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ABSTRACT

The direct superimposition of a standard test grid of congruent quadrats onto an image bearing a population
of particles exhibiting perspective artifacts, tends to increase the variance of the population size estimator,
because the quadrat contents become unbalanced. If the quadrats are transformed according to the same
projection mechanism affecting the particles, however, then the variance is restored into moderate values. Our
purpose was to provide exact, easily programmable equations for the relevant transform.

Keywords: cylindrical projection, gigapixel image, particle number, quadrat grid, sinusoidal curve,
transformed quadrat grid.

Dedicated to the memory of Ewald R. Weibel.

INTRODUCTION

This note was motivated by the problem of
estimating the finite size of a fixed and bounded
population of objects in a reference plane. An object
is regarded as a ‘particle’, namely a compact and
connected set separated from other particles. In
practice the particles (people, animals, or whatever
distinguishable objects) are observable in a reference
projection plane, henceforth called the horizontal plane
(HP), and observed in a flat image – usually a
photograph – called the image plane (IP). Ideally, the
IP should be parallel – at least approximately – to the
HP, in order to avoid perspective artifacts. Cruz et al.
(2015) proposed to superimpose on the IP a uniform
random grid of quadrats, with a fundamental square
tile of area a > 0, containing a fundamental square
quadrat of area a′ ∈ (0,a], whereby the sampling
period is a/a′ ≥ 1 and

N̂ =
a
a′
·Q , (1)

is an unbiased estimator (UE) of the population size
N. Here Q is the sample size, namely the total number
of particles captured by the quadrats. For general
particles, Q is scored using the forbidden line rule
of Gundersen (1977), widely used in stereology to
cope with edge effects. The free software CountEm
(https://countem.unican.es/) offers a computer assisted
procedure to estimate N on real images. For further
details on the sampling design see Gómez et al. (2019).

For large populations (e.g., for N � 10,000),
panoramic ‘gigapixel’ images are nowadays obtained
with the aid of special cameras which use cylindrical
projections from some elevated observation point
which plays the role of a centre of projection. The
resulting images exhibit perspective artifacts: the
observed particle density increases with the distance
from the observation point. As a consequence, distant
quadrats will tend to capture many more particles

than proximal quadrats, this causing Var(N̂) to become
unduly large (Cruz and González-Villa, 2019). An
idea proposed in the latter paper was to apply to
the quadrats the same projection mechanism used
for the gigapixel image. Now, for a given position
of the grid the individual quadrat counts will be
identical to those obtained with an ordinary grid on
an IP parallel to the HP, whereby the corresponding
estimation variance will be restored. Each transformed
quadrat was drawn approximately by applying the
pertinent point transform to each of a few landmarks
in the quadrat boundary, then joining the transformed
landmarks. In this note we give explicit projection
formulae to plot the transformed grid of quadrats
directly on the IP. This is done by computing first the
cylindrical projection of an ordinary grid from a fixed
point, and then unrolling the cylinder. The edges of the
transformed quadrats turn out to be sinusoidal arcs.

CYLINDRICAL PROJECTIONS

SETUP
A special camera for gigapixel images consists of

a lens which can rotate around a vertical axis; at each
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position, the camera collects a partial, essentially flat
image, and a suitable software creates a paving of
such images which can map the target object into a
panoramic view of up to 360◦. The result is roughly
equivalent to projecting the object through a pinhole
onto the internal face of a right circular cylinder.
Based on this fact, the model described below involves
projection of points and lines in the HP through
a centre of projection onto a vertical right circular
cylinder. For clarity of exposition the projections are
made onto the external surface of the cylinder, but the
results are equally valid for internal projections.

Fix an orthogonal reference frame ox1x2x2 in R
3.

We assume that the N particles of the target population
are mapped 1:1 into a bounded set of N associated
points {y1,y2, ...,yN} contained in a horizontal plane
(HP) x3 = h, where h is a constant. The origin o
is adopted as the centre of projection. The HP will
usually lie below o, hence to visualize the setup we
may assume that h< 0, see Fig. 1a. Consider a vertical,
right circular cylinder of radius r > 0, namely,

C = {(x1,x2,x3) : x2
1 + x2

2 = r2} . (2)

A cylindrical projection of a point y in the HP is the
unique intersection point y′ determined in C by a ray
emanating from o through y. Let O denote the point
(r,0,0). When the cylinder is unrolled we obtain the
image plane (IP). In the IP, the image of the circle

C0 = {(x1,x2,0) : x2
1 + x2

2 = r2} (3)

is a straight line segment of length 2πr, whose support
line is adopted as the axis of abscissas OX1 of a
rectangular frame OX1X2. Given a point, or a straight
line, in the HP, we want to represent it in the IP.

CYLINDRICAL PROJECTION OF A
POINT
Let (R,ω,h), R ∈ (0,∞), ω ∈ [0,2π), h ∈ R,

denote the cylindrical coordinates of a point y in
the HP, see Fig. 1a. The cylindrical coordinates
of the corresponding cylindrical projection y′ are
(r,ω,hr/R), and therefore the Cartesian coordinates of
the point y′ in the IP are,{

X1 = rω ,

X2 = hr/R ,
(4)

see Fig. 1b. In this way, the target set of N associated
points {y1,y2, ...,yN} is mapped into the set of N points
{(X1i,X2i), i = 1,2, ...,N} in the IP, which constitute
the relevant image data. Note that these data are
generally unknown – only a small sample, acquired
with a test system of quadrats, will be available to
estimate N.

