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ABSTRACT

This article provides the prediction of fracture loads in single edge notched

bending (SENB) specimens made of short glass fiber reinforced polyamide 6

(SGFR-PA6) and containing U-notches. The predictions are obtained through the

combination of the equivalent material concept and the theory of critical distances

(TCD). The latter is based on the material critical distance (L) and has a linear-

elastic nature. This implies that in those materials exhibiting non-fully linear-elastic

behavior, the determination of the material critical distance requires a calibration

process that may be performed by fracture testing on notched specimens or

through a combination of fracture testing and finite elements simulation. This

represents a significant barrier for the application of the TCD on an industrial level.

The proposed methodology defines an equivalent linear-elastic material on which

the TCD may be applied through its basic formulation and without any previous

calibration of the corresponding critical distance. It is applied to SGFR-PA6 SENB

specimens, providing accurate predictions of the experimental fracture loads.
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Nomenclature

a= defect size

B= specimen thickness

emax= engineering strain under maximum load

E= elastic modulus

K= strain-hardening coefficient

Kc= fracture toughness

KI= stress intensity factor

L= critical distance

n= strain-hardening exponent

PLMest= estimation of critical load using the Line Method

PPMest= estimation of critical load using the Point Method

Pmax=maximum (critical) load

W= specimen width

εf*= strain at crack initiation for the virtual brittle material

εP= true plastic strain

εu= engineering plastic strain at maximum load

εu,True= true plastic strain at maximum load

εy= elastic strain at yield point

εYP= true plastic strain at yield point

ρ= notch radius

σ= true stress

σav= average stress along a given distance

σf*= tensile stress at crack initiation for the virtual brittle material

σu= ultimate tensile strength

σy= yield strength

σ0= inherent strength

σ0.2= 0.2 % proof strength

Introduction

The analysis of the fracture behavior of materials and structural components containing

notches is the subject of extensive research. Notches can be understood as any kind of

macroscopic stress risers in the material, although not necessarily crack-like defects.

They may be responsible for structural failures caused by static fracture-plastic collapse

processes, or they may be the initiators of fatigue processes that may cause a crack to

initiate, propagate, and eventually lead to failure. Hence, there are numerous practical

situations where the defects responsible for structural failures are not crack-like defects.

In such cases, it is generally over-conservative to proceed on the assumption that the de-

fects behave like sharp cracks, given that notched components develop a load-bearing

capacity that is greater than that developed by cracked components.

This particular nature of notches makes it necessary to develop specific approaches

for the fracture analysis of this type of defects. In this regard, the analysis of the fracture

behavior of notches can be performed using different criteria, such as the different

methodologies included within the theory of critical distances (TCD) (e.g., [1–10]), the

global criterion (e.g., [11,12]), cohesive zone models (e.g., [13–17]), statistical models
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(e.g., [18,19]), mechanistic models (e.g., [20–23]), the strain energy density (SED) criterion

(e.g., [24–41]), etc. The TCD methodologies have been successfully applied to different

failure mechanisms (e.g., fracture, fatigue) and materials and are particularly simple to

implement in structural integrity assessments [7,42–46]. The TCD is based on linear-

elastic assumptions, although it has been successfully applied to elastic-plastic situations

either through the direct consideration of elastic-plastic stress fields [2] or through the

assumption of linear-elastic behavior (stress field) and the corresponding calibration of

the material critical distance (see the section titled “Theoretical Background”) (e.g., [4,5]).

However, when the material behavior is not fully linear-elastic, the application of the TCD

requires the fracture testing of notched specimens, finite elements (FE) modeling, or both,

in order to calibrate the material parameters involved. This makes it difficult to apply the

TCD on an industrial level.

Hence, when analyzing the fracture behavior of an elastic-plastic material, and in

order to avoid the previously referenced difficulties, Torabi [47,48] proposed the use of

the equivalent material concept (EMC) to define an equivalent linear-elastic material that

shows the same fracture behavior. This proposal has been combined with the TCD [49–55]

or the SED criterion [56–61], providing accurate analyses of the fracture behavior of differ-

ent materials such as Al 6061-T6, Al 7075-T6, and ductile steels.

Moreover, short fiber reinforced thermoplastics are an important type of engineering

plastics that are replacing metallic parts in engineering components because of their simple

fabrication and noticeable mechanical properties [62]. The monomer of polyamide

6 (PA6) is one of the most common commercial grades for molded parts, leading to high

strength, high stiffness, good toughness, translucency, good fatigue life, and good abrasion

resistance [63]. The reinforcement of PAs with short glass fibers increases strength, stiff-

ness, heat distortion temperature, and abrasion resistance. In the case of PA6—unlike

many polymers—this is achieved without any loss of impact strength, although strain

at fracture may be reduced substantially [64]. In recent years, because of these favorable

properties, short glass fiber reinforced PA 6 (SGFR-PA6) has found an increasing number

of applications in the automotive [65] and railway industries [66]. Such applications entail

the presence of notches (stress risers) that can threaten the structural integrity of the cor-

responding component. This demands a better understanding of the fracture behavior of

SGFR-PA6 and the development and validation of tools for its structural integrity analysis

in the presence of notches. With this aim, this article proposes the combination of the

