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Abstract: The present study aimed to optimize the struvite chemical precipitation process in nitrogen-

rich anaerobic co-digestion systems. Struvite precipitation experiments were carried out using a mix-

ture of cattle slurry liquid fraction and sewage sludge, with and without ultrasound pretreatment. 

Marine salt or MgCl2 were used as magnesium source in NH4+:Mg2+ stoichiometric proportions of 1:1.5 

and 1:3. Under the tested conditions, ammonium nitrogen and orthophosphate were removed from 

the mixed liquor with a maximum observed efficiency of 43% and 92%, respectively, when the ultra-

sound treatment was applied prior to struvite precipitation, using MgCl2 as source of magnesium 

(NH4+:Mg2+ of 1:3). The operating time was 40 min. Different pretreatments were tested prior to the 

biomethanization experiments, struvite precipitation, ultrasound, or a combination of both pretreat-

ments. The application of ultrasound (with an energy input of 218 kJ L−1) and struvite precipitation 

(NH4+:Mg2+ of 1:3) increased the methane content in the biogas by 82% and reduced hydraulic retention 

time by 28%, when compared to the anaerobic co-digestion assays without pretreatment. The hydro-

lytic pretreatment increased the bioavailability of nitrogen by 5%, thus enhancing the removal effi-

ciency of ammonium nitrogen by 20%. Consequently, an increase in the carbon to nitrogen ratio was 

observed, favoring the methanogenesis process. 

Keywords: ultrasound pretreatment; struvite precipitation; nutrient recovery; circular economy; 

anaerobic (co)digestion 

 

1. Introduction 

The most recent trend in wastewater treatment processes is to foster bottom-up syn-

ergies in order to advance resource recovery and move towards a circular economy. In 

this regard, wastewaters produced at dairy farms are accessible sources for nutrient and 

bioenergy recovery. Removal of nitrogen (N) and phosphorous (P) from wastewaters is 

becoming an increasing challenge for operators as regulatory authorities tighten dis-

charge standards to avoid eutrophication problems in receiving water bodies. Another 
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environmental burden concerns the excess of sewage sludge (SwS) from wastewater treat-

ment plants (WWTP). Anaerobic digestion (AD) processes are currently used to produce 

biogas from sewage sludge with the aim of recovering heat and electricity. However, an-

aerobic digestion units are often operated at sub-optimal performance due to a variety of 

factors, among which the excess of nitrogen and the low biodegradability of substrates 

are commonly referred [1,2]. 

The anaerobic digestion inhibition by excess of nitrogen can be caused by the accu-

mulation of ammonia (NH3) and ammonium ion (NH4+) in the system. The total ammo-

nium nitrogen (TAN) concentrations in the range of 1500–3000 mg L−1 may cause partial 

inhibition and complete inhibition was observed at concentrations above 3000 mg L−1 [1,3–

5]. According to Astals et al. (2018) [6], the methanogenesis was partially inhibited at a 

free ammonia nitrogen (FAN) concentration below 15 mg L−1 and totally inhibited at and 

above 130 mg L−1. Other studies reported potential inhibition in a variety of FAN concen-

trations, ranging from 0.05 to 1.4 g L−1 [5,7]. 

The anaerobic co-digestion (AcoD) of different substrates may be used as a strategy 

to overcome the carbon to nitrogen ratio (C/N) unbalance phenomenon [8,9] and maxim-

ize methane production in energy recovery systems. In a circular economy approach, nu-

trient recovery is also a key factor and both sewage sludge and dairy farm wastewaters 

are perceived as nutrient-rich sources, with an interesting potential for nitrogen, phos-

phorus, calcium, and potassium recovery and application in agriculture [10]. 

One of the techniques used to recover nitrogen and phosphorus from wastewater is the 

precipitation of struvite (magnesium ammonium phosphate-MAP, MgNH4PO4.6H2O). The 

process can be affected by the chemical composition of the wastewater, temperature and pH 

[11]. Many authors reported the use of different sources of magnesium such as Mg(OH)2 

[12], MgCl2 [13], MgSO4 [14], and MgO [15]. As a pH dependent process, the wider pH range 

reported is from 7 to 11 [14,16]. Yoshino et al. (2003) [14] reached high nutrient removal 

efficiencies under the conditions pH of 8.5. 

In some studies, the solids present in the waste or wastewater are not separated from 

the liquid prior to struvite precipitation. So, the resulting settled material includes organic 

matter and other constituents contained in the raw substrates and, therefore, does not 

qualify as a pure struvite, but as struvite containing sludge [17]. 

The low biodegradability of substrates may also limit biogas production rate. How-

ever, substrate pretreatment with ultrasound may induce solubilization of organic com-

pounds, thus increasing wastewater biodegradability. The ultrasonication by cavitation 

consists of disrupting the microbial cells by the growth and collapse of gas-bubbles caus-

ing an extraction of the intracellular material [18]. Pretreatment of substrates using ultra-

sound can have several beneficial effects for AD processes. These benefits include i) re-

ducing the particle size [18], ii) increasing the rate of hydrolysis [19], and iii) shortening 

hydraulic retention time [20]. An increase in the solubilization rate of extracellular and 

intracellular substances, further benefits the struvite precipitation by increasing the bioa-

vailability of NH4+ and PO43− ions [21,22]. 

