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Abstract: Atherosclerosis is one of the main causes of cardiovascular events, namely, myocardium
infarction and cerebral stroke, responsible for a great number of deaths every year worldwide. This
pathology is caused by the progressive accumulation of low-density lipoproteins, cholesterol, and
other substances on the arterial wall, narrowing its lumen. To date, many hemodynamic studies
have been conducted experimentally and/or numerically; however, this disease is not yet fully
understood. For this reason, the research of this pathology is still ongoing, mainly, resorting to
computational methods. These have been increasingly used in biomedical research of atherosclerosis
because of their high-performance hardware and software. Taking into account the attempts that
have been made in computational techniques to simulate realistic conditions of blood flow in both
diseased and healthy arteries, the present review aims to give an overview of the most recent
numerical studies focused on coronary arteries, by addressing the blood viscosity models, and
applied physiological flow conditions. In general, regardless of the boundary conditions, numerical
studies have been contributed to a better understanding of the development of this disease, its
diagnosis, and its treatment.

Keywords: atherosclerosis; coronary arteries; hemodynamics; numerical methods

1. Introduction

Cardiovascular diseases are responsible for a critical number of deaths every year
worldwide, accounting for nearly 31% of all deaths, most of which are associated with
atherosclerosis, a disease that causes unusual hemodynamic conditions in arteries [1–3].
Briefly, atherosclerosis is a silent, multifactorial, and complex disease initiated when lipids
and immune cells are accumulated in the arterial wall, resulting in the formation of a
plaque [4,5]. This has been correlated to local biological, biomechanical, and systemic
factors [6–8]. Among these factors, local hemodynamics has been indicated as the major
cause [9–11]. In particular, wall shear stress (WSS) is a well-known predictor of coronary
atherosclerosis progression. While regions of low wall shear stress have been commonly
recognized as prone to plaque development, high values of WSS are related to plaque
destabilization [12–16]. Moreover, a recent study has also proved that patients with COVID-
19 are at high risk for thrombotic arterial and venous occlusions. Considering the mortality
rate caused by this virus itself until today and its relation with atherosclerosis development,
this becomes an even more complex situation [17].
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Although the presence of this pathology has quite serious damage regardless of the
arteries affected, the situation is aggravated when this pathology develops in coronary
arteries. When those are affected, the agglomeration of fatty materials creates an occlu-
sion, which restricts the blood flow to the heart muscle leading to a decreased supply
of blood, oxygen, and other vital nutrients fundamental for the proper functioning of
this organ. Eventually, the reduced blood flow may cause chest pain or a heart attack if
there is a complete blockage of the artery [18,19]. A common approach used to treat this
pathology is balloon angioplasty and placement of an intracoronary stent. This allows
restoring the blood flow keeping the artery open, nevertheless, the risk of restenosis is still
present [20,21].

Considering the global impact of this disease, it is of utmost importance to obtain
deeper knowledge about the blood flow hemodynamics. For this reason, extensive research
has been done in this area, by applying either experimental and/or numerical methods.
Although numerous experimental hemodynamic studies are found in the literature, by
applying either in vitro [22–28], in vivo [29–33], or ex vivo [34–36] approaches, there are
some drawbacks associated as reported elsewhere [19,37–41]. For this reason, lately, compu-
tational approaches have been the preferred method of several researchers [42–46]. These
have become a valuable tool for evaluating and predicting the disease formation, and also
for testing the performance of new devices for its treatment. By having the capability of
constructing more realistic virtual models, getting fast and accurate results, and thoroughly
testing different physiological conditions, some limitations of hemodynamic experimental
techniques used can be overcome by the computational models [45,47–51]. However, this
does not mean that those models can completely replace experimental tests since it is still
quite challenging to perform realistic blood flow modeling [52].

