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Abstract
Datacenters often agglutinate sets of nodes with different capabilities, leading to a 
sub-optimal resource utilization. One of the best ways of improving utilization is 
to balance the load by taking into account the heterogeneity of these clusters. This 
article presents a novel way of expressing computational capacity, more adequate 
for heterogeneous clusters, and also advocates for task migration in order to fur-
ther improve the utilization. The experimental evaluation shows that both proposals 
are advantageous and allow improving the utilization of heterogeneous clusters and 
reducing the makespan to 16.7% and 17.1%, respectively.
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1 Introduction

The fast evolution of computer architecture together with the way datacenters 
acquire nodes, in time spaced renovation campaigns, is causing that at a given time, 
datacenters have several groups of nodes with different configurations and capabili-
ties. The typical way in which administrators manage these heterogeneous clusters is 
to organize nodes with equal configurations in separate partitions, so that each parti-
tion is homogeneous. Then, the users are left to decide to which partition they will 
submit their jobs, a situation that can lead to inefficiencies. Since users tend to sub-
mit to the partitions with the newest nodes, these get overused while other queues 
with older or worse nodes are not exploited enough and found idle for significant 
periods of time [1]. Keeping nodes running regardless of their occupation causes a 
waste of energy. But even if the nodes are powered down when found idle, the clus-
ter is not being utilized to its full potential. Moreover, it is known that power cycles 
affect the reliability of the nodes and increase maintenance costs [2, 3].

 * Esteban Stafford 
 esteban.stafford@unican.es

 José Luis Bosque 
 joseluis.bosque@unican.es

1 Department of Computer Science and Electronics, University of Cantabria, Santander, Spain

http://orcid.org/0000-0001-9481-8724
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03175-4&domain=pdf


 E. Stafford, J. L. Bosque 

1 3

One of the most important challenges in successfully leveraging the performance 
of these large systems is to consistently distribute the load among the available 
resources, proportionally to their computing capacity [4–6]. This has been tradi-
tionally attempted through dynamic algorithms that are able to adapt to the varying 
requirements of the workloads. However, since the execution times of the latter are 
not constrained to short bursts, achieving a perfect balance often requires relocat-
ing tasks which are already in execution. Task migration is a costly operation, and 
therefore, it must only be undertaken when its benefit compensates its cost [7, 8]. 
Achieving a performance gain through task migration is easier in a heterogeneous 
cluster, since it is possible to find faster nodes to send tasks to [9]. Furthermore, the 
fact that execution times of scientific and big-data applications currently executed in 
HPC datacenters are well in the range of hours, or even days, makes the overhead of 
migration less relevant [10].

This article presents two proposals that improve the utilization of heterogeneous 
clusters. The first is a new way to express the computing capacity available on the 
nodes that takes heterogeneity into account. This new load index considers the per-
formance and the load of each node of the cluster, to assign tasks to the nodes that 
give the highest computing capacity at a given time. The second is to leverage task 
migration to take advantage of the nodes with the highest computing capacity when-
ever possible.

The experimental evaluation included in this article suggests two main conclu-
sions. First, the new load index improves the cluster utilization. In these experi-
ments, the reduction of the makespan and the wait time was 16.7% and 27.1%, 
respectively. Second, despite the cost of task migration, it has a positive impact on 
the utilization. The experimentation showed a timespan reduction of 17.1%.

The remainder of this article is structured as follows: Section 2 presents the pro-
posals themselves, followed by Sect. 3 that gives some important details of how the 
proposals were implemented in a load balancing algorithm. Section 4 outlines the 
methodology employed throughout the experimentation. Section  5 continues with 
the experimental results and empirical evaluation of the proposals. Section 6 deals 
with related work found in the literature. Finally, Sect. 7 summarizes some conclud-
ing thoughts and future lines of work.

2  Proposals

This section explains in detail the main two proposals of this article: one concerns 
the load index of a heterogeneous cluster and the other analyzes when task migra-
tion can be profitable.