Struvite precipitation has been mostly applied as an anaerobic digestion post-treat-

ment process. Indeed, struvite precipitation not only allows the removal of NH4+ and PO43− 

from anaerobically digested wastewater [13] in order to meet the legal requirements for 

effluent discharge, but it also presents the opportunity to recover and reuse these macro-

nutrients as a valuable fertilizer [23]. However, the present research follows an alternative 

approach, aiming at advancing the knowledge on controlled struvite precipitation for ap-

plication prior to the biomethanization process as a strategy to overcome potential inhibi-

tion by ammonium nitrogen. In that regard, the present study is focused on assessing the 

effects of: (i) two different sources of magnesium (marine salt and MgCl2), (ii) two differ-

ent stoichiometric NH4+:Mg2+ ratios (1:1.5 and 1:3); (iii) ultrasound pretreatment prior to 

struvite precipitation; and (iv) combined pretreatment of ultrasound and struvite precip-

itation prior to the biomethanation process in anaerobic sequencing batch reactor (ASBR). 
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2. Materials and Methods 

Two main sets of experiments were performed, the first one aiming at optimizing 

struvite precipitation in a mixture of cattle slurry liquid fraction (CSLF) and sewage 

sludge, and the other one comprising biomethanation assays with and without pretreat-

ment. 

2.1. Struvite Precipitation Optimization Batch Assays 

In order to identify the optimal conditions for struvite precipitation in a mixture of 

cattle slurry liquid fraction and sewage sludge, five assays were performed under differ-

ent operational conditions, as described in Table 1. 

Table 1. Assays description. 

 Assays Description 

Control - 

MS 
marine salt as source of magnesium using a NH4+:Mg2+ stoichiometric pro-

portion of 1:1.5 

MC1 
MgCl2 as source of magnesium using a NH4+:Mg2+ stoichiometric propor-

tion of 1:1.5 

MC2 
MgCl2 as source of magnesium using a NH4+:Mg2+ stoichiometric propor-

tion of 1:3 

MC2U 

ultrasound pretreatment with an energy input (EI) of 218 kJ L−1 followed 

by struvite precipitation using MgCl2 as magnesium source and a 

NH4+:Mg2+ stoichiometric proportion of 1:3 

2.1.1. Substrates Pretreatment with Ultrasound 

The ultrasound pretreatment was conducted using an ultrasonic processor (SON-

OREX Super 10P Bandelin) operating at the nominal power of 90.8 W, low-frequency of 

35 kHz and temperature of 25 °C. A 500 mL sample of the mixture of cattle slurry liquid 

fraction from a dairy farm and sewage sludge from an urban wastewater treatment plant 

(1:1, in volume) was sonicated for 20 min resulting in an energy input of 218.4 kJ L−1 and 

specific energy (SE) of 10,180 kJ kgTS−1. 

The energy input and specific energy applied were calculated by Equations (1) and 

(2), respectively, considering that P is the power in kWatt (kW), t is the treatment time in 

seconds (s), V is the volume in liters (L) of the mixture of substrates treated and TS (kg 

L−1) the total solid content. The operating conditions for the ultrasound pretreatment were 

selected based on the studies performed by Ruiz-Hermando et al. (2014) [18] and Ometto 

et al. (2014) [24]. 

𝐸𝐼 (kJ L−1) = (𝑃𝑥𝑡) (𝑉)⁄  (1) 

𝑆𝐸 (kJ kg−1) = (𝑃𝑥𝑡) (𝑉𝑥𝑇𝑆)⁄  (2) 

The ultrasound treatment was applied prior to struvite precipitation process, in order to 

assess its effect on the crystallization process and, further, on biomethanation. 

2.1.2. Struvite Chemical Precipitation 

The struvite precipitation assays were carried out in batch reactors with a working 

volume of 300 mL and a mixture of cattle slurry liquid fraction and sewage sludge from 

an urban wastewater treatment plant (1:1, in volume). The initial pH was adjusted to 8.5 

by dropwise addition of NaOH (1 M) and then, one of the sources of magnesium was 

added, as described in Table 1. The batch reactors were placed in an orbital incubator, at 

150 rpm and 35 °C. The experiments were performed with a reaction period of 1 h. Every 

20 or 30 min, measurements of pH (Orion benchtop pH meter) were performed and the 
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pH was adjusted to 8.5, when necessary. After the reaction period, the solution was al-

lowed to settle for 30 min and the precipitate was sampled. 

2.1.3. Statistical Analysis 

One-way analysis of variance (ANOVA) was used to assess significant differences 

between process parameters, in order to assess significant differences between treatments. 