Due to several advantages of using numerical simulations, computational atheroscle-
rosis studies have gained popularity in recent years [53]. In general, to perform numerical
simulations three main steps have to be accomplished, the pre-processing, the solver, and
the post-processing. Firstly, it is necessary to define the geometry of the problem, followed
by the mesh generation. Secondly, the fluid properties of blood, the flow physics model,
and the boundary conditions are defined in order to solve the mathematical model. Finally,
after the problem being solved, the results are analyzed. These steps are drafted as follows
in Figure 1.
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Over the years, researchers have modeled blood flow within arteries by using different
geometries, diverging in two directions, using either stenotic geometries with idealized
shapes (e.g., half-sphere [54], ellipsoid [55], gaussian equation [56], cosine function [57],
among others proposed by the authors themselves [58,59]) or realistic coronary artery
models extracted from patient’s medical data [60–65].

After defining the geometry, the blood properties have to be set to solve the problem
accurately. Blood is a complex mixture of cells, proteins, lipoproteins, and ions which are
transports nutrients and wastes. Due to the presence of red blood cells, the viscosity of
blood is increased and affects the behavior of the fluid. Moreover, although considering
the blood as a Newtonian fluid is generally accepted as a good approximation for large
vessels, in the microcirculatory system, and also in the presence of stenosis, the assumption
is not true. At these locations, the non-Newtonian behavior is more evident due to the
ability of red blood cells to form aggregates, termed rouleaux, at low shear rates. Moreover,
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other aspects that should be taken into account are the cyclic nature of the heart pump,
which creates pulsatile conditions, and also the elastic behavior observed in the arteries’
wall [66–68].

Although the aforementioned characteristics of blood, namely, the vessel wall elasticity,
non-Newtonian viscosity, and particles in the fluid, and body forces are physiologically
relevant, the analysis of blood flow can be greatly simplified by neglecting some of the
properties [68]. For this reason, in the literature, there is a vast diversity of articles that apply
different boundary conditions to simulate blood flow, and attention must be taken since
the performance of CFD models is directly dependent on the blood rheology, physiological
flow conditions, mechanical properties of blood vessels, among other mechanical and
biological factors set to solve the problem. In this regard, in the present paper, a review
of the geometries, boundary conditions, and flow properties proposed by several authors
for coronary models is provided by discussing and presenting the current knowledge on
the advantages and also the drawbacks of blood viscosity models and physiological flow
conditions available.

2. Blood Flow Studies in Coronary Arteries

Despite the progress done in experimental studies and blood flow measurement
techniques, there are still some challenges associated with them [19]. For instance, in vitro
WSS measurements are extremely difficult to perform and the velocity measurements have
high associated errors. These, combined with other complications of directly measuring
quantities of interest, have motivated the use of computer simulations to predict them in
silico [69].

The earliest numerical detailed studies solving the flow problem in constricted tubes
were conducted by Lee and Fung (1970) [70]. After that, other studies in this field conducted
by Caro et al., (1971) [71], Glagov et al., (1989) [72], and Ku et al., (1985) [73] are important
references in this area and should be highlighted. Ever since, CFD approaches have
been progressively adopted by most researchers as the preferred technique for numerical
modeling of hemodynamics. Owing to the continued growth of computational power, these
have become an increasingly reliable tool for measuring biomechanical factors vital for
clinical decision-making and surgical planning. However, the proper selection of the flow
boundary conditions has to be done, otherwise, the findings can be considered uncertain,
weak, and unrealistic [74]. In this regard, the different geometries, boundary conditions,
and flow characteristics applied by some researchers in the last ten years are summarized
in Table 1.

From the above-mentioned investigations, it can be seen that, regardless of the type of
geometry, the majority of authors consider that the blood is a non-Newtonian fluid, usually
approximated by the Carreau model, with a laminar behavior. Regarding the boundary
conditions, in most cases, the wall is considered rigid, and at the inlet, a pulsatile velocity is
applied. At the outlet, the condition set mainly depends on the study, but either the default
conditions are maintained, or pressures are applied, time-dependent or constant values.



Fluids 2021, 6, 53 4 of 15

Table 1. Numerical studies of hemodynamics and the respective assumptions for numerical simulations.