2.1  Capacity load index

A load balancing algorithm must base its decisions on up-to-date information of 
the computational capabilities and workload of the cluster nodes. Thus, nodes must 
periodically collect local information and calculate their load index. Since the index 
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must be calculated frequently, the process of doing so must be very efficient. Fur-
thermore, the choice of load index has a huge impact on load balancing efficiency 
[11].

Typically, modern resource managers use a load index that does not consider the 
different capabilities of the cores in the cluster. Therefore, they do not allocate more 
than one task to a single core, which makes perfect sense in a homogeneous cluster, 
assuming serial tasks. In a heterogeneous one, cores will have very different com-
puting capabilities, and sometimes, these differences can be as high as an order of 
magnitude. Therefore, it is necessary to find a load index that takes into account 
the characteristics of the cores, fostering a better usage of the heterogeneous cluster 
resources.

This paper proposes a new load index called capacity index. Using this, each 
node quantifies the computing power it will provide to a new task. Taking as an 
example a single node with four cores, the capacity index it offers when it is idle 
is 1, meaning that it has at least one free core for a new task to run on. Additional 
concurrent tasks will also see index 1 as they find idle cores, but the fifth task will 
not be offered the same. Since the node only has four cores, a fifth task will cause a 
sharing of the cores. The capacity index in this case would be 4

5
= 0.8 , meaning that 

each task will obtain 80% of a core. The capacity index of the node will continue to 
diminish as the number of running tasks increases.

In a heterogeneous cluster, it is necessary to adapt the capacity index to the com-
puting performance offered by each node in order to have values that are consistent 
across the cluster. Considering two idle nodes where one has double the computing 
power of the other, the index of the slowest node must be half of that of the fastest. 
Therefore, the index considers the relative performance of each node as R

i
=

Tmin

T
i

 , 
where T

i
 is the execution time of a given benchmark on node i and Tmin is the same 

for the fastest node in the cluster. With this, the capacity index I
i
 is formulated as 

follows:

where C
i
 and T

i
 are the number of cores and number of tasks currently executing in 

node i. Rmin is the relative performance of the slowest node in the cluster. The first 
term of the equation models the node when it is underutilized, and there are idle 
cores, and the index is simply the relative performance of the node. The second term 
models when there is at least one task per core, and then, capacity offered to a new 
task will be the relative performance of all the cores combined R

i
C
i
 shared among 

the running tasks T
i
 plus the new one. The third term ensures that a new task never 

receives less computing power than that of the slowest core. By giving an index 
value of zero, it signifies that the node is saturated and can not accommodate a new 
task.

To illustrate how the capacity index works, Fig.  1 shows a synthetic evalua-
tion. This considers four quad-core nodes with different relative performances. The 
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figure presents the evolution of the index as the number of running tasks increases. 
It is noteworthy that the index allows more powerful nodes to have more tasks than 
cores, as they might still offer a computing power higher than slower nodes, even 
if these are completely idle. Note also that no node offers an index lower than 0.25 
which is the relative performance of the slowest node, and that this node will not 
execute more than four tasks, meaning that the granularity of the resource allocation 
is equal to the performance of one core of the slowest node.

The multiple advantages of this index affect the cluster in two major situations. 
First, if the cluster is not fully loaded, then a new task is assigned to the node that 
offers the highest computing power, independently of the number of running tasks 
in this node. Consequently, despite the oversubscription, this new task will execute 
faster than if it had been sent to a slower node with less load. Second, if the cluster 
is full, it can cope with more simultaneous task executions, reducing the wait time. 
Using the example cluster from Fig. 1, a traditional resource manager would concur-
rently execute 16 tasks, while with the capacity index, it would execute 40 tasks. 
Furthermore, the index will give the same computing resources to all tasks running 
at a given time. From the users’ perspective, this appears more fair, as they would 
get similar response time from nodes of different capabilities. And, since the cluster 
admits more tasks, the wait time is reduced.

2.2  Task migration

The capacity index is able to assign equal resources to the tasks that are submitted to 
the cluster. However, the dynamic nature of the workload of the cluster can lead to 
imbalance situations that can only be resolved once the tasks are running.

