
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-020-03175-4

1 3

Improving utilization of heterogeneous clusters

Esteban Stafford1 · José Luis Bosque1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Datacenters often agglutinate sets of nodes with different capabilities, leading to a
sub-optimal resource utilization. One of the best ways of improving utilization is
to balance the load by taking into account the heterogeneity of these clusters. This
article presents a novel way of expressing computational capacity, more adequate
for heterogeneous clusters, and also advocates for task migration in order to fur-
ther improve the utilization. The experimental evaluation shows that both proposals
are advantageous and allow improving the utilization of heterogeneous clusters and
reducing the makespan to 16.7% and 17.1%, respectively.

Keywords Heterogeneous clusters · Utilization · Load index · Task migration

1 Introduction

The fast evolution of computer architecture together with the way datacenters
acquire nodes, in time spaced renovation campaigns, is causing that at a given time,
datacenters have several groups of nodes with different configurations and capabili-
ties. The typical way in which administrators manage these heterogeneous clusters is
to organize nodes with equal configurations in separate partitions, so that each parti-
tion is homogeneous. Then, the users are left to decide to which partition they will
submit their jobs, a situation that can lead to inefficiencies. Since users tend to sub-
mit to the partitions with the newest nodes, these get overused while other queues
with older or worse nodes are not exploited enough and found idle for significant
periods of time [1]. Keeping nodes running regardless of their occupation causes a
waste of energy. But even if the nodes are powered down when found idle, the clus-
ter is not being utilized to its full potential. Moreover, it is known that power cycles
affect the reliability of the nodes and increase maintenance costs [2, 3].

 * Esteban Stafford
 esteban.stafford@unican.es

 José Luis Bosque
 joseluis.bosque@unican.es

1 Department of Computer Science and Electronics, University of Cantabria, Santander, Spain

http://orcid.org/0000-0001-9481-8724
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03175-4&domain=pdf

 E. Stafford, J. L. Bosque

1 3

One of the most important challenges in successfully leveraging the performance
of these large systems is to consistently distribute the load among the available
resources, proportionally to their computing capacity [4–6]. This has been tradi-
tionally attempted through dynamic algorithms that are able to adapt to the varying
requirements of the workloads. However, since the execution times of the latter are
not constrained to short bursts, achieving a perfect balance often requires relocat-
ing tasks which are already in execution. Task migration is a costly operation, and
therefore, it must only be undertaken when its benefit compensates its cost [7, 8].
Achieving a performance gain through task migration is easier in a heterogeneous
cluster, since it is possible to find faster nodes to send tasks to [9]. Furthermore, the
fact that execution times of scientific and big-data applications currently executed in
HPC datacenters are well in the range of hours, or even days, makes the overhead of
migration less relevant [10].

This article presents two proposals that improve the utilization of heterogeneous
clusters. The first is a new way to express the computing capacity available on the
nodes that takes heterogeneity into account. This new load index considers the per-
formance and the load of each node of the cluster, to assign tasks to the nodes that
give the highest computing capacity at a given time. The second is to leverage task
migration to take advantage of the nodes with the highest computing capacity when-
ever possible.

The experimental evaluation included in this article suggests two main conclu-
sions. First, the new load index improves the cluster utilization. In these experi-
ments, the reduction of the makespan and the wait time was 16.7% and 27.1%,
respectively. Second, despite the cost of task migration, it has a positive impact on
the utilization. The experimentation showed a timespan reduction of 17.1%.

The remainder of this article is structured as follows: Section 2 presents the pro-
posals themselves, followed by Sect. 3 that gives some important details of how the
proposals were implemented in a load balancing algorithm. Section 4 outlines the
methodology employed throughout the experimentation. Section 5 continues with
the experimental results and empirical evaluation of the proposals. Section 6 deals
with related work found in the literature. Finally, Sect. 7 summarizes some conclud-
ing thoughts and future lines of work.