Geometry Schematic Representation Modeling Approaches Fluid
Boundary Conditions

Authors
Wall Inlet Outlet

Idealized
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Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar Newtonian Rigid
Constant inlet velocity

(fully developed parabolic
profile)

Constant pressure outlet
(13 kPa) Kenjereš et al., (2019) [76]

Idealized
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parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 
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sure  

Carvalho et 

al., (2020) [47] 

Idealized  
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lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 
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sure 

Kabir et al., 

(2018) [77] 
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k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar Newtonian Rigid Constant inlet velocity Zero gauge pressure Carvalho et al., (2020) [47]

Idealized
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

k-ω turbulent model Non-Newtonian (Carreau
model) Rigid

Spiral boundary
conditionwith a parabolic

velocity profile
Zero gauge pressure Kabir et al., (2018) [77]

Idealized
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

k-ω turbulent model (SST) Non-Newtonian (Carreau
model) Rigid Time-dependent velocity

profile Zero gauge pressure Carvalho et al., (2020) [42]

Idealized
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

k-ω turbulent model (SST) Non-Newtonian (Carreau
model) Rigid Time-dependent velocity

profile Zero gauge pressure Carvalho et al., (2020) [59,78]

Idealized
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

N.A1 Newtonian Flexible Time-dependent velocity
profile

Time-dependent pressure
profile Jahromi et al., (2019) [79]



Fluids 2021, 6, 53 5 of 15

Table 1. Cont.

Geometry Schematic Representation Modeling Approaches Fluid
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Idealized
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar Newtonian Rigid Time-dependent velocity
profile

Flow partition implied in
Murray’s law Doutel et al., (2018) [11]

Patient-
specific
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 
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al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 
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Carvalho et 
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condition 
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Carvalho et 

al., (2020) [42] 

Idealized 
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(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-
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Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar
Non-Newtonian (Generalized

power-law model) and
Newtonian

Rigid Time-dependent flow rate
profile

Time-dependent pressure
profile Chaichana et al., (2012) [60]

Patient-
specific
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Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 
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sure  

Carvalho et 

al., (2020) [47] 
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lent model 
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(Carreau model) 
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Spiral boundary 

condition 
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Kabir et al., 

(2018) [77] 
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Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 
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sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar Non-Newtonian (Carreau
model) Rigid Time-dependent velocity

profile
Time-dependent pressure

profile Liu et al., (2015) [80]

Patient-
specific

Fluids 2021, 6, 53 4 of 13 
 

Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar Newtonian Rigid and Flexible Time-dependent pressure
profile Parabolic velocity profile Siogkas et al., (2014) [81]

Patient-
specific

Fluids 2021, 6, 53 4 of 13 
 

Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

N.A Newtonian Rigid Time-dependent pressure
profile

Constant pressure outlet
(9.85 kPa) Zhao et al., (2019) [82]
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Patient-
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Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] 

Laminar Non-Newtonian (Carreau
model) Rigid Time-dependent velocity

profile
Flow partition implied in

Murray’s law Pandey et al., (2020) [43]

Patient-
specific

Fluids 2021, 6, 53 4 of 13 
 

Idealized 
 

Laminar Newtonian Rigid 

Constant inlet veloc-

ity (fully developed 

parabolic profile) 

Constant pressure 

outlet (13 kPa) 

Kenjereš et 

al., (2019)  

[76] 

Idealized 
 

Laminar Newtonian Rigid 
Constant inlet veloc-

ity 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) [47] 

Idealized  
k-ω turbu-

lent model 

Non-Newtonian 

(Carreau model) 
Rigid 

Spiral boundary 

condition 

with a parabolic ve-

locity profile 

Zero gauge pres-

sure 

Kabir et al., 

(2018) [77] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid 

Time-dependent ve-

locity profile 

Zero gauge pres-

sure 

Carvalho et 

al., (2020) [42] 

Idealized 
 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Zero gauge pres-

sure  

Carvalho et 

al., (2020) 

