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This paper reports a study undertaken to achieve a compatible and affordable technique for the high-quality dispersion of carbon
nanotubes (CNTs) and graphene nanoplatelets (GNPs) in an aqueous suspension to be used in multifunctional cementitious
composites. In this research work, two noncovalent surfactants with different dispersion mechanisms (Pluronic F-127
(nonionic) and sodium dodecylbenzene sulfonate (SDBS) (ionic)) were used. We evaluated the influences of various factors on
the dispersion quality, such as the surfactant concentration, sonication time, and temperature using UV-visible spectroscopy,
optical microscopic image analysis, zeta potentials, and particle size measurement. The effect of tributyl phosphate (TBP) used
as an antifoam agent was also evaluated. The optimum suspensions of each surfactant were used to produce cementitious
composites, and their mechanical, microstructural, electrical, and thermal behaviors were assessed and analyzed. The best
dispersed CNT+GNP aqueous suspensions using Pluronic and SDBS were obtained for concentrations of 10% and 5%,
respectively, with 3 hours of sonication, at 40°C, with TBP used for both surfactants. The results also demonstrate that
cementitious composites reinforced with CNT+GNP/Pluronic showed better mechanical performance and microstructural
characteristics due to the higher quality of the dispersion and the increasing hydration rate. Composites prepared with an SDBS
suspension demonstrated lower electrical and thermal conductivities compared to those of the Pluronic suspension due to
changes in the intrinsic properties of CNTs and GNPs by the SDBS dispersion mechanism.

1. Introduction

Various types of multifunctional cementitious composites
employing carbon fillers have attracted widespread attention
due to their potential applications, including monitoring,
thermal management, and transportation [1-4]. Among
carbon fillers, carbon nanotubes (CNTs) and graphene nano-
platelets (GNPs) are the most widely used fillers to improve
the mechanical, microstructural, electrical, and thermal
behavior of composites due to their unique properties,
including their small size, low density, high stiffness, high
strength, and excellent electronic and thermal conductivity

[5]. CNTs and GNPs can act as a nucleation agent and raise
the hydration rate in cementitious composites [6]. Graphene
is a 2D monolayer of sp>-hybridized carbon atoms arranged
in a hexagonal packed lattice structure, and CNTs are 1D
nanoscale tubes with an empty inner cavity that consists of
single or multiple graphite atomic layers that are curved back
on themselves [5, 7].

The high aspect ratio and large specific surface area of
GNPs lead to a high contact area between composites and
nanofillers and cause a maximized transferred stress and
phonon transference from the matrix to the nanofillers.
Hence, GNP-reinforced composites can be expected to
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exhibit better mechanical, thermal, and electrical behavior
even in comparison to CNTs [8]. However, in many cases,
the potential applications of GNPs and CNTs are limited
due to their high aspect ratio and large specific surface,
which leads to large van der Waals forces and strong 7
-7 interactions originating entanglement and agglomera-
tion [9]. This is particularly important in multifunctional
cementitious composites that normally use high concentra-
tions of nanofillers to obtain higher electrical or thermal
efficiency [10] (causing agglomerate formation and reducing
their mechanical and microstructural performance [11]),
since the physical properties are of significant importance
in multifunctional cementitious composites [12].

Recently, several studies have been conducted to measure
the CNT+GNP hybrid effects on multifunctional polymeric
composites. The results show an improvement in the
mechanical, microstructural, electrical, and thermal perfor-
mance in comparison to their individual usage. Hence, the
synergic effects of CNT+GNP combinations can decrease
the required concentration of carbon nanomaterials (CNMs)
by reducing the percolation threshold and subsequently
significantly alleviating concerns regarding the costs and
formation of porosities [8, 9, 13, 14]. Although no study
has been found on the development of multifunctional
cementitious composites of CNT+GNP combinations, we
expect similar assumptions for this type of matrix. The com-
bination of 1D (CNT) and 2D (GNP) nanoparticles with a
high aspect ratio can increase the electron quantum tunnel-
ing effect as well as the percolation mechanism. CNT+GNP
combinations can increase the hydration rate more than each
would individually, due to the larger specific surface area that
acts as a nucleation agent [6, 15]. They can also fill a wider
range of micro- and nanopores, which leads to denser micro-
structures and bridges the hydration products of cement.
However, a compatible and effective technique is required
for the dispersion of CNT+GNP combinations in cementi-
tious matrices, due to their agglomerate potential.

Therefore, our present study proposes a compatible and
affordable method for the high-quality dispersion of CNT
+GNP in multifunctional cementitious composites. Various
chemical, biological, and physical techniques, such as high
shear mixing, ultrasonication, ball milling, plasma, calendar-
ing and irradiation methods, and noncovalent and covalent
functionalization, have been extensively studied to modify
and improve GNP and CNT dispersion in various matrices
[16-25]. Although they often have an adverse effect on nano-
particles and/or composite features, preparing dispersed
CNT and GNP suspensions through the noncovalent func-
tionalization method does not alter the inherent optical, elec-
trical, or mechanical properties of these nanoparticles. CNTs
and GNPs are commonly dispersed along this route using
different surfactants, aromatic small molecules, polymers,
the endohedral method, and biomacromolecules [10, 24-42].

Currently, Pluronic F-127 (PF-127) is receiving increased
attention among the different surfactants due to its lower
toxicity and higher biocompatibility compared to other
surfactants [43-47]. Pluronic F-127 (PF-127) is a nonionic
triblock copolymer consisting of a core hydrophobic chain
of polyoxypropylene (PPO) flanked by two polyoxyethy-
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lene (PEO) hydrophilic chains. As PF-127 has an amphi-
philic structure, it has been asserted to be an efficient
surfactant for the dispersion of CNTs and GNPs [44, 48].
Pluronic F-127 has great solubility in water at room temper-
ature, allowing the preparation of CNT suspensions at a high
surfactant concentration ratio. Due to the long PEO chain
presence, Pluronic F-127 was found to be compatible with
cementitious composites and demonstrated good mechanical
behavior and dry bulk density possibly due to the high fluid-
ity of mortar and dispersion of cement particles [49, 50].

Pluronic F-127 surfactants also exhibited a stronger
ability to disperse MWCNTs in basic aqueous or extremely
acidic media compared to ionic surfactants [30, 51]. MWCNTSs
were also effectively dispersed in ethoxy-modified composites of
Pluronic F-127 and a silicone surfactant (trisiloxane). Sodium
dodecylbenzene sulfonate (SDBS) is also a noncovalent surfac-
tant that is commonly used to disperse carbon nanoparticles
as it shows low interference with the performance of nano-
particles [49]. The effective dispersion of SWCNTs at high
concentrations (up to 2wt%) has been obtained recently,
using the ionic surfactant SDBS through long-term ultrasoni-
cation treatment (24 hours) [52]. To disperse different types
of CNTs and GNPs, the efficiency of SDBS has been
reported as even higher than dodecyl-/tetradecyl-/cetyl-tri-
methylammonium bromide (DTAB/TTAB/CTAB), gum
arabic (GA), nonylphenoxypoly(ethyleneoxy)ethanol (NP-
10), cetylpyridinium chloride (CPyCl), and sodium dodecyl
sulfate (SDS) [53-56].