2 Proposals

This section explains in detail the main two proposals of this article: one concerns
the load index of a heterogeneous cluster and the other analyzes when task migra-
tion can be profitable.

2.1 Capacity load index

A load balancing algorithm must base its decisions on up-to-date information of
the computational capabilities and workload of the cluster nodes. Thus, nodes must
periodically collect local information and calculate their load index. Since the index

1 3

Improving utilization of heterogeneous clusters

must be calculated frequently, the process of doing so must be very efficient. Fur-
thermore, the choice of load index has a huge impact on load balancing efficiency
[11].

Typically, modern resource managers use a load index that does not consider the
different capabilities of the cores in the cluster. Therefore, they do not allocate more
than one task to a single core, which makes perfect sense in a homogeneous cluster,
assuming serial tasks. In a heterogeneous one, cores will have very different com-
puting capabilities, and sometimes, these differences can be as high as an order of
magnitude. Therefore, it is necessary to find a load index that takes into account
the characteristics of the cores, fostering a better usage of the heterogeneous cluster
resources.

This paper proposes a new load index called capacity index. Using this, each
node quantifies the computing power it will provide to a new task. Taking as an
example a single node with four cores, the capacity index it offers when it is idle
is 1, meaning that it has at least one free core for a new task to run on. Additional
concurrent tasks will also see index 1 as they find idle cores, but the fifth task will
not be offered the same. Since the node only has four cores, a fifth task will cause a
sharing of the cores. The capacity index in this case would be 4

5
= 0.8 , meaning that

each task will obtain 80% of a core. The capacity index of the node will continue to
diminish as the number of running tasks increases.

In a heterogeneous cluster, it is necessary to adapt the capacity index to the com-
puting performance offered by each node in order to have values that are consistent
across the cluster. Considering two idle nodes where one has double the computing
power of the other, the index of the slowest node must be half of that of the fastest.
Therefore, the index considers the relative performance of each node as R

i
=

Tmin

T
i

 ,
where T

i
 is the execution time of a given benchmark on node i and Tmin is the same

for the fastest node in the cluster. With this, the capacity index I
i
 is formulated as

follows:

where C
i
 and T

i
 are the number of cores and number of tasks currently executing in

node i. Rmin is the relative performance of the slowest node in the cluster. The first
term of the equation models the node when it is underutilized, and there are idle
cores, and the index is simply the relative performance of the node. The second term
models when there is at least one task per core, and then, capacity offered to a new
task will be the relative performance of all the cores combined R

i
C
i
 shared among

the running tasks T
i
 plus the new one. The third term ensures that a new task never

receives less computing power than that of the slowest core. By giving an index
value of zero, it signifies that the node is saturated and can not accommodate a new
task.

To illustrate how the capacity index works, Fig. 1 shows a synthetic evalua-
tion. This considers four quad-core nodes with different relative performances. The

(1)I
i
=

⎧
⎪
⎨
⎪
⎩

R
i

T
i
≤ C

i
− 1

R
i
C
i

T
i
+1

T
i
> C

i
− 1,

R
i
C
i

T
i
+1

≥ Rmin

0 otherwise

 E. Stafford, J. L. Bosque

1 3

figure presents the evolution of the index as the number of running tasks increases.
It is noteworthy that the index allows more powerful nodes to have more tasks than
cores, as they might still offer a computing power higher than slower nodes, even
if these are completely idle. Note also that no node offers an index lower than 0.25
which is the relative performance of the slowest node, and that this node will not
execute more than four tasks, meaning that the granularity of the resource allocation
is equal to the performance of one core of the slowest node.

