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Abstract: Power transformers are considered to be the most important assets in power substations.
Thus, their maintenance is important to ensure the reliability of the power transmission and
distribution system. One of the most commonly used methods for managing the maintenance and
establishing the health status of power transformers is dissolved gas analysis (DGA). The presence
of acetylene in the DGA results may indicate arcing or high-temperature thermal faults in the
transformer. In old transformers with an on-load tap-changer (OLTC), oil or gases can be filtered
from the OLTC compartment to the transformer’s main tank. This paper presents a method for
determining the transformer oil contamination from the OLTC gases in a group of power transformers
for a distribution system operator (DSO) based on the application of the guides and the knowledge
of experts. As a result, twenty-six out of the 175 transformers studied are defined as contaminated
from the OLTC gases. In addition, this paper presents a methodology based on machine learning
techniques that allows the system to determine the transformer oil contamination from the DGA
results. The trained model achieves an accuracy of 99.76% in identifying oil contamination.

Keywords: communicating OLTC; dissolved gas analysis; fault location; machine learning;
maintenance management; oil insulation; OLTC contamination; power transformer

1. Introduction

Power transformers are considered to be the most important assets in power substations. Thus,
their maintenance is important to ensure the reliability of the power transmission and distribution
system [1,2].

Different maintenance strategies are used for assets based on the condition of and available
information about the components and sub-components of the substation equipment, according to [3].
The current trend in maintenance strategies is to maintain a predictive maintenance approach based
on prognostics to predict the future asset degradation [3].

Dissolved gas analysis (DGA) is the most commonly used method for managing the maintenance
and establishing the health status of power transformers, with much weight given to the results [4].
The DGA method measures the gas concentrations in the oil. The gases normally measured are
hydrogen (H2), acetylene (C2H2), methane (CH4), ethylene (C2H4), ethane (C2H6), carbon monoxide
(CO) and carbon dioxide (CO2). These gases are formed by the decomposition processes of insulation,
which are caused by active faults. From the gas concentrations obtained in the DGA results, it is
possible to identify the type of fault. Although DGA continues to be performed in the laboratory,
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there is a trend toward online DGA monitoring, because it makes it possible to detect or diagnose
faults that occur in the power transformer [1].

The presence of acetylene in the DGA results may indicate arcing or high-temperature thermal
faults in the transformer [5–7]. Although the presence of acetylene in the DGA results does not always
indicate a transformer fault, in old transformers with an on-load tap-changer (OLTC), oil or gases
can be filtered from the OLTC compartment to the main transformer tank. Gas leakage between
oil compartments may influence the DGA results and the identification of transformer insulation
faults [6–9]. This case was shown in [10]: two faults were identified as low energy discharges (D1); later,
it was determined by inspection of the equipment that it was oil contamination from the OLTC gases.

The guides [6,7] utilise the C2H2/H2 ratio to give an indication of the transformer oil
contamination from the OLTC gases. According to [11], the C2H2/H2 ratio is used to determine
the filtering of fault gases in the main tank from the OLTC compartment when the ratio is greater than
or equal to two and, furthermore, when the C2H2 concentration is greater than or equal to 30 ppm.
When electrical discharges occur in the transformer oil, the amount of acetylene is usually less than the
amount of hydrogen. Since the solubility of acetylene is greater than the solubility of hydrogen, when
electrical discharge is generated in the OLTC compartment, acetylene diffuses faster out of the OLTC
tank. This results in the acetylene concentration in the transformer oil being greater than the hydrogen
concentration. Several studies [12–14] have used this ratio to define the transformer oil contamination
from the OLTC gases in several samples.

In the data processing for the calculation of the typical gas concentration, gas generation rates
and fault identification are influenced by the lack of knowledge about the existence of communication
with the OLTC [14]. The report uses the gas ratios included in [7] to identify faults and the C2H2/H2

ratio to indicate the oil contamination from the OLTC gases.
According to [15], there are three steps to follow in the fault identification rules, including the

application of the C2H2/H2 ratio. The first step is to decide if the values of the gas concentrations
are enough to establish that there is an active fault in the transformer oil. The second step consists
of applying the C2H2/H2 ratio to distinguish between contamination or not from the OLTC gases.
If there is contamination from the OLTC gases, the rest of the evaluation will be performed by an
expert who determines whether there is also an active fault; otherwise, proceed to Step 3, where the
type of fault is identified by traditional DGA interpretation methods.

Although the C2H2/H2 ratio [6,7] can be used to consider transformer oil contamination from the
OLTC gases, it is necessary to take into account that high H2 concentrations affect this ratio. A high H2

concentration could be due to the fact that H2 is produced in the transformer oil in almost all incipient
faults. Applying this ratio with a high C2H2 concentration would not show the contamination of the
transformer oil because of the high H2 concentration. This situation occurred in [12]: the application of
the C2H2/H2 ratio did not show the communication between oil compartments; it was necessary to
inspect the conservator, and two holes were found on the barrier between the main conservator and
the OLTC conservator.

