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Abstract. Climate change is one of the problems facing society today because of its impacts on 

the health of living beings. That is why the authorities need tools that provide them with the 

information necessary to make decisions that will reduce the impact of such change. This paper 

proposes a strategy to group the air quality data of the metropolitan area of the City of Bogotá 

from 2014 to 2018, in order to recognize the measurement patterns in the environmental 

contaminants that cause pre-contingencies and environmental contingencies in the area of the 

City of Bogotá. 

1. Introduction 
 

In the course of his existence, the human being has changed his environment to live comfortably and 

safely, proof of which are the great distances he has travelled through sky, sea, land and space. 
Technological advances have facilitated daily habits, business, the manufacture of large quantities of 

products, etc. However, these advances have led to environmental degradation that seriously threatens 

the current and future development of nations [1], [2]. 

Air pollution or atmospheric contamination is a problem that produces climate change throughout 
the world and affects the health of millions of people.  It is for this reason that technological tools that 

contribute to the study of this pollution are of vital importance in the development of policies that 

eradicate pollution or mitigate its effects [3]. 
Currently, several organizations and governments have implemented mechanisms to measure air 

pollutants in order to know the air quality indices of the different regions of the planet. The air quality 

indices are numbers used by government agencies to determine air quality.  In the city of Bogotá and 

in the Bogotá Valley area (ZVB) air pollution is measured by the Metropolitan Air Quality Index 
(MAQI). The MAQI is used to show the level of pollution and the level of risk it represents to human 

health in a given time in order to take protective measures [4][5]. 

In [6], the author proposes a Business Intelligence application to analyze climate change data for the 
southern zone of the Puebla Valley. The results of the Business Intelligence processes applied to the 

air quality data of the southern zone of the Puebla Valley, presented by the author, point to a very 

strong relationship between air quality and climate variables, and also show that air quality with 
respect to the concentration levels of atmospheric pollutants is determined by the presence of particles 
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smaller than 10 micrometers (PS10) and ozone chemicals (O3). In the city of Puebla there are 3 

stations for measuring pollutants, but there is no model of its own that provides information on air 
quality. This study seeks to obtain similar conclusions to those obtained by the author of the 

previously described research, although the focus of its strategy only takes into account the air quality 

information for the Metropolitan Area of the City of Bogotá. 
Another study related to the analysis of climate change data is that presented by [7], which proposes 

a genetic algorithm to group climate change data from the Bogotá Valley Zone. In the paper, the 

authors create the patterns from the measurements of several stations in the studied region and group 

them to determine the type of pollutants that are key for the activation of an environmental 
contingency, according to air quality standards. This grouping strategy resulted in the obtention of 10 

clusters, in which climate change data can be grouped, concluding that the patterns that represented 

higher measurement levels of certain pollutants, such as (PS10) and ozone coincide with high MAQI 
measurements [8]. 

According to the strategy proposed in this paper, each known measurement of pollutants is taken as 

a pattern in which the attributes of the pattern are the values of each pollutant and thus their clustering 

will lead us to conclusions about the relationship between pollutant values and air quality. The 
literature offers several techniques for grouping data [9], however, a K-Means method has been used 

for grouping air quality data in this strategy. 

 
2. Proposed clustering strategy 

 

The proposed clustering strategy for climate change data is to use the K-means method. The instances 
are formed from the information of the pollutant’s measurements of the Bogotá Valley Zone. Each 

instance consists of a vector that contains the measurements of six pollutants criteria for each hour of a 

certain year (from 2014 to 2018), resulting in a total of 11,254 instances per year.  These 

measurements are grouped using the technique mentioned above and the groups generated from the 
silhouette of the resulting clusters are validated. 

2.1.Data preparation 

The first phase of the strategy is to prepare the data for clustering. The original data consists of a set of 
spreadsheets containing the measurements from various stations. However, many of the stations report 

negative values, which is impossible and indicates a failure in the station, which is why this study is 

based on only one station, which is the one that reports the least inconsistent values. The presence of 
these incorrect values was corrected by substituting those incongruent values with the arithmetic mean 

of the correct values. 

2.2.K-means clustering 

One of the most commonly used non-hierarchical clustering algorithms is the K-means algorithm 
which is used to find clusters of air quality data, due to its easy implementation and fast execution 

[10]. This is due to its easy implementation and fast execution [10]. This algorithm was introduced in 

the sixties [11] [12], and starts with a problem of m attributes, that is, each instance is moved to m-
dimensional space. The centroid of the cluster describes each cluster and is a point in the m-

dimensional space around which each instance is grouped. The most used distance from the instance to 

the centroid of the cluster is the Euclidean distance. The K-means algorithm consists of two main 

steps: 
1. The assignment step consists of moving each instance to the nearest class. 

2. The re-estimation step consists in recalculating the class centroids from the instances assigned to 

each class (cluster). 
 

