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RESUMO 

A assistência e reabilitação robótica usando dispositivos de assistência ativos vestíveis (WPADs), 

como ortóteses e exosqueletos, tem crescido na área da reabilitação com o fim de recuperar e aumentar 

a função motora de sujeitos com alterações neurológicas. Estes dispositivos devem fornecer uma 

assistência personalizada, uma vez que a condição física e a fadiga muscular variam de paciente para 

paciente. Nesta área, sinais de eletromiografia (EMG) têm sido usados para controlar WPADs, dada a 

sua capacidade de inferir a intenção de movimento do utilizador. Contudo, em casos de deficiência 

motora, os sinais de EMG apresentam menor amplitude quando comparados com sinais de EMG em 

condições saudáveis e, portanto, o uso de WPADs geridos por sinais de EMG pode não oferecer a 

assistência que o paciente necessita.  

O principal objetivo desta dissertação visa o desenvolvimento de uma estratégia de controlo 

baseada em EMG capaz de fornecer assistência quando necessário, para futura integração num sistema 

ortótico ativo e inteligente (SmartOs). Para atingir este objetivo foram desenvolvidos e validados os 

seguintes elementos: (i) sistema de EMG para adquirir sinais de atividade muscular dos músculos mais 

relevantes no movimento da articulação do tornozelo; (ii) ferramenta de machine learning para estimação 

do binário da articulação do tornozelo para servir como referência na estratégia de controlo; e (iii) 

ferramenta de estimação do binário real do tornozelo considerando sinais de EMG dos músculos Tibialis 

Anterior (TA) e Gastrocnemius Lateralis (GASL) e ângulo real do tornozelo. 

O sistema de EMG apresentou correlações satisfatórias com um sistema comercial. O binário de 

referência para o tornozelo foi gerado com base no ângulo de referência da mesma articulação, 

velocidade de marcha (de 1 até 4 km/h) e dados antropométricos (alturas de 1.51 m até 1.83 e massas 

de 52.0 kg até 83.7 kg), usando cinco algoritmos de machine learning: Support Vector Machine, Random 

Forest, Multilayer Perceptron, Long-Short Term Memory e Convolutional Neural Network. CNN apresentou 

a melhor performance, prevendo binários de referência do tornozelo com um fit entre 74.7 e 89.8 % e 

Normalized Root Mean Square Errors (NRMSE) entre 3.16 e 8.02 %. A estimativa do torque com base 

em sinais de EMG requer a inclusão de um maior número de músculos, uma vez que sinais de EMG dos 

músculos TA e GASL não foram suficientes.  

PALAVRAS-CHAVE 

Dispositivos de Assistência Ativos Vestíveis, Estratégia de Controlo baseada em EMG, Modelos de 

Regressão, Eletromiografia, Reabilitação da Marcha 
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ABSTRACT 

Robotic-based gait rehabilitation and assistance using Wearable Powered Assistive Devices 

(WPADs), such as orthosis and exoskeletons, has been growing in the rehabilitation area to recover and 

augment the motor function of neurologically impaired subjects. These WPADs should provide a 

personalized assistance, since physical condition and muscular fatigue modify from patient to patient. In 

this field, electromyography (EMG) signals have been used to control WPADs given their ability to infer 

the user’s motion intention. However, in cases of motor disability conditions, EMG signals present lower 

magnitudes when compared to EMG signals under healthy conditions. Thus, the use of WPADs managed 

by EMG signals may not have potential to provide the assistance that the patient requires.  

The main goal of this dissertation aims the development of an Assisted-As-Needed (AAN) EMG-

based control strategy for a future insertion in a Smart Active Orthotic System (SmartOs). To achieve this 

goal, the following elements were developed and validated: (i) an EMG system to acquire muscle activity 

signals from the most relevant muscles during the motion of the ankle joint; (ii) machine learning-based 

tool for ankle joint torque estimation to serve as reference in the AAN EMG-based control strategy; and 

(iii) a tool for real EMG-based torque estimation using Tibialis Anterior (TA) and Gastrocnemius Lateralis 

(GASL) muscles and real ankle joint angles.  

EMG system showed satisfactory pattern correlations with a commercial system. The reference 

ankle joint torque was generated based on predicted reference ankle joint kinematics, walking speed 

information (from 1 to 4 km/h) and anthropometric data (body height from 1.51 m to 1.83 m and body 

mass from 52.0 kg to 83.7 kg), using five machine learning algorithms: Support Vector Regression (SVR), 

Random Forest (RF), Multilayer Perceptron (MLP), Long-Short Term Memory (LSTM) and Convolutional 

Neural Network (CNN). CNN provided the best performance, predicting the reference ankle joint torque 

with fitting curves ranging from 74.7 to 89.8 % and Normalized Root Mean Square Errors (NRMSEs) 

between 3.16 and 8.02 %. EMG-based torque estimation beneficiates of a higher number of muscles, 

since EMG data from TA and GASL are not enough to estimate the real ankle joint torque. 

KEYWORDS 

Wearable Powered Assistive Devices, EMG-based Control Strategy, Regression Models, 

Electromyography, Gait Rehabilitation  
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CHAPTER 1 – INTRODUCTION 

 

This dissertation presents the work developed in the scope of the fifth year of the Integrated 

Master’s in Biomedical Engineering during the academic year of 2018/19.  

During the first semester, skills in the field of the human gait cycle were achieved at Marsi Bionics 

S.L. in Madrid, Spain, integrated into an ERASMUS placement program. With this experience, it was 

possible to learn competences regarding the human gait pattern based on the analysis of its main 

characteristics and strategies. As a result, a hybrid dynamic and kinematic model to simulate a healthy 

human gait cycle was constructed, fed and validated with data collected at the gait laboratory of the 

company. 