EMC and the TCD to estimate fracture loads in SGFR-PA6 single edged notched bending

(SENB) fracture specimens containing U-notches. The analysis combines different notch

radii (from 0.25 mm up to 2.0 mm) and different amounts of fiber content (from 0 wt.% up

to 50 wt.%). The article also verifies whether or not the simple direct combination of EMC

and TCD (from now on, the EMC-TCD criterion) provides fracture load predictions with

comparable accuracy to those provided by other methodologies (e.g., TCD, SED criterion,

cohesive zone models, etc.). Here, it should be noted that most of the experimental results

used for verifying the validity of EMC have been obtained by Torabi and co-researchers on

thin rectangular plates subjected to remote tension and containing slender U-notches or

V-notches with low notch tip radius/notch length ratios (up to 0.07). Conversely, in the

present work, the validity of EMC is verified for both slender and wide U-notches with

notch tip radius/notch length ratios of up to 0.4.

The section titled “Theoretical Background” provides a theoretical overview of the

TCD, the EMC, and the EMC-TCD criterion. The section following the overview describes

the experimental program, and the section titled “EMC-TCD Fracture Load Predictions”
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provides the fracture load predictions obtained by using the EMC-TCD criterion and the

corresponding discussion. The last section gathers the key conclusions.

Theoretical Background

THE TCD

The TCD is, in essence, a set of methodologies, all of which use a material length parameter

(the critical distance, L) when performing fracture or fatigue assessments [1]. The origin

of the TCD can be found in the works of Neuber [67] and Peterson [68], but it has been in

the last two decades that this theory has been thoroughly developed for the analysis of

different types of materials, failure processes, and conditions (e.g., linear-elastic versus

elastoplastic) [1].

The previously mentioned critical distance is generally referred to as L and its ex-

pression, in fracture analyses, is as follows:

L =
1
π

�
Kc

σ0

�
2

(1)

where Kc is the material fracture toughness and σ0 is a material strength parameter usually

referred to as the inherent strength. This parameter is commonly larger than the material

ultimate tensile strength (σu), and in such cases, it requires calibration. Only in certain

materials with fully linear-elastic behavior at both the micro and the macro scale (e.g., frac-

ture of ceramics) does σ0 coincide with σu, and the corresponding application of the TCD

does not require calibration (i.e., L is directly obtained from Eq 1, the material fracture

toughness and the material ultimate tensile strength).

Four of the methodologies included within the TCD are particularly simple when the

elastic stress field around the stress concentration feature is known [1]: the point method

(PM), the line method (LM), the area method (AM) and the volume method (VM).

The PM is the simplest methodology, and it proposes that fracture takes place when

the stress at a distance of L/2 from the defect tip reaches the inherent strength (σ0):

σ

�
L
2

�
= σ0 (2)

Alternatively, the LM proposes that fracture takes place when the average stress along

a distance equal to 2L (starting from the defect tip) reaches the inherent strength σ0:

1
2L

Z2L
0

σðrÞdr = σ0 (3)

Both the AM and the VM also provide accurate predictions [1]. However, their ap-

plication is generally more complex than the application of the PM or the LM. The AM

uses the average stress over a certain area in the vicinity of the notch, whereas the VM

considers the average stress within a particular control volume. Therefore, the results de-

pend on the shape of the area or the volume chosen, respectively.

The TCD (and consequently, both the PM and the LM) allows the fracture assessment

of components containing notches to be performed. However, for those materials on

which σ0 does not coincide with σu (e.g., most polymers, metals, etc.), the former
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parameter requires calibration. This is generally performed by completing an experimental

program on notched specimens with different notch radii (and defining L as that value

providing the best fit to the experimental results [1,5]), or by testing specimens with differ-

ent notch radii and performing the corresponding FE simulation at failure (the superpo-

sition of the corresponding stress fields provides L and σ0, see Fig. 1) [1,5,6]. Whatever the

case may be, the calibration process constitutes a major issue when applying the TCD

methodologies and is a clear obstacle to their extensive application in industrial practice.

THE EMC

In 2012, Torabi [47] proposed, for the first time, the EMC in order to equate a real ductile

material exhibiting elastic-plastic behavior with a virtual brittle material showing perfectly

elastic behavior. He assumed the well-known power-law equation for the tensile stress–

strain relationship in the plastic region (see Eq 4 in which the parameters σ, εP, K, and n are

the true stress, the true plastic strain, the strain-hardening coefficient, and the strain-hard-

ening exponent, respectively) and computed the total SED for the real ductile material up

to the peak point (i.e., the ultimate point). Then, it was assumed that the virtual brittle

material absorbs the same amount of tensile SED for brittle fracture to take place. From

this basic assumption, the tensile strength of the equivalent material was finally computed

as a closed-form expression:

σ = KεnP (4)

A typical engineering stress–strain curve for a ductile material is represented in

Fig. 2, in which the area under the curve is the SED. The total SED consists of the elastic

and plastic components as follows:

ðSEDÞtot: = ðSEDÞe + ðSEDÞp =
1
2
σyεy +

ZεP
εyP

σdεP (5)

where σy, εy, and εyP are the yield strength, the elastic strain at yield point, and the true

plastic strain at yield point, respectively. Considering Hooke’s Law (σy= Eεy) and substi-

tuting Eq 4 into Eq 5 gives the following equation:

FIG. 1

Obtaining L and σ0 parameters

based on the PM definition. The

curves represent the stress

fields at fracture for two

notches with different notch

radii.
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ðSEDÞtot: =
σ2y
2E

+
ZεP
εyP

KεnPdεP =
σ2y
2E

+
K

n + 1

�ðεPÞn+1 − ðεyPÞn+1
�

(6)

The true plastic strain at yield point (εyP) is simply considered to be equal to 0.002

(i.e., 0.2 % offset) and hence

ðSEDÞtot: =
σ2y
2E

+
K

n + 1

�ðεPÞn+1 − ð0.002Þn+1� (7)

The crack initiation in the ductile material (i.e., the necking instance) will occur just

when the ultimate load is reached. Thus, the total SED (Eq 7) should be computed until

this point. In other words, the plastic strain εP in Eq 7 is replaced with the true plastic

strain at maximum load εu,True as follows:

ðSEDÞnecking =
σ2y
2E

+
K

n + 1

�ðεu,TrueÞn+1 − ð0.002Þn+1� (8)

Fig. 3 depicts a typical stress–strain curve for the virtual brittle material with a per-

fectly linear elastic behavior. It can be simply obtained from this figure that the total strain

energy absorbed until fracture is σf*εf*/2, where σf* and εf* are the tensile strength and the

strain at fracture for the virtual brittle material, respectively. Because the basic assumption

of EMC is that both the real ductile and virtual brittle materials have the same Young’s

modulus (E) and K-based fracture toughness (Kc), the SED for the equivalent material

until fracture can be written as the following:

ðSEDÞEM =
σ�2f
2E

(9)

As mentioned previously, the SED values for the real ductile and virtual brittle ma-

terials are the same in accordance with EMC. Hence, setting Eqs 8 and 9 to be equal results

in the following equation:

FIG. 2

Schematic of a typical stress–

strain curve for a ductile

material.
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σ*2f
2E

=
σ2y
2E

+
K

n + 1

�ðεu,TrueÞn+1 − ð0.002Þn+1� (10)

Eventually, the following closed-form expression is proposed by EMC for calculating

the σf*:

σ*f =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y +

2EK
n + 1

�ðεu,TrueÞn+1 − ð0.002Þn+1�
r

(11)

where εu,True (the true plastic strain at peak point) can be computed from the εu (engineer-

ing plastic strain at peak point) by the following expression: εu,True= ln(1+εu).
The σf* computed from Eq 11 together with a valid fracture toughness can be con-

veniently utilized in various brittle fracture criteria (e.g., TCD) for theoretically predicting

the crack initiation in ductile components weakened by a notch.

In the following sections, the experimental program is presented and the correspond-

ing results are used to verify the validity of the EMC-TCD criterion for the prediction of

fracture loads on SGFR-PA6.

Experimental Program

The SGFR-PA6 (Durethan, Lanxess, Germany) was characterized mechanically for four

different amounts of fiber contents (5, 10, 30, and 50 wt.%). The whole experiment was

composed of 108 specimens (see Fig. 4) that were fabricated with an Arburg Allrounder

221 K injection molding machine (Arburg, Loßburg, Germany) with a single steel mold

FIG. 3

Schematic of the stress–strain

curve for the equivalent brittle

material.

FIG. 4

Tensile specimen dimensions

(mm).
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containing two standard tensile specimens, and the fibers were oriented in the longitudinal

direction of the specimen. Eight specimens were directly used to complete eight tensile

tests (two per fiber content). Afterwards, 100 fracture tests (5 per combination of the

5 notch radii and the 4 fiber contents) were conducted on SENB fracture specimens

(see Fig. 5) extracted from the central part of the remaining 100 injected specimens.

The fracture specimens contained crack-like defects and U-shaped notches with notch

radii of 0.25, 0.50, 1.0, and 2.0 mm. The specimens were dried in an oven at 100°C before

testing (tensile or fracture) in order to eliminate any trace of moisture.

Table 1 gathers the main characteristics of the used glass fiber. Tensile tests, which are

necessary for the application of EMC, were performed following ASTM D638, Standard

Test Method for Tensile Properties of Plastics [69], while fracture tests were performed

following ASTM D5045, Standard Test Methods for Plane-Strain Fracture Toughness

and Strain Energy Release Rate of Plastic Material [70]. Details on the experimental pro-

cedures are gathered in Ibáñez-Gutiérrez et al. [8].

Fig. 6 shows the obtained stress–strain curves (engineering variables) used in this

work. It can be observed how the nonlinear behavior becomes more evident as the glass

fiber content increases. The main material parameters, obtained as the average values de-

rived from the two tensile tests performed per fiber content, are gathered in Table 2, where

E is the Young’s modulus, σ0.2 is the 0.2 % proof strength, σu is the ultimate tensile

strength, and emax is the strain under maximum load. These curves are used in the section

titled “EMC-TCD Fracture Load Predictions” to derive σf* and, thus, the tensile behavior

of the equivalent linear-elastic material.