The two steps of the algorithm are repeated until the re-estimation step produces a minimal change 

in the centroids of the classes. 
Once the data is corrected, the construction of the K-means algorithm can be used to group the data. 

The instances are formed by the measurements of the criteria pollutants. Criteria pollutants is a term 
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used internationally to describe air pollutants that have been regulated and are used as indicators of air 

quality. The criteria pollutants are: Ozone (O3), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), 
Carbon Monoxide (CO) and Suspended Particles (SP).  With that information, the instances are 

formed as vectors as follows [13]: 

 
X = (X1, X2, X3, X4, X5, X6)     (1) 

 

Where: 

X1 corresponds to the measurement of Carbon Monoxide (CO), X2 corresponds to the measurement 
of Nitrogen Dioxide (NO2), X3 corresponds to the measurement of Nitrogen Oxide (NOX), X4 

corresponds to the measurement of Ozone (O3). 

X5 corresponds to the measurement of suspended particles smaller than 10 micrometers (PM10). 
X6 corresponds to the measurement of Sulphur Dioxide (SO2). 

It is necessary to mention that the measurement of nitrogen oxide (NOX) is added, since ozone is 

created by chemical reactions within this compound [14]. 

 
3. Experiments and results 

 

As mentioned above, there are 11,254 instances per year, and this is the five years over which the data 
analysis reported in this paper was done. This information was obtained from the Ministry of 

Environment of Colombia [15]. The K-means clustering algorithm was applied to each annual data set, 

and to verify the number of clusters found, the validation technique was used with the silhouettes of 
the clusters.  The result of the application of the K-means algorithm to the 5 data sets that represent the 

annual measurements of the climate change data, provide the information reported in Table 1. 

 

Table 1. Optimal number of groups for air quality data. 

Year Optimal number of groups 

2014 9 

2015 9 

2016 6 

2017 6 

2018 6 

3.1.Validation with the silhouettes of the clusters 

The optimal number of groups was calculated from the information obtained from the silhouette of 
each execution of the K-means method with different number of groups. Table 2 shows the tests that 

were made with a different number of groups and the error that the silhouette of each one of them 

shows, for the 5 years of measurements that are being studied in this research. The results with the 

least error in the silhouettes of each test are highlighted, thus justifying the optimum number of groups 
for each annual measurement. The results of the tests show groupings with a minimum of 6 groups and 

a maximum of 11 groups, since with a number of groups lower than 6 and higher than 11 the error 

increases, and for practical purposes it was decided to omit these results. 
Once the air quality data for each year, from 2014 to 2018, are grouped together, Figure 1 shows the 

silhouettes of these clusters (except 2016). 

 
Figure. 1. Silhouettes of clusters of annual air quality data 2014 and 2015 
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Figure. 2. Silhouettes of the clusters of annual air quality data for 2017 and 2018 

 
Table 2. Errors thrown by the silhouette of each grouping. 

Number of groups 

Year 

6 7 8 9 10 11 

2014 0.5487 0.5368 0.5125 0.5012 0.5012 0.5230 

2015 0.4962 0.3978 0.4201 0.3952 0.4236 0.4025 

2016 0.3123 0.5012 0.4362 0.4420 0.4625 0.4231 

2017 0.4652 0.4362 0.4752 0.4630 0.4750 0.4425 

2018 0.4325 0.4785 0.4521 0.4850 0.5012 0.5365 

 
With the groups obtained by the K-means method for each annual data set, the information of the 

pollutants associated to each data cluster is related.  Tables 3, 4 and 5 concentrate the information on 

the maximum and minimum values for each pollutant criterion in each group. With this information, it 
can be noted that air quality is strongly influenced by suspended particles smaller than 10 micrometers 

(PM10). 

 

Table 3. Maximum and minimum values for each cluster I. 