The work presented in this dissertation was developed during the second semester and the 

concepts acquired in the first semester were fundamental to achieve the main goals of this project. This 

dissertation was developed at BiRD LAB (Biomedical Robotic Devices Laboratory) of the Center of 

MicroElectroMechanical Systems (CMEMs), at University of Minho, Braga, Portugal. This dissertation 

addresses the development of a control strategy for personalized human gait rehabilitation with a 

Wearable Powered Assistive Device (WPAD). To achieve this goal, an Assisted-As-Needed (AAN) EMG-

based control strategy was projected, combining concepts of machine learning, to predict the reference 

gait kinematics and kinetics oriented to the user, with the development of musculoskeletal models to 

determine the real gait kinematics and kinetics of the user in real-time.   
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1.1. Motivation 

According to [1], stroke events correspond to the second leading cause of death and the third 

leading cause of disability in the world. The phenomenon behind these episodes is related to the absence 

of oxygen in the brain tissue due to a rupture of an artery in the brain (hemorrhagic stroke) or due to a 

blocking in the blood flow (ischemic stroke) [2]. Based on [3], 63% of the stroke survivors cannot walk 

without external support, not being able to perform their daily life activities. Consequently, the patient’s 

quality life is affected due to social and work exclusion, costly medical assistance and early retirement 

[4]. 

The hemiparesis and hemiplegia are the two major consequences derived from a stroke. 

Hemiparetic patients exhibit weakness on one side of the body, whereas hemiplegic patients present 

complete paralysis on one side of the body. With this information, the residual lower limb muscle force 

of the hemiparetic patients can be considered into their gait rehabilitation [5]. 

The lower limbs rehabilitation has been changed in the last years, to deal with (i) the disadvantages 

associated with the inter- and intra-therapist variances; (ii) the dependency of the malleability of the 

patient’s joint (commonly affected by spasticity); and (iii) the absence of precise and repeatable 

movements during therapy. For this purpose, in the rehabilitation area, the robotic assistance integrating 

WPADs, such as orthosis and exoskeletons, has steadily gained importance [6].  

The first generation of WPADs for lower limbs, integrating trajectory tracking control strategies, is 

responsible to concern a cyclic pattern to the user, based on pre-programmed trajectories [7]. However, 

in these cases, the patient participation is reduced, since the effort required by the user to perform the 

walking motion is small. According to [8], [9], the rehabilitation process is more efficient if the 

encouragement of the patient participation is achieved. On the other side, it was already proved that these 

trajectory tracking strategies, when applied to hemiparetic patients, are not efficient in the rehabilitation 

context [10], [11]. In such circumstances, the incapacity level varies from patient to patient and it also 

varies during the rehabilitation process. From this perspective, since the physical condition and muscular 

fatigue comprehend different aspects that modify from patient to patient, a personalized assistance 

should be provided [12].  

A human-machine interaction has been highlighted by applying bioinspired control architectures 

with user-oriented assistive control strategies integrated in WPADs. Moreover, these control strategies are 

designed to consider information about the user’s motor condition and motion intention, by using bio-

signals acquired with biomedical sensors [13]. In this context, Electromyography (EMG) signals have been 
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widely used since they can forecast information related to the user’s motion intention, namely 20 – 100 

ms before the user’s lower limb motion [6], [14], [15]. In this sense, the provision of functional assistance 

is possible if EMG-based assistive control strategies are implemented into WPADs, avoiding the muscle 

atrophy. 

1.2. Problem Statement 

Notwithstanding the EMG-based control assistive strategies help to avoid muscle atrophy, this 

strategy is destinated to follow the intentions of the user. However, in cases of impairments of the lower 

limbs, the muscle weakness results in lower EMG signals when compared to EMG signals from healthy 

subjects [16]. Consequently, the use of EMG-based control strategies to manage the assistance delivered 

by WPADs may not provide the assistance that the patient needs to walk [17]. To combat this 

phenomenon, while considering the patient motion intention, studies have proposed AAN control 

strategies to provide the assistance needed by the patient to perform the walking motion [6].  

The conventional AAN strategies consider the trajectory of the user’s lower limbs and a predefined 

reference trajectory, not considering the human condition and motion intention [6]. Due to this, there are 

difficulties related to (i) the synchronism between the reference trajectory and the user’s movement; and 

(ii) the adaptation of the reference trajectory according to the user-specific needs and intentions [18]. 

These drawbacks can be overpassed using EMG signals, taking advantage of their anticipatory 

performance, by the construction of an AAN EMG-based control strategy. Moreover, the EMG signals can 

be useful as a metric of the muscle weakness and, thus, when integrated in AAN control strategies, a 

personalized assistance could be provided [13]. 

This dissertation explores the potential of AAN strategies based on EMG signals for a future 

integration into a WPAD, in order to provide a personalized assistance in real-time, considering the 

physical condition and the motion intention of each user. 

1.3. Goals and Research Questions 

The ultimate goal of this dissertation aims the development of an AAN EMG-based control strategy 

towards the personalized rehabilitation of the ankle joint using Smart Active Orthotic System (SmartOs). 

The strategy should be adapted for each user, providing only the required assistance in real-time.  