Figure 2 shows the effect of migration on the execution of 44 equal tasks, on 
the cluster described in Sect. 2.1. Each horizontal line corresponds to a task exe-
cution; tasks of the same color are executed by the same node. Gray lines show 
initial task submissions, and gray arrows stand for task migrations. In both exper-
iments, the 40 first tasks are executed immediately, while 4 are queued. Unfortu-
nately, the slowest node is the one that finishes its tasks first, thus receiving the 
4 queued tasks, but the faster nodes finish soon after and remain idle. Thanks 

Fig. 1  Evolution of the index with increasing tasks on nodes with relative performances 0.25, 0.5, 0.75 
and 1
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to task migration, it is possible to mitigate this unfortunate situation by moving 
tasks from the slower node to the fastest ones and thus improving the global exe-
cution time.

Migration consists of suspending the execution of a task in one node and 
restarting it in the same state in another node. This is done in the following three 
steps:

• Checkpoint suspends the execution of the task and saves its state in a checkpoint 
file with all the necessary information to restart its execution later.

• Transfer moves the checkpoint file to the destination node.
• Restart reads the checkpoint file, restores the task state in memory and resumes 

its execution.

Naturally, these steps take time, so migration will introduce significant overhead in 
the execution of the tasks. Therefore, it is necessary that the gain brought by migra-
tion compensates the overhead caused by these steps. To this aim, this paper pre-
sents a model to establish when it is worth performing a task migration. It attempts 
to guess when and between which nodes will a migration will be advantageous.

First, it considers the remaining execution time of a task Tremaining , which is in 
principle unknown. But this model assumes that all tasks are in the middle of their 
execution [12] at the time of migration. Then, a new execution time can be fore-
casted, considering that the remaining time is equal to the current execution time. 
This will be proportionally reduced by the capacity index difference of the sender 
node Isender and a potentially faster receiver node Ireceiver . And finally, adding the 
overhead caused by the migration steps enumerated above Tmigration , the model con-
siders migration beneficial only when the following expression holds.

Consequently, migrations can occur if the estimated execution time on the sender 
node is longer than the improved execution time due to the higher capacity of the 
receiving node plus the migration overhead.

(2)Tremaining > Tremaining

Ireceiver

Isender

+ Tmigration

Fig. 2  Comparison of the capacity index with and without migration
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3  Implementation

In order to validate the previous proposals, a dynamic load balancing algo-
rithm has been created. This section provides some important details of this 
implementation.

3.1  Node state information

An important part of a load balancing algorithm is to periodically calculate the 
capacity index explained in Sect. 2.1. The period is a configurable parameter, and 
for this article, it has been set to one second.

Nodes need to keep up-to-date state information of all other nodes. Then, each 
change in the load index of a node triggers a set of messages informing the rest 
of the cluster. To avoid flooding the network with messages, only index changes 
above a configurable threshold trigger message sending. When these messages are 
received, each node updates an index vector that contains the capacity index of all 
the nodes in the cluster. This is useful to select nodes appropriate for load balancing 
operations. Since all nodes keep updated information about the global state of the 
cluster, this is considered a global algorithm.

3.2  Load balancing operations

When tasks are submitted by the users, the algorithm aims to select the best node for 
execution. For this, it considers all the nodes in the cluster, including itself. By con-
sidering the nodes with nonzero index from the index vector, a node with the highest 
index is selected as the receiver. It can happen that sender and receiver are the same 
node. If there is no eligible receiver node, the task is added to the task queue of that 
node. This happens when the load index of all the nodes is zero, and the cluster is 
considered saturated.

In this saturated state, the algorithm waits for a node to send a nonzero index 
value. It then sends tasks from the queue to this node until it becomes full again 
or the queue is empty. The execution operation is cheaper in terms of time than 
the migration, since the latter requires checkpointing, transmitting and restarting a 
task. Therefore, migrations can only take place when the queues of all the nodes are 
empty.

Nodes with empty queues send messages to all other nodes, voting for migra-
tion. Migration is allowed only when the number of votes is equal to the number of 
nodes. This process is canceled when a node receives a new submission and, as a 
consequence, sends a negative vote.