[59,78] 

Idealized 

 

N.A1 Newtonian Flexible 
Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Jahromi et al., 

(2019) [79] 

Idealized 

 

Laminar Newtonian Rigid 
Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Doutel et al., 

(2018) [11] 

Patient-spe-

cific 

 

Laminar 

Non-Newtonian 

(Generalized 

power-law model) 

and Newtonian 

Rigid  
Time-dependent 

flow rate profile 

Time-dependent 

pressure profile 

Chaichana et 

al., (2012) [60] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 

Time-dependent 

pressure profile 

Liu et al., 

(2015) [80] 

Patient-spe-

cific 

 

Laminar Newtonian 
Rigid and 

Flexible  

Time-dependent 

pressure profile 

Parabolic velocity 

profile 

Siogkas et al., 

(2014) [81] 

Patient-spe-

cific 

 

N.A Newtonian Rigid  
Time-dependent 

pressure profile 

Constant pressure 

outlet (9.85 kPa)   

Zhao et al., 

(2019) [82] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Flow partition im-

plied in Murray’s 

law 

Pandey et al.,. 

(2020) [43] 

Patient-spe-

cific 

 

Laminar 
Non-Newtonian 

(Carreau model) 
Rigid  

Various time-de-

pendent velocity 

profiles 

Flow partition im-

plied in Murray’s 

law 

Rizzini et al., 

(2020) [74] Laminar Non-Newtonian (Carreau
model) Rigid Various time-dependent

velocity profiles
Flow partition implied in

Murray’s law Rizzini et al., (2020) [74]

Patient-
specific

Fluids 2021, 6, 53 5 of 13 
 

Patient-spe-

cific 

 

N.A 
Non-Newtonian 

(Power-law model) 
Rigid  

Time-dependent ve-

locity profile 

Pressure outlet 

(N.A) 

Zhang et al., 

(2020) [83] 

Patient-spe-

cific 

 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Bird-Carreau 

model) 

Rigid  
Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Kamangar et 

al., (2019) [64] 

Patient-spe-

cific 

 

Laminar Newtonian Rigid 
Time-dependent 

flow rate profile 

Two-Element 

Windkessel Model 

Lo et al., 

(2019) [84] 

Patient-spe-

cific and 

Idealized 

 

Laminar 

Newtonian and 

Non-Newtonian 

(Carreau model) 

Rigid  

Constant inlet veloc-

ity and Time-de-

pendent velocity 

profile 

N.A 
Doutel et al., 

(2019) [85] 

Patient-spe-

cific and 

Idealized  

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 
Outflow condition 

Mahalingam 

et al., (2016) 

[86] 

Patient-spe-

cific and 

Idealized 

 

N.A 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Rabbi et al., 

(2020) [87] 

Patient-spe-

cific and 

Idealized 

 

Laminar Newtonian Rigid 

Constant inlet mass 

flow and Time-de-

pendent flow rate 

Zero gauge pres-

sure 

Malota et al., 

(2018) [88] 

N.A—Not available. All images were adapted from [6,11,42,43,47,57–60,64,74–88]. 

stenosis 

N.A Non-Newtonian (Power-law
model) Rigid Time-dependent velocity

profile Pressure outlet (N.A) Zhang et al., (2020) [83]

Patient-
specific
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Patient-spe-

cific 

 

N.A 
Non-Newtonian 

(Power-law model) 
Rigid  

Time-dependent ve-

locity profile 

Pressure outlet 

(N.A) 

Zhang et al., 

(2020) [83] 

Patient-spe-

cific 

 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Bird-Carreau 

model) 

Rigid  
Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Kamangar et 

al., (2019) [64] 

Patient-spe-

cific 

 

Laminar Newtonian Rigid 
Time-dependent 

flow rate profile 

Two-Element 

Windkessel Model 

Lo et al., 

(2019) [84] 

Patient-spe-

cific and 

Idealized 

 

Laminar 

Newtonian and 

Non-Newtonian 

(Carreau model) 