The development of EMG-based control strategies requires the conversion of EMG signals into joint 

torques, particularly ankle joint torques [14], [19]. On the other side, the joint torques are dependent on 
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the joint kinematics and, thus, to perform the ankle joint torques prediction for specific subjects, the ankle 

joint kinematics should be well adapted. For this purpose and considering the main goal of this project, 

several objectives were established: 

• Objective 1: To perform a literature search to collect the main control strategies already 

developed to assist and to restore the lower limbs functions, using EMG signals. Perform 

a literature search to collect the most relevant works to convert EMG signals into joint 

torque values. This objective is addressed in Chapter 2. 

• Objective 2: To develop an EMG system to monitor the muscular activity of lower limb 

muscles, particularly the most important muscles responsible for the ankle motion. The 

system must correctly detect the muscle activations with low noise and with few motion 

artifacts. Validate the effectiveness of the developed EMG system with a commercial 

solution. This objective is addressed in Chapter 3. 

• Objective 3: To implement and validate an effective method to estimate a reference joint 

position trajectory, namely ankle joint kinematics, tackling the variability of the walking 

speed and subject anthropometric data. This objective is addressed in Chapter 4. 

• Objective 4: To develop and validate an automatic and accurate machine learning-based 

method to estimate a reference joint torque trajectory, considering the user-oriented 

reference joint kinematics and the variability of the walking speed and subject 

anthropometric data. This objective is addressed in Chapter 5. 

• Objective 5: To implement and validate an efficient method to estimate the real user’s joint 

torque, based on EMG signals and joint angles towards the implementation of the AAN 

EMG-based strategy. This objective is addressed in Chapter 6.  

With this dissertation, four Research Questions (RQs) were identified and answered, in order to 

complete the main challenges of the project:  

• RQ1: Which are the contributions and the main differences of the EMG-based control and 

the AAN EMG-based control strategies? 

• RQ2: Is it possible to obtain joint torque measures only using EMG signals? 

• RQ3: Is it possible to predict reference walking kinematics and kinetics trajectories relying 

exclusively on the walking speed and anthropometric data? 



 

5 

• RQ4: Can EMG-based torque estimation strategy present a good performance? 

1.4. Contributions 

The main contributions of this dissertation are: 

• A descriptive literature review reporting the assistive control strategies based on EMG signals and 

integrated into WPADs; 

• A descriptive literature review reporting the EMG-based torque estimation methods; 

• A tool to estimate reference ankle joint position trajectories based on the walking speed and 

anthropometric data; 

• A machine learning-based method for reference ankle joint torque estimation considering user-

oriented reference ankle joint kinematics trajectories, walking speed and anthropometric data; 

• A method to perform an EMG-based torque estimation using EMG signals and real ankle joint 

position trajectories, towards the implementation into a WPAD destinated for ankle joint 

assistance and rehabilitation. 

Furthermore, the developed work allowed the publication of four conference papers: 

• Moreira, L., Pinheiro, C., Lopes, J. M., Sanz-Merodio, D., Figueiredo, J., Santos, C. P., & Garcia, 

E. (2019). Study of Gait Cycle Using a Five-Link Inverted Pendulum Model: First Developments. 

In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (pp. 1–4). IEEE. 

https://doi.org/10.1109/ENBENG.2019.8692451 

• Lopes, J. M., Moreira, L. Pinheiro, C., Sanz-Merodio, D., Figueiredo, J., Santos, C. P., & Garcia, 

E. (2019). Three-Link Inverted Pendulum for Human Balance Analysis: A Preliminary Study. In 

2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (pp. 1–4). IEEE. 

https://doi.org/10.1109/ENBENG.2019.8692531 

• Pinheiro, C., Lopes, J. M., Moreira, C., Sanz-Merodio, D., Figueiredo, J., Santos, C. P., & Garcia, 

E. (2019). Kinematic and kinetic study of sit-to-stand and stand-to-sit movements towards a 

human-like skeletal model. In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) 

(pp. 1–4). IEEE. https://doi.org/10.1109/ENBENG.2019.8692569 

• Fernandes, P. N., Figueiredo, J., Moreira, L., Félix, P., Correia, A., Moreno, J. C., & Santos, C. P. 

(2019). EMG-based Motion Intention Recognition for Controlling a Powered Knee Orthosis. In 

2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) 

(pp. 1–6). IEEE. https://doi.org/10.1109/ICARSC.2019.8733628 

https://doi.org/10.1109/ENBENG.2019.8692451
https://doi.org/10.1109/ENBENG.2019.8692531
https://doi.org/10.1109/ENBENG.2019.8692569
https://doi.org/10.1109/ICARSC.2019.8733628
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• Moreira, L., Figueiredo, J., Garcia, E. & Santos, C. P. (2020). Myoelectric Control Strategies 

Applied in Powered Lower Limb Assistive Devices: A Review. In Robotics and Autonomous 

Systems (Submitted). 

1.5. Thesis Outline 

This dissertation is organized in the following seven chapters. 

Chapter 2 presents the state of the art addressed to four main points: (i) the main muscles 

responsible for the lower limbs joint motion; (ii) the most used EMG systems to acquire EMG signals; (iii) 

the EMG-based control and AAN EMG-based control strategies already implemented and integrated into 

WPADs to restore the lower limbs functions; and (iv) the EMG-based torque estimation methods already 

developed. 

Chapter 3 exhibits an insight about SmartOs architecture, presenting information about its 

constituent hardware and software. It is also presented the proposed AAN EMG-based control strategy 

and the chapter ends with the hardware of the EMG system developed in this dissertation. 

Chapter 4 presents a regression model to generate reference ankle joint kinematics, based on 

walking speed and anthropometric data. Additionally, it describes the data acquisition protocol to validate 

all the algorithms developed in this dissertation.  