Machine learning (ML) techniques are widely used to assess the condition of a transformer [16–22]
and identify potential faults in a transformer [23–28] using DGA, oil quality analysis (OQA),
the furfuraldehyde (FFA) content of the oil, polarisation and depolarisation current (PDC)
measurements and dielectric frequency domain spectroscopy (FDS). Through the application of
ML algorithms, models are generated that create predictions of the transformer health status and
automatically diagnose potential faults in the transformer insulation from the data provided.

According to [20,23,25], a decision tree (DT) classifier is easy to interpret because the output is
a set of conditional if-then tests of the input data. In addition, it is easy to train, and it works better
than other ML techniques. The accuracy of the results obtained in these studies was better than that of
those obtained with the DT algorithm.

This paper presents a method for determining the contamination of the transformer oil from the
OLTC gases in a group of power transformers of a distribution system operator (DSO) based on the
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DGA results for the last two years, the application of the guides [6,7] and the knowledge of experts.
The method proposed in this paper improves the detection of transformer oil contamination from
the OLTC gases that is not determined by traditional DGA interpretation methods. Based on this
transformer oil contamination classification methodology, a DT algorithm is applied to develop a
prediction model that automatically recognises transformer oil contamination from the OLTC gases in
DGA samples.

2. Background Theory

Power transformers are maintained based on the information available for the components and
sub-components of the transformer. A risk index is used to prioritise maintenance work in a group of
transformers [3,29]. This risk index is a function of the probability of failure and the consequences of
failure. The probability of transformer failure is a parameter that is associated with the health index
(HI) and varies over time. The consequences of failure evaluate and define the results of a failure event
and do not vary if the transformer is not relocated.

In the calculation of the transformer’s HI, more condition parameters are used than for any other
substation asset. The condition parameters used to calculate the HI for a power transformer are shown
in Figure 1.

Load History
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Bushing Condition

Infra-Red
Overall Condition

Cooling Equipment

Turns Ratio
Leakage Reactance
Winding Resistance

Core-to-Ground
Grounding
Connectors

Oil Leaks
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Oil Level

DGA
Oil Quality

Furan or Age
DGA of LTC

LTC Oil Quality
Overall LTC

Condition

Foundation
Gaskets, Seals

Main Tank Corrosion

(Observed and measured 
conditions from outside 
the power transformer)

Figure 1. Locations of condition parameters used to calculate the HI of the transformer.

Based on the condition parameters shown in Figure 1, oil analyses (DGA, OQA and FFA) are
the easiest to perform without de-energising the transformer and provide the most useful health
information [2].
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The most commonly used method to identify and diagnose transformer oil faults is DGA.
The combination of gas concentrations generated in the transformer oil is a result of the nature
of the fault, as well as the temperature and energy at the fault location. Faults can be identified from
the gas concentrations in the DGA results using the methods for interpreting the DGA results reported
in [6,7,10]. The key gases that are generated depending on the potential fault are listed in Table 1.

Table 1. Gas formation based on the type of failure [6,7].

Fault Type Gas Generated

H2 CH4 C2H6 C2H4 C2H2

Thermal faults in oil (<300 ◦C) T1 ◦ • • ·
Thermal faults in oil (300–700 ◦C) T2 ◦ ◦ ◦ • ·

Thermal faults in oil (>700 ◦C) T3 ◦ • ◦
Partial discharges PD • ◦ ·

Low energy discharge—sparking D1 • ◦ •
High energy discharge—arcing D2 • ◦ •

•: major concentration; ◦: secondary concentration; ·: trace concentration.

Acetylene is one of the combustible gases that can be produced when a fault occurs in a
transformer [6,7]. The transformer insulation faults associated with the presence of acetylene in DGA
results are high and low energy discharges and high thermal faults (Table 1). As seen in Figure 2, very
high temperatures (>800 ◦C) followed by very rapid cooling are needed for the acetylene concentration
to increase, causing it to accumulate in the oil, which occurs during arcing [5]. Traces of acetylene can
also be formed at temperatures below 800 ◦C, as shown in Figure 2.
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Figure 2. Gas generation based on temperature (reprinted with permission from CIGRE [5], c© 2019).

The presence of acetylene in DGA results may also be due to the filtration of OLTC gases.
According to [6,7], the C2H2/H2 ratio can be used to determine the transformer oil contamination
from the OLTC gases. When this ratio is greater than two or three, this indicates contamination.

As expected, the DGA results for transformers with oil contamination from the OLTC gases will
show a higher acetylene concentration than normal. According to the guides for the interpretation
of the gases generated in the transformer oil [6,7], there are different acetylene concentration limits
based on whether or not there is communication between the OLTC compartment and the main tank,
or even whether or not OLTC is used, as seen in Table 2. Table 2 shows the acetylene concentration
limits collected in the guides [6,7]. The IEEE guide indicates the gas limit depending on the result
of the O2/N2 ratio, also showing the 90th and 95th percentile of the typical acetylene concentration.
The IEC guide indicates the 90th percentile of the typical acetylene concentration for cases where
there is communication between oil compartments, called communicating OLTC, and when there
is no communication between oil compartments or no OLTC is used. The acetylene concentration
range when there is no communication between oil compartments or no OLTC is used is 1–20 ppm,
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while the range is 60–280 ppm when there is communication between the OLTC compartment and the
main tank.