Rigid  

Constant inlet veloc-

ity and Time-de-

pendent velocity 

profile 

N.A 
Doutel et al., 

(2019) [85] 

Patient-spe-

cific and 

Idealized  

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 
Outflow condition 

Mahalingam 

et al., (2016) 

[86] 

Patient-spe-

cific and 

Idealized 

 

N.A 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Rabbi et al., 

(2020) [87] 

Patient-spe-

cific and 

Idealized 

 

Laminar Newtonian Rigid 

Constant inlet mass 

flow and Time-de-

pendent flow rate 

Zero gauge pres-

sure 

Malota et al., 

(2018) [88] 

N.A—Not available. All images were adapted from [6,11,42,43,47,57–60,64,74–88]. 

stenosis 

k-ω turbulent model (SST) Non-Newtonian (Bird-Carreau
model) Rigid Time-dependent velocity

profile
Constant pressure outlet

(10 kPa) Kamangar et al., (2019) [64]

Patient-
specific
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Patient-spe-

cific 

 

N.A 
Non-Newtonian 

(Power-law model) 
Rigid  

Time-dependent ve-

locity profile 

Pressure outlet 

(N.A) 

Zhang et al., 

(2020) [83] 

Patient-spe-

cific 

 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Bird-Carreau 

model) 

Rigid  
Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Kamangar et 

al., (2019) [64] 

Patient-spe-

cific 

 

Laminar Newtonian Rigid 
Time-dependent 

flow rate profile 

Two-Element 

Windkessel Model 

Lo et al., 

(2019) [84] 

Patient-spe-

cific and 

Idealized 

 

Laminar 

Newtonian and 

Non-Newtonian 

(Carreau model) 

Rigid  

Constant inlet veloc-

ity and Time-de-

pendent velocity 

profile 

N.A 
Doutel et al., 

(2019) [85] 

Patient-spe-

cific and 

Idealized  

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 
Outflow condition 

Mahalingam 

et al., (2016) 

[86] 

Patient-spe-

cific and 

Idealized 

 

N.A 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Rabbi et al., 

(2020) [87] 

Patient-spe-

cific and 

Idealized 

 

Laminar Newtonian Rigid 

Constant inlet mass 

flow and Time-de-

pendent flow rate 

Zero gauge pres-

sure 

Malota et al., 

(2018) [88] 

N.A—Not available. All images were adapted from [6,11,42,43,47,57–60,64,74–88]. 

stenosis 

Laminar Newtonian Rigid Time-dependent flow rate
profile

Two-Element Windkessel
Model Lo et al., (2019) [84]
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Patient-spe-

cific 

 

N.A 
Non-Newtonian 

(Power-law model) 
Rigid  

Time-dependent ve-

locity profile 

Pressure outlet 

(N.A) 

Zhang et al., 

(2020) [83] 

Patient-spe-

cific 

 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Bird-Carreau 

model) 

Rigid  
Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Kamangar et 

al., (2019) [64] 

Patient-spe-

cific 

 

Laminar Newtonian Rigid 
Time-dependent 

flow rate profile 

Two-Element 

Windkessel Model 

Lo et al., 

(2019) [84] 

Patient-spe-

cific and 

Idealized 

 

Laminar 

Newtonian and 

Non-Newtonian 

(Carreau model) 

Rigid  

Constant inlet veloc-

ity and Time-de-

pendent velocity 

profile 

N.A 
Doutel et al., 

(2019) [85] 

Patient-spe-

cific and 

Idealized  

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 
Outflow condition 

Mahalingam 

et al., (2016) 

[86] 

Patient-spe-

cific and 

Idealized 

 

N.A 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Rabbi et al., 

(2020) [87] 

Patient-spe-

cific and 

Idealized 

 

Laminar Newtonian Rigid 

Constant inlet mass 

flow and Time-de-

pendent flow rate 

Zero gauge pres-

sure 

Malota et al., 

(2018) [88] 

