness testing standards, it has been shown [12,15,16,29] that such 
expressions provide reasonable estimates of , typically to within 10% depending on notch radius and 𝐽𝜌

loading level. Of all these methods,  generally provides the most accurate method for notched 𝐽𝐸𝑆𝐼𝑆

specimens, typically to within 5% [12, 15]. 

Values of  at failure were converted to dimensions of  using the following expression:𝐽𝐸𝑆𝐼𝑆 𝐾

𝐾 𝜌
𝐽𝐶 = 𝐸𝐽𝐸𝑆𝐼𝑆/(1 ‒ 𝜈2) 8 

To characterise the improvement in effective toughness due to the presence of the notch, it is 
convenient to normalise the  measured for each notched specimen by the fracture toughness , 𝐾 𝜌

𝐽𝐶 𝐾𝑚𝑎𝑡

where  is defined for a pre-cracked specimen of the same specimen thickness  as that of the 𝐾𝑚𝑎𝑡 𝐵
notched specimen. A different absolute value of  is therefore used for each specimen thickness as 𝐾𝑚𝑎𝑡

described in Section 3 of this paper. Defined in this way, the ratio /  compares the measured 𝐾 𝜌
𝐽𝐶 𝐾𝑚𝑎𝑡

notch toughness with the equivalent fracture toughness of a pre-cracked specimen of the same 
thickness.

4.2. Finite Element Analysis

4.2.1. SENB Specimens

Three-dimensional (3D) FE models of the four SENB test specimen geometries were constructed and 
validated against test data. In addition to the four test specimen geometries listed in Table 3, four 
additional geometries were modelled corresponding to specimen thicknesses of B=18mm and 27mm, 
corresponding to B/W ratios of 1.0 and 1.5 respectively. The complete FE model matrix is shown in 
Table 4. For each SENB specimen modelled, symmetry conditions were specified along the 
uncracked ligament ( =0) and the longitudinal mid-plane ( =B/2) thereby enabling one quarter of 𝑥2 𝑥3



each SENB specimen to be modelled numerically. An example of the one-quarter model of the SENB 
specimen with B=15mm and =1.20mm is shown in Figure 4. Each model consisted of quadratic 20-𝜌
noded reduced integration hexahedral elements (C3D20R) arranged into 14 variable thickness layers. 
The thickest element layer was defined at the longitudinal mid-plane with thinner elements defined 
near the free surface to accommodate the reduced constraint approaching plane stress conditions. 
Each model had a straight notch front. The FE analyses were performed using ABAQUS version 
6.14-3 [41] using a finite strain formulation.

x1

x2

x3

Figure 4: One-quarter FE model of SENB specimen E21-E26 (B=15mm, =1.20mm).𝝆

Table 4: FE Matrix 

Description Specimen 
Type

B 
(mm)

W 
(mm)

a 
(mm)

ρ 
(mm)

B/W a/W ρ/a

SENB 9 18 9 0.15 0.5 0.5 0.017
SENB 9 18 9 1.20 0.5 0.5 0.133
SENB 15 18 9 0.15 0.833 0.5 0.017Geometry matched to test data.

SENB 15 18 9 1.20 0.833 0.5 0.133
SENB 18 18 9 0.15 1.0 0.5 0.017
SENB 18 18 9 1.20 1.0 0.5 0.133
SENB 27 18 9 0.15 1.5 0.5 0.017

No corresponding test data. 
Geometry modelled to investigate 
behaviour at higher thicknesses. SENB 27 18 9 1.20 1.5 0.5 0.133

Within each of the 14 variable thickness layers, rings of elements enclosed the notch tip as shown in 
Figure 5. The notch tip elements had a dimension  in the  direction and a dimension approximately 𝐿 𝑥1

equal to  in the angular direction,  = tan –1 . In the angular direction, 10 equally sized 𝐿 𝜃 (𝑥2 𝑥1)
elements were defined in the range  and  was constant with . In the  direction,  0 < 𝜃 < 𝜋 2 𝐿 𝜃 𝑥1 𝐿
increased with increasing distance  from the centre of curvature of the notch tip, where . 𝑟 𝐿 = 2𝜋𝑟/40
The ratio  was therefore the same in all models and ensured a consistency of mesh structures 𝜌/𝐿
between the models with notches of differing radii.