The significant differences in all comparisons were set at p < 0.05. SPSS statistics software, 

in version 22 (SPSS Inc., Chicago, IL, USA) was used for data analyses. 

2.2. Biomethanation Assays 

2.2.1. Substrates and Inoculum 

The liquid fraction of cattle slurry was collected at the dairy farm of Professional 

School of Agriculture and Rural Development of Ponte de Lima (Portugal). The sewage 

sludge was collected from the secondary settling tank of an urban wastewater treatment 

plant located in Tougues, Portugal. The inoculum used in the present study was collected 

from the anaerobic digester of the same WWTP. 

2.2.2. Ultrasound Pretreatment 

Ultrasound pretreatment was applied to the mixture of substrates (1:1, in volume), 

aiming to increase the biodegradability of the mixture and thus, improve the efficiency of 

the process in terms of methane production. 

The ultrasound pretreatment was carried out with an ultrasonic processor (SONOREX 

Super 10P Bandelin) operating at the nominal power of 90.8 W and low frequency of 35 kHz. 

Two different treatment times were tested, 20 min (ASBR2) and 10 min (ASBR3), resulting 

in an energy input of 218 kJ L−1 and 109 kJ L−1, respectively (Equation (1)). 

The ultrasound treatment was applied to the mixture of substrates, prior to inoculation 

and start-up of the anaerobic digester operation, corresponding to a specific energy of 8180 

kJ kgTS−1 and 4270 kJ kgTS−1, in reactors ASBR2 and ASBR3, respectively (Equation (2)). 

2.2.3. Struvite Precipitation 

Struvite precipitation was induced through the addition of MgCl2 to the mixture of 

substrates (1:1, in volume) previously treated with ultrasound. The initial pH was ad-

justed to 8.5 by dropwise addition of NaOH (1 M) and then MgCl2 solution (157 g L−1) was 

added in order to achieve the stoichiometric ratio of NH4+:Mg2+ of 1:3, which led to higher 

nutrient removal efficiencies in the struvite precipitation assays, as described in Section 

3.1.1. The struvite precipitation pretreatment was applied during 1 h, under mesophilic 

conditions (35 °C). Every 20 min, measurements of pH (Orion benchtop pH meter) were 

performed and adjusted to 8.5, when necessary. Finally, the mixture was allowed to settle. 

After the struvite precipitation pretreatment, the entire mixture was inoculated for 

subsequent anaerobic digestion. The goal was to assess the effect of the use of a combined 

pretreatment (ultrasound and struvite precipitation) on methane production, in a nitrogen 

rich system. 

2.2.4. Reactor Start-Up and Experimental Procedure 

Anaerobic (co-)digestion assays, with and without pretreatment (ASBR1, ASBR2, and 

ASBR3), as described in Table 2, were carried out under mesophilic conditions (35 °C) in 

anaerobic sequencing batch reactors, mechanically stirred, with a total volume of 8 L and 

a working volume of 5.5 L. All the reactors had a water jacket and the temperature was 

maintained at 35 °C using a thermostatic bath and a water recirculation system. The gas 

analyzer (Bluesens BACVis software version 7.6.2.1), connected to the reactor, registered 

the methane content in the biogas. 

Three different reactors were operated under the conditions described in Table 2. 
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Table 2. Anaerobic co-digestion assays and pretreatment conditions. 

Reactor Pretreatment Conditions  

ASBR1 ACoD without pretreatment of substrates 

ASBR2 
ACoD with ultrasound and struvite pretreatment: En-

ergy Input of 218 kJ L−1 and NH4+:Mg2+ of 1:3) 

ASBR3 
ACoD with ultrasound and struvite pretreatment: En-

ergy Input of 109 kJ L−1 and NH4+:Mg2+ of 1:3) 

The experiment ASBR1 corresponds to the anaerobic co-digestion of SwS and CSLF 

without pretreatment (control). In experiments ASBR2 and ASBR3 a combination of both 

pretreatments, ultrasound, and chemical precipitation of struvite, was applied. The assay 

ASBR3 was performed under the same operational conditions as in assay ASBR2, except 

for the energy input in ultrasound treatment, which was 109 kJ L−1 (SE of 4270 kJ kgTS−1), 

half of the one applied to reactor ASBR2, 218 kJ L−1 (SE of 8180 kJ kgTS-1). 

After the pretreatment, the reactors were inoculated and the gas analyzer system was 

connected. No nutrient addition or pH correction were performed during the anaerobic 

digestion process. 