Table 2. Acetylene concentration limits (ppm).

IEEE [6] IEC [7]

O2/N2 Ratio ≤ 0.2 O2/N2 Ratio >0.2 No OLTC Communicating OLTC

90th percentile 1 2 2–20 60–280
95th percentile 2 * 7 - -

*: This value is 4 ppm when the transformer age is >30 years.

Acetylene is generated in the OLTC during tap changes as a result of arcing between the fixed
and moving parts [30,31]. Acetylene appears mainly in a non-vacuum-type OLTC, but acetylene traces
can be produced in a vacuum-type OLTC [30,31].

There are several OLTC classifications according to [30–32]. The classification proposed in [30] is
one of the simplest and most commonly used. It is given in Figure 3.

According to [30], the OLTC design influences the gases that can be generated due to normal
operation depending on the gas generating components, as shown in Table 3.

Arc-breaking in oil
for breaking/making

load current

Type of contacts

A-

Vacuum interrupters
for breaking/making

load current

V-

Bridging current
through resistors
(Resistor type)

Type of bridge

-R-

Bridging current
through reactances

(Reactor type)

-X-

Diverter switch and Tap
selector in the same oil

compartment (Combined)

Type of compartment

-S

Diverter switch and Tap
selector in different oil

compartments (Separate)

-C

Figure 3. OLTC classification (reprinted with permission from CIGRE [30], c© 2010).

Table 3. Gas source based on OLTC design (reprinted with permission from CIGRE [30], c© 2010).

OLTC Components Gas Sources

Arc-switching contacts High energy discharge gases

Commutation contacts, by-pass contacts Low energy discharge gases

Vacuum interrupters No gases

Transition resistors
Heating gases ≤300 ◦C (normal operation)

Heating gases >300 ◦C (overload, fault case)

Transition reactance (preventive autotransformer,
inside transformer tank) No gases

The types of oil compartments used for the different OLTC designs are listed in Figure 3, and
the pathways through which OLTC gases can contaminate the transformer insulation are shown in
Figures 4 and 5, respectively. The transformer oil contamination from the OLTC gases via the gaskets
and oil compartment (which is not gas tight) mainly occurs when the OLTC compartment is inside
the main tank, as shown in Figure 4a–c. Contamination via the common air space occurs when the
transformer and OLTC share an oil expansion tank with a common air space. This type of connection
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usually applies to in-tank OLTC types because compartment-type OLTCs generally have a gas space
under the tank cover [8,33].

a) In-tank separate selector
and diverter switch

b) In-tank selector
switch tap-changer

c) External mounted in-tank
with separate barrier board

e) External separate selector
and diverter compartments

d) External mounted selector
switch tap-changer

1 2 3 4 5 1 2 6 7 5 1 2 3 4 5

1 2 8 10 51 2 8 9 5

8

11

1 Transformer windings
2 Tap leads
3 Tap selectors
4 Diverter switch
5 Drive mechanism
6 Selector switch terminals

7 Change-over selector terminals
8 Liquid and gas tight barrier
9 Selector switch compartment
10 Diverter switch compartment
11 Tap selector compartment

Figure 4. Types of oil compartments used by different OLTC designs [32].

Via oil
compartment

Via common
air space

Via gaskets

Figure 5. Different pathways for transformer oil contamination from the OLTC gases [8].

One of the most commonly used methods for identifying faults using an OLTC DGA is the Duval
triangle 2 for OLTCs according to [5,30,31,34]. The Duval triangle 2 makes it possible to distinguish
between normal and abnormal gas formations. The Duval triangle 2 uses the concentration ratio
of three combustible gases (acetylene, ethylene and methane) to identify faults or normal operation.
The faults that this method can identify, in addition to normal operation, are similar to those listed in
Table 1, except for partial discharges (PD). Interpreting several DGAs of the same OLTC on the triangle
helps to visualise the evolution of the gas formation in the OLTC over time. The use of the triangle for
a sample of OLTCs makes it possible to visualise gas formation patterns in a population of OLTCs.

3. Study Characteristics

This study was based on 388 laboratory DGAs of 175 transformers with OLTCs performed over a
period from the middle of 2017 to the middle of 2019 (two years). The transformers had age, voltage
class and power rating ranges of 1–69 years, 25–400 kV and 3–450 MVA, respectively. Figure 6 shows
the distribution of these transformers according to age, voltage class and power rating.
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In addition, the different types of OLTCs that were installed in the power transformers are shown
in Figure 6 according to the classification of Figure 3. Abbreviations that show the type of OLTC
were generated from the concatenation of the letters in Figure 3: the first letter indicates the type of
contacts used by the OLTC (arcing (A) or vacuum contacts (V)); the second letter indicates the type of
bridge (resistor (R) or reactor type (X)); the last letter shows the type of compartment of the diverter
switch and the tap selector (different (S) or the same (C)). Most of the OLTC types for the transformers
studied corresponded to the in-tank types of Figure 4a,b. The newer transformers have the double
compartment installation type, as shown in Figure 4e.
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Figure 6. Distribution of power transformers according to (a) age, (b) voltage class and (c) power rating.
A, arcing; R, resistor; V, vacuum.