When migrations are allowed and a node shares a nonzero index, other nodes 
with less index consider their running tasks and evaluate the possibility of migrating 
one, using the model presented in Sect. 2.2. Each node can only be involved in one 
task migration at a given time, regardless of its role being sender or receiver.
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3.3  Checkpointing tool

In this article, the Distributed MultiThreaded CheckPointing (DMTCP)1 [13] has 
been selected as checkpointing tool. It executes exclusively in userspace, and it does 
not need to add any module or configure the kernel in any way.

In a checkpoint file, DMTCP stores the following data: the relationships to par-
ent and child processes, the memory segments of the process, the registers of all 
threads, the state of the file descriptors such as open files, pipes and signal handlers 
or even sockets. The tool allows the generated files to be compressed, to reduce their 
size. However, the time required for compression is also significant.

The DMTCP tool operates around the concept of a coordinator process. This is 
started when the task is first executed. When performing a checkpoint is required, a 
separate command-line tool communicates with the coordinator, that is listening for 
commands on a TCP port.

In the load balancing algorithm presented in this article, the sequence of events 
that occur during a migration is shown in Fig. 3. When a sender node agrees with 
a receiver node that a migration can take place, it sends a checkpoint command (1), 
followed by a kill command (3) to the coordinator of the task. This, in turn, trig-
gers the actual checkpointing of the task (2), followed by the end of the process (4). 
Since the task is a child of the sender process, it receives the SIGCHLD signal (5) 
and therefore knows that the checkpoint is ready. Next, it sends the checkpoint file to 
the receiver (6), who has been engaged waiting since both nodes agreed to carry out 
the migration. Once the receiver has a copy of the checkpoint file, it can execute the 
DMTCP tool to restart the task (7, 8).

4  Methodology

The empirical evaluation of the ideas proposed in this article has been carried out in 
a cluster with 20 computational nodes. Each has one Intel Core i5-7500 CPU with 
4 cores, 8GB main memory. The heterogeneity of the cluster is due to the different 

Sender Node Receiver Node

DMTCP Coord.

Task

DMTCP Coord.

Migrated Task

1
CheckpointCmd

2
Checkpoint

3
KillCmd

4
Kill

5

SIGCHLD

6 Checkpoint

7

Restart

8
Exec

Fig. 3  Task migration with DMTCP

1 The code is available at https ://githu b.com/dmtcp .

https://github.com/dmtcp
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frequencies of the nodes. There are five nodes with each of the following frequen-
cies: 3.4GHz, 2.5GHz, 1.5GHz and 800MHz. Each node has a SATA hard disk, on 
which the checkpoint files are written. The latter are transferred to the receiving 
nodes through a GigaBit Ethernet network.

The tasks used for the experiments are executions of a serial matrix multiplica-
tion program, which are compute intensive, although there is a fair amount of mem-
ory access due to the size of the matrices.

The figures of merit used to compare the different experiments are the makespan 
and the wait time. Makespan is the time difference between the starting of the first 
task and the end of the last. The wait time is the sum of the time each task waits in 
the queue.

To assess the advantages of the proposals, their performance will be compared 
to a version of the load balancing algorithm that assigns one task per core and 
does not consider task migration. In the experiment results, this algorithm is called 
Max-Tasks. It is assumed that this is the typical behavior of current cluster resource 
managers.

5  Evaluation

This section presents an empirical evaluation of the different proposals of this arti-
cle. It first quantifies the benefits of using the capacity index in contrast to traditional 
task-per-core schedulers. Second, it addresses the improvement on the algorithm 
given by task migration.

5.1  Capacity load index

In the first experiment, several batches of 1000 identical tasks are submitted to the 
cluster. Due to the heterogeneity of the cluster, the tasks will not necessarily have 
the same execution time in all the nodes.

Figure 4 shows two representative batch submissions: one with Max-Tasks and 
the other with capacity. As in Fig. 2, task executions are represented by horizontal 
lines, and the thickness of the lines gives the idea of how many tasks execute simul-
taneously. The x-axis represents the time and the y-axis the nodes of the cluster.