In Chapter 5, machine learning algorithms are developed and validated to predict the ankle joint 

torques, that will be used as a reference parameter on the control strategy proposed in Chapter 3.  

Chapter 6 presents the validation of the results obtained in Chapter 4 and Chapter 5, where the 

output results obtained in Chapter 4 serve as input data to the best algorithm developed in Chapter 5. 

Moreover, the chapter describes the implemented algorithm responsible for EMG-based real joint torque 

estimation and presents its validation.  

Lastly, Chapter 7 presents the main conclusions of this master dissertation, the research questions 

are answered and topics for a future work are proposed. 
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CHAPTER 2 – STATE OF THE ART 

 

This chapter begins with a brief description of the healthy and the pathological walking motion, 

identifying the main muscles affected by a stroke event and the main muscles responsible for the motion 

of the knee and ankle joints. Subsequently, commercial EMG systems are presented, as well as their 

main characteristics. It is followed by an exhaustive review of the control strategies already developed 

and applied into WPADs, using EMG signals to assist and restore the lower limbs functions. At last, studies 

related to the conversion of the EMG signals into torque values are also presented, since most of the 

EMG-based control strategies perform this conversion [14], [19].  

2.1. Physiological Aspects 

Stroke events cause functional or neuromuscular changes, depending on the location of the 

affected area of the brain. According to [16], [20], these changes are related to a loss of strength in the 

hemiparetic leg, being verified weakness in the flexor muscles and spasticity in the extensor muscles, 

causing an increase of the joint stiffness. Studies concluded that, generally, in stroke survivors, the Soleus 

(SOL) and Gastrocnemius (GAS) muscles (responsible for the plantar flexion motion of the ankle joint) are 

contracted due to spasticity, while the Tibialis Anterior (TA) muscle (responsible for the dorsiflexion motion 

of the same joint) remains weak [2], [16], [20], [21]. This is the main reason of the drop foot disorder in 

patients that suffered a stroke event [22]. Regarding the knee joint, the knee extensors (Vastus Medialis 

(VM), Vastus Lateralis (VL), Vastus Intermedius (VI) and Rectus Femoris (RF)) exhibit spasticity and the 

knee flexors (Biceps Femoris (BF), Semitendinosus (ST) and Semimembranosus (SM)) are weak, being 
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verified a knee hyperextension and a decrease in the flexion movement of this joint during the gait cycle 

[16], [20], [21]. In this sense, considering the muscles affected by stroke events and according to [23], 

the muscles that provide more information about the ankle joint motion are the TA muscle for dorsiflexion 

and the SOL or the GAS muscles for plantar flexion. Concerning the knee joint, the muscles that present 

more information are the BF muscle for flexion and the VM and the RF muscles for extension. 

2.2. Electromyographic Signals 

2.2.1. Overview 

The contraction and the relaxation episodes of the muscles are controlled by the nervous system, 

through electric signals delivered by the neurons to the muscles. This electrical activity can be recorded 

using EMG, providing a powerful forecast information related to the motion intention of the user [6], [14], 

[15], [24].  

EMG signals can be measured using needles inserted directly in the muscles (intramuscular EMG 

– iEMG, also known as fine-wire EMG – fEMG) or using electrodes placed on the skin (surface EMG - 

sEMG). The choice of the method to measure the electrical activity of the muscles depends on the 

properties of the muscles to study. Comparing both, the first enounced method presents less cross-talk, 

since it receives lower muscle activities of the muscles around the desired muscle [25]. However, due to 

the difficulty of insertion, greater invasiveness and higher cost, this method is not normally used in EMG 

studies [25], [26]. In contrast, sEMG technique is commonly used, since it is non-invasive, practical, 

inexpensive and it may be used by non-clinical assessors. In addition, some studies reported that this 

method, when applied to the SOL, GAS and TA muscles, presents EMG amplitudes similar to iEMG and 

a negligible value of cross-talk [27]–[29]. 

Regarding the sEMG (referred as “EMG” along this dissertation), there are two configurations to 

adopt, namely the monopolar and the bipolar. The monopolar configuration uses two electrodes: 

detection electrode placed on the skin, above the muscle in study; and a reference electrode that should 

be placed on an electrically neural tissue or a bone [30]. However, according to [31], this configuration 

is not recommended, since the signal-noise ratio and the spatial resolution of the EMG signals are 

reduced, when compared to EMG acquisitions performed with bipolar configurations. On the other side, 

the bipolar configuration uses three electrodes: two detection electrodes placed above the target muscle, 

distanced by 10 - 20 mm [32], [33] and a reference electrode. In this sense, the bipolar configuration is 
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preferable, since the common noise of both detection electrodes is eliminated, increasing the signal-noise 

ratio and producing a cleaner EMG signal [33], [34]. 

2.2.2. Commercial Systems 

The characteristics of the EMG signals are well established in the literature and the most relevant 

are the amplitude range between ±10 mV, the response frequency between 0 and 500 Hz with the 

dominant energy between 50 and 150 Hz and the stochastic nature, characterized by a Gaussian 

distribution function [35].  

Delsys, Noraxon, MotionLab, Plux, BTS Bioengineering, Contemplas, Cometa, Biopac, Shimmer, 

Cadwell, Myontec and Athos are examples of companies that produce EMG acquisition systems able to 

acquire EMG signals with the aforementioned characteristics. An EMG acquisition system can reach the 

tens of thousands of euros and, thus, depending on the finality of each project, it is required to analyze 

the specifications of each system. Table 1 summarizes the main characteristics of the 4 more used 

commercial EMG acquisition systems.  