Figure 7 shows the acetylene concentrations measured in the DGAs as a function of the sampling
date. The concentration range for transformers without an OLTC or communication with the main
tank, as specified in the IEC guide [7], is shown in green. The concentration range for transformers
with communicating OLTC, according to [7], is shown in red.
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Figure 7. Acetylene concentration measurements.

Before applying the C2H2/H2 ratio to the data, it was necessary to check the reliability of the data
in cases that presented an abnormal acetylene concentration, following the indications given in the
IEEE guide [6].

After studying the data in which there was a large increase in the acetylene concentration,
the results due to gas formation in the transformer were differentiated from those of a bad sample.
With this revision, it was possible to discard a result showing 1443 ppm of acetylene (not included in
Figure 7), and three DGA results were considered uncertain pending the new DGA results.
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Once the data due to a bad sample were removed from the dataset, the C2H2/H2 ratio was applied.
After applying the ratio, five results with errors were observed and needed investigation. These

errors were due to a hydrogen concentration of 0 ppm. Table 4 lists the gas concentrations of the five
transformers in which no ratio result was obtained.

Table 4. Transformer data without the C2H2/H2 ratio result.

Transformer
No.

Sample
Date

C2H2/H2
Ratio

Age
(Years)

Acetylene
(ppm)

Hydrogen
(ppm)

1 25/04/2019 − 54 0 0
2 24/05/2018 − 10 0 0
3 13/06/2018 − 44 52 0
4 27/05/2019 − 29 15 0
5 25/09/2017 − 26 0 0

Based on the trend for the rest of the DGAs related to these five transformers, three transformers
were discarded because of a lack of contamination from the OLTC, and Transformers 3 and 4 were
defined as contaminated from the OLTC.

Table 5 lists the DGA results for the transformers with C2H2/H2 ratios greater than two.
Comparing the DGA results listed in Table 5 with the rest of the DGA results related to the same
transformer, it was observed that Transformers 12 and 13, despite having ratios greater than two, had
a very low acetylene concentration in all of their DGA results. The acetylene concentrations of these
transformers had ranges of 4–6 and 1–8 ppm, respectively. Thus, these transformers were defined as
uncontaminated by the OLTC gases.

Table 5. Transformer data with the C2H2/H2 ratio greater than 2.

Transformer
No.

Sample
Date

C2H2/H2
Ratio

Age
(Years)

Acetylene
(ppm)

Hydrogen
(ppm)

3 17/10/2018 9.33 44 56 6
3 28/01/2019 3.27 44 49 15
3 09/04/2019 2.30 44 53 23
6 19/06/2019 6.75 30 27 4
7 28/01/2019 2.54 23 71 28
8 17/04/2018 3.92 20 94 24
8 28/01/2019 2.44 20 168 69
9 07/06/2019 3.47 18 66 19
10 01/04/2019 3.06 51 107 35
10 17/10/2018 2.78 51 125 45
11 25/09/2017 2.04 44 116 57
12 07/06/2019 3 44 6 2
13 28/01/2019 4 50 8 2
14 12/04/2018 25 34 125 5
14 09/10/2018 8.27 34 273 33
15 09/10/2018 10.60 34 265 25
15 12/04/2018 6.63 34 126 19
16 25/04/2019 3.19 28 67 21
17 08/05/2018 4.33 26 13 3
17 09/10/2018 3.86 26 27 7
17 07/06/2019 3.75 26 15 4
18 15/05/2019 11 45 11 1

Based on the comparison of the DGA results listed in Table 5 with the rest of the DGA results for
each transformer, twelve transformers were defined as contaminated from the OLTC gases, in addition
to Transformers 3 and 4, which were previously defined as contaminated.
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Table 6 lists the transformers with DGA results that exceeded 10 ppm of acetylene and C2/H2

ratios smaller than two. The transformers established as contaminated in Table 5 are excluded from
Table 6. As listed in Table 6, the acetylene concentrations of these transformers and their ages had
ranges of 11–219 ppm and 18–50 years, respectively.

Table 6. Transformer data with the C2H2/H2 ratio less than 2 and a high C2H2 concentration.

Transformer
No.