N.A—Not available. All images were adapted from [6,11,42,43,47,57–60,64,74–88]. 

stenosis 

Laminar
Newtonian and

Non-Newtonian (Carreau
model)

Rigid
Constant inlet velocity and
Time-dependent velocity

profile
N.A Doutel et al., (2019) [85]

Patient-
specific and

Idealized
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Patient-spe-

cific 

 

N.A 
Non-Newtonian 

(Power-law model) 
Rigid  

Time-dependent ve-

locity profile 

Pressure outlet 

(N.A) 

Zhang et al., 

(2020) [83] 

Patient-spe-

cific 

 

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Bird-Carreau 

model) 

Rigid  
Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Kamangar et 

al., (2019) [64] 

Patient-spe-

cific 

 

Laminar Newtonian Rigid 
Time-dependent 

flow rate profile 

Two-Element 

Windkessel Model 

Lo et al., 

(2019) [84] 

Patient-spe-

cific and 

Idealized 

 

Laminar 

Newtonian and 

Non-Newtonian 

(Carreau model) 

Rigid  

Constant inlet veloc-

ity and Time-de-

pendent velocity 

profile 

N.A 
Doutel et al., 

(2019) [85] 

Patient-spe-

cific and 

Idealized  

k-ω turbu-

lent model 

(SST) 

Non-Newtonian 

(Carreau model) 
Rigid  

Time-dependent ve-

locity profile 
Outflow condition 

Mahalingam 

et al., (2016) 

[86] 

Patient-spe-

cific and 

Idealized 

 

N.A 
Non-Newtonian 

(Carreau model)  
Rigid  

Time-dependent ve-

locity profile 

Constant pressure 

outlet (10 kPa)   

Rabbi et al., 

(2020) [87] 

Patient-spe-

cific and 

Idealized 

 

Laminar Newtonian Rigid 

Constant inlet mass 

flow and Time-de-

pendent flow rate 

Zero gauge pres-

sure 

Malota et al., 

(2018) [88] 

N.A—Not available. All images were adapted from [6,11,42,43,47,57–60,64,74–88]. 

stenosis 

k-ω turbulent model (SST) Non-Newtonian (Carreau
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Table 1. Cont.
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2.1. Geometrical Parameters and Stenosis Severity

Before studying directly stenotic coronary arteries, some authors have dedicated
their time to study the effect of geometrical parameters, such as the branch curvatures,
tortuosities, and the angulations of the arteries, and relating them to the development of
atherosclerosis, by resorting to idealized geometries, or the combination of patient-specific
models with idealized ones [6,87,89]. In general, regardless of the type of geometry, it
has been shown that there is a direct correlation between wide angulation in the coronary
artery branches and hemodynamic changes, such as disturbed flow and low WSS, possibly
inducing the development of atherosclerosis [87,89]. Although consistent observations
between idealized and patient-specific models have been demonstrated by Chaichana
et al., (2011) [89], the same is not true when talking about the arteries’ curvature and
tortuosity, since small variations can lead to different hemodynamic simulated results [6].
It was shown that the specific curvature of each branch of the coronary bifurcation af-
fects the hemodynamics of the remaining three branches, which can cause an increase
in atherosusceptibility [6]. In view of this, it can be verified that the selection of the geo-
metrical parameters of the artery model plays an important role and can lead to different
hemodynamic results.

Nevertheless, when the aim is to investigate the effect of stenosis severity, the results
presented in the literature have shown to be in good agreement independently of the
model used, idealized, or patient-specific. Generally, an increase in the velocity and WSS
at the stenosis throat is observed. This increased WSS can disturb the plaque formed and
lead to plaque rupture, and consequently to heart failure. Besides the WSS, other shear
stress indices have been studied such as the time average wall shear stress (TAWSS), and
the oscillatory stress index (OSI). While the TAWSS has the same trend as WSS, the OSI
distribution has a maximum value in the region downstream of the stenosis. Moreover, in
this location, the prevalence of recirculation zones is also verified [60,64,75,86,90,91]. Both
high OSI, low WSS, and disturbed flows in the post stenotic section are important factors
that can promote the formation of atherosclerotic plaques [59,68,92].