Table 1. EMG systems specifications 

 Delsys [36], [37] Noraxon [38] Motion Lab [39] MuscleBAN [40], [41] 

EMG Signal Input 

Range 
± 11 mV ± 24 mV ± 250 mV * 

Resolution 16 bits 16 bits 16 bits 16 bits 

EMG Signal 

Bandwith 
20 – 450 Hz 

Minimum: 

20 – 500 Hz 
10 – 2000 Hz 1 – 1000 Hz 

Maximum: 

5 – 1500 Hz 

Sampling Rate 2000 Hz 
2000 Hz or 4000 

Hz 
4000 Hz 4000 Hz 

Transmission Range 40 m 40 m 18 m 10 m 

Gain 1 1 10 – 500 1100 

Sensor Size 27 x 37 x 13 mm 24 x 37 x 16 mm 38 x 19 x 9 mm 28 x 70 x 12 mm 

Mass 14 g 14 g 20 g 25 g 

Autonomy 2 – 3 h 8 h * 8 h 

Temperature Range 
5 – 45 degrees 

Celsius 

0 – 38 degrees 

Celsius 

20 – 40 

degrees Celsius 
* 

 *Information not specified 
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2.3. Assistive Control Strategies 

In this section, the control strategies involving EMG signals to control WPADs found on literature 

are analyzed, covering the EMG-based control and the AAN EMG-based control strategies. This 

information is useful to determine which strategies were already developed, which of them yielded the 

best results and which are the methodologies required to achieve proper rehabilitation outcomes.  

The implemented search methodology was based on an electronic literature search on IEEE, Web 

of Science, and Scopus. The keywords used were: [“EMG based control”], [“EMG based control lower 

limbs”], [“AAN EMG based control”] and [“assist as needed EMG based control”]. Hyphens were also 

used, for example [“EMG-based control”] to consider all the search possibilities, as well as the extension 

of EMG: electromyography. The inclusion criteria were based on four assumptions. The control strategy 

must: (i) be in real-time; (ii) be applied only for lower limbs; (iii) use WPADs and (iv) use EMG readings to 

control WPADs. 

For a better comprehension of the information collected, two tables were constructed to extract the 

data related to EMG-based control strategies (Table 2) and AAN EMG-based control strategies (Table 3). 

2.3.1. EMG-based Control Strategies 

The EMG-based control strategies use EMG signals to detect the user’s motion intentions to control 

the WPADs always following the EMG signals collected [19]. From the literature search, two control 

methods were found involving EMG signals: Proportional Myoelectric Control (PMC) and EMG Model-

based Control (EMC). 

A. Proportional Myoelectric Control 

In [42], an ankle orthosis was developed using two artificial pneumatic muscles to simulate the 

SOL and the TA muscles. They implemented a PMC strategy that adjusts proportionally the air pressure 

delivered to both artificial muscles according to their EMG signals. Clinical results involving two subjects 

with Incomplete Spinal Cord Injury (ISCI) demonstrated a positive modification of muscle recruitment 

during the walking assisted by the ankle orthosis. 

Another proportional method was proposed by [43] to control the HAL-3 exoskeleton to assist the 

hip and the knee joint. They presented a calibration method to find two proportional gains for each joint, 

one for flexion and other for extension motion and, thus, the assistance torque of each joint only depends 

on the contribution of each muscle. The effectiveness of the methodology was tested during walking and 

standing up test. Information about the ground reaction force was also considered to avoid the user’s 
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discomfort. An identical strategy was developed by [13]. They found two constant parameters to estimate 

the user’s knee joint torque directly, in order to control a powered knee orthosis, according to the user’s 

motion. Results from healthy walking in a treadmill indicated that the PMC strategy (active condition) 

requires less effort from the users than passive conditions, presenting smaller levels of muscular activity. 

In [44], another PMC strategy was proposed, using EMG and joint angle data to control a powered 

ankle exoskeleton. These data were converted into torque values, based on a linear proportional model 

developed by [45]. Experiments performed in eight healthy volunteers showed that the level of muscular 

activity of the muscles decreased with the assistance of the exoskeleton, whereas the joint angles were 

controlled. 

B. EMG Model-based Control 

EMC is a strategy that uses models driven by EMG signals, such as musculoskeletal or empirical 

models (topics covered in the next section), to map the user’s motion intentions into assistive commands, 

in order to control WPADs. 

The most used musculoskeletal model to control WPADs using EMG signals was established by 

[46] and developed by [47]. Based on this model, it is possible to obtain the joint torque considering the 

EMG signals of the muscles of the joint in the study, the joint angles, and specific muscle parameters 

found in calibration steps [47]. Other models were developed based on this one, minimizing the model 

uncertainty [48]–[50].  

Using the Hill-type muscle model developed by [47], in [51], a knee electrical orthosis controlled 

by the user’s intentions was proposed. The outputs of the model were the user joint torque and the 

stiffness trend index. With these two variables, the user joint angle and stiffness were determined and, 

thus, the torque that should be applied by the orthosis was also determined. The performance of the 

method was evaluated in a healthy subject performing the sit-to-stand and stand-to-sit movements, 

showing a good adaptation of the controller, since the user’s torque under assistance conditions was 

reduced. In [44], based on [47], [48], an ankle power-assist orthosis robot was controlled using EMG 

data and joint angles. Concerning the calibration process, only three parameters were identified: (i) the 

maximum isometric muscle fiber force, Fmax; (ii) the optimal fiber length, L0
m; and, (iii) a non-linear shape 

factor, A. An assistant ratio with four levels was defined to achieve the assistance torque, when multiplied 

by the torque predicted by the musculoskeletal model. Experiments performed in eight healthy volunteers 

showed that as the assistant ratio increased, the level of muscular activity of the muscles decreased, as 

well as the level of movement stability, which is in accord with [52]. 
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As empirical models, neuro-Fuzzy methods have been explored in this field. This approach was 

developed in [53] and quoting the explanation presented by [54], “A fuzzy controller consists of four main 

blocks: the fuzzification block, which interprets the inputs; the fuzzy-rules block, which holds the 

knowledge of how to control the system; an interface mechanism to select which rule should be 

implemented; and the defuzzification block which converts the fuzzy results into desired output signals”. 