L L
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Figure 5: Notch tip mesh detail. 

The lower loading pin was modelled using a three-dimensional rigid analytical part in the shape of a 
cylinder positioned below the SENB specimen. Loading in three-point bending was simulated by 
applying a prescribed displacement in the  direction to a single reference point tied to a line of 𝑥2

nodes on the top of the specimen. This enabled the reaction force to be evaluated through the single 
reference point. 

Plasticity was modelled using true-stress vs. true-strain data obtained from the tensile tests performed 
at -100°C, and hence included the yield plateau as measured in the tensile tests. To obtain strains 
higher than those measured in the tensile tests, a Ramberg-Osgood relationship was used to 
extrapolate the test data to high strains. The stress at the limit of proportionality  was 597MPa and 𝜎0

the strain hardening exponent  used to extrapolate the stress-strain curve to high strains was 12. 𝑛

4.2.2. Boundary Layer Models

The method used for calibrating the Weibull parameters, described in Section 4.3.1 below, requires 
the use of a plane strain boundary layer FE model to simulate a crack in an infinite body [42]. The 
boundary layer model consisted of a semi-circular mesh of initial radius  containing a radial crack 𝑅
modelled with a crack tip radius =2.5μm. The ratio /  was set at 105 to ensure that the crack tip 𝜌 𝑅 𝜌
plastic zone did not approach the boundary of the model thereby ensuring small-scale yielding 
conditions were preserved. Symmetry conditions were specified along the uncracked ligament ( =0). 𝑥2

Plane strain boundary conditions were applied to both faces in the  direction, so the model was 𝑥3

essentially 2D despite the same 3D elements being used as for the SENB specimens, i.e. quadratic 20-
noded reduced integration elements. Although the boundary layer model is essentially a plane strain 
analysis, the thickness of the model affects the volume of the crack tip plastic zone and hence the 
Weibull stress as defined by Equation 4.  Four boundary layer models were analysed, each model 
having a thickness equal to that of each SENB model.

Displacement boundary conditions were applied incrementally to the nodes on the outer edge of the 
model. These displacements were consistent with the leading, -dominated term of the Williams 𝐾𝐼

expansion [43] for the displacement field at the crack tip, as follows:



𝑢1 = 𝐾𝐼
1 + 𝜈

𝐸
𝑅

2𝜋cos(𝜃
2)(3 ‒ 4𝜈 ‒ cos𝜃) 9 

𝑢2 = 𝐾𝐼
1 + 𝜈

𝐸
𝑅

2𝜋sin(𝜃
2)(3 ‒ 4𝜈 ‒ cos𝜃)

10 

where  and  are the displacements in the  and  directions respectively,  is the elastic 𝑢1  𝑢2 𝑥1  𝑥2 𝐸
modulus,  is Poisson's ratio, and the polar co-ordinates  and  define the position of the node with 𝜈 𝑅 𝜃
respect to the crack tip. Plasticity was modelled using the same stress-strain relationship used for the 
SENB models.

4.3. Post-processing

4.3.1. Calibration of Weibull parameter, m

The approach proposed by Gao et al [31] provides a suitable methodology for determining  and  𝑚 𝜎𝑢

and can be summarised in the following steps:

1. Test two sets of fracture toughness specimens, one set corresponding to high constraint 
conditions (geometry A) and the other to low constraint conditions (geometry B).

2. Perform 3D elastic-plastic FE analyses of both specimen geometries tested (A and B). The 
models should have sufficient mesh refinement to allow accurate calculation of the Weibull 
stress  and the crack driving force . 𝜎𝑤 𝐽

3. Perform 2D plane strain elastic-plastic FE analysis of a defect in an infinite body under SSY 
conditions using a boundary layer model.