Sample
Date

C2H2/H2
Ratio

Age
(Years)

Acetylene
(ppm)

Hydrogen
(ppm)

4 09/05/2018 0.55 29 11 20
19 01/04/2019 0.88 48 219 248
19 17/10/2018 0.92 48 144 157
19 17/04/2018 0.68 48 114 168
20 28/01/2019 0.90 47 219 244
20 09/10/2018 1.17 47 192 164
20 08/05/2018 0.76 47 150 198
21 01/04/2019 0.95 50 159 168
21 17/10/2018 0.85 50 137 162
21 17/04/2018 0.69 50 100 144
22 25/04/2019 1.74 49 151 87
22 08/05/2018 1.37 49 134 98
22 09/10/2018 1.31 49 131 100
23 18/03/2019 0.95 45 124 130
23 08/05/2018 0.81 45 100 123
23 09/10/2018 1.07 45 96 90
24 17/10/2018 0.65 48 102 158
24 17/04/2018 0.36 48 56 156
25 25/04/2019 1.12 49 91 81
25 08/05/2018 0.80 49 79 99
25 09/10/2018 0.85 49 69 81
26 09/10/2018 0.18 18 59 326
26 17/04/2018 0.22 18 57 264
26 01/04/2019 0.13 18 41 310
27 05/06/2018 0.94 43 32 34
27 19/06/2019 1 43 25 25
28 08/05/2018 0.25 48 23 93
29 17/04/2018 0.13 18 18 135
29 15/05/2019 0.49 18 17 35
30 25/04/2019 1.20 32 18 15
31 01/04/2019 0.06 19 15 260
31 28/01/2019 0.06 19 14 231
32 07/06/2019 0.90 29 17 19
33 19/06/2019 0.15 23 11 73

As in the previous cases, the transformers in Table 6 were compared with the rest of the DGA
samples corresponding to each one. Transformers 28 and 33 had acetylene concentration ranges of
7–23 and 8–11 ppm, respectively.

Transformer 33 was discarded as contaminated because of its low acetylene concentration values
and stability over time.

Based on the acetylene concentration listed in Table 6, Transformer 28 could be contaminated.
All of the DGA results except for that of one sample (23 ppm) indicated low and stable acetylene
concentrations. Because of this and the fact that it was connected to the power transmission network,
it was defined as uncontaminated. In this way, the transformer was controlled by applying the limits
of Table 2 corresponding to a transformer without OLTC to its monitoring.
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From Table 6, the old transformers (Nos. 19, 20, 21, 22, 23, 24, 25 and 27) in the 43–50 year range
had hydrogen and acetylene concentrations with high values. The high hydrogen values were due to
gas accumulation over time because hydrogen is produced in almost all incipient faults. The historical
data for each transformer were reviewed, and no fault that indicated arcing in the insulation was
found. Thus, it could be said that the high acetylene values were due to OLTC gas contamination.
Transformers 19, 20, 21, 22, 23, 24, 25 and 27 were defined as contaminated.

As in the previous case, the historical data for Transformers 26, 29, 30, 31 and 32 were reviewed,
and no arcing fault was found in the transformer insulation. As can be seen in Table 6, this group of
transformers had low acetylene concentrations, except for Transformer 26, and a relatively stable trend.
Despite this, they were classified as contaminated from OLTC gases because no arcing fault was found
in the historical data.

In summary, twenty-six of the 175 transformers were defined as contaminated from the OLTC
gases. Out of these, eighteen of the 26 transformers defined as contaminated were of the OLTC ARC
type, and the remaining eight were of the OLTC ARS type. Figure 8 shows the distribution of these
transformers according to age, voltage class and power rating. In addition, the different types of
OLTCs installed in these power transformers are shown in Figure 8.
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Figure 8. Distribution of power transformers defined as contaminated according to (a) age, (b) voltage
class and (c) power rating.

It should be noted that the methodology followed in this section is an assumption of transformer
oil contamination based on the study of the DGA samples. Neither the application of the ratio nor EK
can guarantee this contamination. Given the DGA results, it is possible to assume the contamination in
the 26 transformers and evaluate their future DGA results with the acetylene values for transformers
with communicating OLTC (Table 2). It will be necessary to take into account the increases between
DGA samples and check if they correlate with an increase in the number of OLTC operations in order
to be able to discard the existence of faults in the transformer insulation.

From the results of the proposed method, a comparison was made with the traditional fault
identification methods. The traditional fault identification methods used were the Duval triangle
method (DTM) and the Duval pentagon method (DPM), as can be seen in Figure 9. The abbreviations
used correspond to those shown in Table 1.

In Figure 9, the results obtained through the application of the C2H2/H2 ratio are shown in red,
and the results obtained through EK are represented in magenta. It is observed that most of the results
are located in the areas that indicate high and low energy discharge failures, D2 and D1, respectively.

Transformers identified as contaminated through the C2H2/H2 ratio are well defined in zones
D1 and D2, except for one transformer whose DGA results are in zone T3 in the triangle and on the
boundary between D2 and T3 in the pentagon. It can be interpreted that this transformer had a thermal
fault in addition to the oil contamination from the OLTC gases.

The transformers identified as contaminated through EK are scattered over zones D1, D2 and D+T
in the triangle and in zones D1 and D2 in the pentagon, because the predominant gas was no longer
acetylene, making the results more distributed throughout the areas.
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Figure 9. Fault identification through (a) DTM and (b) DPM.