Hence, the effects of Pluronic F-127 and SDBS on the sta-
bility of prepared suspensions of 1% CNT+GNP (0.5 wt%
CNT and 0.5wt% GNP) were evaluated for various concen-
trations, ultrasonication times, and temperatures and for
the presence of tributyl phosphate (TBP, as an antifoam
agent) in order to propose a compatible and affordable
method for high-quality dispersions of CNT+GNP in multi-
functional cementitious composites. We evaluated the effects
of the optimally dispersed CNT+GNP suspensions on the
microstructure and mechanical, thermal, and electrical
behaviors of the cementitious composites, to ensure the
efficiency of the technique and the absence of adverse effects.

2. Materials and Methods

2.1. Raw Materials. Carbon nanotubes and graphene nano-
platelets were purchased from CNPLUS Company (USA).
Table 1 summarizes the characteristics of the GNPs and
CNTs as provided by the manufacturer [57, 58]. Raman
spectroscopy (Figure 1) was conducted on CNTs and
GNPs using a HORIBA LabRAM HR Evolution confocal
Raman microscope spectrometer through laser excitation
with a wavelength of 532 nm.

We characterized the morphologies of GNPs and
CNTs in different modes using a scanning electron micro-
scope (SEM) (Figure 2). Pluronic F-127 and SDBS were
used as surfactants in order to facilitate the CNT and GNP
dispersion, and tributyl phosphate (TBP) was also used as
an antifoam agent with 1/2 of the surfactant weight ratio.
The surfactants and antifoam were purchased from Sigma-
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TaBLE 1: GNP and CNT characteristics.
GNP
Surface area Density Carbon Tensile pH value Tensile . . Part
(m* g (g/cm®)  content (%) modulus (30°C) strength Layers Dimension Form number
§ (Gpa) (GPa)
Thickness ~Diameter  Gray
120-150 0.6 >99.5 1000 7-7.65 5 <20 TGN201
4-20nm  5-10ym powder
MWCNT
Surface area Density Outside Length o Carbon
m?> gh (g/cm?) Color diameter (nm)  (um) Ash (wt%) content (%) Part number
350 0.27 Black <8 30-10 <15 >98 GCM327
200 7 G mized CNT+GNP aqueous suspensions with ordinary Port-
180 1 | land cement and standardized sand, using a laboratory
160 - ) i mixer, following the EN 196-1:1994 standard. In all samples,
~ 14041 i 2D a cement-to-water ratio of 0.5 was used. At first, the required
3 120!} :’ \ A amount of cement (450 g) was poured in the mixer’s stainless
£ 100 A | ‘I‘ i | i '\l steel bowl in order to prepare the mortar mixtures. Then, the
5 80 il Voo (." ! prepared CNT+GNP suspension with 125g of water was
= 604 v /I '\ added to the cement and the required amount of sand
40, l"w. st A (1350 g), and the remaining 100 g of water was poured into
20 vt 3 - the mixing machine’s hopper. The mixer was then run for
0 1.5min, with a stainless steel blade rotational speed of
1300 1800 2300 2800 140 m/min, followed by a 30s timeout, and then run at
Raman shift (cm~1) 285 m/min for another 2.5 min. The mixture was placed into
160 mm x 40mm X 40mm and 40mm x 40mm X 40mm (for
GNP . . . . © e
. CNT the capillarity test) prismatic molds and placed on a jolting

Ficure 1: Carbon nanotube (CNT) and graphene nanoplatelet
(GNP) Raman analysis.

Aldrich (Portugal) [59]. Their chemical structures are pre-
sented in Figure 3 [59, 60].

Ordinary Portland cement type I and CEN Standard sand
(EN 196-1 and ISO 679:2009) from the SNL company were
used to prepare cementitious composites (mortar). The par-
ticle size distribution of the sand and chemical composition
of the ordinary Portland cement (OPC) are shown in
Tables 2 and 3 [61].

2.2. CNT+GNP Dispersion. We dispersed 1% of CNT+GNP
(wt of water) in aqueous solution by 5%, 10%, and 15% of
each surfactant. The surfactant was first added to the water
and mixed for 1 hour using a magnetic stirring mixer with
a speed of 800 rpm/min. CNT+GNP was then added to the
solution and stirred for one additional hour. The samples
were then placed in a sonicator bath (Crest Ultrasonicator,
CP 230T) for 1, 2, and 3h, at 45kHz frequency and 80 W
power, at different temperatures.

A digital temperature regulator (NESLAB RTE-111 MP)
was used to adjust the temperature during the ultrasonication
process with a circulation system through a radiator and
sensors. The TBP was completely dissolved in water before
the addition of the surfactant.

2.3. Cementitious Composite Fabrication. Plain and CNT
+GNP-reinforced specimens were prepared by mixing opti-

machine for 1 min for vibrating compaction. The molds were
placed in a humid atmosphere (90%) for 24 h, and then, the
samples were demolded and kept under water for 28 days.
Two copper meshes of 40mm x 50 mm were embedded in
the cementitious composite as electrodes, at 5cm from the
middle of the specimen, to measure the electrical behavior.

2.4. Characterization of CNT+GNP Aqueous Suspensions.
Different techniques were used for characterizing various
parameters of the prepared CNT+GNP suspensions.

2.4.1. UV-Visible Spectroscopy. Due to the additional absorp-
tion caused by 1D van Hove singularities, the dispersed car-
bon nanotubes and graphene nanoplatelets in aqueous
suspensions are active in the region of UV-Vis [28, 62, 63].
Hence, we used UV-Vis spectroscopy (Shimadzu, UV 2401
PC) to evaluate the dispersed CNT+GNP concentrations in
different aqueous suspensions. However, bundled carbon
nanomaterials (CNMs) are extremely active in the wave-
length region between 200 and 1200 nm due to the quench-
ing of photoluminescence, which results in a weak and wide
signal [49]. A solution with the same concentration of the
surfactant agent was used as the blank sample to eliminate
the peaks provided by the surfactant.

2.4.2. Zeta Potential and Particle Size Measurement. The zeta
potential and bundle size of the carbon nanomaterials
(CNM) were determined using the Zetasizer Malvern Nano
ZS system in aqueous suspensions. The dynamic light scat-
tering (DLS) technique has been used for measuring the
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F1GURE 2: Morphology of (a) the CNT and GNP dry mix, (b) CNTs, and (c) GNPs.

CH,

(0]

| Il
OH~[CH,CH,0],40-[CH,CHOJ 65~ [CH,CH,0l100-H  CH,(CH,),,~[C¢H,]-S-ONa
Il

(a)

O
(®)

O-(CH,);CH,
|

CH;(CH,);~0-P-O—(CH,),CH,
Il

FIGURE 3: The chemical structures of (a) Pluronic F-127, (b) sodium dodecylbenzene sulfonate (SDBS), and (c) tributyl phosphate (TBP).