A different way to study the effect of stenosis in blood flow hemodynamics was
addressed by Doutel et al., (2018) [93]. They developed a methodology to create three-
dimensional irregular stenosis with different degrees of occlusion in artery models for
both numerical and in vitro hemodynamic studies. This methodology is quite interesting
since it allows the creation of realistic stenosis in a fast way for hemodynamic studies.
Furthermore, the authors proved that the irregular shape of the stenosis and their specific
morphology affects the flow field, creating diverse values of WSS for each case.

2.2. Newtonian and Non-Newtonian Assumptions

Besides the effect of stenosis, several studies have emphasized the importance of
considering the non-Newtonian behavior of blood and selecting the proper model to
better represent the in vivo conditions [56,94]. An interesting study was undertaken by
Razavi et al., (2011) [56], in which six non-Newtonian models and a Newtonian model
were compared. The data obtained showed that the power-law model produces higher
deviations in comparison with other models, overstating the non-Newtonian behavior,
regarding the velocity and WSS values. On the other hand, the generalized power-law and
modified-Casson models are more similar to the Newtonian state, though, they underesti-
mate the non-Newtonian behavior. In contrast to the previous models, the Carreau and
Carreau–Yasuda models represented moderate IG values (cut-off value above which flow
can be assumed as non-Newtonian), demonstrating to be the suitable models to mimic
the blood behavior. Other authors have also compared Newtonian and non-Newtonian
models. Chaichana et al., (2012) [60] compared the effect of the non-Newtonian power-
law generalized model with a Newtonian fluid; however, similar results were obtained
for both cases, in terms of velocity fields and WSS measurements. On the other hand,
Gaudio et al. (2018) [91] compared the Newtonian and non-Newtonian Carreau–Yasuda
model. Their results showed that the velocity for the Carreau–Yasuda model is slightly
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lower when compared to the Newtonian model, but the non-Newtonian effects are most
important in shear stress indices distributions. Carvalho et al., (2020) [78] have similar
results; however, they used the Carreau non-Newtonian model. Another interesting study
was performed by Pinto et al., (2020) [95]. They investigated several viscoelastic models,
namely the Generalized Oldroyd-B (GOB) model, the Multi-mode Giesekus and Simplified
Phan-Thien/Tanner (sPTT) models in order to conclude which model is the most accurate
to simulate the blood flow, and compared those with the Carreau model and also with
a Newtonian model. The authors verified that the non-linear viscoelastic multi-mode
models (Giesekus and sPTT) cause an overall reduction of the velocity in regions of higher
velocity gradients. In general, the researchers concluded that the sPTT model should be the
preferred option since the Giesekus model introduces the second normal stress difference,
which so far has not been reported for blood.

2.3. Turbulence Modeling and Wall Assumptions

Although various investigations consider the blood flow as laminar, due to the pul-
satile nature of blood flow through arteries, and the presence of stenosis, the transition
from laminar to turbulent flow condition can occur. For this reason, some authors have
explored some turbulent models in computational simulations [42,59,64,77,78,86,96]. By
observing Table 1 it can be seen that the majority uses or the standard k-ω or the k-ω SST
turbulent model. The main difference between these two models is that the SST model
accounts for the laminar to turbulent transition, and it seems to be the most suitable for
blood flow studies [64,97]. However, in a study conducted by Straatman et al., (2016) [97],
both models were compared with experimental data, and the k-ω SST turbulent model
provided the best overall results.