The multiple advantages of this index affect the cluster in two major situations.
First, if the cluster is not fully loaded, then a new task is assigned to the node that
offers the highest computing power, independently of the number of running tasks
in this node. Consequently, despite the oversubscription, this new task will execute
faster than if it had been sent to a slower node with less load. Second, if the cluster
is full, it can cope with more simultaneous task executions, reducing the wait time.
Using the example cluster from Fig. 1, a traditional resource manager would concur-
rently execute 16 tasks, while with the capacity index, it would execute 40 tasks.
Furthermore, the index will give the same computing resources to all tasks running
at a given time. From the users’ perspective, this appears more fair, as they would
get similar response time from nodes of different capabilities. And, since the cluster
admits more tasks, the wait time is reduced.

2.2 Task migration

The capacity index is able to assign equal resources to the tasks that are submitted to
the cluster. However, the dynamic nature of the workload of the cluster can lead to
imbalance situations that can only be resolved once the tasks are running.

Figure 2 shows the effect of migration on the execution of 44 equal tasks, on
the cluster described in Sect. 2.1. Each horizontal line corresponds to a task exe-
cution; tasks of the same color are executed by the same node. Gray lines show
initial task submissions, and gray arrows stand for task migrations. In both exper-
iments, the 40 first tasks are executed immediately, while 4 are queued. Unfortu-
nately, the slowest node is the one that finishes its tasks first, thus receiving the
4 queued tasks, but the faster nodes finish soon after and remain idle. Thanks

Fig. 1 Evolution of the index with increasing tasks on nodes with relative performances 0.25, 0.5, 0.75
and 1

1 3

Improving utilization of heterogeneous clusters

to task migration, it is possible to mitigate this unfortunate situation by moving
tasks from the slower node to the fastest ones and thus improving the global exe-
cution time.

Migration consists of suspending the execution of a task in one node and
restarting it in the same state in another node. This is done in the following three
steps:

• Checkpoint suspends the execution of the task and saves its state in a checkpoint
file with all the necessary information to restart its execution later.

• Transfer moves the checkpoint file to the destination node.
• Restart reads the checkpoint file, restores the task state in memory and resumes

its execution.

Naturally, these steps take time, so migration will introduce significant overhead in
the execution of the tasks. Therefore, it is necessary that the gain brought by migra-
tion compensates the overhead caused by these steps. To this aim, this paper pre-
sents a model to establish when it is worth performing a task migration. It attempts
to guess when and between which nodes will a migration will be advantageous.

First, it considers the remaining execution time of a task Tremaining , which is in
principle unknown. But this model assumes that all tasks are in the middle of their
execution [12] at the time of migration. Then, a new execution time can be fore-
casted, considering that the remaining time is equal to the current execution time.
This will be proportionally reduced by the capacity index difference of the sender
node Isender and a potentially faster receiver node Ireceiver . And finally, adding the
overhead caused by the migration steps enumerated above Tmigration , the model con-
siders migration beneficial only when the following expression holds.

Consequently, migrations can occur if the estimated execution time on the sender
node is longer than the improved execution time due to the higher capacity of the
receiving node plus the migration overhead.

(2)Tremaining > Tremaining

Ireceiver

Isender

+ Tmigration

Fig. 2 Comparison of the capacity index with and without migration

 E. Stafford, J. L. Bosque

1 3

3 Implementation

In order to validate the previous proposals, a dynamic load balancing algo-
rithm has been created. This section provides some important details of this
implementation.

3.1 Node state information

An important part of a load balancing algorithm is to periodically calculate the
capacity index explained in Sect. 2.1. The period is a configurable parameter, and
for this article, it has been set to one second.

Nodes need to keep up-to-date state information of all other nodes. Then, each
change in the load index of a node triggers a set of messages informing the rest
of the cluster. To avoid flooding the network with messages, only index changes
above a configurable threshold trigger message sending. When these messages are
received, each node updates an index vector that contains the capacity index of all
the nodes in the cluster. This is useful to select nodes appropriate for load balancing
operations. Since all nodes keep updated information about the global state of the
cluster, this is considered a global algorithm.