2.3. Analytical Procedure 

All the analytical procedures followed the guidelines described in APHA (1992) [25] 

and the parameters analysed were total COD (tCOD), soluble COD (sCOD), total solids 

(TS), volatile solids (VS), Total Kjeldahl Nitrogen (TKN), total ammonium nitrogen 

(TAN), orthophosphate (PO43-P) and pH. The total organic carbon (TOC) was determined 

by the ratio between the organic matter (OM) content, in terms of VS, and the constant 1.8 

[26,27]. Free ammonia (FAN) was calculated based on TAN concentration, according to 

Equation (3) [28]: 

𝐹𝐴𝑁 = 𝑇𝐴𝑁 (
10−𝑝𝐻

10−(0.09018+
2729.92

𝑇
)
)

−1

 (3) 

where 

FAN = free ammonia nitrogen concentration (mg L−1); 

TAN = total ammonia nitrogen concentration (mg L−1) 

T = temperature (K) 

pH = hydrogen ionic potential 

All analyses were performed in triplicate and standard deviation was < 10%. 

The biogas was conducted to a gas analyzer system and the methane content in the 

biogas was measured in real time using a data acquisition software (Bluesens BACVis 

software version 7.6.2.1). 

The digested and precipitated sludges resulting from the biomethanation experiment 

were collected and washed with distilled water by centrifugation, to eliminate impurities 

and soluble salts. The washing process consisted of three washing cycles of the digested 

sludge with distilled water (1:2, in volume). Each washing cycle was carried out for 15 

min, at 4500 rpm. Thereafter, the sludge was overdried for 36 h at 40 °C. 

The elemental composition was assessed using Scanning Electron Microscopy with 

Energy Dispersive Spectroscopy (SEM-EDS Hitashi SU1510) and the crystallization prod-

ucts were characterized by X-ray diffraction using a high resolution X-ray Diffractometer 

(Bruker D8 Advance Davince) with Cu Kα radiation (λ = 1.5406 Å ) produced at 40 mA 

and 40 kV. Data were collected in the 2θ range between 10º and 80º with a 2θ-step size of 

0.0260º per second. The identification of crystalline structures was performed using EVA 

software V.4.0 from Bruker AXS. 
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3. Discussion 

3.1. Struvite Precipitation Optimization Batch Assays 

The initial characterization of the mixture of substrates in the five experiments is 

summarized in Table 3. 

Table 3. Initial characterization of the mixture of substrates. 

TS (g L−1) VS (g L−1) tCOD (g L−1) sCOD (g L−1) PO43−-P (g L−1) NH4+-N (g L−1) C/N pH 

20 ± 1 16 ± 2 16.3 ± 0.25 2.04 ± 0.45 0.37 ± 0.01 0.67 ± 0.00 4 ± 0.1 7.5 ± 0.1  

From the results presented in Table 3, it is important to highlight the very low C/N 

ratio (4 ± 0.1) of the mixture of substrates, as well as the high TS concentration (20 ± 1 g 

L−1), the fraction of volatile solids being 80%, approximately (16 ± 2 g L−1). Despite the high 

COD, only 12%, approximately, corresponds to dissolved compounds (2.04 ± 0.45 g L−1), 

suggesting that methane production may be limited by solubilization of particulate or-

ganic matter. 

3.1.1. Kinetics of the Struvite Precipitation Process 

As mentioned before, in the struvite precipitation experiments, the pH was moni-

tored, at the beginning of the experiment and every 20 or 30 min, during the reaction time 

(Figure 1). After each measurement, the pH of the mixture was adjusted to 8.5 by dropwise 

addition of NaOH (1 M), whenever necessary. 

 

Figure 1. The pH profile along the reaction time. 

At the beginning of the experiment, whenever the pH was adjusted to 8.5, a sudden 

decrease relatively to this threshold value was observed (Figure 1). This can be explained 

by the release of H+ in the solution, as struvite precipitates, lowering the pH [29]. After 40 

min of reaction, a tendency to a linear pH profile (around 8.5) was, in general, observed. 

These results suggest that the ions PO43−, NH4+, and Mg2+, which are participating in stru-

vite crystallization process, are being removed from the liquid phase due to struvite pre-

cipitation, until the reaction reaches the equilibrium, after 40 min, under the tested condi-

tions (Figure 1). 

The average operating time to achieve the highest removal efficiencies of macronu-

trients through struvite precipitation reported in the literature varies considerably. Battis-

toni et al. (2001) [30] reported nutrient removal from anaerobically digested sludge higher 

than 80% through crystallization in about 100 min. Pullmmanappallil et al. (2001) [31] de-

veloped a process for nutrient recovery through struvite precipitation in a sequential 

batch reactor and recommended a reaction time below 30 min. The high water-solubility 

of both sources of magnesium (marine salt and magnesium chloride) was considered to 
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be a key enabling factor for the struvite precipitation process, contributing to shorten the 

overall reaction time. 

The PO₄3−-P and NH4+-N removal efficiencies obtained in the struvite precipitation 

experiments are depicted in Figure 2. 

 

Figure 2. Ammonium nitrogen and orthophosphate removal efficiencies. (MS: marine salt as Mg 

source, NH4+:Mg2+ of 1:1.5; MC1: MgCl2 as Mg source, NH4+:Mg2+ of 1:1.5; MC2: MgCl2 as Mg 

source, NH4+:Mg2+ of 1:3; MC2U: MgCl2 as Mg source, NH4+:Mg2+ of 1:3 and ultrasound pretreat-

ment). Different letters above bars indicate significant differences (Duncan’s test; p < 0.05). 