Concerning the fracture tests, a total of twenty sets of tests were performed that cor-

responded to each combination of the four fiber contents (5, 10, 30, and 50 %) and the five

notch radii (from 0 mm to 2.0 mm), each set being tentatively composed of five tests. The

notches were introduced by machining, except for crack-like defects that were generated

by sawing a razor blade across an initial notch root [70]. Tables 3–6 gather the different

tests with the corresponding geometries and the resulting fracture loads. Details of the

experimental procedure and the obtained load-displacement curves may be consulted

in Ref. [8], with some examples being shown in Fig. 7. It can be observed how there

FIG. 5

SENB test specimen

dimensions (mm), with ρ

varying from 0 mm to 2 mm.

TABLE 1
E-glass fiber parameters. Lf: fiber length; Ø: diameter; σu: ultimate tensile strength; E: elastic
modulus; ρ: density.

Lf, μm Ø, μm σu, MPa E, GPa ρ, g/cm3

300 10 3450 72.50 2.60
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is a certain nonlinearity in the curves obtained in those specimens with a higher fiber

content, although most of the fracture tests have provided linear load-displacement curves

and this loss of linearity is noticeably less pronounced than that observed in the tensile

tests. One of the tests (specimen 30-0.5-4) was not valid.

Finally, for each fiber content, the results obtained in the five cracked specimens

have been used to derive the corresponding material fracture toughness (Kc) [8], which

is easily derived from the critical load and both the specimen and crack geometries (SENB

specimen) [70]:

Kc =
�

Pmax

B · W0.5

�
· 6 ·

�
a
W

�
0.5
 
1.99 −

�
a
W

�
·
�
1 − a

W

�
·
�
2.15 − 3.93

�
a
W

�
+ 2.7

�
a
W

�
2
��

1 + 2 a
W

�
·
�
1 − a

W

�
1.5

!

(12)

The corresponding average values of Kc are shown in Table 7, where a pronounced

effect of the fiber content on this material property can be observed (e.g., Kc is 4.66 times

greater with 50 wt.% than with 5 wt.%).

FIG. 6

Tensile curves obtained for the

different amounts of fiber

content (wt. %).

TABLE 2
SGFR-PA6 tensile parameters. E: elastic modulus; σ0.2: 0.2 % proof stress; σu: ultimate tensile
strength; emax: strain under maximum load.

Fiber Content, % Test E, GPa σ0.2, MPa σu, MPa emax, %

0 1 2.80 55.7 55.7 2.17

2 2.90 52.7 52.7 1.96

5 1 3.30 67.0 71.2 2.61

2 3.30 66.8 72.9 2.72

10 1 3.60 70.7 80.8 3.02

2 3.50 69.6 75.5 2.65

30 1 6.40 105.5 128.4 3.55

2 6.50 105.2 127.6 3.57

50 1 13.0 163.4 195.1 2.45

2 12.2 158.9 190.5 2.49
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TABLE 3
Description of SGFR-PA6 (5 wt.%) specimens, experimental results (Pexp), average experimental results (Pexp,av), and fracture load
estimations (Pest

PM (EMC-TCD [PM]) and Pest
LM (EMC-TCD [LM])). The values in parentheses represent the deviation of the predictions.

Notch Radius ρ, mm Specimen Notch Length a, mm Max. Load Pexp, N Pexp,av, N Pest
PM, N (deviation) Pest

LM, N (deviation)

0.00 5-0-1 4.65 100.50 76.88 – –

0.00 5-0-2 4.60 69.60

0.00 5-0-3 4.70 73.30

0.00 5-0-4 4.50 72.00

0.00 5-0-5 4.80 69.00

0.25 5-0.25-1 5.00 83.80 82.10 69.76 (−15.03 %) 82.55 (+0.55 %)

0.25 5-0.25-2 5.00 82.20

0.25 5-0.25-3 5.00 111.00

0.25 5-0.25-4 5.00 56.40

0.25 5-0.25-5 5.00 77.10

0.5 5-0.5-1 5.00 100.10 97.56 82.07 (−15.88 %) 94.22 (−3.42 %)

0.5 5-0.5-2 5.00 108.40

0.5 5-0.5-3 5.00 96.00

0.5 5-0.5-4 5.00 100.60

0.5 5-0.5-5 5.00 82.70

1.00 5-1-1 5.00 120.70 113.46 103.68 (−8.62 %) 114.03 (+0.50 %)

1.00 5-1-2 5.00 99.30

1.00 5-1-3 5.00 119.10

1.00 5-1-4 5.00 122.20

1.00 5-1-5 5.00 106.00

2.00 5-2-1 5.00 151.60 137.84 137.64 (−0.15 %) 145.79 (+5.77 %)

2.00 5-2-2 5.00 135.40

2.00 5-2-3 5.00 126.60

2.00 5-2-4 5.00 149.70

2.00 5-2-5 5.00 125.90

TABLE 4
Description of SGFR-PA6 (10 wt. %) specimens, experimental results (Pexp), average experimental results (Pexp,av), and fracture load
estimations (Pest

PM (EMC-TCD [PM]) and Pest
LM (EMC-TCD [LM])). The values in parentheses represent the deviation of the predictions.