3.2 Load balancing operations

When tasks are submitted by the users, the algorithm aims to select the best node for
execution. For this, it considers all the nodes in the cluster, including itself. By con-
sidering the nodes with nonzero index from the index vector, a node with the highest
index is selected as the receiver. It can happen that sender and receiver are the same
node. If there is no eligible receiver node, the task is added to the task queue of that
node. This happens when the load index of all the nodes is zero, and the cluster is
considered saturated.

In this saturated state, the algorithm waits for a node to send a nonzero index
value. It then sends tasks from the queue to this node until it becomes full again
or the queue is empty. The execution operation is cheaper in terms of time than
the migration, since the latter requires checkpointing, transmitting and restarting a
task. Therefore, migrations can only take place when the queues of all the nodes are
empty.

Nodes with empty queues send messages to all other nodes, voting for migra-
tion. Migration is allowed only when the number of votes is equal to the number of
nodes. This process is canceled when a node receives a new submission and, as a
consequence, sends a negative vote.

When migrations are allowed and a node shares a nonzero index, other nodes
with less index consider their running tasks and evaluate the possibility of migrating
one, using the model presented in Sect. 2.2. Each node can only be involved in one
task migration at a given time, regardless of its role being sender or receiver.

1 3

Improving utilization of heterogeneous clusters

3.3 Checkpointing tool

In this article, the Distributed MultiThreaded CheckPointing (DMTCP)1 [13] has
been selected as checkpointing tool. It executes exclusively in userspace, and it does
not need to add any module or configure the kernel in any way.

In a checkpoint file, DMTCP stores the following data: the relationships to par-
ent and child processes, the memory segments of the process, the registers of all
threads, the state of the file descriptors such as open files, pipes and signal handlers
or even sockets. The tool allows the generated files to be compressed, to reduce their
size. However, the time required for compression is also significant.

The DMTCP tool operates around the concept of a coordinator process. This is
started when the task is first executed. When performing a checkpoint is required, a
separate command-line tool communicates with the coordinator, that is listening for
commands on a TCP port.

In the load balancing algorithm presented in this article, the sequence of events
that occur during a migration is shown in Fig. 3. When a sender node agrees with
a receiver node that a migration can take place, it sends a checkpoint command (1),
followed by a kill command (3) to the coordinator of the task. This, in turn, trig-
gers the actual checkpointing of the task (2), followed by the end of the process (4).
Since the task is a child of the sender process, it receives the SIGCHLD signal (5)
and therefore knows that the checkpoint is ready. Next, it sends the checkpoint file to
the receiver (6), who has been engaged waiting since both nodes agreed to carry out
the migration. Once the receiver has a copy of the checkpoint file, it can execute the
DMTCP tool to restart the task (7, 8).

4 Methodology

The empirical evaluation of the ideas proposed in this article has been carried out in
a cluster with 20 computational nodes. Each has one Intel Core i5-7500 CPU with
4 cores, 8GB main memory. The heterogeneity of the cluster is due to the different

Sender Node Receiver Node

DMTCP Coord.

Task

DMTCP Coord.

Migrated Task

1
CheckpointCmd

2
Checkpoint

3
KillCmd

4
Kill

5

SIGCHLD

6 Checkpoint

7

Restart

8
Exec

Fig. 3 Task migration with DMTCP

1 The code is available at https ://githu b.com/dmtcp .

https://github.com/dmtcp

 E. Stafford, J. L. Bosque

1 3

frequencies of the nodes. There are five nodes with each of the following frequen-
cies: 3.4GHz, 2.5GHz, 1.5GHz and 800MHz. Each node has a SATA hard disk, on
which the checkpoint files are written. The latter are transferred to the receiving
nodes through a GigaBit Ethernet network.

The tasks used for the experiments are executions of a serial matrix multiplica-
tion program, which are compute intensive, although there is a fair amount of mem-
ory access due to the size of the matrices.