Control assays (with no external magnesium source) revealed PO₄3−-P and NH4+-N 

removal efficiencies of 15% and 11%, respectively (Figure 2). Since no source of magne-

sium was added to promote the formation of struvite in the control assays, NH4+-N losses 

may be due to stripping processes favored by high pH values [32]. The observed ortho-

phosphate removal may be explained by the uptake by biomass present in the substrates 

[33]. 

As depicted in Figure 2, decreasing the NH4+ to Mg2+ molar ratio from 1:1.5 to 1:3 led 

to a slight increase in nitrogen removal efficiency (29% in experiment MC2 and 23% in 

MC1; p < 0.05). Simultaneously, the orthophosphate removal efficiency significantly in-

creased by approximately 61% (from 32% in MC1 to 50% in MC2). A comparison between 

MC1 and MS assays shows significant differences in the orthophosphate removal efficien-

cies (32% and 23% respectively) but not on the TAN removal efficiencies (23% and 22%, 

respectively). This result is in accordance with the studies performed by Pinatha et al. 

(2020) [34], demonstrating that marine salt formed struvite 18% less than did MgCl2. The 

low values of N and P removal efficiencies obtained when marine salt was used as exter-

nal Mg source may probably be related to the presence of sea salt crystals when this re-

source was used to provide the Mg2+ concentration required for struvite precipitation, in-

dicating that the amount of dissolved magnesium was insufficient for an efficient nutrient 

recovery. 

The application of ultrasound (SE of 10,180 kJ kgTS−1) prior to struvite precipitation, 

in MC2U experiment, led to an increase of 38% in TAN concentration (from 710 ± 98 mg 

L−1 in MC2 to 980 ± 68 mg L−1 in MC2U) (Table 4). Similar values were observed by Bougrier 

et al. (2005) [35], who reported an increase of 40% in organic nitrogen solubilization after 

ultrasonic treatment of waste-activated sludge with a specific energy input of 15,000 kJ 

kgTS−1. Salsabil et al. (2005) [36] observed a linear increase in total nitrogen solubilization 

with increasing specific energy, for specific energies above 3600 kJ kgTS−1, reaching 19.6% 
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for a specific energy of 108,000 kJ kgTS−1. The effect of sonication on phosphorus behav-

iour is rarely described in literature. Following the trend reported by Salsabil et al. (2005) 

[36], the ultrasound pretreatment applied in MC2U experiment also increased phospho-

rus solubility. In fact, an increase of 85% in orthophosphate concentration was observed, 

from 389 ± 3 mg L−1 in MC2 to 719 ± 3 mg L−1 in MC2U. 

Table 4. The ammonium nitrogen and orthophosphate concentration. (Ti = Initial time; Tf = Final 

time; Tau = after ultrasound pretreatment; Tas = after struvite treatment. 

  TAN (mg L−1) Orthophosphate (mg L−1) 

Control Ti 630 ± 10 480 ± 16 

 Tf 560 ± 12 406 ± 11 

MS Ti 630 ± 6 433 ± 9 

 Tas 491 ± 13 334 ± 22 

MC1 Ti 636 ± 11 467 ± 5 

 Tas 486 ± 8 318 ± 19 

MC2 Ti 490 ± 13 348 ± 11 

 Tas 350±11 175 ± 4 

MC2U Ti 710 ± 98 389 ± 3 

 Tau 980 ± 68 719 ± 3 

 Tas 560 ± 23 58 ± 7 

The highest orthophosphate and TAN removal efficiencies (92% and 43%, respec-

tively) were obtained when the ultrasound treatment was applied prior to struvite pre-

cipitation (MC2U). Several authors reported ammonium nitrogen removal efficiencies 

higher than 90% when the process of struvite precipitation was applied as post-treatment, 

after the anaerobic digestion [37,38]. This can be explained by the enhanced availability of 

N-NH4+ and P-PO43− as result of the mineralization of organic compounds that occurs dur-

ing anaerobic digestion, thus increasing the potential for struvite precipitation [39]. 

3.2. Biomethanization Assays 

In order to assess the effect of pretreatment of substrates on methane production in 

anaerobic sequencing batch reactors, biomethanation experiments were performed using 

cattle slurry liquid fraction and sewage sludge as substrates, as previously described in 

Section 2.2. The main physical and chemical characteristics of the substrates (CSLF, SwS) 

and the inoculum are presented in Table 5. 

Table 5. Substrates and inoculum characterization. 