4. Calibrate m as follows:
a. Assume an  value (or several trial values of ) and calculate the  vs.  history for 𝑚 𝑚 𝜎𝑤 𝐽

the A and B specimen geometries and for the SSY analysis
b. Constraint correct each measured  value from the A and B specimen geometries to 𝐽

its equivalent SSY equivalent value. This is defined as the value of  under small 𝐽
scale yielding which has the same scalar Weibull stress (and therefore failure 
probability) as the measured values of .𝐽

c. Calculate two estimates of the SSY scale factor for the two distributions of constraint-
corrected  values. For  toughness values, a simple estimate is given by:𝐽 𝑁

R
d. Repeat steps (a-c) with different values of  until =  within a small tolerance, 𝑚 𝜉𝐴 𝜉𝐵

thereby minimising the error function .𝑅(𝑚) = (𝜉𝐴 ‒ 𝜉𝐵)/𝜉𝐵

5. For the calibrated value of , the value of  is the value of  in the boundary layer model 𝑚 𝜎𝑢 𝜎𝑤

corresponding to a crack driving force of .𝜉𝐴 = 𝜉𝐵

𝜉𝐴,𝐵 = [1
𝑁( 𝑁

∑
𝑖 = 1

𝐽 2
(𝑖) ‒ 𝑆𝑆𝑌)]

1/2

11 



The above method has previously been implemented for SENB specimens containing notches in [26] 
where it was noted that care is required during calibration to ensure that the constraint states of the 
high constraint geometry A and the low constraint geometry B span the defect of interest. This 
ensures that the model interpolates between the constraint states used for calibration, rather than 
extrapolating outside the range of applicability. For this reason, for Step 1, the thick specimen with an 
acute notch (E11-E16 in Table 3) was selected as the high constraint geometry A, and the thin 
specimen with a blunt notch (D21-D26) as the low constraint geometry B. This was to ensure the 
scaling model is applicable over the widest range of constraint states. 

The calibration approach adopted uses SENB specimens of two different thicknesses, and for this 
reason Step 3 involved boundary layer analysis of the same two thicknesses as the SENB test 
specimens used for calibration. The constraint correction procedure in Step 4b therefore corrected 
each specimen geometry to the equivalent SSY value for the boundary layer model of the same 
thickness, as shown schematically in Figure 6. In Step 5, one value of  was obtained for each 𝜎𝑢

thickness.
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Figure 6: Toughness scaling diagram. 

Equation 3 describes the probability of cleavage initiation only and does not account for subsequent 
micro-crack arrest (i.e. it assumes that cleavage initiation corresponds to macroscopic cleavage 
fracture). The two-parameter Weibull distribution therefore tends to over-predict the observed scatter 
in fracture toughness test results. This limitation led to an alternative expression being proposed [44] 
based on a three-parameter distribution:

𝑃𝑓 = 1 ‒ exp [ ‒ (𝜎𝑤 ‒ 𝜎𝑤,𝑚𝑖𝑛

𝜎𝑢 ‒ 𝜎𝑤,𝑚𝑖𝑛)
𝑚] 12 

where  is the minimum value of Weibull stress at which macroscopic cleavage fracture 𝜎𝑤,𝑚𝑖𝑛

becomes possible.  is conventionally defined as the  value in SSY that corresponds to the 𝜎𝑤,𝑚𝑖𝑛 𝜎𝑤

lowest possible  value at fracture, , of 20MPa√m as specified in ASTM E1921 [38]. For 𝐾𝐽 𝐾𝑚𝑖𝑛

specimens with notches instead of fatigue pre-cracks, experimental data from steel specimens tested at 
very low temperatures (for example at -196°C in [18]) indicate that even on the lower shelf, the 



measured effective notch toughness is significantly higher than the fracture toughness, which suggests 
that  may be larger than 20MPa/m for specimens with notches. In this work, values of  𝐾𝑚𝑖𝑛 𝜎𝑤,𝑚𝑖𝑛

corresponding to a higher value of , arbitrarily set at 50MPa√m, were considered in addition to 𝐾𝑚𝑖𝑛

the standard value of 20MPa√m quoted for pre-cracked specimens in ASTM E1921. 

4.3.2. Weibull stress based toughness scaling model

The toughness scaling model based on the Weibull stress [45] was originally developed for constraint 
correction between cracked specimens of differing constraint levels with different levels of applied J 
but identical cleavage fracture probabilities. The same approach was first applied to specimens 
containing cracks and notches of differing root radius in [26], and a similar approach has been 
adopted in this work.