TABLE 2: Particle size distribution of the sand [61].

Mesh size (mm) 0.08 0.16 0.5 1 1.6 2
Cumulative retained (%) 99+1 87+5 67+5 33+5 7+5 0

bundle size of CNM in aqueous suspensions; however, this
technique is more accurate for perfectly spherical particles
[49, 64, 65]. The results of CNM particle size determinations
may highly be affected by their orientation toward the laser

source and the combined morphology due to their high
aspect ratio. Therefore, the analysis of the CNM particle size
results was performed while considering these factors. The
zeta potential ({) was determined using Equation (1) and
the Smoluchowski approximation from electrophoretic
mobility (u).

(e, V
b= 4D’
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TaBLE 3: Chemical composition and properties of ordinary Portland cement.

Si0, ALO, Fe,0, MgO CaO Na,0 TiO, K,0 MnO P,0, SO, LOI Fineness (m°/kg) Specific gravity

19.94 4.76 3.38 131  63.93 0.17 024 044 0.075 0.063 254 297 360 3.15

where 7 is the viscosity of the solution, V is the applied
voltage, D is the electrode separation, and €,, is the dielectric
constant of the medium.

2.4.3. Optical Microscopy and Image Analysis. In order to
monitor the carbon nanotubes and graphene nanoplatelet
agglomeration presence in the aqua suspensions and quantify
the area of agglomeration, we used optical microscopy. For
this purpose, a water suspension drop was analyzed through
deposition on a glass plate and covered with a coverslip.
Visual inspection was performed with 10x, 20x, and 50x
magnifications, while for quantification analysis of the
agglomeration area, 10x magnification was used. In this
route, three drops were taken as samples from each aqueous
suspension; the photos were prepared accurately by micro-
scope software to completely cover the drop area. The
samples’” optical micrographs were investigated with Image]J
software. The total area of agglomeration was computed by
the summation of the total agglomerate area measured for a
sample, divided by the total analyzed image area for each
drop. The final amount of the agglomeration area was
obtained from the average of three drops and expressed as a
percentage with standard deviation.

2.5. Characterization of the CNT+GNP Cementitious
Composites. Flexural and compressive testing was carried
out according to the BS EN 196-1:1995 standard. The appar-
ent porosity, dry bulk density, and capillary water absorption
of the samples were measured as stated by ASTM C20, BS EN
1015-10:1999, and BS EN 1015-18 standards. For evaluating
the consistency of fresh cementitious composites, the diame-
ters of the paste were measured by using a flow table at two
perpendicular directions according to the EN 1015-3 stan-
dard. The fracture surfaces of the specimens were character-
ized by scanning electron microscopy (SEM-FEG, Nano SEM
NOVA 200, FEI) using an accelerated voltage of 10kV and
the secondary mode of the electron after coating with an
Au-Pd thin film (30 nm), in a high-resolution sputter coater
(Cressington 208HR), to investigate the microstructure.

We used a thermogravimetric analyzer (TGA, PerkinEl-
mer) in a nitrogen atmosphere (100 mL/min), at a heating
rate of 10°C/min up to 1000°C and energy dispersive X-ray
analysis (EDX) with 1.8nm at 3kV (Helix detector) of
vacuum resolution. The EDX tests were carried out from
the cement hydration product accumulation. The graphs
were obtained by means of at least five different points of
analysis for each specimen. The nondestructive ultrasonic
test was performed for microstructural evaluation according
to the BS EN 12504-4 standard from Pundit Lab, using the
ultrasonic test device H-2984 through two probes along the
longitudinal transverse axis. The electrical resistance of the
specimens was measured with an Agilent 34461A multi-
meter, after drying at 34°C for 72 hours. A portable thermal

camera, model FLIR 60BX, with a resolution of 320 x 240
pixels and thermal sensitivity < 0.045°C with a temperature
range from -20°C to +650°C was used to evaluate the thermal
conductivity of the specimens. Photographs were taken after
heating the samples at 70°C for 72 hours. In this route,
surface calibration was done before infrared thermography
by measuring the emissivity and reflected temperature (ISO
18434-1:2008).

3. Results and Discussion
3.1. Aqueous Suspension Characterization

3.1.1. UV-Visible Spectroscopy. The UV-Vis absorption
spectra diagrams for the CNT+GNP suspensions prepared
with Pluronic F-127 and SDBS surfactants are displayed in
Figures 4 and 5. The dispersion rate of CNT+GNP in liquid
suspensions was directly related to the amount of energy
absorbance; i.e., a higher energy absorbance indicated a more
homogeneous dispersion of CNT+GNP particles within the
liquid. Molecules containing bonding and nonbonding elec-
trons (n-electrons) can absorb energy in the form of UV to
excite these electrons to higher antibonding molecular
orbitals [66]. The more easily the electrons are excited (i.e.,
a lower energy gap), the longer the wavelength of UV light
that is absorbed. The maximum energy absorbances of SDBS
and Pluronic suspensions occurred at 275 and 260nm,
respectively. This is likely due to the stronger bonding
between Pluronic and CNT+GNP particles, which can
guarantee the long-term stability of the liquid suspension.
Parveen et al. [49] also reported similar results for
CNT/SDBS and CNT/Pluronic aqueous suspensions through
long-term storage stability evaluation. The results also indi-
cate that the increase in the sonication time for both types
of surfactants and all concentrations improved the dispersion
of the nanoparticles, but at different efficiency levels. The
amount of energy absorbed in the SDBS aqueous suspension
increased by an average of 17% for each hour of increased
sonication time, while for Pluronic, the average was 9%.
The sonication time was not increased by more than 3 hours
in order to prevent adverse effects on the CNM structural
quality, such as edge-type defects, reduction in the aspect
ratio, and sp2 domain crystallinity (La), which can cause
deleterious influences on the mechanical, electrical, and
thermal properties. However, the optimum sonication
energy for CNM dispersion can be higher than the 80 W
power for 3 hours that was used in this study [67, 68].
Bath sonication dispersing techniques exfoliate GNPs or
debundle nanotubes into individual plates or tubes and/or
thinner bundles, which consequently are stabilized through
electrostatic repulsions and/or the steric force of surfactants.
During sonication, mechanical vibrations overcome the van
der Waals interactions between the GNPs or bundles of
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FIGURE 4: Wavelength and maximum absorbance of CNT+GNP suspensions prepared with Pluronic F-127.
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FIGURE 5: Wavelength and maximum absorbance of CNT+GNP suspensions prepared with SDBS.