4. Machine Learning Methodology

Based on the previously described results, ML techniques were used to allow the classifier
algorithm to automatically detect transformer oil contamination from the OLTC gases. Figure 10 shows
the flowchart of the ML methodology applied and explained in this section.

Data Preprocessing

Input values:
� Data cleaning
� Categorical values
� Missing values

� Uncontaminated (0)
� Contaminated acc. to:
       -  EK (1)
       -  IEC ratio (2)

Output Variables

Algorithm Development

Node Splitting Rules:
� Gini's Diversity Index
� Impurity Gain

Stopping Rules:
� Pure Node
� Number of Decision Splits
	 Number of branch and leaf nodes


 Final Algorithm
� Accuracy
� Decision Tree Graph

0

2 1 0

2

0 1

C2H2 < 10.5

MVA < 165

C2H2  10.5

C2H2 < 43.5 C2H2 � 43.5 MVA � 165

C2H2 < 14 C2H2 � 14

H2 < 11 H2 � 11

H2 < 77 H2 � 77

2: Contaminated acc. IEC ratio
1: Contaminated acc. EK
0: Uncontaminated

Construct the Decision Tree

Algorithm Training

Holdout Validation:
� Training Data
� Test Data

� Confusion Matrix
� Accuracy

Algorithm Validation

Figure 10. Machine learning methodology flowchart.

4.1. Data Preprocessing

Before starting, it was necessary to check the reliability of the data in cases that presented missing
values or abnormal gas concentrations, following the indications given in the IEEE guide [6].
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Then, four-hundred sixteen DGA datasets (388 DGA datasets for transformers with OLTCs and
28 DGA datasets for transformers without OLTCs) and several characteristics of the transformers were
used to train the algorithm. The input variables (also known as predictors) included 12 numerical
and two categorical variables. The numerical predictors included the age, power rating, voltage class
and concentrations of hydrogen, acetylene, methane, ethylene, ethane, carbon monoxide, carbon
dioxide, oxygen and nitrogen. The categorical predictors indicated whether or not (“Yes” or “No”) the
transformer was connected to the transmission network and possessed an OLTC.

4.2. Calculation of Output Variables

The output variable (known response) used in the training of the algorithm was the classification
developed in Section 3, but the responses classified as contaminated were divided into two categories
according to the C2H2/H2 ratio and expert knowledge (EK). Based on the division of the responses
classified as contaminated into two classes and the responses of uncontaminated transformers, a total
of three classes were defined, as can be seen in Figure 11. The responses of the 28 observations of
transformers without OLTCs were defined as uncontaminated, which helped the algorithm to learn to
classify them using the ML techniques.
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Figure 11. Responses used for algorithm training.

4.3. Algorithm Development

The DT classifier was the algorithm selected to be trained based on the accuracy results collected
in [20,23,25]. The software used to develop the classifier algorithm was MATLAB R2018b [35].

The developed algorithm obtains an adjusted binary classification DT based on the input variables
and responses [36,37], in order to predict responses for new data. The obtained binary tree divides
branching nodes based on the values of the attributes.

Based on the predictors and responses explained in Sections 4.1 and 4.2, the dataset used in the
algorithm development was as follows:

T = {T1, T2, ..., Tm}
xi =

{
x1, x2, ..., xp

}
S = {S1, S2, ..., Sm}

(1)

where T is the set of all observations, m is the number of observations, xi is the set of values of a
predictor, p is the number of predictors and S is the set of responses to be predicted; each response
takes one of the three classes defined in Section 4.2.
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The calculation procedure to develop the optimal DT, starting from the node t that contains the
set of all observations T, follows the next steps.

1. Calculate the impurity of node t.

Gini’s diversity index (It) measures the impurity of node t and can be written as:

It = 1−∑
i

p2(i) (2)

where the sum is over the classes i at the node, and p(i) is the probability of class i at the node. A pure
node (a node with just one class) has a Gini index of zero; otherwise, the Gini index is positive.

2. Calculate the probability at node t.

The probability that an observation is in node t is given as:

P(T) = ∑
j∈T

wj (3)

where wj is the weight of observation j and T is the set of all observations at node t. If no different
weights are used, wj = 1/n, where n is the sample size.

3. Sort predictor elements in ascending order.

Each ordered element of the predictor xi can be a candidate to split the node.

4. Calculate the impurity gain (∆I).

In order to determine the best way to split node t using xi, the ∆I over all splitting candidates
is calculated. For all splitting candidates of xi, the algorithm splits node t into left (tL) and right (tR)
nodes, each with its set of observations, TL and TR, respectively. Then, the ∆I is calculated as follows:

∆I = P(T)It − P(TL)ItL − P(TR)ItR (4)

where P(TL) and P(TR) are the probabilities that an observation is at node tL and tR, respectively, and
ItL and ItR are the impurities at the child nodes.

5. Selection of splitting node.

The algorithm selects the splitting candidate that produces the largest ∆I.