Data from clustering of 2014 air quality data 

Pollutant 

Group 

 CO NO2 NOX O3 PM10 SO2 

1 Maximum 
Minimum 

16.5000 
0.1001 

0.2500 
0.0033 

0.4750 
0.0040 

0.2720 
0.0010 

133.0000 
92.0000 

0.2500 
0.0010 

2 Maximum 

Minimum 

12.0000 

0.1000 

0.2050 

0.0023 

0.4450 

0.0033 

0.2000 

0.0010 

25.0000 

17.0000 

0.1820 

0.0010 

3 Maximum 
Minimum 

13.5000 
0.2001 

0.2923 
0.0110 

0.4800 
0.0055 

0.2824 
0.0034 

788.0000 
135.0000 

0.1524 
0.0011 

4 Maximum 

Minimum 

10.7000 

0.2000 

0.1680 

0.0030 

0.3440 

0.0030 

0.1730 

0.0030 

18.0000 

1.0004 

0.1750 

0.0011 

5 Maximum 
Minimum 

7.4000 
0.1200 

0.0850 
0.0020 

0.2410 
0.0010 

0.1820 
0.0010 

33.0000 
26.0000 

0.1550 
0.0014 

6 Maximum 

Minimum 

13.7000 

0.1200 

0.1500 

0.0030 

0.4813 

0.0034 

0.2340 

0.0020 

68.0000 

54.0000 

0.1800 

0.0020 

7 Maximum 
Minimum 

8.3000 
0.2000 

0.2390 
0.0020 

0.3540 
0.0030 

0.2160 
0.0010 

42.0000 
34.0000 

0.2050 
0.0010 

8 Maximum 

Minimum 

13.4000 

0.1010 

0.1510 

0.0050 

0.4330 

0.0040 

0.2160 

0.0010 

53.0000 

42.0000 

0.1240 

0.0010 

9 Maximum 
Minimum 

14.1010 
0.2000 

0.1510 
0.0023 

0.3250 
0.0055 

0.2450 
0.0012 

92.0000 
70.0000 

0.1300 
0.0014 
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Table 4. Maximum and minimum values for each cluster II. 

Data from the clustering of air quality data for 2016 

Pollutant 

Group 

 CO NO2 NOX O3 PM10 SO2 

1 Maximum 
Minimum 

12.3040 
0.1000 

0.1810 
0.0030 

0.5000 
0.0033 

0.2700 
0.0020 

110.0000 
67.5000 

0.2440 
0.0030 

2 Maximum 

Minimum 

8.4000 

0.1100 

0.1270 

0.0020 

0.4450 

0.0020 

0.1820 

0.0030 

44.0000 

30.0000 

0.1600 

0.0020 

3 Maximum 
Minimum 

9.1000 
0.2000 

0.1700 
0.0040 

0.2630 
0.0020 

0.1500 
0.0020 

18.0000 
0.1000 

0.0820 
0.0013 

4 Maximum 

Minimum 

10.6000 

0.1400 

0.1330 

0.0040 

0.3660 

0.0020 

0.1662 

0.0031 

28.0000 

17.0000 

0.1950 

0.0010 

5 Maximum 
Minimum 

13.4100 
0.2070 

0.2410 
0.0030 

0.5030 
0.0030 

0.2320 
0.0050 

675.0000 
110.0000 

0.1600 
0.0010 

6 Maximum 

Minimum 

9.8000 

0.2000 

0.1820 

0.0047 

0.4470 

0.0015 

0.2201 

0.0033 

69.0000 

44.0000 

0.2030 

0.0020 

 
Table 5.Maximum and minimum values for each cluster III. 

Data from the clustering of air quality data for 2018 

Pollutant 

Group 

 CO NO2 NOX O3 PM10 SO2 

1 Maximum 

Minimum 

12.9000 

0.1700 

0.1740 

0.0050 

0.4020 

0.0200 

0.1780 

0.0020 

378.0000 

99.0000 

0.2520 

0.0030 

2 Maximum 

Minimum 

7.8000 

0.1000 

0.1330 

0.0070 

0.3300 

0.0220 

0.1450 

0.0010 

38.0000 

21.0000 

0.1920 

0.0010 

3 Maximum 

Minimum 

6.3000 

0.1040 

0.1410 

0.0050 

0.3000 

0.0040 

0.1500 

0.0010 

22.0000 

0.0000 

0.2350 

0.0010 

4 Maximum 

Minimum 

12.2000 

0.2000 

0.1420 

0.0070 

0.3520 

0.0200 

0.2010 

0.0020 

94.0000 

70.0000 

0.2750 

0.0010 

5 Maximum 

Minimum 

6.7000 

0.1030 

0.1400 

0.0020 

0.3130 

0.0040 

0.1750 

0.0010 

54.0000 

38.0000 

0.2620 

0.0010 

6 Maximum 

Minimum 

9.0000 

0.1200 

0.1120 

0.0050 

0.3490 

0.0130 

0.1870 

0.0030 

709.0000 

55.0000 

0.1910 

0.0020 

 

4. Conclusions 

 

The interest of this research was to answer the following questions: Is there a pattern in the records of 
each year, is only one pollutant triggered by measurement, what are the pollutants that are triggered 

most frequently? These questions cannot be answered by simply having the air quality record at a 

given time, but require analysis of the air quality measurements to see how the data behave, in order to 
obtain the conclusions. The clustering strategy presented in this paper provides a tool for the analysis 

of air quality data, specifically the testing of air quality information from the Bogotá Valley Zone. The 

study carried out demonstrated that there is an important variation in air quality data from one year to 
another, since the number of clusters varies from year to year, which with the help of experts, can be 

interpreted as a cause of climate change. 

 The exact interpretation of the clustering obtained in this study is not a trivial task, due to the lack 

of a model to identify the criteria pollutants that influence the increase of MAQI levels and 
consequently, the declaration of an environmental contingency. The strategy proposes a way to group 

these values and can be used for any other region that has stations that measure criterion pollutants. 
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