CNTs and provide high positional shear, particularly to the
end of the GNP sheets or nanotube bundles. Once gaps or
spaces at the bundle ends are formed, molecules of the sur-
factant are absorbed onto the surface of the nanoparticles
instantly leading to their exfoliation. According to the unzip-
ping mechanism [69], surfactant molecules have to settle
among the small spaces into the bundle to exfoliate the tubes
and sheets and to prevent them from reagglomeration.
Hence, short-time ultrasonication in surfactant mole-
cules with bulky hydrophobic groups (Pluronic) showed
lower debundling efliciency due to being hindered in their
penetration into the intertube or sheet regions. In the case
of nonionic surfactants, these bulky hydrophilic groups dem-
onstrated advantages for CNT and/or GNP dispersions likely

due to the enhanced steric stabilization caused by longer
polymeric groups. The results also demonstrate that an
increase in temperature to a certain range (40°C) improved
the dispersion of nanoparticles for both suspensions pre-
pared by Pluronic and SDBS, likely by increasing the solv-
ability of the surfactant molecules and the mobility of
electrons. However, excessive temperature rises (more than
45°C) caused bond breakage as well as a change in the critical
micelle concentration and led to temporary reagglomeration.

In a previous study conducted by Yan et al. [48], a stable
and homogeneous aqueous suspension of 0.5% graphene was
obtained at a low temperature (25°C) under ultrasonic irradi-
ation with Pluronic F-127. Chen et al. [70] also found that a
competent dispersion of graphene (0.56 mgmL™") could even
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be achieved at 165°C in a mixture of N,N-dimethylacetamide
and water, via microwave. The results also indicate that the
dispersion of CNT+GNP particles was strongly dependent
on the surfactant concentration, and the best dispersion
occurred with 10% of Pluronic and 5% of SDBS. SDBS is an
ionic surfactant while Pluronic is a nonionic surfactant, and
their interaction mechanisms with nanocarbon particles are
different. In previous studies, Parveen et al. [49] observed
that the use of 1% Pluronic for a 0.1% CNT concentration,
5% for 0.2% and 0.3% CNT, and 0.8% SDBS for 0.2% CNT
resulted in highly homogeneous CNT dispersions. Yan
et al. [48] also achieved a competent aqueous suspension
with a 1% Pluronic concentration for 0.5% graphene.

By comparing these results with the present studies, the
amount of the required surfactant for dispersing CNT and
GNP particles in the hybrid combination appears much
greater than the individual cases, in both types of ionic and
nonionic surfactants. This is likely due to the combinations
of carbon nanoparticles with different geometries (1D and
2D), which leads to an increase in the aspect ratio, as well
as the specific surface area. Therefore, in this case, the contact
surface between the CNMs was larger than that in the
observed CNMs individually, which causes stronger van der
Waals attractions and hinders the dispersive efficiency of
the surfactant at low concentrations.

The effects of the CNM aspect ratio on the dispersion
quality were also demonstrated by Goodman et al. [71]
through the investigation of prepared aqueous suspensions
with 1wt% CNTs with a similar length and different diame-
ter, dispersed by alkali lignin (AL), SDS, and CTAB. They
observed that the amount of absorbance in the UV-Vis
decreased more in the AL suspension when the CNT diame-
ters were decreased from 50 to 8 (nm). These observations
revealed that the aspect ratio demonstrated a more promi-
nent effect on the CNT suspensions when AL was used as a
surfactant. This reflects the differences in how these mole-
cules adsorb onto the surface of CNMs.

In nonionic surfactants, such as AL and Pluronic, in con-
trast to ionic surfactants, such as SDS, ASBS, and CTAB, the
7-7 interactions are responsible for the surfactant molecule
adsorption on the CNM surface. The lower aspect ratio of
CNMs exhibited a lower surface curvature, which led to a
stronger affinity to the -COOH and -OH groups due to a
higher overlap between the 7 electrons. As a result, a higher
amount of nonionic surfactant molecules is required for
CNM individualization with a high aspect ratio. The interac-
tion type and the nature of the surfactant and, consequently,
the concentration are known to play a crucial role in the col-
loid phase behavior [72] as well as for the nanoparticles [73].
A stabilization mechanism of colloidal type particles is
described in the theory of Derjaguin-Landau-Verwey-Over-
beek, and this mechanism typically relies on a surface load
presence that can be induced by surface group deprotonation
or through ion adsorption from the solvent to the colloidal
particle surface. A diffuse layer of counterions was attracted
by the surface charge from the solvent and formed an electric
double layer with a diffuse nature due to the Brownian
motion. This can lead to an effective surface charge due to
Coulomb repulsion among charged colloidal particles [11].

This mechanism can be applied to GNPs and CNTs by
introducing a removable and temporary surface load through
permitting the molecules of the surfactant to adsorb via the
hydrophobic tails on the nanoparticle surface. An ion nor-
mally dissociates itself from the head of hydrophilic groups
and serves as a counterion. Then, the adsorbed molecular
ions have interactions with water [74]. The active charge
signs and magnitude, through the zeta potential, are corre-
lated with the double surface. This is an electrostatic potential
of the bound tail group layer edge [11]. For dispersing carbon
nanotubes, the concentration of the surfactant has to gener-
ally exceed the critical concentration of micelles [75, 76].
The concentration of the surfactant must be higher than
the concentration of nanotubes. [11].

Regarding graphene dispersion, the latter condition is not
always justified as some surfactants have better performance
at concentrations below the critical micelle level while not
exceeding the concentration of graphene [76]. The critical
micelle concentration in the case of SDBS surfactants may
also depend on the nanoparticle concentration [77, 78].

The quality of the dispersion and the individualizatio-
n/exfoliation degree of GNPs and CNTs are normally
measured by the zeta potential. In contrast to carbon
nanotubes, this occurs for graphene nanoplatelets within
two separate ionic surfactant groups: sulfides, such as SDBS,
and other ionic surfactants. Since the zeta potential reflects
the electrostatic potential at the edge of the bound ion layers,
we assume that maximizing the surface charge in this layer
can lead to the zeta potential increase [79]. Hence, the ionic
surfactant SDBS with a low molecular weight can pack tightly
on the GNP and CNT surface and disperse them with a low
concentration.

In Pluronic, as a nonionic surfactant, the lack of Cou-
lomb repulsion for preventing GNP and CNT agglomera-
tion is compensated for by steric effects. Therefore, the
main factor determining the dispersibility of CNTs and
GNPs in aqueous suspension is the presence of branched
and long polar (PEO) chains. This leads to efficiency
enhancement by increasing the molecular weight of the
surfactant [80]. This occurs due to the surfactant’s affinity
of m-electrons to the benzene rings of the GNPs and
CNTs, which can remain to an extent even after water
elimination, in contrast to SDBS (Figure 6).

However, in dry mixes of CNT and GNP without the
presence of surfactants, they are arranged in the form of
individual spheres without interactions due to the van der
Waals attraction forces between the CNTs and repulsion
electrostatic forces between the GNPs and CNTs (Figure 2).
This is important in the context of carbon nanoparticle
refinement and purification from suspensions and can be
considered one of the disadvantages of using Pluronic in
comparison to SDBS.