CYLINDRICAL PROJECTION OF A
STRAIGHT LINE

Consider a straight line of normal coordinates
p > 0, φ ∈ [0,2π) contained in the HP, namely,

L1 = {(x1,x2,h) : x1 cosφ + x2 sinφ − p = 0} . (5)

A cylindrical projection from o maps the straight line
into the ellipse C ∩ L2, see Fig. 1c, where L2 denotes
the plane containing o and the straight line L1, namely,

L2 = {(x1,x2,x3) : hx1 cosφ +hx2 sinφ − px3 = 0} .
(6)

Set ϕ = φ −π/2, and let α ∈ [0,2π) be the polar angle
measured in the horizontal reference plane ox1x2 with
origin at an axis which makes an angle ϕ with the ox1

axis, (namely with an axis parallell to L1 through o).
The parametric equations of the ellipse C∩L2 in terms
of ϕ and α are the following,⎧⎪⎨⎪⎩

x1 = r cos(ϕ +α) ,

x2 = r sin(ϕ +α) ,

x3 = (hr/p)sinα .

(7)

The preceding expression of x3 is found by substituting
the expressions of x1,x2 into the equation of the plane
L2 containing the ellipse. Note that x3 does not depend
on ϕ . Thus, the parametric equations of the ellipse map
C∩L2 in the IP become{

X1 = r(ϕ +α) ,

X2 = (hr/p)sinα ,
(8)

or, in Cartesian coordinates,

X2 =
hr
p

sin

(
X1

r
−ϕ

)
, (9)

which corresponds to a sinusoidal curve, as expected,
see e.g. Steinhaus (1950), Ch.10, and Fig. 1d.

CYLINDRICAL PROJECTION OF A
SQUARE GRID OF QUADRATS

For convenience we define a square grid of
square quadrats in the HP as follows. A stripe
Lt(p,φ) of thickness t > 0 is the portion of the
plane comprised between two parallel straight lines of
normal coordinates (p,φ) and (p+ t,φ), respectively.
A systematic series of stripes (called Cavalieri stripes
in stereology) of fixed period T ≥ t is

{Lt(z+ kT,φ),k ∈ Z} , (10)
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Fig. 1. (a) Cylindrical projection of a point y in the horizontal plane, onto the point y′, with projection centre o.
(b) Cartesian coordinates of y′ in the image plane, see Eq. 4. (c) Cylindrical projection of a straight line in the
horizontal plane, into an ellipse. (d) In the image plane, the transform of the ellipse is a sinusoidal curve, see
Eq. 9.

where z ∼ UR[0,T ) is a uniform random offset in
the interval [0,T ), see Fig. 2a. Then, the intersection
between two mutually perpendicular Cavalieri stripe
series with independent UR offsets z1,z2 in [0,T ),
namely,

Λt,T (φ) = {Lt(z1 + jT,φ)}∩{Lt(z2 + kT,φ +π/2),

j,k ∈ Z}, φ ∈ [0,π/2) , (11)

is a square grid of square quadrats of side length t and
gap length T − t ≥ 0, see Fig. 2b.

By virtue of Eq. 9, the transform of a stripe
{Lt(z+ kT,φ)} in the IP is the portion of space
comprised between two sinusoidal curves of equations

⎧⎪⎪⎨⎪⎪⎩
X2 =

hr
z+ kT

· sin

(
X1

r
−ϕ

)
,

X2 =
hr

z+ kT + t
· sin

(
X1

r
−ϕ

)
,

(12)

respectively. For the transform of the perpendicular

stripe Lt(z+ jT,φ +π/2) the equations are analogous

to the preceding ones with sin(·) replaced with cos(·).
With this information it is easy to write a software

routine to plot the transform of the test system Λt,T (φ)
in the IP, see Fig. 2b,c. Note that a change in the

orientation φ of the original test system causes only

a shift of the transformed test system along the

horizontal axis OX1 in the IP.
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Fig. 2. (a) Quadrat generation as the intersection of two mutually perpendicular, uniform random and
independent systems of Cavalieri stripes. (b) A portion of a square test system of square quadrats in the horizontal
plane. The quadrats bear a portion of the forbidden edge (in red) to apply the corresponding unbiased counting
rule. (c) Generation of the transformed test system in the image plane by means of the intersection of two families
of sinusoids with ϕ = 0 and ϕ = pi/2, respectively, see Eq. 12. The transformed quadrats should also bear the
corresponding forbidden lines, which are portions of sinusoidal curves (see Fig. 3c).