Toughness scaling diagrams, such as those shown in Figure 6, were generated by post-processing 
numerical data (maximum principal stresses and integration point volumes) from each FE model to 
define the evolution of , calculated using Equation 4, with the value of . For the SENB specimens, 𝜎𝑤 𝐽

 was calculated according to ESIS P2-92 using Equation 7, for consistency with the analysis of 𝐽𝐸𝑆𝐼𝑆

the test data. For the boundary layer models representing SSY,  cannot be obtained from Equation 7 𝐽
so  was instead obtained using contour independent -integrals. 𝐽 𝐽

The probability of cleavage fracture is directly related to the Weibull stress via Equation 3. For 
specimens of the same thickness and therefore the same value for , a horizontal line plotted in 𝜎𝑢

Figure 6 defines a specific cleavage fracture probability. Figure 6 can then be used to predict the value 
of  that corresponds to a given failure probability for any other geometry modelled of the same 𝐽
thickness. For specimens of different thickness and hence different values of , the toughness scaling 𝜎𝑢

model approach can still be used, but it is more convenient to plot  instead of  on the ordinate 𝑃𝑓 𝜎𝑤

axis to account for the different value of  for each specimen thickness.𝜎𝑢



5. RESULTS

5.1. Experimental Data

Figure 7 plots the experimentally measured load vs. LLD curves for the SENB specimens together 
with the corresponding curves from the FE analyses. The FE analyses are discussed later in the paper.  
Most of the specimens failed in a brittle manner during a rising load. Examination of the fracture 
surfaces indicated failure occurred predominantly by cleavage fracture without significant ductile 
tearing, depicted by the circles in Figure 7. As an example, the fracture surface for specimen D26 is 
shown in Figure 8; despite extensive plastic deformation being apparent near the free surface, no 
significant pre-cleavage ductile tearing was visible on the fracture surface. In contrast, some of the 
other thinner specimens with =0.5 did not fail by cleavage before maximum load was reached, 𝐵/𝑊
and for these specimens the point of maximum load is represented by squares in Figure 7. For two 
specimens, problems during the test led to the test being stopped before fracture or maximum load 
was reached, these are shown by diamonds in Figure 7. 
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Figure 7: Load vs. displacement curves from the experimental programme showing specimens 
with (a) an acute notch and (b) a blunt notch. 

From Figure 7 it is evident that the thicker specimens exhibited much higher loads than the thinner 
specimens, as would be expected due to the larger cross sectional area and hence greater load bearing 
capacity, and they also exhibited lower displacement values at failure than the thinner specimens. In 
terms of fracture mechanics, it is more useful to discuss the results in terms of the measured effective 
toughness, and this was calculated from the area under load vs. displacement curve using  𝐽𝐸𝑆𝐼𝑆

(Equation 7) and converting to  (Equation 8). These values are summarised in Table 5 which 𝐾 𝜌
𝐽𝐶

tabulates the failure type, load at failure, and the values of  and  at failure.𝐽𝐸𝑆𝐼𝑆 𝐾 𝜌
𝐽𝐶



Figure 8: Fracture surface for specimen D26 showing extensive plastic deformation at the free 
surface but no visible ductile tearing preceding cleavage fracture

 

Table 5: Experimental Results

FailureSpecimen
ID

B
(mm)

W
(mm)

a
(mm)

ρ
(mm) B/W ρ/a Type Load 

(kN)

 𝐽𝐸𝑆𝐼𝑆
(kJ/m²)