3.1.2. Optical Micrograph Analysis. For the evaluation of
the agglomerate total area, we analyzed CNT+GNP aque-
ous suspension optical micrographs and expressed the
results as percentages (Table 4). Similar to the previous sec-
tion, we observed that the dispersion quality was increased
by increasing the surfactant concentration up to a certain
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TaBLE 4: Agglomerate total area of various CNT+GNP aqueous suspensions.

SDBS agglorfr?et:;tzzez ;)If) (%) Pluronic F-127 ag;fl(z)tr;lale:erlf:so(f%)
1%CG-1H-05%S 16.5+£0.95 1%CG-1H-5%P 29.6+£1.27
1%CG-2H-05%S 11.3+0.61 1%CG-2H-5%P 22.4+0.93
1%CG-3H-05%S 9.1+0.48 1%CG-3H-5%P 18.3£0.81
1%CG-1H-10%S 20.1+1.08 1%CG-1H-10%P 12.3+0.77
1%CG-2H-10%S 16.8+1.1 1%CG-2H-10%P 8.1+0.96
1%CG-3H-10%S 13.3+£0.72 1%CG-3H-10%P 3.5£0.62
1%CG-1H-15%S 38.1+1.36 1%CG-1H-15%P 17.4+£0.87
1%CG-2H-15%S 32.7+1.09 1%CG-2H-15%P 13.8£0.95
1%CG-3H-15%S 28.3+1.22 1%CG-3H-15%P 10.6 £1.14
1%GC-05%S-1H+TBP 12.4+0.84 1%CG - 1H - 10%P + TBP 10.1 £1.03
1%GC-05%S-2H+TBP 9+0.73 1%CG - 2H - 10%P + TBP 6.3+£0.79
1%GC-05%S-3H+TBP 8.4+0.66 1%CG-3H-10%P+TBP 2.9+0.52
1%GC-05%S-3H+TBP+45°C 6.4+0.71 1%CG-3H-10%P+TBP+45°C 2.1+0.84
1%GC-05%S-3H+TBP+40°C 5.6+0.5 1%CG-3H-10%P+TBP+40°C 1.2+0.71
1%GC-05%S-3H+TBP+25°C 9.1+£0.94 1%CG-3H-10%P+TBP+25°C 5.7+0.59
Aqueous suspension without a surfactant

0.5%CG-1H 88.3+2.37

0.5%CG-2H 79.1x1.61

0.5%CG-3H 67.6£1.89

CG: CNT+GNP (%); S: SDBS (%); P: Pluronic F-127 (%); H: time of sonication (h); +SD: standard deviation.

level. Beyond this level, a further increase in concentration
led to a reduction in the dispersion quality and, consequently,
to an increase in the agglomeration area.

Hence, the optimum surfactant concentrations were 15%
and 5% for Pluronic and SDBS, respectively, which provided
the lower agglomeration area. However, these concentrations

were higher than their critical micelle concentrations [49].
Further increases in Pluronic and SDBS concentrations
above these optimal values not only represented a surfactant
waste but also induced undesired effects. This is consistent
with other studies reporting CNT or GNP aqueous disper-
sions with various types of surfactants [28, 71, 81]. In the
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stable aqueous suspensions, a balance is reached between sin-
gle CNMs and their bundles, which varies with the surfactant
concentration. At low concentrations, the surfactant adsorp-
tion is limited and does not efficiently counterbalance the van
der Waals-induced aggregation of GNPs and CNTs. When
the surfactant amounts in the aqueous suspension are above
a certain value, large micelles are formed around the bundles
of CNMs and they exert an osmotic pressure creating a
depletion-induced attraction [82]. Excessively increasing
surfactant dosages at higher concentration levels than the
critical micelle concentration can lead to nanoparticle
reagglomeration due to changing the micelle geometry
and even changing the viscosity of the aqueous suspension
system. As mentioned before, in similar conditions for
sonication, concentration, and temperature, the difference
of the dispersion efficiency for different surfactants is
closely related to their interactions with CNMs, which
depends on the presence of benzene rings, the length of
their alkyl chain, and the head group types. At the optimal
concentrations, the individualized CNM degree in aqueous
suspension is comparable among the various dispersions,
with a significant increase on the order of Pluronic > SDBS,
as indicated by their respective agglomeration areas.
Interestingly, the presence of TBP enhanced the disper-
sion of nanoparticles, likely due to the TBP molecular struc-
ture that contains three methyl branches. A methyl group is a
hydrophobic alkyl functional group derived from methane
(CH,) by removing one hydrogen atom (CH;-), and methyl
groups are extremely reactive and capable of binding cova-
lently with other carbon atoms due to the free capacity of
eight radical electrons [83]. However, TBP was added to the
suspension as an antifoam agent for removing the bubbles
that form on cementitious composites by Pluronic [49].
The optical micrograph analysis also showed the effect of
temperature and the increasing sonication time on the nano-
particle dispersion improvement, which was obtained from
the UV-visible spectroscopy. The aqueous suspension of 1%
CNT+GNP with 10% Pluronic and 3-hour sonication time,
at 40°C, with TBP, and the suspension of 5% SDBS with the
same amount of TBP, temperature, and sonication time
exhibited very low agglomerate areas (only 5.6% and 1.2%,
respectively) indicating very competent dispersion qualities
(Figure 7). Hence, these suspension systems can be consid-
ered to be the optimized suspensions prepared using SDBS
and Pluronic. However, compared to the optimized Pluronic
suspensions, the suspensions prepared using the optimized
percentage of SDBS showed a higher agglomerate area.

3.1.3. Zeta Potential. As mentioned before, the stability of
colloidal suspensions is frequently determined by their zeta
potential, which indicates the magnitude of the electrostatic
interactions between colloidal particles. Particles with a
zeta potential higher than +15mV or less than -15mV
are expected to be stable due to electrostatic considerations.
However, colloidal suspensions with zeta potentials between
+15 and -15mV can also be stable if they are stabilized unin-
terruptedly [64].

The zeta potentials of the CNT+GNP suspensions are
listed in Table 5.

The dispersions of 1% CNT+GNP in 5%, 10%, and 15%
SDBS with 3-hour sonication showed zeta potentials of
-48.6, -17.7, and -29 (mV), respectively. However, these
amounts for Pluronic suspensions were approximately -2.9,
-9.3, and -5.7 (mV), respectively. The addition of 5% of
TBP over SDBS, with 3-hour sonication, obtained a -56.4
(mV) zeta potential, which supports the positive effect of
TBP to improve CNT and GNP dispersion. Increasing the
temperature to 40°C led to increasing the zeta potential to
-71.9 (mV), which shows more colloidal particle stability
for this suspension. However, the excessive increase in
temperature decreased the quality of the CNM dispersion.
Similarly, increasing the temperature up to 40°C for the
10% Pluronic prepared through 3-hour sonication with
TBP led to the formation of more stable colloidal particles
with a -23.1 (mV) zeta potential.