In [53], the inputs of the fuzzification block were the EMG signals acquired from eight muscles (presented 

in Table 2). The EMG signals were converted into torque values, based on twenty fuzzy IF-THEN control 

rules (fuzzy-rules block), according to the fuzzy linguistic variables developed. To each control rule, a 

value of torque was attributed (selection of the rule to implement and access to the defuzzification block). 

To test the effectiveness of the EMG-based controller, experiences were carried out with a healthy subject, 

who performed the sitting down and standing up motion under normal and tired physical condition. Under 

assisted conditions, the hip and knee joint angles were controlled, and the activity levels of the muscles 

were reduced. 

In [55], it was reported that the joint torque generated to perform different motions depends on 

the joint angle. For this purpose, the joint angles were considered, along with the EMG signals to estimate 

the joint torque. A change in the control approach developed by [53] was made, avoiding the fuzzy IF-

THEN control rules to obtain the hip and knee joint torque directly. A real-time neuro-fuzzy muscle-model 

matrix modifier with five layers was proposed, where the inputs were the hip and the knee joint angles. 

Results, from three healthy male subjects demonstrated a reduced muscle level activation, indicating that 

the model adopted itself to each user. 

Recently, in [11], it was developed another method to estimate the hip and knee joint torques using 

EMG signals, joint angles, velocities, and accelerations to control a knee orthosis. These signals were 

converted into torque values, through a Radial Basis Function Neural Network (RBFNN). A two-step 

learning strategy was developed to improve the accuracy of the estimation. This method was proposed 

to estimate the joint torque with practicability and adaptivity, where there was no necessity of model 

calibrations and where the model should be updated in real-time. Experiments including four subjects 

performing the swing motion showed that this model can obtain the joint torque without calibration steps. 
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Table 2. EMG-based control strategies 

Study 
Control 

Method 
Joint Muscles Participants (number) Results 

[42] PMC Ankle SOL and TA ISCI (2) 

Recruitment of the 

muscles, during the 

walking motion 

[43] PMC 
Hip 

Knee 

BF, VM, Gluteus Maximus (GM) and 

RF 
Healthy (1) 

Decrease in the levels of 

muscular activity 

[13] PMC Knee ST, SM, VL and VM Healthy (2) 
Decrease in the levels of 

muscular activity 

[44] PMC Ankle TA and GAS Healthy (8) 
Decrease in the levels of 

muscular activity 

[51] EMC Knee RF, VM, VL, BF, SM and ST Healthy (1) 
Decrease in the levels of 

muscular activity 

[44] EMC Ankle TA and GAS Healthy (8) 
Decrease in the levels of 

muscular activity 

[53] EMC 
Hip 

Knee 

Tensor Fasciae (TF), RF, VL, VM, 

Adductor Longus (AL), Gracilis (GRA), 

BF and ST 

Healthy (1) 
Decrease in the levels of 

muscular activity 

[55] EMC 
Hip 

Knee 
TF, RF, VL, AL, GRA, VM, BF, ST Healthy (3) 

Decrease in the levels of 

muscular activity 

[11] EMC 
Hip 

Knee 
Quadriceps Femoris (QF) and BF Healthy (4) 

Decrease in the levels of 

muscular activity 

2.3.2. AAN EMG-based Control Strategies 

Further studies have been explored AAN EMG-based control strategies by providing the assistance 

required by the user while considering his/her motion intention from EMG signals [17]. With this control 

strategy, the patient can perform the walking motion correctly, based on a human-machine interaction, 

regaining autonomy to move [56]. 

C. Fleischer et al. [17], [57], [58] presented the first works in this field, developing a control 

strategy able to provide an additional torque upon the knee joint torque of the user, estimated through 

EMG signals. This control strategy is composed by two loops: the outer loop and the inner loop. In the 

outer loop, the processed EMG signals, along with the joint angles, are converted into knee torque values 

of the wearer through a musculoskeletal model [48]. These knee joint torques are multiplicated by an 

amplification factor, defined as a support ratio, varying from 0 to 1 to set the target joint torque. The inner 

loop provides the real knee torque based on force sensors connected between the orthosis and the 
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actuator. Consequently, the controller sends a control signal to the orthosis to diminish the difference 

between the current and the target torques, achieved with the inner and the outer loop, respectively. 

Experiments with a healthy subject showed a decreased muscle activation when the support ratio 

increases, since the user is benefitting from the support provided. However, the interaction between the 

user and the WPAD showed operating issues, such as oscillations in the knee torque provided when fast 

movements are performed for the maximum the support ratio. 