Furthermore, hemodynamic studies mainly assume the wall to be rigid, however, over
the years, fluid-structure interaction (FSI) has received increasing interest due to its ability
to simultaneously model blood flow and arterial wall deformations [79,81,98–101]. Among
the several investigations that have emerged in this area, one of the most cited works in
the literature was performed by Torii et al., (2009) [99], wherein the effects of compliance
in WSS calculations were studied. Although more recent studies have been conducted
to evaluate if there are significant differences between flexible and rigid walls, the main
results are in good agreement. It is stated that there are negligible differences in TAWSS and
OSI values, although, in the distal region of the artery, differences in instantaneous WSS
profiles and velocity measurements were perceptible [57,99]. Regardless of the interesting
results obtained in the literature, since arteries have a high degree of stiffness, in most
cases, the effects of elasticity are very small, and thus, an assumption of rigid tube flow is
reasonable [68].

3. Conclusions and Future Perspectives

Due to the great progress that has been made recently in the development of CFD
methods, these have become extremely fundamental for hemodynamic studies, allowing
researchers to obtain a better understanding of atherosclerosis in a rapid and accurate
fashion. However, there are still unsolved challenges that have to be addressed in future
hemodynamic studies. In the present review, the application of computational simulations
by using different physiological conditions of blood flow, several rheological models, and
boundary conditions, were discussed.

Although huge advancements have been made in imaging techniques to obtain patient-
specific images, this step is time-consuming, and it is still a challenging task for all re-
searchers. For this reason, nowadays, idealized models continue to be widely used by
researchers, since these allow to obtain important and relevant results, without requiring
much computational time and without the need to collect the medical images, which is
highly time-consuming. In this regard, a promising study was proposed by Doutel et al.,
(2018) [93] wherein artificial, but realistic stenosis can be generated.
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It was also noted that, although the modelling of blood as a Newtonian fluid is a good
approximation for large vessels with high shear rates, the assumption of non-Newtonian
behavior of blood flow has been increasingly used in the presence of stenosis. From the
overall studies, the most used models are the Carreau and the Carreau-Yasuda, and these
have also been indicated as the most appropriate to simulate the blood rheology by Razavi
et al., (2011) [56]. Nevertheless, currently, one cannot say which is the right model, because
there is not yet enough evidence in the literature to prove which model fully expresses
the complex nature of blood rheology and its dependence on many biological factors [50].
Accordingly, it is of great importance to obtain proper models for CFD analysis that take
into account the non-Newtonian behavior of blood. For this purpose, more experimental
studies are needed. Regarding the boundary conditions, few studies have evaluated the
impact of using different inlet and outlet boundary conditions [74,102], and therefore, it
would be interesting, in future studies, to investigate what are the profiles more adequate
to study the blood flow behavior in coronary arteries.

Despite the great efforts that have been made so far, the blood has been mainly
modeled as a single-phase fluid. However, blood is a mixture of plasma, red blood
cells, white blood cells, and platelets. Therefore, the consideration of multiphase models
is of great importance when modeling atherosclerotic lesions. Although some studies
have already applied these models [42,83,103–105], the research is still in the beginning.
Moreover, it should be also noted that the use of these models is a promising option for
studying nanoparticle-mediated targeted drug delivery treatment of atherosclerosis. In this
context, a promising study was conducted by Zhang et al., (2020) [83]. The authors used
an Eulerian-Lagrangian approach coupled with FSI to investigate the impact of plaque
morphology on magnetic nanoparticles targeting under the action of an external field.

Due to the continuous improvements acquired in computational methods, in the
following years more amazing and complex hemodynamic studies will be performed. The
work of Zhao et al., (2019) [82] should be highlighted since their numerical approach has
a great potential to achieve more realistic simulations. They have simulated 4D hemo-
dynamic profiles of time-resolved blood flow. The results proved that these simulations
can provide extensive information about blood flow, both qualitatively and quantitatively
that may be advantageous for future investigations of clinical diagnosis and treatment of
atherosclerosis.

To conclude, although computational methods have been extensively used for atheroscle-
rosis investigations in recent years, they are expected to become more popular and more
effective to simulate the blood flow in the cardiovascular system, and consequently, they
will promote medical innovation at an affordable cost. However, to this end, active collabo-
rations between engineers and medical staff are needed to assure the successful application
of this technique in atherosclerosis treatment.
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