Notch Radius ρ, mm Specimen Notch Length a, mm Max. Load Pexp, N Pexp,av, N Pest
PM, N (deviation) Pest

LM, N (deviation)

0.00 10-0-1 4.20 117.50 93.50 – –

0.00 10-0-2 4.25 107.20

0.00 10-0-3 4.60 70.20

0.00 10-0-4 4.60 76.70

0.00 10-0-5 4.90 95.90

0.25 10-0.25-1 5.00 93.10 93.84 80.26 (−14.47 %) 95.08 (+1.32 %)

0.25 10-0.25-2 5.00 105.20

0.25 10-0.25-3 5.00 104.50

0.25 10-0.25-4 5.00 87.80

0.25 10-0.25-5 5.00 78.60

0.5 10-0.5-1 5.00 116.20 104.10 93.88 (−9.82 %) 108.08 (+3.82 %)

0.5 10-0.5-2 5.00 102.10

0.5 10-0.5-3 5.00 93.40

0.5 10-0.5-4 5.00 111.10

0.5 10-0.5-5 5.00 97.70

1.00 10-1-1 5.00 124.10 125.26 118.07 (−5.74 %) 130.26 (+3.99 %)

1.00 10-1-2 5.00 116.50
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TABLE 4 Continued

Notch Radius ρ, mm Specimen Notch Length a, mm Max. Load Pexp, N Pexp,av, N Pest
PM, N (deviation) Pest

LM, N (deviation)

1.00 10-1-3 5.00 141.00

1.00 10-1-4 5.00 125.00

1.00 10-1-5 5.00 119.70

2.00 10-2-1 5.00 173.80 161.52 156.29 (−3.74 %) 165.95 (+2.74 %)

2.00 10-2-2 5.00 166.70

2.00 10-2-3 5.00 167.30

2.00 10-2-4 5.00 146.40

2.00 10-2-5 5.00 153.40

TABLE 5
Description of SGFR-PA6 (30 wt. %) specimens, experimental results (Pexp), average experimental results (Pexp,av), and fracture load
estimations (Pest

PM (EMC-TCD [PM]) and Pest
LM (EMC-TCD [LM])). The values in parentheses represent the deviation of the predictions.

Notch Radius ρ, mm Specimens Notch Length a, mm Max. Load Pexp, N Pexp, av, N Pest
PM, N (deviation) Pest

LM, N (deviation)

0.00 30-0-1 4.48 253.50 199.30 – –

0.00 30-0-2 4.70 195.50

0.00 30-0-3 4.80 195.70

0.00 30-0-4 4.57 171.70

0.00 30-0-5 4.75 180.10

0.25 30-0.25-1 5.00 237.80 216.46 175.45 (−18.95 %) 208.32 (−3.76 %)

0.25 30-0.25-2 5.00 220.20

0.25 30-0.25-3 5.00 202.50

0.25 30-0.25-4 5.00 216.40

0.25 30-0.25-5 5.00 205.40

0.5 30-0.5-1 5.00 207.10 238.65 201.60 (−15.52 %) 234.03 (−1.94 %)

0.5 30-0.5-2 5.00 252.40

0.5 30-0.5-3 5.00 251.80

0.5 30-0.5-4 – –

0.5 30-0.5-5 5.00 243.30

1.00 30-1-1 5.00 231.60 264.04 250.00 (−5.32 %) 276.41 (+4.68 %)

1.00 30-1-2 5.00 251.50

1.00 30-1-3 5.00 287.90

1.00 30-1-4 5.00 302.60

1.00 30-1-5 5.00 246.60

2.00 30-2-1 5.00 305.80 288.20 327.88 (+13.77 %) 350.72 (+21.69 %)

2.00 30-2-2 5.00 284.20

2.00 30-2-3 5.00 269.00

2.00 30-2-4 5.00 263.70

2.00 30-2-5 5.00 318.30

TABLE 6
Description of SGFR-PA6 (50 wt. %) specimens, experimental results (Pexp), average experimental results (Pexp,av), and fracture load
estimations (Pest

PM (EMC-TCD [PM]) and Pest
LM (EMC-TCD [LM])). The values in parentheses represent the deviation of the predictions.

Notch Radius ρ, mm Specimens Notch Length a, mm Max. Load Pexp, N Pexp,av, N Pest
PM, N (deviation) Pest

LM, N (deviation)

0.00 50-0-1 4.55 348.70 349.62 – –

0.00 50-0-2 4.75 351.80

0.00 50-0-3 4.90 331.80

0.00 50-0-4 4.80 346.40

0.00 50-0-5 4.70 369.40
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EMC-TCD Fracture Load Predictions

CALIBRATION OF THE EQUIVALENT MATERIAL

The tensile curves shown in Fig. 6 have been used to define, for each fiber content, the

equivalent linear-elastic material following the EMC formulation gathered in the section

titled “The EMC.” The equivalent materials maintain the same elastic modulus as that

observed in the corresponding real material (average values of those shown in Table 2),

but the tensile strength of the equivalent materials (σf*) may be significantly higher than

that observed experimentally (1.19 times greater for 5 wt. % fiber content, 1.25 times

greater for 10 wt.%, 1.58 times greater for 30 wt.%, and 1.44 times greater for 50 wt.%;

see Tables 2 and 7). These two parameters (E and σf*) are enough to define the tensile

behavior of the four-resulting equivalent materials and allow the fracture behavior of the

real (non-fully linear) materials to be determined based on linear-elastic assumptions.