6. Once the splitting node has been selected, the child nodes (tL and tR) become parent nodes (node
t). Then, the previous steps are recursively repeated to split the new parent nodes until pure
nodes are achieved or the stopping rules are reached.

Following the previous steps, a very deep DT can be generated with many small leaves, achieving
a low training error, but the test error is usually high. To avoid deep growth, stopping rules should be
imposed. The stopping rules used were:

• The maximum number of decision splits was 50.
• The minimum number of branch node observations was 10.
• The minimum number of leaf node observations was one.
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4.4. Algorithm Training and Validation

In order to verify the accuracy of the algorithm [38], the dataset was divided into two groups,
training data and test data, using a percentage ratio of 90:10 or 50:50 to observe how the amount of
training data influenced the accuracy of the algorithm. Because the observations in the training data
differed in each execution of the algorithm, even with the same ratio, the algorithm was executed five
times with the same ratio.

Accuracy (A) was obtained in each execution of the algorithm to validate the trained model. A is
calculated as:

A(%) =

(
TP + TN

TP + TN + FP + FN

)
· 100 (5)

where TP is the number of predicted true positives, TN is the number of predicted true negatives,
FP is the number of predicted false positives, and FN is the number of predicted false negatives.

The accuracy results based on the percentages of training and test data are listed in Table 7.
In addition, Table 7 lists the confusion matrices obtained in each case. It is important to keep in mind
that a transformer misclassified as contaminated (false positive) would be evaluated with high C2H2

limits (Table 2). Thus, its status assessment would go unnoticed in terms of C2H2.

Table 7. Decision tree classifier accuracy results and confusion matrices from different training and
test data.

Run
No. Class 90% Training

and 10% Test
80% Training
and 20% Test

70% Training
and 30% Test

60% Training
and 40% Test

50% Training
and 50% Test

T
P

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

1

0 35 0 0 70 1 0 104 1 0 139 2 0 174 1 2
1 0 4 0 0 8 0 0 10 2 0 14 3 0 18 2
2 0 0 2 0 0 4 0 3 4 0 2 6 0 4 7

A (%): 100 A (%): 98.80 A (%): 95.16 A (%): 95.78 A (%): 95.67

2

0 .35. 0 0 .70. 0 0 104 1 0 140 1 0 174 2 0
1 0 4 0 0 8 0 0 13 0 1 16 0 0 18 3
2 0 0 2 0 0 5 0 3 3 0 2 6 0 2 9

A (%): 100 A (%): 100 A (%): 96.77 A (%): 97.59 A (%): 96.63

3

0 35 0 0 71 0 0 104 1 0 141 1 0 174 2 0
1 0 4 0 0 8 0 0 12 0 0 13 3 3 14 4
2 0 0 2 0 0 4 0 0 7 0 2 6 0 1 10

A (%): 100 A (%): 100 A (%): 99.19 A (%): 96.39 A (%): 95.19

4

0 34 1 0 69 1 0 105 0 0 140 1 0 175 1 0
1 0 4 0 0 8 0 0 13 0 0 16 0 0 20 0
2 0 0 2 0 0 5 0 0 6 0 3 6 1 4 7

A (%): 97.56 A (%): 98.80 A (%): 100 A (%): 97.59 A (%): 97.11

5

0 35 0 0 70 0 0 105 0 0 142 0 0 174 2 0
1 0 4 0 0 8 0 1 11 1 1 15 0 0 21 0
2 0 0 2 0 0 5 1 1 4 1 2 5 0 4 7

A (%): 100 A (%): 100 A (%): 96.77 A (%): 97.59 A (%): 97.11

T: true class; P: predicted class; A: accuracy.

From Table 7, it is observed that a larger training group resulted in fewer false positives
and negatives.

Since the accuracy results shown in Table 7 were correct, the trained algorithm was validated;
otherwise, it would be necessary to modify the parameters defined in the algorithm development to
improve the algorithm accuracy.
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4.5. Construct the DT

The final training of the algorithm [38] was performed with all the observations, achieving an
accuracy of 99.76% for the responses. As a result, an adjusted binary classification decision tree was
obtained based on the predictors and responses contained in the dataset, as shown in Figure 12.

As expected, Figure 12 shows that the most important predictor was the acetylene concentration,
followed by the hydrogen concentration and power rating.

0

2 1 0

2

0 1

C2H2 < 10.5

MVA < 165

C2H2 � 10.5

C2H2 < 43.5 C2H2 � 43.5 MVA � 165

C2H2 < 14 C2H2 � 14

H2 < 11 H2 � 11

H2 < 77 H2 � 77

2: Contaminated acc. IEC ratio
1: Contaminated acc. EK
0: Uncontaminated

Figure 12. Decision tree obtained from the trained algorithm (concentrations in ppm and power rating
in MVA).