Parameter SwS CSLF Inoculum 

TS (g L−1) 9.7–24.0 13.8–26.1 14.0–17.2 

VS (g L−1) 7.3–20.1 8.0–19 10.4–13.6 

TOC (g L−1) 4.0–11.2 10.8 5.8–7.5 

tCOD (g L−1) 24.8–47.7 8.8–32.0 9.6–21.9 

sCOD (g L−1) 2.6–6.6 2.6–9.1 0.4–1.0 

TKN (g L−1) 3.2–3.9 3.5–3.6 3.0–5.0 

TAN (mg L−1) 952 840–1317 854–1513 

FAN (mg L−1) 0.04–13.29 7–28 18.74–33.18 

PO43−-P (mg L−1) 224–728 205–634 854–1513 

pH 5.2–7.1 6.9 7.3 

The results presented in Table 5 demonstrate the complexity, but also the potential 

for nutrient and energy recovery of the substrates used in the present study, with high 
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nitrogen, phosphorus and organic matter concentrations. The volatile solid content repre-

sented 75 to 83% of the total solids in the SwS and 58 to 73% of the TS in the CSLF. Nev-

ertheless, despite the high COD levels, the soluble fractions correspond to 10–14% and 28 

–30% on SwS and CSLF, respectively. 

Table 6 presents the characterization of the mixture of substrates before (TBU) and 

after (TAU) ultrasound treatment and after struvite precipitation treatment (TAS) of the mix-

ture of substrates previously treated with ultrasound. 

Table 6. Characterization of the mixture of substrates before (TBU) and after (TAU) ultrasound pre-treatment and after stru-

vite treatment (TAS), prior to reactor inoculation. 

Biomethanation  

Experiment 
 

CODs  

(mg L−1) 

TAN  

(mg L−1) 

FAN  

(mg L−1) 

PO43−  

(mg L−1) 

ST  

(g L−1) 

VS  

(g L−1) 

SS  

(g L−1) 

ASBR1: Control  1280.0 ± 122 311.6 ± 5 8.6 ± 0.1 481 ± 5.4 16.0 ± 1.4 9.9 ± 0.1 13.2 ± 4.5 

ASBR2: US + SP 
TBU 2240.0 ± 80 700.3 ± 99 2.5 ± 0.3 589 ± 3.6 26.6 ± 1.1 19.9 ± 1.0 9.6 ± 0.6 

TAU 3920.0 ± 113 735.4 ± 49 2.6 ± 0.2 611 ± 32.2 29.3 ± 1.6 21.9 ± 1.4 9.3 ± 0.1 

 TAS 4480.0 ± 93 560.3 ± 99 - 557 ± 2.9 38.4 ± 0.1 30.8 ± 0.1 8.8 ± 0.4 

ASBR3: US/2 + SP 
TBU 2240.0 ± 86 595.3 ± 49 - 252.0 ± 3.6 25.5 ± 0.9 18.6 ± 0.5 25.8 ± 0.1 

TAU 3205.0 ± 99 630.3 ± 99 - 360 ± 10.9 21.2 ± 0.1 15.6 ± 0.1 20.3 ± 0.8 

 TAS - 490.2 ± 89 - 209 ± 2.2 39.3 ± 0.1 24.7 ± 0.1 18.1 ± 0.1 

After treatment with ultrasound, the sCOD in the mixture of substrates increased 

75% and 43%, when the specific energy was 8180 kJ kgTS-1 (ASBR2) and 4270 kJ kgTS-1 

(ASBR3), respectively. The TAN concentration slightly increased 5% on both assays 

(ASBR2 and ASBR3). With struvite precipitation, the NH4+-N removal efficiency increased 

20% in both reactors, after ultrasound pretreatment. This can be explained by enhanced 

solubilization of nitrogen compounds due to sonication and increased availability of am-

monium nitrogen for struvite formation. 

Table 7 presents the initial physicochemical characterization of the mixed liquor in 

all the anaerobic sequencing batch reactors (ASBR), after inoculation, in terms of pH, TS 

and VS, total and dissolved organic matter as COD, TKN, TAN, and FAN. Some opera-

tional parameters are also depicted in Table 7, namely the applied organic load rate (OLR) 

(as COD and VS), methane yield (YCH4/VS) and methane content in the biogas, maximum 

observed biodegradation rate, maximum observed methane production rate, and the hy-

draulic retention time (HRT). 

Table 7. Physicochemical characterization of the mixed liquor in the ASBR. 