𝐾 𝜌
𝐽𝐶

(MPa√m)
D11 9 18 9 0.15 0.5 0.017 Cleavage 10.80 561 364.2
D12 9 18 9 0.15 0.5 0.017 Cleavage 11.55 1146 520.7
D13 9 18 9 0.15 0.5 0.017 Max Load 11.13 898 461.1
D14 9 18 9 0.15 0.5 0.017 Cleavage 10.38 859 450.9
D15 9 18 9 0.15 0.5 0.017 Max Load 10.24 658 394.7
D16 9 18 9 0.15 0.5 0.017 Cleavage 9.65 506 346.0
D21 9 18 9 1.20 0.5 0.133 Stopped 12.84 2322 741.3
D22 9 18 9 1.20 0.5 0.133 Cleavage 12.29 2196 721.0
D23 9 18 9 1.20 0.5 0.133 Cleavage 12.08 2042 695.3
D24 9 18 9 1.20 0.5 0.133 Max Load 12.10 2852 821.6
D25 9 18 9 1.20 0.5 0.133 Max Load 11.90 1968 682.6
D26 9 18 9 1.20 0.5 0.133 Cleavage 11.85 2009 689.5
E11 15 18 9 0.15 0.833 0.017 Cleavage 17.04 380 299.8
E12 15 18 9 0.15 0.833 0.017 Cleavage 17.23 382 300.8
E13 15 18 9 0.15 0.833 0.017 Cleavage 17.56 412 312.1
E14 15 18 9 0.15 0.833 0.017 Cleavage 16.31 217 226.7
E15 15 18 9 0.15 0.833 0.017 Cleavage 17.76 421 315.6
E16 15 18 9 0.15 0.833 0.017 Cleavage 16.49 278 256.6
E21 15 18 9 1.20 0.833 0.133 Stopped 19.26 1135 518.3
E22 15 18 9 1.20 0.833 0.133 Cleavage 21.24 1565 608.6
E23 15 18 9 1.20 0.833 0.133 Cleavage 20.11 1032 494.2
E24 15 18 9 1.20 0.833 0.133 Cleavage 21.02 1361 567.6
E25 15 18 9 1.20 0.833 0.133 Cleavage 21.03 1528 601.4
E26 15 18 9 1.20 0.833 0.133 Cleavage 20.96 1417 579.1



Figure 9(a) presents the experimental results in terms of  plotted against .  values 𝐾 𝜌
𝐽𝐶 𝐵/𝑊 𝐾𝑚𝑎𝑡

obtained using the Master Curve (Equation 6) for pre-cracked specimens are also plotted for 
comparison, with the points corresponding to the median value and the error bars denoting the 5th and 
95th percentile values of . Figure 9(a) clearly shows a significant reduction in toughness with 𝐾𝑚𝑎𝑡

increasing specimen thickness for both acute and blunt notches. These data provide clear experimental 
evidence of the thickness effect that occurs in steel specimens with notches. Figure 9(b) presents the 
same results as Figure 9(a) but plotted in the same form as Figure 1 with  /  on the ordinate 𝐾 𝜌

𝐽𝐶 𝐾𝑚𝑎𝑡

axis and  on the abscissa axis, where  is calculated using Equation 1. As the thickness of the 𝜎𝑁 𝜎0 𝜎𝑁

pre-cracked specimen used to define  is equal to that of the notched specimen, the thickness 𝐾𝑚𝑎𝑡

effect in Figure 9(b) can be attributed to the differences in the extents of out-of-plane constraint loss 
between the two specimens.

Curves have also been fitted to the test data in Figure 9(b) using Equation 2. These are best-fit curves 
through the middle of the test data, so the normalising toughness  has also been defined at the 𝐾𝑚𝑎𝑡

median level. If curves were fitted as a lower-bound, for example through the lower 5th percentile of 
the test data, then the normalising toughness  would also be defined at the lower 5th percentile for 𝐾𝑚𝑎𝑡

consistency. Although the individual /  data points would be higher in this case, the fitted 𝐾 𝜌
𝐽𝐶 𝐾𝑚𝑎𝑡

/  curve would be unchanged. As discussed in Section 2, this is one of the useful aspects of 𝐾 𝜌
𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

the approach: for a given value of / , the ratio /  remains independent of load, 𝜎𝑁 𝜎0 𝐾 𝜌
𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

independent of , independent of , and independent of cleavage fracture probability . However, 𝐽 𝜎𝑤 𝑃𝑓

the same  must be used for the definition of both  and  for consistency.𝑃𝑓 𝐾 𝜌
𝑚𝑎𝑡 𝐾𝑚𝑎𝑡
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5.2. Finite Element Analysis

Figure 7 compares the load vs. LLD output from the FE analyses with the test data. The FE results 
correlate well with the test data, with the FE results lying within the scatter of the test data. For the 



acute notch with =0.017, the FE results slightly over-predict the load at the yield point. A 𝜌/𝑎
reduction in accuracy of FE models around the yield point has been observed previously [46] for 
acute notches when modelling materials that exhibit discontinuous yielding with stress-strain curves 
that retain the Lüders band. The over-prediction of load at the yield point is relatively small in the 
current case, and as fracture of the test specimens occurs well beyond yield, this is not expected to 
have a significant impact on the modelling results at failure. 