As can be seen in the figure, the makespan is reduced when the capacity index is 
used. This is due to the fact that since the beginning of the batch, all but the slow-
est nodes are executing more tasks than in Max-Tasks. Paying closer attention to 
the indices, it can be seen that the Max-Tasks will never execute more than 80 tasks 
simultaneously, one per core. In contrast, the capacity index allows executing up to 
200 simultaneous tasks. Note that the number of simultaneous tasks on each node is 
proportional to its computing power.

The combined analysis of 10 batches for each index shows an average reduc-
tion of the makespan of 16.7%. Additionally, the variability of the makespan is also 
reduced. Due to the increased number of simultaneous executions, the tasks are less 
time held in the queue and consequently, the wait time is reduced to 27.1%.
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5.2  Task migration

It has been said that task migration has a cost in terms of time. The migration 
model presented in Sect.  2.2 needs to be able to quantify this overhead. This 
depends on the size of the checkpoint file, which in turn depends on the amount 
of memory used by the task. To this aim, the following experiment makes a sweep 
of executions with different memory requirements in order to extract a relation 
between that and the migration time. Figure 5 shows, on the left, the size of the 
checkpoint file compared to the memory footprint of the task and, on the right of 
the figure, the total migration time, including the checkpoint, transfer and restart 

Fig. 4  Comparison of the task time distribution with Max-Tasks and capacity indices

Fig. 5  Migration overhead with respect to the task memory footprint
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steps. Since the DMTCP tool allows compressing the checkpoint file, the figure 
compares both options.

The first observation that can be made is that the migration overhead is signifi-
cant, even with tasks with small memory footprints, with a minimum time of 1s. 
Also, although the size of the checkpoint file is greatly reduced with compression, 
it causes a notable increase in the overhead. As a consequence, compression is not 
used in this article. A linear regression of these data was made and introduced in the 
migration model.

The last experiment consists of runs of batches of 250 identical tasks. The mem-
ory footprint of the tasks is around 64MB; thus, the checkpoint file will be slightly 
over 8MB and migration overhead around 1.5s, as can be determined in Fig. 5.

Representative instances of this experiment are shown in Fig. 6. In both cases, 
the experiments start by executing tasks until the cluster is saturated, the remaining 
tasks are held in a queue until some nodes become available again, and they can be 
executed. Thanks to the migration, once the queue is empty, tasks are migrated to 
nodes offering higher capacity, whereas without migration, these tasks remain in the 
chosen nodes until the end.

A statistical analysis of 20 experiments shows that the makespan is reduced to 
17.1% in spite of the overhead caused by the migrations.

As an overall conclusion, both proposals provide benefits in the management 
of heterogeneous clusters in different situations. The capacity index favors the 
increased utilization of the computational resources, bringing fairness to the user 
experience, while the migration allows using more powerful nodes as they become 
available when the queue is empty and tasks are executing in slower nodes.

Fig. 6  Evaluation of the capacity index with migration
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6  Related work

Scheduling and load balancing are two of the most important aspects allowing to 
squeeze performance and optimizing the energy consumption of current parallel 
and distributed systems. The importance of this topic is reflected in a large num-
ber of publications and several surveys as [14–18].

Heterogeneous clusters are composed of a set of computational nodes with 
very different computing capabilities. Therefore, to extract all the performance 
of these systems and minimize their energy consumption it is very important to 
take into account this heterogeneity, and distribute the workload proportionally to 
the computing capacity of each node. Thus, in the previous work [19], a dynamic, 
distributed, global and non-preemptive load balancing algorithm for heterogene-
ous clusters is proposed. This paper extends the previous one with a new load 
index and the ability to migrate tasks.

A profile-based load balancing algorithm for heterogeneous accelerator clus-
ters (PLB-HAC) is proposed in [20]. It constructs a performance curve model for 
each resource at runtime and continuously adapts it to changing conditions. It dis-
patches execution blocks asynchronously, preventing synchronization overheads 
and other idle periods due to imbalances.