The high negative zeta potential for SDBS suspensions is
due to the high negative surface charges of this surfactant.
Consequently, due to the nonionic chemical structure of
Pluronic, the CNT+GNP suspensions prepared by this sur-
factant presented lower negative zeta potential. Owing to
nonelectrostatic and steric interactions, the Pluronic sus-
pensions could also be stable. The polyoxyethylene (PEO)
hydrophilic groups extend into the water while hydrophobic
chains of polyoxypropylene (PPO) interact with the surfaces
of the GNPs and CNTs. The exfoliation and stabilization of
separated GNPs and CNTs happen as a result of steric
hindrances that were induced by the long PEO chain.

The functionalized CNM zeta potential was relatively
higher due to -COOH functional groups, which leads to the
surface negative charge on GNPs and CNTs.

3.1.4. The Average CNT+GNP Bundle Size. The average size
of the CNM bundles and the polydispersity index (PDI) of
the CNT+GNP suspensions, determined through DLS by
measuring the hydrodynamic diameter, are presented in
Table 6. The PDI is used as a scale to indicate the extent of
the particle size distribution range, and the larger PDI demon-
strates the wider molecular size spectrum. The results indicate
that the particle sizes of CNT+GNP suspensions dispersed in
5%, 10%, and 15% Pluronic and SDBS were around 512,
328, and 389nm and 491, 671, and 588nm, respectively,
which shows an optimum concentration around 10% for
Pluronic and 5% for SDBS, as discussed before.

The small average size of CNM bundles in Pluronic
suspensions, in comparison with SDBS ones, indicates the
efficiency of the -COOH functional groups on the unbund-
ling process. A lower particle size (219 nm) and lower PDI
(0.315) were obtained for 10% of Pluronic, with 3-hour
sonication with TBP at 40°C, showing low agglomeration
and high quality of the dispersion. The average particle size
and the amount of PDI in the SDBS-dispersed suspensions,
at optimum conditions, were around 393nm and 0.462,
respectively.

3.2. Cementitious Composite Characterization

3.2.1. Mechanical Microstructural Behavior. After obtaining
the best dispersed mixed design for hybrid CNT+GNP
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Figure 7: Optical micrographs of CNT/GNP suspensions: (a) Pluronic: 1%CG-3H-10%P+TBP+40°C; (b) SDBS: 1% CG-3H-5%S+TBP

+40°C.

TABLE 5: Zeta potentials of the CNT+GNP suspensions.

Sample name

Zeta potential (mV)

3H-05%S

3H-10%S

3H-15%S
5%S-3H+TBP
5%S-3H+TBP+25°C
5%S-3H+TBP+40°C
5%S-3H+TBP+45°C
3H-5%P

3H-10%P

3H-15%P
3H-10%P+TBP
3H-10%P+TBP+25°C
3H-10%P+TBP+40°C
3H-10%P+TBP+45°C

-48.6
-17.7
-29
-56.4
-35.5
-71.9
-67.3
-2.9
9.3
-5.7
-14.6
-13.1
-23.1
-19.9

TaBre 6: The CNM hydrodynamic diameters
suspensions characterized by DLS.

in different

Sample name Ave bundle size (nm) PDI

3H-05%S 491 0.571
3H-10%S 671 0.707
3H-15%S 588 0.649
5%S-3H+TBP 448 0.514
5%S-3H+TBP+25°C 474 0.589
5%S-3H+TBP+40°C 393 0.462
5%S-3H+TBP+45°C 422 0.503
3H-5%P 512 0.576
3H-10%P 328 0.488
3H-15%P 389 0.51

3H-10%P+TBP 296 0.412
3H-10%P+TBP+25°C 311 0.438
3H-10%P+TBP+40°C 219 0.315
3H-10%P+TBP+45°C 287 0.397

aqueous suspensions with each surfactant, the mechanical
and microstructural properties of the reinforced cementi-
tious composites were evaluated to determine their effects.
The mechanical and microstructural parameters of the
cementitious composites in different cases are shown in
Figure 8 and Table 7. The results were obtained as the means
of at least three specimens for each test performed. Reinforc-
ing the cementitious composites with CNT+GNP/Pluronic
suspensions led to a higher bulk density compared to CNT
+GNP/SDBS. Consequently, the time required for an ultra-
sonic wave to pass and the apparent porosity values of the
CNT+GNP/Pluronic-reinforced specimens were lower than
those of the CNT+GNP/SDBS specimens.

The general trend of the results showed an improvement
in the flexural and compressive strength of CNT
+GNP/Pluronic-incorporated cementitious mortars. These
results demonstrate more homogeneous and denser micro-
structures for the CNT+GNP/Pluronic-reinforced cementi-
tious composites. The positive effects of the CNTs and
GNPs on the improvement of the cementitious composite
microstructures and their mechanical behaviors, including
their flexural and compressive strength, have been reported
in many previous studies [84-86]. The unique features of
these 1D and 2D nanomaterials with high aspect ratios
enhance the microstructural and the mechanical properties
of the cementitious composites, generally, by reducing the
microporosities, accelerating the hydration process, and
bridging the cement hydration product mechanism, which
is highly controlled by the CNM aspect ratio and dispersion
technique [6, 87, 88].

Therefore, we concluded that the differences between the
cementitious composite mechanical and microstructure
parameters in the cases of CNT+GNP/Pluronic and CNT
+GNP/SDBS were due to the dispersion quality and the
secondary effects of the surfactant on the hydration pro-
cess and/or on the nanoparticle features and/or structures.
However, considering the mechanical and microstructural
results for the nonreinforced composites prepared with only
Pluronic and SDBS (without CNMs), the presence of these
two surfactants did not demonstrate adverse effects on the
cementitious composite features, at least after 28 days of
hydration and for the tested concentrations.
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F1GURE 8: The compressive and flexural strength of cementitious composites after 28 days of hydration.

TaBLE 7: Test results of the cementitious composites according to the standard procedures.

Flow

Ultrasonic wave time

,  Flexural strength? Compressive Apparent .4 Dry bulk
Name of sample values (N/mm?) strength2 (N/mm?) porosi‘[y3 (%) passing @u s) for 150 kHz densi‘[y5 (kg/m3)
(mm) Longitudinal Transverse
Plain mortar 183.2 6.9 439 19 36.40 9.70 2125
1 0,

El;gnpmorta”S %S 191.7 7.1 449 15.9 36.21 9.51 2130

0, 0,
ié’ggjof’grm 118.4 7.8 47.8 13.6 34.10 9.34 2135
Plain mortar
+10%P+TBP 198.2 7.2 44.2 13.9 35.88 9.38 2130

0, 0,
ié’gﬁ;lo(zé’mm 1315 8.3 51.1 114 32.97 8.93 2140

'BS EN 1015-3; >BS EN 196-1:1995; ’ASTM C20; “BS EN 12504-4; *BS EN 1015-10:1999.