The figures of merit used to compare the different experiments are the makespan
and the wait time. Makespan is the time difference between the starting of the first
task and the end of the last. The wait time is the sum of the time each task waits in
the queue.

To assess the advantages of the proposals, their performance will be compared
to a version of the load balancing algorithm that assigns one task per core and
does not consider task migration. In the experiment results, this algorithm is called
Max-Tasks. It is assumed that this is the typical behavior of current cluster resource
managers.

5 Evaluation

This section presents an empirical evaluation of the different proposals of this arti-
cle. It first quantifies the benefits of using the capacity index in contrast to traditional
task-per-core schedulers. Second, it addresses the improvement on the algorithm
given by task migration.

5.1 Capacity load index

In the first experiment, several batches of 1000 identical tasks are submitted to the
cluster. Due to the heterogeneity of the cluster, the tasks will not necessarily have
the same execution time in all the nodes.

Figure 4 shows two representative batch submissions: one with Max-Tasks and
the other with capacity. As in Fig. 2, task executions are represented by horizontal
lines, and the thickness of the lines gives the idea of how many tasks execute simul-
taneously. The x-axis represents the time and the y-axis the nodes of the cluster.

As can be seen in the figure, the makespan is reduced when the capacity index is
used. This is due to the fact that since the beginning of the batch, all but the slow-
est nodes are executing more tasks than in Max-Tasks. Paying closer attention to
the indices, it can be seen that the Max-Tasks will never execute more than 80 tasks
simultaneously, one per core. In contrast, the capacity index allows executing up to
200 simultaneous tasks. Note that the number of simultaneous tasks on each node is
proportional to its computing power.

The combined analysis of 10 batches for each index shows an average reduc-
tion of the makespan of 16.7%. Additionally, the variability of the makespan is also
reduced. Due to the increased number of simultaneous executions, the tasks are less
time held in the queue and consequently, the wait time is reduced to 27.1%.

1 3

Improving utilization of heterogeneous clusters

5.2 Task migration

It has been said that task migration has a cost in terms of time. The migration
model presented in Sect. 2.2 needs to be able to quantify this overhead. This
depends on the size of the checkpoint file, which in turn depends on the amount
of memory used by the task. To this aim, the following experiment makes a sweep
of executions with different memory requirements in order to extract a relation
between that and the migration time. Figure 5 shows, on the left, the size of the
checkpoint file compared to the memory footprint of the task and, on the right of
the figure, the total migration time, including the checkpoint, transfer and restart

Fig. 4 Comparison of the task time distribution with Max-Tasks and capacity indices

Fig. 5 Migration overhead with respect to the task memory footprint

 E. Stafford, J. L. Bosque

1 3

steps. Since the DMTCP tool allows compressing the checkpoint file, the figure
compares both options.

The first observation that can be made is that the migration overhead is signifi-
cant, even with tasks with small memory footprints, with a minimum time of 1s.
Also, although the size of the checkpoint file is greatly reduced with compression,
it causes a notable increase in the overhead. As a consequence, compression is not
used in this article. A linear regression of these data was made and introduced in the
migration model.

The last experiment consists of runs of batches of 250 identical tasks. The mem-
ory footprint of the tasks is around 64MB; thus, the checkpoint file will be slightly
over 8MB and migration overhead around 1.5s, as can be determined in Fig. 5.

Representative instances of this experiment are shown in Fig. 6. In both cases,
the experiments start by executing tasks until the cluster is saturated, the remaining
tasks are held in a queue until some nodes become available again, and they can be
executed. Thanks to the migration, once the queue is empty, tasks are migrated to
nodes offering higher capacity, whereas without migration, these tasks remain in the
chosen nodes until the end.

A statistical analysis of 20 experiments shows that the makespan is reduced to
17.1% in spite of the overhead caused by the migrations.