DERIVATION OF FRACTURE LOAD PREDICTIONS

Once the material properties of the equivalent linear-elastic materials are known, the linear

elastic formulation of the TCD can be directly applied. Assuming a perfectly linear-elastic

behavior implies that the value of the critical distance (L) can be directly obtained from Eq 1

and that the inherent strength (σ0) is equal to the tensile strength of the equivalent material

(σf*). Thus, the calibration process (required to define L (and σ0) in the real ductile material)

is avoided. This process is traditionally performed through fracture tests on notched spec-

imens or through a combination of fracture tests and FE modeling. The different values of L

are given in Table7. It can be seen how L slightly increases for fiber contents from 5 wt.% up

to 30 wt.% and how it experiences a greater increase for a 50 wt.% fiber content.

As stated previously, one of the main aims of this research is to provide a simple

procedure for the failure assessment of notched components. Therefore, instead of using

TABLE 6 Continued

Notch Radius ρ, mm Specimens Notch Length a, mm Max. Load Pexp, N Pexp,av, N Pest
PM, N (deviation) Pest

LM, N (deviation)

0.25 50-0.25-1 5.00 322.00 337.00 300.11 (−10.95 %) 354.27 (+5.12 %)

0.25 50-0.25-2 5.00 338.00

0.25 50-0.25-3 5.00 329.40

0.25 50-0.25-4 5.00 360.60

0.25 50-0.25-5 5.00 335.00

0.5 50-0.5-1 5.00 367.40 371.38 323.59 (−12.87 %) 383.35 (+3.22 %)

0.5 50-0.5-2 5.00 367.90

0.5 50-0.5-3 5.00 364.60

0.5 50-0.5-4 5.00 376.90

0.5 50-0.5-5 5.00 380.10

1.00 50-1-1 5.00 389.70 394.38 378.41 (−4.05 %) 435.73 (+10.48 %)

1.00 50-1-2 5.00 394.50

1.00 50-1-3 5.00 402.40

1.00 50-1-4 5.00 395.70

1.00 50-1-5 5.00 389.60

2.00 50-2-1 5.00 432.30 426.20 475.87 (+11.65 %) 525.04 (+23.19 %)

2.00 50-2-2 5.00 414.20

2.00 50-2-3 5.00 426.50

2.00 50-2-4 5.00 431.00

2.00 50-2-5 5.00 427.00
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FE modeling to determine the fracture load predictions, it is proposed to use well-known

accurate analytical solutions. In the case of U-shaped notches, the Creager-Paris solution

[71] for the stress field at the notch tip is generally accepted [1]. Creager and Paris propose

a stress field ahead of the notch tip that it is equal to that ahead of the crack tip but is

displaced at a distance equal to ρ/2 along the x-axis:

σðrÞ = KIffiffiffi
π

p 2ðr + ρÞ
ð2r + ρÞ32 (13)

FIG. 7

Load-displacement curve

obtained in some SGFR-PA6

specimens for a fiber content of

10 wt. % (a) and for a notch

radius of 0.50 mm (b).

TABLE 7
Kc (including the standard deviation, Stv (Kc)), σf*, and resulting L values for the different amounts
of fiber content.

Fiber Content Kc, MPa·m1/2 Stv (Kc), MPa·m1/2 σf*, MPa L, mm

5 wt. % 1.84 0.32 86.3 0.144

10 wt. % 2.13 0.38 97.7 0.151

30 wt. % 4.77 0.65 202.6 0.176

50 wt. % 8.59 0.32 278.3 0.303
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KI is the mode I stress intensity factor in cracked conditions, ρ is the notch radius, and

r is the distance existing from the notch tip to the point being assessed.

Eq 13 can be used to estimate critical loads through the TCD. If the PM is considered,

the corresponding fracture condition for a particular notch radius (ρ) would be as follows [1]:

σðL=2Þ = KIffiffiffi
π

p 2ðL=2 + ρÞ
ðL + ρÞ32 = σ�f (14)

Consequently, Eq 14 allows the value of KI at fracture to be obtained. Once KI

is known, the estimation of the critical load (PPM
est ) is easily derived from the following

equation [70]:

KI =
�

PPM
est
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�
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�
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(15)

If the LM is considered, it is necessary to determine the average stress (σav) over the

distance r= 0 to 2L, giving [1]

σav =
KI

2L
ffiffiffiffiffi
2π

p
 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2
+ 2L

r
−

ρffiffiffiffiffiffiffiffiffiffiffiffiρ
2 + 2L

p
!

(16)

Establishing the fracture condition provided by the LM, KI is simply obtained from

Eq 17:

KI

2L
ffiffiffiffiffi
2π

p
 
2
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ρ

2
+ 2L

r
−
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p
!

= σ�f (17)

Once KI is known, the estimations of the fracture loads (PLM
est ) are straight-

forward [70]:

KI =
�

PLM
est
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(18)

Here, it should be noted that the whole process only requires the calibration of the

equivalent material, which is easily completed from a tensile test, with no need for FE

modeling or calibration fracture tests.