Large agglomerations of CNTs and GNPs, due to lower
quality dispersions in CNT+GNP/SDBS-reinforced cementi-
tious composites, led to the formation of microporosities.
The CNM agglomerated between the growing units of C-S-
H to create large gaps among them, which prevented their
physical connection (Figure 9(a)). This is especially important
for the GNPs, which are larger in size. As can be seen in
Figure 10, the CNTs showed a higher reinforcement capacity
to improve the bridging behavior for the pull-out strength
with a better dispersion. The presence of large GNP agglomer-
ates between the hydration products produced a nanoscale
discontinuity when applying stress, which may facilitate the
formation of microcracks.

However, well-dispersed GNPs were more able to
anchor the neighboring C-S-H clusters and bridge the
voids between them. The large specific surface area of GNPs
led to a high contact area with the hydration products and
maximized the stress transferring, delaying the microcrack
and macrocrack propagation. In contrast to SDBS, the CNT
+GNP/Pluronic-reinforced cementitious composites con-

tained lower porosities due to the better dispersion of the
nanoparticles.

The results of the capillary water absorption shown in
Figure 11 also emphasize this. According to the slope of the
capillarity result graphs, the rates of capillarity water absorp-
tion in the GNP+CNT/Pluronic-reinforced specimens were
significantly lower than those in the GNP+CNT/SDBS
specimens.

However, the rates of capillary water absorption for CNT
+GNP-reinforced composites prepared by both Pluronic and
SDBS were lower than those for the plain composite.

The presence of both surfactants increased the flowability
of the plain mortar. According to Table 7, the flow values of
the specimen with 10% individual Pluronic increased by 9%
and 5%, respectively, compared to those of the SDBS and
the plain cases. The chemical structure of Pluronic F-127
contains hydrophilic PEO (polypropylene oxide) side chains
similar to commonly used superplasticizers of polycarboxy-
late, as mentioned before. Polypropylene oxide side chains
were reported to be the main chemical components of these
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Ficure 10: SEM morphology of a CNT+GNP/SDBS sample after
the mechanical strength measurement.

superplasticizers that are responsible for the cement particle
dispersion and the improvement of the flowability [89].

It is generally accepted that the cement paste fluidity is
directly pertinent for the performance of hardened cement
(such as the pore structure and strength) [90]. However,
the presence of CNT and GNP reduced the flowability of
cementitious composites [49, 50]. Due to the large surface
area of GNPs and CNTs, they can absorb water molecules;

hence, a significant reduction occurred in the free water con-
tent needed for lubrication, and this led to a reduction in the
fluidity. For this reason, the flowability of CNT+GNP-rein-
forced samples prepared with Pluronic and SDBS decreased
by 27% and 36% compared to that of the plain cementitious
composite, respectively.

Generally, cement hydration products have a strong ten-
dency to form on the surface of CNTs and GNPs due to the
large specific surface area accompanied by a high amount
of oxygen functional groups, which serve as nucleation sites
[15, 91]. Although the hydration C,S and C,S produce C-S-
H gel and C-H crystals, any deficiency in the water content
surrounding these silicates can slow down the hydration
reactions [91]. This is especially true around agglomerates
caused by the lower quality of dispersion (Figure 9(a)).

High-magnification SEM images (Figure 9(b)) of the
reinforced cementitious composite with CNT+GNP/Pluro-
nic investigated by EDX tests indicate that CNTs and GNPs
were embedded appropriately within the hydration products,
in contrast to the CNT+GNP/SDBS-reinforced specimens.
This is due to the higher quality of the dispersion and the
presence of the PEO side chains, which are preferentially
adsorbed on the surfaces of the C-S-H gel as well as along
the CNT lengths and GNP surfaces [91]. In the early periods
of hydration, this causes a slight discoloration of the gra-
phene and increases the CNT diameters due to the extremely
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thin layer of hydration product coating (in the form of pol-
len). Over time, the crystals become thicker and the carbon
nanoparticles become completely embedded in them.

The results of thermogravimetric analysis (TGA) and dif-
ferential scanning calorimetry (DSC) for different cementi-
tious cases are shown in Figure 12. From the TGA curve,
the first decay is observed up to 105°C, which can be attrib-
uted to the removal of the moisture and free water of the
cementitious composite samples. The second decay was
observed between 105 and 400°C, due to the dehydration of
the chemically bonded water existing in the hydrates, i.e.,
ettringite, carboaluminates, and C-S-H. The next major
decay was found between 400 and 550°C, which can be attrib-
uted to the dehydroxylation of CH. Fourth, the last decay was
ascribed to calcium carbonate coming from the clinker and
cementitious composite carbonation, which was observed
between 600 and 800°C [92, 93].

The results indicate that the amounts of hydration prod-
ucts in the CNT+GNP/Pluronic-reinforced specimens were
more than those in the CNT+GNP/SDBS specimens; how-
ever, the hydration product amounts in both cases were more
than those in the plain sample.

In the case of the reinforced cementitious composites
with MWNTs, Konsta-Gdoutos et al. [94, 95] reported simi-
lar findings. They observed, by nanoindentation tests, that
multiwall carbon nanotubes could increase the formation of
a larger amount of high-stiffness calcium silicate hydrate gel
and decrease the nanoscale porosity owing to the gap filling
between gels of C-S-H through CNTs. Therefore, based on
the results of the previous research [88] and from the present
study, one of the major effects of nanoparticles in the cemen-
titious composite is to increase the hydration rate. The
energy-dispersive X-ray spectroscopy (EDX) results for
cementitious composites are shown in Figure 13. These
results were obtained from the mean of five different points
of cement hydration product accumulation for each case.

13

Despite higher carbon concentration in the place of
cement hydration product accumulation for CNT
+GNP/SDBS-reinforced specimens compared to CNT
+GNP/Pluronic specimens, lower amounts of hydration
products were observed. The reason for this is likely the
changing nanoparticle features and/or structures due to the
SDBS dispersion mechanism. This statement could be veri-
fied by evaluating the electrical behavior.

3.2.2. Electrical Resistance. The electrical resistances of spec-
imens after 28 days of hydration were measured using a
digital multimeter (Table 8). Since humidity, as an electri-
cally conductive factor, has a relatively significant effect on
the cementitious specimen electrical resistance changes [96,
97], the electrical resistance was measured after drying the
specimens at 34°C for 72 hours. The electrical resistances of
individual CNT- and GNP-reinforced specimens were also
measured using a similar method in order to compare with
that of hybrid CNT+GNP.

The electrical resistances of the reinforced specimens
with CNT+GNP/SDBS, CNT/SDBS, and GNP/SDBS were
improved by 71.73%, 66%, and 53.2%, respectively, in com-
parison to that of the plain mortar, while the results are
60.94%, 70.3%, and 64.3%, respectively, for the Pluronic-
reinforced specimens. According to the previous section’s
discussion, CNT+GNP/SDBS-reinforced specimens con-
tained more and larger CNM agglomerations compared to
CNT+GNP/Pluronic specimens due to the lower dispersion
quality. Although the existence of a certain agglomeration
quantity can act as a key factor in raising the conductivity
significantly and reducing the percolation threshold value
[11], the cementitious composite reinforced with CNT
+GNP/Pluronic showed higher electrical conductivity.