Later, in [56], [59], [60], another AAN EMG-based control strategy was developed, integrated into 

a knee joint actuated orthosis. EMG signals along with the knee angles, acted as inputs in an EMG-Driven 

Musculoskeletal model [49] to obtain the user’s knee joint torque. The desired torque was estimated by 

inverse dynamics. In this sense, the torque delivered by the orthosis is inversely amplificated or reduced 

with respect to the user’s knee joint torque. Different experimental tests were performed in the three 

works to evaluate the robustness of the implementation. In [59], with the user in a sitting position, three 

tests were made: (i) subject in passive mode; (ii) subject developing a considerable torque level; and, (iii) 

subject developing less torque level. When the user develops an enough effort/torque to complete a 

specific task, the assistance torque decreases, whereas if the user does not develop enough torque to 

complete a task, not performing the desired trajectory, the assistance torque increases. During these 

three experiments, the Root Mean Square Error (RMSE) between the current knee joint position and the 

desired one was below 0.7 º. Experiments with the user performing step movements indicated a RMSE 

below 2.71 º, between the current and the desired knee joint position [60]. The robustness related with 

external disturbances was tested in [56], with the orthosis providing a greater torque to drive the system 

to the desired trajectory. In these cases, RMSE equal to 6.81 º were achieved. 

Table 3. AAN EMG-based control strategies 

Study Control Method Joint Muscles Participants (number) 

[57] EMC Knee RF, VL and ST Healthy (1) 

[58] EMC Knee RF, VM, VL, SM, ST and BF Healthy (1) 

[17] EMC Knee RF, VM, VL, SM, ST and BF Healthy (1) 

[59] EMC Knee RF, VL, SM, ST and BF Healthy (1) 

[60] EMC Knee RF, VL, SM, ST and BF Healthy (1) 

[56] EMC Knee RF, VL, SM, ST and BF Healthy (1) 
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2.3.3. Discussion 

The reviewed control strategies, presented in Table 2 and Table 3, were designed to help the lower 

limbs performing certain motions, in real-time. According to [61], these control strategies may be 

categorized in assistance or rehabilitation strategies, as follows. An assistance strategy is generally used 

in subjects with lower limb impairments, to enable a performance similar to the performance of healthy 

individuals. On the other hand, rehabilitation strategies are defined as a method to rehabilitate and re-

train the lower limb capabilities of subjects who suffered an injury. 

The four PMC methods presented in [13], [42]–[44] have different purposes. Studies [13], [43], 

[44] revealed that the developed control strategy generated lower levels of muscular activity, whereas the 

joint trajectories were correctly executed. In contrast, in [42], experiments realized in ISCI patients showed 

a recruitment of the muscles after using the WPAD controlled by a PMC. These findings demonstrate that 

the works developed by [13], [43], [44] and the strategy proposed in [42] could be suitable for lower limb 

assistance and rehabilitation, respectively. 

Concerning the EMC strategies, they were divided into two categories: the musculoskeletal and the 

empirical models. All the reviewed model-based control strategies contributed to lower limb assistance, 

since the levels of muscular activity decreased, while the joint angles were controlled. Both of the 

musculoskeletal models proposed in [44], [51], were based on [47]. In spite of showing  a decreased 

muscular activity, the study [44] reported that as the amplification factor increases, the instability of the 

control system also increases. This fact was rectified in [51], since there is no amplification factors in the 

control strategy.  

The PMC strategies and the musculoskeletal models presented [13], [42]–[44], [51] require 

calibration steps to determine proportional gains or model parameters, respectively. These calibration 

steps are realized with the users performing specific movements, such as isometric contractions or 

walking. This procedure may present a methodological issue when applied to pathological individuals 

because some of them may not be able to perform these motions due to muscular weakness.  

On the other hand, the empirical models do not depend on calibration steps. Previous studies [11], 

[53], [55] demonstrated that the levels of muscular activity decreased when using WPAD controlled by 

empirical models. Thus, these strategies could be useful to assist lower limbs with moderate impairments. 

However, some limitations were notified in [11], namely a resistance offered by the orthosis during the 

motion, that could be related to the generation of torque by other muscles (not the QF, neither the BF). 

In this sense, an alternative to improve the effectiveness of empiric models aims the use of a higher 

number of EMG electrodes to map the user intentions correctly. 
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Furthermore, the works developed by [17], [56]–[60] reveal to be a suitable approach to assist 

and rehabilitate the knee joint, when the user requires support. Based on the results, two situations were 

verified: (i) if the support ratio provided by the WPAD increases, the user’s torque decreases, but the knee 

joint angle remains equal; and (ii) if the support ratio decreases, the user’s torque increases and the knee 

joint angle remains equal once again. This indicates that the AAN strategy provides the assistance to 

perform the movements when required, offering great potential to motor rehabilitation and user’s motor 

autonomy. Nonetheless, the muscle model should be improved and suitable for each muscle, in order to 

consider different activation delays of each muscle.  

Based on the AAN EMG-based model strategies already developed, it is concluded that if the user 

does not perform any movement, the exoskeleton provides the enough amount of torque to complete the 

desired knee joint trajectory. On the other hand, if the wearer has an electric signal associated, the 

exoskeleton only provides a torque upon the user’s torque, in order to achieve a correct knee joint 

trajectory. 

2.4. EMG-based Torque Estimation 

Most of the implemented control strategies involved the joint torque estimation of the real user’s 

joint torque, based on the EMG signals acquired from specific muscles. For this purpose, a literature 

search was made to review the methods applied to convert the EMG signals into torque values, namely 

proportional gain methods, musculoskeletal models and empirical models, as presented in Table 4. 