An heuristic dynamic algorithm to dynamically balance the workload between 
different parallel processes in iterative algorithms is presented in [15]. It is based 
on an arbitrary objective function that can be changed, and a specific implemen-
tation to minimize energy consumption is presented.

A different approach to the scheduling problem is to use a knowledge-based 
system (KBS) comprised of an individual set of if-then rules that depend on cer-
tain parameters [21–23]. In this way [21] presents a hybrid genetic fuzzy system 
(HGFS) that combines both a fuzzy and a non-fuzzy sets of rules. The fuzzy part 
is learned by means of a genetic-based machine leaning multi-objective evolu-
tionary algorithm. The purpose of using a HGFS is to achieve better results in 
both rule readability and efficiency compared to the static KBS. On the other 
hand, in [22], through a forecast of the future workload and according to a utility 
function, an optimization problem is solved. Finally, in [23], a two-stage holis-
tic optimization mechanism is proposed, composed of a stage that logically opti-
mizes the resources and another that optimizes hardware allocation by leverag-
ing a genetic fuzzy system. The model finds optimal trade-offs among different 
objectives. Instead of using a multi-objective learning algorithm that produces 
a set of rules, our solution is a distributed algorithm that operates first on a node 
allocation based on the capacity index of the nodes, and second on the possibility 
of task migration, should this improve the performance of the cluster as a whole.

Load balancing is a topic also addressed from the context of cloud comput-
ing. For instance, [2] proposes a server consolidation strategy that attempts to 
fully utilize nodes of a data warehouse, avoiding a sparse allocation of virtual 
machines to servers. Also [3] presents an automated server provisioning system 
that aims to meet workload demand while minimizing energy consumption in 
data warehouses by deciding what nodes can be turned off or must be powered on 
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and when. In our case, the big-data and HPC loads we consider differ in behavior 
to virtual machines, while scientific applications strive to minimize time-to-solu-
tion; the latter have prolonged execution times, responding to user requests and 
subject to SLAs.

Checkpoint/restart is a very useful technique to migrate running tasks between 
computational nodes in distributed systems avoiding loss of already developed 
work. This has been used both to balance the workload of computational nodes and 
for fault tolerance algorithms in HPC clusters [24]. [25] presents a multi-objective 
load balancing algorithm based on extremal optimization. It uses three objectives 
relevant to load balancing: computational load balance of processors, the volume of 
inter-processor communication and task migration metrics. Extremal optimization is 
used to find task migrations which dynamically improve processor load balance in 
a distributed system. [26] provides an extensive analysis of the performance, energy 
and I/O costs associated with a wide array of checkpointing policies. The results 
show ample room for achieving high-quality energy/performance trade-offs when 
using methods that exploit characteristics of real-world failures.

7  Conclusions

In summary, this article proposes two ideas that can be combined in a distributed 
load balancing algorithm that improves the utilization of heterogeneous clusters. 
The first proposal is a new load index, called capacity, that expresses the amount 
of computing power each node can offer a new task. This index takes into account 
all the different types of nodes in the heterogeneous cluster, as well as the load in 
each node. Thus, it is aware of the fact that executing a task in a fast node which is 
already executing more tasks than cores, can be more advantageous than running it 
in a slower node that is idle.

The second proposal studies the possibility of using task migration. It presents a 
model of when it is worth performing a migration, by taking into account the capac-
ity index of the receiver node, the time penalty of performing the migration and the 
foreseen remaining execution time. This model only triggers a migration if the cost 
of migration is compensated by the higher capacity of the receiving node.

The experimental evaluation of these two ideas shows that the capacity load index 
can reduce the makespan to 16.7% compared to traditional task-to-core allocation 
schemes. The capacity index can also execute more tasks simultaneously, meaning 
that the queue time of the tasks is also reduced. The experiments with task migra-
tion show that there is a positive impact in using this technique, showing makespan 
reductions of 17.1%.

In the future, a wider range of experiments will be performed, with tasks of dif-
ferent time and memory requirements, or even parallel tasks, leading to a study of 
the effect of contention in memory access due to finite memory bandwidth.
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