RESULTS AND DISCUSSION

Tables 3–6 show the fracture load predictions obtained through the application of the

EMC and the TCD (both the PM and the LM methodologies). Figs. 8–11 show the same

results graphically.

It can be observed that the predictions provided when using the EMC-TCD meth-

odology are mostly located within the ±20 % error lines, clearly capturing the physics of

the notch effect in these particular materials. More precisely, the predictions obtained

when applying the LM are more accurate than those obtained when using the PM: when

comparing the predictions with the average experimental values, the LM generally
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provides errors within ±5 %, except for the cases of 30 wt.% and 50 wt.% fiber contents

with a 2.0-mm notch radius, for which the methodology provides overestimations of

+21.7 % and +23.2 %, respectively. In the case of the PM, the predictions tend to under-

estimate the experimental critical loads. When considering average experimental values, it

has generally provided conservative predictions, except for the cases (again) of 30 wt.% and

50 wt.% fiber contents with a 2.0-mm notch radius, for which the PM has provided

overestimations of +13.7 % and +11.6 %, respectively. In any case, all the predictions

are located within the ± 20 % lines. Therefore, it should be noted that for a combination

of high fiber contents (i.e., 30 wt.% and 50 wt.%) and a high notch radius (i.e., 1.00 mm and

2.00 mm), which generates a higher nonlinear behavior, the accuracy of the predictions

seems to depend on the notch radius (Figs. 10 and 11).

The reason why the predictions for both the LM and the PM tend to deviate most

for a notch radius of 2.0 mm and high fiber contents may be that the application of the

EMC cannot correct all the nonlinearity occurring under such circumstances. This has a

direct consequence on the predictions, whose accuracy is significantly reduced. Also, the

Creager-Paris equation validity range is questionable for such a radius (the equation was

FIG. 8

Comparison between fracture

load predictions and

experimental fracture loads:

(a) individual tests; (b) average

values for each set of tests

(notch radius). SGFR-PA6

specimens for a fiber content

of 5 wt. %.
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originally defined for narrow defects on which ρ≪ a) [71], although it has produced ac-

curate results for a high notch radius and low fiber contents.

When considering individual test results, there are a number of predictions outside

the ±20 % lines (11 out of 99 predictions in the case of the LM, and 8 out of 99 predictions

in the case of the PM). However, it should be noted that the experimental results them-

selves may have differences up to approximately 100 % (e.g., results obtained in specimens

with 5 wt. % fiber content and ρ= 0.25 mm). Such a degree of scatter makes it virtually

impossible to derive results in which all the predictions are located within a ±20 % margin.

SGFR-PA6 has, for the different amounts of fiber content considered here, dominant

linear-elastic behavior, but as shown in Fig. 6, the tensile curves obtained are not linear

and the fracture behavior observed on notched specimens is not completely linear, espe-

cially for higher notch radii and higher amounts of fiber content. This means, in practice,

that the corresponding inherent strength (σ0) does not coincide with the material ultimate

tensile strength. This issue has been traditionally solved through a calibration process com-

prising extensive fracture testing on notched specimens or through a combination of frac-

ture testing and FE simulations. Whichever option is selected, it results in a significantly

time-consuming process that makes it difficult to extensively apply the TCD at an

FIG. 9

Comparison between fracture

load predictions and

experimental fracture loads:

(a) individual tests; (b) average

values for each set of tests

(notch radius). SGFR-PA6

specimens for a fiber content of

10 wt.%.
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industrial level. This work essentially proposes deriving σ0 from the EMC approach, as-

suming an equivalent fully linear-elastic material. In such circumstances, the value of σ0
coincides with the value of σf* in the equivalent material, which can easily be obtained from

a tensile test, and the application of the TCD is straightforward.

As can clearly be seen in Fig. 6, SGFR-PA6 has a generally elastic-plastic behavior in

tension. The significant difference between σu and σf* values suggests the same. Hence, it

would be interesting to determine the failure regimes by which the tested U-notched

SGFR-PA6 specimens were broken. For this purpose, two main parameters, namely

the size of the plastic zone around the notch at the onset of crack initiation from the notch

tip and the effective ligament, should first be computed. The second parameter is, in fact,

the distance ahead of the notch tip on the notch bisector line over which the tangential

stress is tensile. To calculate the size of the effective ligament, the position of the neutral

axis should first be determined. In order to compute the values of these two parameters,

eight elastic-plastic finite element (FE) analyses (four for the notch radius of 0.25 mm and

four for that of 2 mm) were carried out on the SENB specimen under plane-strain con-

ditions. The true stress–strain curve of the tested SGFR-PA6 was given to the FE software,

ABAQUS (Dassault Systemes, Vélizy-Villacoublay, France), point-by-point as with the

FIG. 10

Comparison between fracture

load predictions and

experimental fracture loads:

(a) individual tests; (b) average

values for each set of tests

(notch radius). SGFR-PA6

specimens for a fiber content of

30 wt.%.
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material properties. The position of the neutral axis on the notch bisector line was simply

obtained as the point at which the tangential stress is zero. The distance between such a

point and the notch tip is the effective ligament that was obtained to be approximately

equal to 2.3 mm for all the notch radii. To reach the plastic zone size at failure, the Von-

Mises stress distributions corresponding to the average of the experimentally obtained

critical loads were obtained from the FE analyses and the plastic zone was recognized

as the region for which the stresses are beyond the material yield strength. Fig. 12 shows

the distributions of Von-Mises stress at the U-notch neighborhood for various notch radii

in which the plastic zones are clearly shown. As can be seen in Fig. 12, the plastic zone size

increases as the fiber content increases for both notch radii. This is trivially due to the

greater plasticity of fiber-rich SGFR-PA6 materials. Also, it can be seen in this figure that

for a constant fiber content, the plastic zone size increases as the notch radius increases.