Therefore, the decreasing electrical conductivity of the
CNT+GNP/SDBS-reinforced composites is likely due to the
nanoparticle features and/or structure changes provided by
the SDBS dispersion mechanism.

In previous studies, significant deterioration in the
electrical properties was also reported due to disturbances
of the graphene/CNT surface m-electron delocalization.

The synergic effects of hybrid CNT+GNP specimens
decreased the electrical resistance of the cementitious
composites more than what was observed for individual
CNT or GNP utilization, as was expected.

A comparison of the CNT+GNP effects on the electrical
conductivity of cementitious composites with previous stud-
ies that used individual CNT, graphene, or other carbon-
based particles (Table 9) clearly indicated that the hybrid
combination of CNTs and GNPs was more efficient to create
a conductive path among the cementitious composites as was
expected. This combination can reduce the percolation
threshold and enhance the quantum tunneling effect due to
the 1D and 2D geometrical shapes.

3.2.3. Thermal Photography. In this study, for the first time,
thermal photography was used for the evaluation of CNT
+GNP dispersion in hardened specimens through the
difference between the thermal diffusion coefficient and the
thermal conductivity. Thermal photography of cementitious
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FIGURE 12: Thermal analysis of the cementitious composite: (a) TGA analysis and (b) DSC analysis.

composite specimens of the same size (160 mm x 40 mm x
40mm) in different periods of cooling time is shown in
Figure 14, after heating to 70°C, for 72 hours. As expected,
reinforced CNT+GNP cementitious composite samples
absorbed more heat due to the high thermal conductivity
[98]. They also lost heat more rapidly over time due to the
high thermal transfer coefficient compared to the plain com-
posites. As shown in Figures 14(a) and 14(b), the CNT
+GNP/Pluronic-reinforced specimens lost heat more rapidly
in comparison to the CNT+GNP/SDBS specimens. This was
likely due to disturbances in the delocalization of 7z-electrons
on the nanoparticle surfaces, which were caused by the SDBS
dispersion mechanism. This verifies the previous results.

Nonhomogeneous heat distribution caused by considerable
large agglomerations on CNMs for CNT+GNP/SDBS com-
posites indicated the inappropriate dispersion of nanoparti-
cles in the hardened sample, as discussed before.

4. Conclusion

In this work, we conducted an extensive experimental
research study on hybrid CNT+GNP dispersion techniques
using a high concentration of noncovalent surfactants and
aqueous suspensions. For this purpose, a nonionic Pluronic
F-127 and ionic SDBS surfactants were studied in 1wt%
of CNT+GNP (0.5% CNT and 0.5% GNP) dispersions,
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FIGURE 13: Energy-dispersive X-ray spectroscopy (EDX) of cementitious composites and their normalized elemental analysis.

TaBLE 8: The electrical resistance and humidity of cementitious composite specimens.

Sample Electrical resistance () Improvement (%) Moisture (%)
Plain mortar 8446.00 — 8.90
1%GC-5%S-3H+TBP+40°C 2388.00 71.73 6.78
1%CNT-5%S-3H+TBP+40°C 2847 66 7.7
1%GNP-5%S-3H+TBP+40°C 3949 53.2 8.04
1%GC-10%P-3H+TBP+40°C 765.00 90.94 4.97
1%CNT-10%P-3H+TBP+40°C 2506 70.3 6.2
1%GNP-10%P-3H+TBP+40°C 3011 64.3 7.93

TaBLE 9: Comparison of the electrical resistances for carbon nanoparticle-reinforced cementitious composites.

Dispersion method Weight fraction (%) Nanoparticle type Electrical resistivity ((2:m)  References
Superplasticizer and ultrasonication 5 GNP 21.02 [10]

Dry mechanical mixing 5 GNP 78.20 [10]
Superplasticizer and high-speed mixer 5 GNP 27.96 [10]
PVP and ultrasonication 0.7 CNT 24 [99]
Mixing by superplasticizer during mortar blending 10 Carbon black 453 [100]
Mixing by superplasticizer during mortar blending 2 Short carbon fiber 2.4 [101]
Pluronic F-127 and TBP, 3 h sonication, 40°C 1 (half by half) GNP+CNT 15.3 Present study
SDBS and TBP, 3 h sonication, 40°C 1 (half by half) GNP+CNT 47.76 Present study

to analyze the effect of factors, including the surfactant
concentration, sonication time, temperature, and the use
of an antifoam agent (TBP).

We evaluated the effects of optimized CNT+GNP suspen-
sions prepared by SDBS and Pluronic on the mechanical, elec-

trical, and thermal properties of cementitious composites by
various tests. UV-spectroscopy and optical microscopy image
analysis indicated that high-quality CNT+GNP dispersions
with a low agglomeration area (less than 1.2%) were achieved
with 10% Pluronic (wt% of nanoparticles), with 3-hour
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sonication, at 40°C, with the presence of tributyl phosphate
(50 wt% of the surfactant as an antifoam agent). The optimum
percentage of SDBS (5wt%) led to a lower dispersion quality
and a higher agglomeration area (5.6%).

Increasing the temperature up to 40°C, as mentioned
before, played a positive role in the dispersion of suspensions
prepared with Pluronic or SDBS; however, higher tempera-
tures led to the reagglomeration of CNT+GNP. The presence
of TBP significantly reduced the agglomeration area. Increas-
ing the sonication time improved the dispersion in both CNT
+GNP/Pluronic and CNT+GNP/SDBS aqueous suspensions,
which was also confirmed by the zeta potential and particle
size measurements. SEM photographs showed that CNTs
and GNPs in prepared aqueous suspensions using Pluronic
presented better interactions between each other, even after
water elimination, when compared to CNT+GNP/SDBS
suspensions.

Cementitious composites reinforced with hybrid CNT
+GNP showed enhanced mechanical, microstructural, elec-
trical, and thermal properties, for both the Pluronic and
SDBS dispersion cases. However, the general result trends
demonstrate higher efficiency for CNT+GNP/Pluronic due
to the compatible mechanism and the dispersion quality.

The results obtained for the dry bulk density, water con-
tent, ultrasonic nondestructive test, and capillarity water
absorption also indicate denser microstructures for the
CNT+GNP/Pluronic-reinforced composites due to the lower
agglomeration caused by the high-quality dispersion. The
TGA, DSC, and EDX results show that dispersed CNT
+GNP/Pluronic increased the hydration rate due to the
nucleation agent effects of CNTs and GNPs and the oxygen
functional groups of graphene, which acted as growing points
for hydration products. SEM image analysis showed that
CNMs were completely embedded in the hydration products,
bridging them. However, this is not observed for CNT
+GNP/SDBS due to the lower quality dispersion and also to
the changing CNM features and structures caused by the
SDBS dispersion mechanism. For the same reason, CNT
+GNP/SDBS-reinforced specimens also presented lower
electrical and thermal conductivities compared to those rein-
forced with CNT+GNP/Pluronic.
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