Parameter ASBR1 ASBR2 ASBR3 

pH 7.4 ± 0.1 7.8 ± 0.1 7.7 ± 0.1 

TS (g L−1) 16.0 ± 1 34.1 ± 0.8 31.2 ± 0.5 

VS (g L−1) 10.0 ± 0.1 22.3 ± 0.8 19.0 ± 0.5 

OM (%) 62.4 ± 0.1 65.3 ± 0.1 62.0 ± 0.1 

tCOD (mg L−1) 24128 ± 269 38495 ± 2102 32013 ± 336 

sCOD (mg L−1) 1280.0 ± 0.1 1600.0 ± 101 1440.0 ± 226 

TKN (mg L−1) 1225.6 ± 0.1 1435.7 ± 42 1295.6 ± 36 

TAN (mg L−1) 311.7 ± 5 420.2 ± 26 490.2 ± 89 

FAN (mg L−1) 8.6 ± 0.1 27.8 ± 0.1 26.1 ± 5 

FAN/TAN (%) 2.7 ± 0.1 6.6 ± 0.1 5.3 ± 0.1 

PO43−-P (mg L−1) 481.0 ± 5 526.2 ± 0.1 203.3 ± 2.9 

C/N 5.0 ± 0.1 8.6 ± 0.1 8.1 ± 0.1 

OLR (kgCOD m−3d −1) 0.2 ± 0.1 7.0 ± 0.1 0.6 ± 0.1 

OLR (gVS L−1 d−1) 0.15 ± 0.1 0.47 ± 0.1 0.38 ± 0.1 

Methane content in biogas (%) 33 60 57 
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Maximum observed biodegradation rate rate (g L−1 d−1) 0.17 0.53 0.64 

Maximum observed methane production rate (mL g−1 d−1) 77 643 743 

YCH4 (mLCH4 gVS−1) 26.5 48.5 32.2 

HRT (d) 66 47 49 

It is important to notice that despite the pH being adjusted to 8.5 during the struvite 

precipitation process, after inoculation, the pH values decreased ranging between 7.4 and 

7.8 in the bioreactors (Table 7), which is in the range of the optimal pH (6.5 to 8.5) reported 

by different authors [2,40]. 

A comparison between ASBR1 (control) and ASBR2 experiments revealed that treat-

ment with ultrasound followed by struvite precipitation resulted in an increase in C/N 

ratio from 5.0 to 8.6, as well as in FAN/TAN from 2.7 to 6.6, leading to an increase in the 

biogas methane content of 83% (from 33 to 60%). In ASBR3, a similar pattern was ob-

served, the C/N ratio being increased from 5.0 to 8.1 and FAN/TAN from 2.7 to 5.3, thus 

increasing the methane content in the biogas by 74% (from 33 to 57%). Moreover, a reduc-

tion in the hydraulic retention time was observed in both reactors (28% and 25% in ASBR2 

and ASBR3, respectively). In fact, the low C/N ratio observed in ASBR1 is related to a 

lower maximum observed degradation rate (0.17 g L−1 d−1) and a lower maximum ob-

served methane production rate (77 mL g−1 d−1). This is in accordance with the lower final 

methane yield (26.5 mLCH4 gVS−1) and lower methane content in biogas (33%) suggesting 

that methanogenesis was partially inhibited. However, despite the higher maximum ob-

served degradation rate (0.64 g L−1 d-1) and maximum observe methane production rate 

(743 mL g−1 d−1) obtained in ASBR 3, the methane content in biogas were similar to ASBR 

2 (Table 7), indicating that the methanogenesis was not hindered. This kinetics parameters 

are higher than those reported by Mao et al. (2017) [41] and Nutongkaew et al. (2020) [42], 

12 mL g−1 d−1 and 50 mL g−1 d−1, respectively, suggesting that the combined treatment with 

ultrasound and struvite precipitation leads to an enhancement of the biomethanization 

process. 

With the overall pretreatment process (ultrasound followed by struvite precipita-

tion), it was possible to overcome the C/N unbalance, resulting in a higher efficiency of 

the anaerobic co-digestion process in terms of methane production, as well as total COD 

and volatile solids removal efficiency (Figure 3). 

The content in methane of the biogas produced in reactors ASBR2 and ASBR3 was 

similar, around 60%. However, the conversion efficiency of vs. to methane decreased by 

44% (from 48.5 mLCH4 gVS−1 to 32.2 mLCH4 gVS−1) when the energy input was reduced 

from 218 kJ L−1 (SE = 8180 kJ kgTS−1) to 109 kJ L−1 (SE = 4270 kJ kgTS−1). The low methane 

yields (in mL gVS−1) obtained in the present study may be explained by the very high 

initial volatile solids concentration, ranging between 10 and 22.3 g L−1 (as depicted in Table 

7). However, despite de high initial vs. concentration, a removal efficiency of only 13–24% 

was observed, leading to a low methane yield, in mL gVS−1. 

Despite the high content of methane (60%) in the biogas produced in reactors ASBR2 

and ASBR3 and the higher COD removal efficiencies (60 and 50%, respectively), when 

compared to ASBR1 (control without substrates pretreatment), the treated effluent still 

presents a very high COD content, 6200 mg L−1 and 5012 mg L−1, in ASBR 2 and ASBR3, 

respectively, as well as nitrogen and phosphorus, indicating the need of a post-treatment 

before wastewater discharge according to Portuguese law (DL 236/98, of 1 August). 
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Figure 3. Methane content in the biogas. tCOD and vs. removal efficiencies obtained in the ASBR experiments. 