As an overall conclusion, both proposals provide benefits in the management
of heterogeneous clusters in different situations. The capacity index favors the
increased utilization of the computational resources, bringing fairness to the user
experience, while the migration allows using more powerful nodes as they become
available when the queue is empty and tasks are executing in slower nodes.

Fig. 6 Evaluation of the capacity index with migration

1 3

Improving utilization of heterogeneous clusters

6 Related work

Scheduling and load balancing are two of the most important aspects allowing to
squeeze performance and optimizing the energy consumption of current parallel
and distributed systems. The importance of this topic is reflected in a large num-
ber of publications and several surveys as [14–18].

Heterogeneous clusters are composed of a set of computational nodes with
very different computing capabilities. Therefore, to extract all the performance
of these systems and minimize their energy consumption it is very important to
take into account this heterogeneity, and distribute the workload proportionally to
the computing capacity of each node. Thus, in the previous work [19], a dynamic,
distributed, global and non-preemptive load balancing algorithm for heterogene-
ous clusters is proposed. This paper extends the previous one with a new load
index and the ability to migrate tasks.

A profile-based load balancing algorithm for heterogeneous accelerator clus-
ters (PLB-HAC) is proposed in [20]. It constructs a performance curve model for
each resource at runtime and continuously adapts it to changing conditions. It dis-
patches execution blocks asynchronously, preventing synchronization overheads
and other idle periods due to imbalances.

An heuristic dynamic algorithm to dynamically balance the workload between
different parallel processes in iterative algorithms is presented in [15]. It is based
on an arbitrary objective function that can be changed, and a specific implemen-
tation to minimize energy consumption is presented.

A different approach to the scheduling problem is to use a knowledge-based
system (KBS) comprised of an individual set of if-then rules that depend on cer-
tain parameters [21–23]. In this way [21] presents a hybrid genetic fuzzy system
(HGFS) that combines both a fuzzy and a non-fuzzy sets of rules. The fuzzy part
is learned by means of a genetic-based machine leaning multi-objective evolu-
tionary algorithm. The purpose of using a HGFS is to achieve better results in
both rule readability and efficiency compared to the static KBS. On the other
hand, in [22], through a forecast of the future workload and according to a utility
function, an optimization problem is solved. Finally, in [23], a two-stage holis-
tic optimization mechanism is proposed, composed of a stage that logically opti-
mizes the resources and another that optimizes hardware allocation by leverag-
ing a genetic fuzzy system. The model finds optimal trade-offs among different
objectives. Instead of using a multi-objective learning algorithm that produces
a set of rules, our solution is a distributed algorithm that operates first on a node
allocation based on the capacity index of the nodes, and second on the possibility
of task migration, should this improve the performance of the cluster as a whole.

Load balancing is a topic also addressed from the context of cloud comput-
ing. For instance, [2] proposes a server consolidation strategy that attempts to
fully utilize nodes of a data warehouse, avoiding a sparse allocation of virtual
machines to servers. Also [3] presents an automated server provisioning system
that aims to meet workload demand while minimizing energy consumption in
data warehouses by deciding what nodes can be turned off or must be powered on

 E. Stafford, J. L. Bosque

1 3

and when. In our case, the big-data and HPC loads we consider differ in behavior
to virtual machines, while scientific applications strive to minimize time-to-solu-
tion; the latter have prolonged execution times, responding to user requests and
subject to SLAs.

Checkpoint/restart is a very useful technique to migrate running tasks between
computational nodes in distributed systems avoiding loss of already developed
work. This has been used both to balance the workload of computational nodes and
for fault tolerance algorithms in HPC clusters [24]. [25] presents a multi-objective
load balancing algorithm based on extremal optimization. It uses three objectives
relevant to load balancing: computational load balance of processors, the volume of
inter-processor communication and task migration metrics. Extremal optimization is
used to find task migrations which dynamically improve processor load balance in
a distributed system. [26] provides an extensive analysis of the performance, energy
and I/O costs associated with a wide array of checkpointing policies. The results
show ample room for achieving high-quality energy/performance trade-offs when
using methods that exploit characteristics of real-world failures.