A NOTE ON THE PERSPECTIVE
EFFECT
Consider two points y1,y2 in the HP, of cylindrical

coordinates (R,ω,h) and (R + δ ,ω,h) respectively.
Thus, for simplicity the two points are collinear with
the point o′(0,0,h), with a distance δ > 0 between
them. By the second Eq. 4, the transforms of y1,y2

in the IP lie in a vertical line, and have ordinates
X21 = hr/R and X22 = hr/(R+δ ), respectively. Thus,
the apparent distance between the two point transforms
in the IP is,

X22 −X21 = hr
(

1

R+δ
− 1

R

)
=

−hrδ
R(R+δ )

= O
(

1

R2

)
, (13)

which shows that the perspective effect is of order R−2.

SYNTHETIC EXAMPLE

To illustrate the preceding theory we generated in

the HP a realization of N = 300 point particles within

a rectangle from a hard core point process, with the aid

of the package Spatstat from the statistical software

R (https://www.r-ptoject.org/), see Fig. 3a. Here the

HP played the role of a preliminary IP, with origin at

the vertical projection o′(0,0,h = −2) of the centre

of projection o(0,0,0), see Fig. 1a. With this setup,

the containing rectangle was [−5,15) × [2,12). To

estimate the target number N, a grid was superimposed

on the IP, consisting of square quadrats of side length

t = 1, with a square fundamental tile of side length

T = 4. The sampling period was therefore a/a′ =
16. In Fig. 3a, the observed sample size, namely the

total number of particle centres within the quadrats,
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Fig. 3. Illustration of the Section Synthetic example. (a) A realization of N = 300 particle points in a rectangle,
from a hardcore point process. A quadrat grid is superimposed with which the empirical coefficient of error of the
number estimator is as given (26%). A quadrat is equipped with a portion of the forbidden edges (not required
in this study), mainly to compare it with its transform in Fig. 3c. (b) After cylindrical projection and posterior
unrolling, the resulting particle point pattern is rather inhomogeneous. Unbiasedness is preserved if the grid is
uniform random, but the square coefficient of error increases by a factor of about 9. (c) If the ordinary grid is
replaced with the one given by Eq. 12, which uses the same transformation which maps the pattern in (a) into
the one in (b), then the individual quadrat counts are identical to those in (a), and consequently the estimation
precision is restored.

is Q = 20, whereby Eq. 1 yields N̂ = 320, with a

relative deviation of 6.7%. The empirical coefficient

of error CEe(N̂) = SDe(N̂)/N ≈ 0.26 was computed

from 1024 automatic Monte Carlo superimpositions of

the grid using a systematic resampling design (usually

more efficient than independent resampling) – for

details see Cruz et al. (2015). This CEe(N̂) was larger
than usual due to the simplicity of the example – in
practice the recommended sample size Q to attain a
reasonable precision ranges from about 100 to 200
(Cruz and González-Villa, 2018).

The point particles of Fig. 3a were projected
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through o onto a vertical circular cylinder of radius
r = 1.4. After unrolling the cylinder, the transformed
IP is represented in Fig. 3b. The superimposition of
the (properly scaled) grid of quadrats described above,
with the same sampling period of 16, now yielded

CEe(N̂) ≈ 0.78. Thus, the estimation of N̂ is in this
case about (78/26)2 = 9 times less efficient than in the
case illustrated in Fig. 3a. The purpose of this study
was to revert the impact of the transform operation
induced by the cylindrical projection of the particles by
means of a square grid of square quadrats submitted to
the same transformation. With the given parameters,
and with ϕ = 0 and ϕ = π/2, the relevant Eq. 12
yielded the grid transform illustrated in Fig. 3c. For
comparison, two corresponding quadrats from Fig. 3a
and Fig. 3c, respectively, are displayed with portions of
the forbidden edge (in red) associated with them. It can
be readily checked that the individual particle counts
are identical for all pairs of corresponding quadrats. In
other words, the data collected in Fig. 3a and Fig. 3c,
with Q = 20 in particular, are identical, and therefore

the initial CEe(N̂) ≈ 0.26 will also hold for Fig. 3c
without any further qualification.

DISCUSSION

Cruz and González-Villa (2019) implemented the
design illustrated in Fig. 3c to estimate the size of
a large demonstration from high resolution gigapixel
images. Proper computer assisted zooming facilitated
individual counting in distant quadrats. In that paper,
however, the shape of the transformed quadrats was
computed numerically from point landmarks, which
affected the efficiency of the procedure. This fact
prompted us to treat the model mathematically,
showing that the transformed quadrats are bounded by
arcs of sinusoidal curves, whose automatic plotting is
straightforward.

The projection cylinder used in our model does not
have a physical counterpart – it is just a convenient
model. Its radius r, however, is involved in Eq. 12,

which determines the transformed grid. On the other
hand, the coordinates of the projection centre, and h
in particular, do have a real counterpart because they
determine the position of the camera, which is usually
not directly available either. In the aforementioned
paper, the estimation of the auxiliary parameter
r, and of the camera coordinates, were estimated
indirectly from a system of equations involving the
coordinates (obtained with the aid of Google Earth)
of physical landmarks available in the scenario of the
demonstration. This suggests that the implementation
of the design described here on a given gigapixel
image may not be that straightforward at present in the
absence of the additional information required.
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