5.2.1. Calibration of Weibull parameter, m

As discussed earlier, the thick SENB with acute notch was selected as the high constraint geometry A. 
All six of these specimens failed by cleavage without prior ductile tearing and are therefore suitable to 
use for calibration. The thin SENB with blunt notch was selected as the low constraint geometry B, 
but unfortunately only three of these specimens failed by cleavage without prior ductile tearing. 
Calibration of the Weibull parameters ideally requires larger datasets – typically ten repeats at each 
condition – so the size of the available datasets is much smaller than would be preferred. Despite the 
small calibration datasets, an attempt was made to calibrate the parameters.

To calibrate the Weibull modulus , initial trial values of =10,11,12,…,19 were chosen. A plot of 𝑚 𝑚
the error function  vs.  indicated a zero value for the function would be achieved with  𝑅(𝑚) 𝑚 𝑚
slightly below 10. A second iteration of steps 4a-4c from Section 4.3.1 of the paper was therefore 
carried out for m=9.0,9.1,9.2,…,9.9. A plot of  vs.  showed the error function was close to 𝑅(𝑚) 𝑚
zero at m=9.1. This was taken to be the 'calibrated' value of . Applying step 5 of the procedure 𝑚
resulted in different values of /  for each specimen thickness modelled, and these values are 𝜎𝑢 𝜎0

summarised in Table 6. 

Table 6: Calibrated Weibull parameters for different thicknesses

B/W 𝒎 /𝝈𝒖 𝝈𝟎
0.5 3.47

0.833 3.67
1.0 3.74
1.5

9.1

3.91

5.2.2. Failure predictions

Figure 10 compares the predicted values of , calculated using Equation 12, with the values of 𝑃𝑓 𝜎𝑤/
 at failure. Predictions for the thinner specimens with =0.5 are shown in Figure 10(a) and 𝜎0 𝐵/𝑊

those for the thicker specimens with =0.833 are shown in Figure 10(b). The Weibull stress model 𝐵/𝑊
tends to over-predict the scatter when using the standard  value of 20MPa√m specified for pre-𝐾𝑚𝑖𝑛

cracked specimens in ASTM E1921. The use of a higher  value reduces the spread of the 𝐾𝑚𝑖𝑛

predictions and brings them into closer alignment with the test data, however the use of a higher value 
also raises the question of the most appropriate value to select for  when assessing notched 𝐾𝑚𝑖𝑛

specimens (the value of 50MPa√m is an arbitrarily selected value to show the sensitivity of the 
approach to this value). It is therefore convenient to consider the results at =0.632, where the 𝑃𝑓

predictions are insensitive to the value assumed for  and hence insensitive to . 𝐾𝑚𝑖𝑛 𝜎𝑤,𝑚𝑖𝑛

The datasets used for calibration are shown as solid black circles, so the predictive capability of the 
method can be judged by comparing the prediction with the open circles. The predictions for the thin 
specimens match very well with the acute notch test data Figure 10(a), however for the thicker 



specimens the model under-predicts failure of the blunt notch specimens Figure 10(b). Given the 
relatively small datasets used for calibration of , the close correlation between predictions and test 𝑚
data for the thin specimens in Figure 10(a) is perhaps more surprising than the under-prediction of the 
blunt specimen in Figure 10(b).
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Figure 10: Failure predictions for (a) thin specimens with B/W=0.5,
(b) thick specimens with B/W=0.833