The DGA sample that was poorly predicted by the trained algorithm belonged to Transformer
4. This transformer had two DGA samples that were used in the algorithm training (Tables 4 and 6).
The responses of the DGA samples and the wrong prediction of the Transformer 4 are shown in
Figure 13. The wrong prediction was defined as uncontaminated by the trained algorithm, while it
was defined as contaminated according to EK, since its acetylene and hydrogen concentrations were
11 and 20 ppm, respectively. The wrong prediction was in the vertical zone generated between the
responses of uncontaminated and contaminated transformers according to EK (Figures 11 and 13);
therefore, the trained algorithm could not determine the transformer contamination accurately.
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Figure 13. Transformer 4 responses and prediction error.

As new DGA samples are obtained, the trained algorithm will be run using the predictors
explained in Section 4.1. The algorithm will output the predictions of whether or not there is
contamination. These results will be compared to previous transformer oil contamination definitions.
In cases where the algorithm is not correct, each sample must be studied individually to know if it is
an error or the transformer has gone from being uncontaminated to being contaminated from OLTC
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gases (applying the methodology explained in Section 3). From the results of the application of the
trained algorithm, it will be improved if necessary.

5. Conclusions

This paper presents the application and expert knowledge of the C2H2/H2 ratio collected in [6,7]
in order to determine transformer oil contamination from the OLTC gases in a group of power
transformers of a DSO. The 175 power transformers studied based on 388 DGA results have different
ages, voltage classes, and power ratings.

Based on the application of the ratio, thirteen transformers are defined as contaminated, and
one transformer is classified as uncontaminated due to low acetylene values, in the 8–11 ppm range.
The expert interpretations of the DGA results for 13 power transformers define them as contaminated
based on a study of the rest of the DGA results for each of them.

As expected, the trend in the results is that old transformers are contaminated by the OLTC gases,
and sixty-three percent of the contaminated transformers have ages in the range of 30–60 years. Based
on these results, it is observed that the youngest contaminated transformers have their tap selector
and diverter switch in different compartments, whereas the oldest contaminated transformers have
their tap selector and diverter switch in the same compartment.

It should be noted that the methodology performed in this study is an assumption of transformer
oil contamination based on the study of the DGA samples. Neither the application of the ratio, nor the
EK can guarantee this contamination. The evaluation of the future DGA results of the transformers
defined as contaminated will have to be performed taking into account the number of operations of
the OLTCs, in order to discard the existence of faults in the insulation of the transformer.

In addition, this paper proposes the application of ML techniques in the developed classification
methodology. The proposed approach achieves an effective technique to distinguish whether or not
there is transformer oil contamination from the OLTC gases using a DT. The algorithm is trained using
different percentages of training and test data to obtain the optimal DT.

Based on the proposed approach, a trained classifier is obtained to make it possible to perform
the classification automatically. The results of the trained classifier versus the classifications made in
this study show an accuracy of 99.76%.

From the classification of transformers as contaminated or uncontaminated performed in this
study, the calculation results for the limit values of the C2H2 concentration [39] are improved and
divided into two groups, depending on the OLTC communication between the main tank and the
OLTC compartment, similar to the IEC classification.

In future work, the model trained from the ML techniques will be used with new DGA results. Its
accuracy will be checked, and the model will be improved if necessary.

Author Contributions: Conceptualisation, S.B., M.M. and A.A.; methodology and software, S.B.; validation,
all authors contributed equally; formal analysis, S.B., R.M. and A.L.; investigation and resources, all authors
contributed equally; data analysis, S.B.; writing, original draft preparation, review and editing, all authors
contributed equally; and funding acquisition, M.M. All authors read and agreed to the published version of
the manuscript.

Funding: This work was partially financed by the EU Regional Development Fund (FEDER) and the Spanish
Government under RETOS-COLABORACIÓN RTC-2017-6782-3 and by the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 864579 (FLEXIGRID).

Acknowledgments: The authors acknowledge the support received from Viesgo. The authors thank CIGRE
for permission to reproduce information from its Technical Brochures. The authors thank the International
Electrotechnical Commission (IEC) for permission to reproduce information from its International Standards.
All such extracts are copyrighted by IEC, Geneva, Switzerland. All rights reserved. Further information on the
IEC is available from www.iec.ch. The IEC has no responsibility for the placement and context in which the
extracts and contents are reproduced by the author, nor is the IEC in any way responsible for the other content or
accuracy therein.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 8897 17 of 19

Abbreviations

The following abbreviations are used in this manuscript:

CH4 Methane
C2H2 Acetylene
C2H4 Ethylene
C2H6 Ethane
D1 Discharges of low energy
D2 Discharges of high energy
DGA Dissolved gas analysis
DPM Duval pentagon method
DSO Distribution system operator
DT Decision tree
DTM Duval triangle method
EK Expert knowledge
FDS Frequency domain spectroscopy
FFA Furfuraldehyde
H2 Hydrogen
HI Health index
ML Machine learning
OLTC On-load tap-changer
OQA Oil quality analysis
PD Partial discharges
PDC Polarisation and depolarisation current
T1 Thermal faults (<300 ◦C)
T2 Thermal faults (300–700 ◦C)
T3 Thermal faults (>700 ◦C)
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