This is mainly due to the fact that the stress gradient for the notch radius of 2 mm is less

than that for the notch radius of 0.25 mm, leading to a lower concentration of the plastic

zone in 2 mm notch radius. Dividing the plastic zone sizes shown in Fig. 12 by the effective

ligament size (i.e., 2.3 mm), it is obtained that for the notch radius of 0.25 mm, about 4, 6,

32, and 36 % of the ligament and for the notch radius of 2 mm, about 22, 44, 51, and 56 %

FIG. 11

Comparison between fracture

load predictions and

experimental fracture loads:

(a) individual tests; (b) average

values for each set of tests

(notch radius). SGFR-PA6

specimens for a fiber content of

50 wt.%.
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of the ligament experiences plastic deformations at failure for the four various fiber con-

tents, respectively. Evidently, for the notch radius of 0.25 mm, the U-notched specimens

fail mainly by the small-scale yielding and moderate-scale yielding (MSY) regimes, while

FIG. 12 Distributions of Von-Mises stress at the U-notch neighborhood and the plastic zone sizes determined (notch radii: 0.25 mm

and 2 mm; fiber contents: 5 wt.%, 10 wt.%, 30 wt.%, and 50 wt.%).
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for the notch radius of 2 mm by MSY and large-scale yielding regimes. With all this, it can

be stated that the accuracy of the EMC-TCD criterion does not significantly depend on the

type of elastic-plastic failure regime, thus underlining the high effectiveness and compre-

hensive nature of EMC.

The evolution of the plastic zone size and the fracture loads is in agreement with the

corresponding scanning electron microscopy analysis of the micromechanisms observed at

the fracture surfaces, which was widely reported in Ref. [8]. As an example, Fig. 13 shows

how an increase in the fiber content causes larger strains on the matrix, with a progressive

development of evident nonlinear micromechanisms. Macroscopically, the roughness of

the fracture surface grows when the fiber content increases, and the larger amount of non-

linear mechanisms and fiber content leads to an increase in the failure loads. Fig. 14 shows

the details of the fracture mechanisms with maximum (50 wt.%) fiber contents, including

fiber pull out and shear bands, which are formed because of local stress concentrations

around the fiber [72].

FIG. 13 Effect of fiber reinforcement on fracture micromechanisms. ρ=0.50 mm: (a) 5 wt.%; (b) 10 wt.%; (c) 30 wt.%; (d) 50 wt.%.
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Conclusions

This article combines the TCD and the EMC to provide a simple methodology (EMC-TCD

criterion) that allows the fracture loads of notched components to be determined. Here,

the EMC-TCD criterion has been applied for the prediction of fracture loads in an SGFR-

PA6 material with different amounts of fiber content (from 5 wt.% up to 50 wt.%) and

containing U-shaped notches (the notch radii varying from 0.25 mm up to 2.0 mm).The

analyzed materials have no fully linear-elastic material on their tensile curves, something

that implies a mandatory time-consuming calibration process when the fracture behavior

of this type of material is analyzed using the TCD. In order to avoid such a calibration, it is

proposed to combine the TCD with the EMC, for which the nonlinear material is sub-

stituted by a perfectly linear-elastic material. This leads to the EMC-TCD criterion, which

entails a fully linear-elastic formulation and does not require any calibration process be-

yond the equivalent material definition, which, in any case, is a straightforward process

based on the material stress–strain tensile curve. The obtained results allow for the follow-

ing conclusions to be stated:

• The predictions of fracture loads obtained when using the EMC-TCD criterion have
been noticeably accurate for the different fiber contents analyzed, especially when
using the LM as the TCD methodology. In such a case, the deviation between the
predicted fracture load and the corresponding average experimental fracture load
has been below 5 %, except for the cases of 30 wt.% and 50 wt.% fiber contents with
2.0 mm notch radius, for which the methodology has provided evident overestima-
tions (+21.7 % and +23.2 %, respectively).

• When using the PM, the predictions tend to be conservative, although in the case of
the highest fiber contents (30 wt.% and 50 wt.%) combined with the highest notch
radius (2.0 mm), the criterion has provided overestimations of the fracture loads
(+13.7 % and +11.6 %, respectively). In any case, the deviation of all the predictions
derived from the PM are below 20 %.

• The elastic-plastic FE analyses of the tested U-notched specimens indicate that most
of the specimens failed by significant plastic deformations around the notch,

FIG. 14

Shear bands along the pulled-

out fiber in SGFR-PA6 (50 wt.%;

ρ=0.50 mm).
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demonstrating that failure criteria in the context of linear elastic notch fracture me-
chanics may require plastic corrections or calibrations when performing fracture
predictions of notched SGFR-PA6 specimens.
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