Figure 11(a) compares the predicted values of  with the test data, plotted against .  𝐾 𝜌
𝐽𝐶 𝐵/𝑊 𝐾𝑚𝑎𝑡

values obtained using the Master Curve (Equation 6) for pre-cracked specimens are also plotted for 
comparison at =0.632. The predictions, which were made at the two discrete  values of 0.5 and 𝑃𝑓 𝐵/𝑊
0.833, have been joined together with straight black lines for the purposes of clarity, although in 
reality the trend is unlikely to be linear. The predictions would be expected to pass close to the centre 
of the experimental data; although they are reasonable for the thinner specimens, there is a tendency 
to under-predict  for the thicker, blunter notch, which is consistent with Figure 10(b). This same 𝐾 𝜌

𝐽𝐶

trend is also noticeable in Figure 11(b), which shows the same test results and predictions but plotted 
in a form consistent with Figure 1. Despite this under-prediction, the overall general trend of the 
variation of  with  appears broadly reasonable considering the reduction in accuracy expected 𝐾 𝜌

𝐽𝐶 𝐵/𝑊
due to the limited data that was available for calibration. 
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5.2.3. Toughness scaling to other thicknesses

Toughness scaling predictions for SENB specimens with thicknesses greater than those in the 
experimental programme are presented in Figure 12. The toughness scaling diagram for the blunt 
notch radius with ρ/a=0.133 is shown in Figure 12(a), plotted in terms of  on the ordinate axis 𝑃𝑓

calculated using Equation 12 with =20MPa√m, and  on the abscissa axis calculated using 𝐾𝑚𝑖𝑛 𝐽
Equation 7. Predicted values of effective notch toughness are plotted in Figure 12(b) as a function of 

, where the predictions correspond to =0.632 for consistency with the results presented in 𝐵/𝑊 𝑃𝑓

Figure 11(a). The FE predictions indicate that for both notch radii, the effective notch toughness 
becomes relatively insensitive to thickness above =0.833. The test data are in agreement for the 𝐵/𝑊
acute notch, but as the FE under-predicts  for the blunt notch, it could be argued that the 𝐾 𝜌

𝐽𝐶

insensitive region starts closer to =1.0.𝐵/𝑊
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6. DISCUSSION

The effect of thickness on effective notch toughness has previously been discussed in [47]. The 
magnitude of the effect was predicted using Weibull stress analysis in [23], and the test data in this 
paper provide clear experimental evidence of this effect.

When values of  are plotted without being normalised by , such as in Figure 9(a) and 𝐾 𝜌
𝐽𝐶 𝐾𝑚𝑎𝑡

Figure 11(a), the observed thickness effect is due to a combination of two distinct components: 
primarily a mechanical out-of-plane constraint loss effect due to the loss of plane strain conditions 
that occurs with decreasing thickness; and to a lesser degree a microstructural weakest link effect 
which is relevant for cleavage fracture. The latter effect arises due a shorter crack front length and 
hence smaller plastic zone volume decreasing the probability of sampling a microstructural feature 
capable of triggering cleavage fracture, compared with a thick specimen. Normalising the values of 

 by the corresponding fracture toughness  for a pre-cracked specimen of the same thickness, 𝐾 𝜌
𝐽𝐶 𝐾𝑚𝑎𝑡

e.g. Figure 9(b) and Figure 11(b), results in plots that show only the mechanical constraint loss effect.

The overall toughness benefit defined by /  therefore arises due to a combination of the in-𝐾 𝜌
𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

plane effect of the notch radius and the out-of-plane constraint loss which itself is enhanced by the 
presence of the notch radius. Both the test data and the FE predictions indicate that for the thin SENB 
specimens with =0.5, the out-of-plane constraint loss is as significant as the in-plane effect of the 𝐵/𝑊
notch radius alone. This is consistent with the numerical study of Compact Tension (CT) specimens in 
[23] which showed the out-of-plane constraint loss effect was as significant as the in-plane notch 
effect for CT specimens with =0.5.𝐵/𝑊

Fracture toughness testing standards such as [38,39] provide minimum thickness requirements to 
ensure that the out-of-plane constraint loss is minimised in pre-cracked test specimens, for example 
[39]:

𝐵 ≥
100𝐽

𝜎𝑦
13 

where  is defined for a pre-cracked specimen. Equation 13 was used to design the test programme in 𝐽
this paper, specifically to select the thinnest possible specimen that would still meet this criterion if 
the specimen was pre-cracked instead of notched. Using the Master Curve to define median fracture 
toughness properties, Equations 6 and 13 were solved for a range of trial thickness values to find the 
lowest integer value of  that would satisfy Equation 13, and hence meet the standard criterion to 𝐵
ensure plane strain conditions for a pre-cracked specimen. This resulted in =9mm (i.e. =0.5) 𝐵 𝐵/𝑊
being chosen for the thinnest specimen in the test programme. In contrast, for the test specimens 
containing notches, the results in Figure 12(b) indicate that a minimum thickness closer to =1.0 𝐵/𝑊
is required to minimise out-of-plane constraint loss. This finding is consistent with the numerical 
analysis in [23] which showed that although significant out-of-plane constraint loss occurred in CT 
specimens with =0.5, doubling the thickness to =1.0 was sufficient to eliminate the out-of-𝐵/𝑊 𝐵/𝑊
plane constraint loss. It is important to note that halving the width  instead of doubling the thickness 𝑊

 to achieve the same ratio =1.0 would not achieve the same result; not only would the specimen 𝐵 𝐵/𝑊
still be affected by out-of-plane constraint loss, but the reduced  may also lead to in-plane constraint 𝑊
loss. It is therefore important to note that a specific  ratio should not be regarded as a universal 𝐵/𝑊
criterion for eliminating out-of-plane constraint loss, the ratio has used in this paper only as a 
convenient normalised measure of specimen thickness. Any universal criterion for defining the 



minimum specimen thickness to ensure plane strain conditions would be in the form of a modification 
to Equation 13, rather than a single  ratio.𝐵/𝑊

The philosophy adopted in BS7910 [2] is to measure fracture toughness using full thickness test 
specimens, i.e. specimens with a thickness  equal to the thickness of the structure being assessed. 𝐵
Although this is appropriate for assessing cracked structures using pre-cracked test specimens which 
meet the minimum thickness requirements, test specimens containing notches are more likely to suffer 
from out-of-plane constraint loss than pre-cracked specimens of the same thickness. Therefore, even 
full-thickness test specimens may exhibit higher toughness than would be expected if conditions were 
fully plane strain. Using such a value of  would be non-conservative in an NFAD assessment if 𝐾 𝜌

𝑚𝑎𝑡

the non-sharp defect in the structure being assessed was in plane strain, for example the deepest part 
of a long surface-breaking notch. 

7. CONCLUSIONS

The main conclusions of this work are as follows:

 The test data in this paper provide clear experimental evidence of a significant thickness 
effect on the effective cleavage toughness  measured using SENB specimens containing 𝐾 𝜌

𝑚𝑎𝑡

a U-notch instead of a pre-crack. This effect is over and above the microstructural weakest 
link effect arising from differences in the volume of the plastic zone.

 The toughness benefit due to the notch,  / , is a function of both the in-plane effect 𝐾 𝜌
𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

of the notch radius and an out-of-plane constraint loss which itself is enhanced by the 
presence of the notch radius. The test data and FE modelling results indicate that the effect of 
this out-of-plane constraint loss on  /  can be of the same order of magnitude as the 𝐾 𝜌

𝑚𝑎𝑡 𝐾𝑚𝑎𝑡

in-plane effect of the notch radius alone.

 For the material considered in this paper, significant out-of-plane constraint loss occurred for 
notched specimens with =0.5, a geometry that if pre-cracked would have met the 𝐵/𝑊
minimum thickness requirement mandated by ASTM E1820.

 Doubling the thickness to =1.0 was sufficient to eliminate the out-of-plane constraint 𝐵/𝑊
loss for the material and geometry considered, an observation consistent with a previous 
numerical study [23].   was relatively insensitive to thickness for >1.0. 𝐾 𝜌

𝑚𝑎𝑡 𝐵/𝑊

 The use of experimentally measured  values in an NFAD assessment of a structure may 𝐾 𝜌
𝑚𝑎𝑡

be non-conservative if <1.0, due to the loss of plane strain conditions in the test 𝐵/𝑊
specimen.
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