7 Conclusions

In summary, this article proposes two ideas that can be combined in a distributed
load balancing algorithm that improves the utilization of heterogeneous clusters.
The first proposal is a new load index, called capacity, that expresses the amount
of computing power each node can offer a new task. This index takes into account
all the different types of nodes in the heterogeneous cluster, as well as the load in
each node. Thus, it is aware of the fact that executing a task in a fast node which is
already executing more tasks than cores, can be more advantageous than running it
in a slower node that is idle.

The second proposal studies the possibility of using task migration. It presents a
model of when it is worth performing a migration, by taking into account the capac-
ity index of the receiver node, the time penalty of performing the migration and the
foreseen remaining execution time. This model only triggers a migration if the cost
of migration is compensated by the higher capacity of the receiving node.

The experimental evaluation of these two ideas shows that the capacity load index
can reduce the makespan to 16.7% compared to traditional task-to-core allocation
schemes. The capacity index can also execute more tasks simultaneously, meaning
that the queue time of the tasks is also reduced. The experiments with task migra-
tion show that there is a positive impact in using this technique, showing makespan
reductions of 17.1%.

In the future, a wider range of experiments will be performed, with tasks of dif-
ferent time and memory requirements, or even parallel tasks, leading to a study of
the effect of contention in memory access due to finite memory bandwidth.

Acknowledgements This work has been supported by the Spanish Science and Technology Commis-
sion under contracts TIN2016-76635-C2-2-R and TIN2016-81840-REDT (CAPAP-H6 network) and the
European HiPEAC Network of Excellence.

1 3

Improving utilization of heterogeneous clusters

References

 1. Beltrán M, Guzmán A, Bosque JL (2006) Dealing with heterogeneity in load balancing algorithms.
In: 5th International Symposium on Parallel and Distributed Computing (ISPDC 2006), 6–9 July
2006, Timisoara, Romania, pp 123–132

 2. Deng W, Liu F, Jin H, Liao X, Liu H, Chen L (2012) Lifetime or energy: consolidating servers with
reliability control in virtualized cloud datacenters. In: 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings, pp 18–25

 3. Guenter B, Jain N, Williams C (2011) Managing cost, performance, and reliability tradeoffs for
energy-aware server provisioning. In: 2011 Proceedings IEEE INFOCOM, pp 1332–1340

 4. Alam T, Raza Z (2016) An adaptive threshold based hybrid load balancing scheme with sender
and receiver initiated approach using random information exchange. Concurr Comput: Pract Exp
28(9):2729–2746

 5. Bosque JL, Robles OD, Pastor L, Rodríguez A (2006) Parallel CBIR implementations with load
balancing algorithms. J Parallel Distrib Comput 66(8):1062–1075

 6. Martínez J, Almeida F, Garzón E, Acosta A, Blanco V (2011) Adaptive load balancing of iterative
computation on heterogeneous nondedicated systems. J Supercomput 58(3):385–393

 7. Belgaum MR, Soomro S, Alansari Z, Musa S, Alam M, Su’ud MM (2019) Load balanc-
ing with preemptive and non-preemptive task scheduling in cloud computing. In: CoRR, arXiv
:abs/1905.03094

 8. Ungureanu V, Melamed B, Katehakis M (2008) Effective load balancing for cluster-based servers
employing job preemption. Perform Eval 65(8):606–622

 9. Gerofi B, Ishikawa Y (2011) Workload adaptive checkpoint scheduling of virtual machine repli-
cation. In: 2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing, pp
204–213

 10. Bartuschat Dominik, Rüde Ulrich (2014) Parallel multiphysics simulations of charged particles in
microfluidic flows. J Comput Sci 8:1–19

 11. Bosque JL, Toharia P, Robles OD, Pastor L (2013) A load index and load balancing algorithm for
heterogeneous clusters. J Supercomput 65(3):1104–1113