Scanning Electron Microscopy with Energy Dispersive Spectroscopy analysis (Figure 

4), suggest that the heterogeneity of the samples presented itself as an obstacle in the iden-

tification and quantification of the formed compounds, mainly due to the very high solids 

content, typical of the SwS and CSLF, originating a sludge-containing struvite crystals. In 

fact, beside struvite crystals, the formation of other compounds such as newberyite 

(MgHPO4·3H2O), monetite (CaHPO4), brushite (CaHPO4.2H2O), may have occurred as a 

consequence of pH variations and the presence of ions such as Ca2+ and Mg2+ [43]. There-

fore, the characterization of the precipitates occurred in two steps, the former supported 

on SEM analysis in order to identify the main elements present in the samples, and the 

latter based on crystals characterization by X-ray diffraction. 

 

Figure 4. SEM-EDS microphotography of the precipitates formed. 

In a sample collected in ASBR2, 72% corresponded to water-soluble compounds that 

were removed after the washing process. The X-ray analyses of the sample collected in 

ASBR2, after washing and drying, as described in Section 2.3, confirmed the presence of 

struvite (Figure 5). 
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Figure 5. XRD difractogram of the sludge collected from ASBR2 experiment. previously washed and dried. 

Approximately 85% of the digested sludge sample, previously washed and dried, 

was quantified as struvite, The X-ray diffraction also indicated correlating peaks for both 

quartz (SiO2) and calcite (CaCO3), but in smaller quantities (8 and 7%, respectively). The 

quartz (SiO2) is a compound naturally found in both substrates (SwS and CSLF), given 

the nature of the agro-industrial activities that origin such waste and/or wastewater. Ac-

cording to [43,44], magnesium containing species and species containing calcium are ion 

and pH dependent and can also be formed under similar conditions to the struvite pre-

cipitation process, which may explain the presence of calcite. 

Considering the heterogeneity of the sludge sample, the semi-quantitative analyses 

obtained by X-ray and the treatment conditions in ASBR2 and ASBR3, it is possible to 

suggest that, approximately 230 g L−1 and 100 g L−1 of struvite, respectively, can be ob-

tained. 

4. Conclusions 

When ammonium drives anaerobic processes inhibition, nitrogen removal through 

struvite precipitation, as pretreatment, may have a positive effect on methanogenesis. 

Since the ultimate goal was primarily to remove NH4+-N, the results obtained were favor-

able from this perspective and the combined ultrasound and struvite precipitation pre-

treatment has shown to be a feasible option to enhance further bioenergy processes. 

The following conclusions may be highlighted from the struvite precipitation exper-

iment: 

 the reaction time of 40 min seems to be suitable for crystallization and precipitation 

of struvite using a mixture of urban WWTP sludge and cattle slurry liquid fraction 

as substrate; 

 to fulfill the stoichiometric requirements of magnesium, high amounts of marine salt 

are necessary, resulting in the presence of insoluble crystals, which may limit nutrient 

recovery processes; 

 the ammonium nitrogen and orthophosphate removal efficiencies increased when 

the NH4+: Mg2+ stoichiometric ratio decreased from 1:1.5 to 1:3. reaching 29% and 50%, 

respectively; 

 the application of ultrasound to the mixture of substrates, prior to the struvite pre-

cipitation process, resulted in an increase in ammonium nitrogen and orthophos-

phate removal efficiencies, reaching 43% and 92%, respectively, as a result of the in-

crease in the solubilization rate of organic compounds; 

Regarding the biomethanation experiment, the main conclusions are as follows: 

 treatment of the substrates with ultrasound (either with a EI of 109 kJ L−1 (SE of 4270 

kJ TS−1) or EI of 218kJ L−1 (SE of 8180 kJ TS−1)) resulted in an increase of 73–82% in 

methane content in the biogas (57–60%) and a reduction in the HRT of 25–28%; 

 treatment of the substrates with ultrasound prior to struvite precipitation enhanced 

ammonium nitrogen removal and, consequently, increased methane yield; 
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 the reduction of the energy input from 218 kJ L−1 (SE of 8180 kJ TS−1) to 109 kJ L−1 (SE 

of 4270 kJ TS−1) resulted in a decrease of 44% in methane yield (from 48.5 mLCH4 

gVS−1 to 32.2 mLCH4 gVS−1), despite de methane content in biogas remained similar 

(60%); 

 a combination of ultrasound (SE of 8180 kJ kgTS−1) and struvite precipitation 

(NH4:Mg2+ of 1:3) as pretreatment may be a feasible option to increase the efficiency 

of ACoD of SwS and CSLF in a context of nitrogen-rich systems, in terms of COD 

removal and methane production; 

 the FAN/TAN ratio seems to be correlated to the methane production; 

 TAN values lower than 311 mg l−1 seems to be unfavorable to the methanogenesis; 

 the reduction of the energy input from 218 kJ L−1 (SE of 8180 kJ TS−1) to 109 kJ L−1 (SE 

of 4270 kJ TS−1) resulted in a semi-quantitative estimative of, approximately 230 g L−1 

and 100 g L−1 of struvite, respectively. 
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