 12. Harchol-Balter M, Downey AB (1997) Exploiting process lifetime distributions for dynamic load
balancing. ACM Trans Comput Syst 15(3):253–285

 13. Ansel J, Arya K, Cooperman G (2009) DMTCP: transparent checkpointing for cluster computations
and the desktop. In: IEEE International Symposium on Parallel and Distributed Processing, Rome,
pp 1–12

 14. Jiang Y (2016) A survey of task allocation and load balancing in distributed systems. IEEE Trans
Parallel Distrib Syst 27(2):585–599

 15. Cabrera Pérez A, Acosta A, Almeida F, Blanco Pérez V (2019) A heuristic technique to improve
energy efficiency with dynamic load balancing. J Supercomput 75(3):1610–1624

 16. Laredo JLJ, Guinand F, Olivier D, Bouvry P (2017) Load balancing at the edge of chaos: how
self-organized criticality can lead to energy-efficient computing. IEEE Trans Parallel Distrib Syst
28(2):517–529

 17. Sheetlani J, Khanna MS (2016) Classification of task partitioning and load balancing strategies in
distributed parallel computing systems. Int J Comput Syst 3(5):371–375

 18. Mishra P, Singh S, Mishra M, Agarwal S (2013) Comparative analysis of various evolutionary tech-
niques of load balancing: a review. Int J Comput Appl 63(15):8–13

 19. Bosque JL, Toharia P, Robles OD, Pastor L (2013) A load balancing algorithm for heterogeneous
clusters. J Supercomput 65(3):1104–1113

 20. Sant’Ana L, Cordeiro D, de Camargo RY (2019) PLB-HAC: dynamic load-balancing for heteroge-
neous accelerator clusters. In: Euro-Par 2019: 25th International Conference on Parallel and Distrib-
uted Computing, Proceedings, pp 197–209

 21. Cocaña Fernández A, Ranilla J, Sánchez L (2015) Energy-efficient allocation of computing node
slots in HPC clusters through parameter learning and hybrid genetic fuzzy system modeling. J
Supercomput 71(3):1163–1174

 22. Cocaña-Fernández A, Sánchez L, Ranilla J (2016) Leveraging a predictive model of the work-
load for intelligent slot allocation schemes in energy-efficient HPC clusters. Eng Appl Artif Intell
48:95–105

http://arxiv.org/abs/abs/1905.03094
http://arxiv.org/abs/abs/1905.03094

 E. Stafford, J. L. Bosque

1 3

 23. Cocaña-Fernández A, San José Guiote E, Sánchez L, Ranilla J (2019) Eco-efficient resource man-
agement in hpc clusters through computer intelligence techniques. Energies 12:2129

 24. Kohl N, Hötzer J, Schornbaum F, Bauer M, Godenschwager C, Köstler H, Nestler B, Rüde U (2019)
A scalable and extensible checkpointing scheme for massively parallel simulations. Int J High Per-
form Comput Appl 33(4):571–589

 25. De Falco I, Laskowski E, Olejnik R, Scafuri U, Tarantino E, Tudruj M (2018) Effective processor
load balancing using multi-objective parallel extremal optimization. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’18, pp 1292–1299

 26. El-Sayed N, Schroeder B (2018) Understanding practical tradeoffs in HPC checkpoint-scheduling
policies. IEEE Trans Dependable Secure Comput 15(2):336–350

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Improving utilization of heterogeneous clusters
	Abstract
	1 Introduction
	2 Proposals
	2.1 Capacity load index
	2.2 Task migration

	3 Implementation
	3.1 Node state information
	3.2 Load balancing operations
	3.3 Checkpointing tool

	4 Methodology
	5 Evaluation
	5.1 Capacity load index
	5.2 Task migration

	6 Related work
	7 Conclusions
	Acknowledgements
	References