2.4.1. Proportional Gain Methods 

The studies developed by [13], [43], [44] followed the same methodology to obtain the joint 

torque, based on a proportional gain method. They carried out a calibration step to find proportional gains 

per joint, for flexion and extension motions. For this purpose, the participants had to maintain a fixed joint 

angle, while the orthosis/exoskeleton actuator performed a fixed torque value. This process implied that 

the participant needed to perform a joint torque to maintain the required joint angle. At the same time, 

the EMG signals were read and, a proportional gain that relates the EMG signals with the joint torque was 

found. In the three works, the estimated joint torque was similar to the real one. In [13], a Normalized 

Root Mean Square Error (NRMSE) and a phase delay between the measured torque and the estimated 

torque was were calculated, achieving values of 12 % and 22 ms, respectively. In [44], the RMSE and the 

Root Mean Square Jerk (RMSJ) between the estimated and the measured torque was 3.56 ± 0.63 Nm 

and 2.85 ± 0.78 Nm, respectively. 



 

17 

2.4.2. Musculoskeletal Models 

The Hill-type model proposed by [46] and developed in [47] was the first  musculoskeletal model 

proposed to estimate joint torque using EMG signals and joint angles. Further variations of this model 

have been developed, improving the calibration process, in order to minimize the model uncertainty. In 

this calibration process, muscle parameters are identified to construct the model, following a trade-off 

between the accuracy of the model and its complexity [51]. 

Based on [46], [47], the work of [48] predicts the knee joint torque, using EMG signals from 

thirteen muscles and the knee joint angles. Eighteen parameters were found in the calibration process to 

construct the model. Among these parameters, the force produced by the muscle-tendon unit (Fmt), 

depends on the pennation angle (ɸ) that depends on L0
m. Consequently, L0

m is function of the percentage 

change in optimal fiber length, γ. This percentage was varied in this study to investigate the importance 

of a correct calibration step in musculoskeletal models. The feasibility of the conversion was assessed by 

six subjects, who performed approximately 204 tasks, including dynamometer, running and sidestepping 

trials. Coefficient of determination (R2) of 0.91 ± 0.04 was obtained between the knee joint torque 

predicted by the model and by inverse dynamics. A mean residual error below 0.2 Nm/kg normalized to 

body weight was achieved. These results were obtained with γ = 15 %. When γ was set to 0 %, a R2 of 

0.85 was obtained, showing the sensitivity of the model to the parameters of the calibration step. 

Based on the works developed by [47], [48], other six works were developed aiming the 

simplification of the model, the reduction of the conversion time and the reduction of the conversion 

errors. In [62] the user motion intentions for the knee joint were mapped, using EMG signals (listed in 

Table 4) and knee joint angles. At the same time, the joint angles and the ground reaction forces served 

as input to the seven-link biomechanical model (composed by two legs with feet, shanks, thighs and the 

torso) to obtain the knee joint torque through inverse dynamics. When compared to [48], only two 

parameters were calibrated (presented in Table 4). The effectiveness of the methodology was evaluated 

in one healthy subject during stepping up stairs and with flexion and extension motions of the knee joint. 

A good correlation between both joint torques was achieved, but the amplitudes of the curves were 

different in some cases. 

The study advanced by [49] considered fewer calibration parameters than [48], aiming the 

reduction of the time of the EMG-based torque conversion.  For this purpose, the tendon strain parameter 

(found in the calibration process of [48]) was neglected, since this parameter represents only 3.3 % of 

the tendon length when a maximum isometric force is generated. This neglection allows the estimation 
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of the L0
m without the time-consuming Runge-Kutta-Fehlerg integration, proposed in [48]. Considering the 

estimated and the experimental knee joint torque, a correlation coefficient (R) of 0.892 ± 0.047 and a 

RMSE of 8.10 ± 1.02 Nm, when a healthy subject performed 10 gait trials. Moreover, the calibration was 

completed in 63.4 ± 1.20 s and the joint torque estimation in this simplified model took 0.0630 s, 

whereas the complete model [48] took 3 h and 0.691 ± 0.0146 s to accomplish the same the calibration 

and the estimation tasks, respectively. 

Inspired in the model developed by [47], in [51] the knee joint torques were estimated, using the 

EMG signals of six muscles (listed in Table 4) and the knee joint angles. Eight parameters were 

determined in the calibration process (also presented in Table 4), since the authors considered this 

number as an acceptable tradeoff between the complexity of the model and its uncertainty. Experiments 

were carried out with a healthy subject performing flexion and extension movements of the knee joint. A 

NRMSE between the torque obtained with the model and the measured torque from inverse dynamics 

was 12.4 %.  

Moreover, in [63], a musculoskeletal model was developed, based on the Hill-type muscle model 

developed by [48]. EMG data were recorded from three muscles of a healthy person, along with the joint 

angles and they acted as input in the model. In the calibration step, four parameters were identified, as 

presented in Table 4. The RMSE and the R2 were calculated to evaluate the model performance, obtaining 

values below 1.99 Nm and an average of 0.89, respectively. 

 In [44], in addition to the developed linear proportional model, an EMG-driven Hill-type 

neuromuscular model  was also proposed, based on [47]. Two muscles were used to perform the 

conversion and only three parameters were determined in the calibration process. The effectiveness of 

the conversion was tested in eight healthy subjects, performing maximum isometric voluntary 

contractions at different angles. RMSE of 3.49 ± 0.57 Nm and RMSJ of 1.21 ± 0.51 Nm were obtained 

between the estimated and the measured torque.  

 An EMG-driven musculoskeletal model was proposed in [64], in real-time, to predict the user 

intentions of the ankle and knee joint motions. This musculoskeletal model was based on [48], where the 

EMG signals and the ankle and knee joint angles are the model’s inputs. This methodology was 

implemented in a Raspberry Pi 2 to investigate the computational cost. Three different tasks were 

performed by five different participants: (i) walking at self-selected speed, (ii) knee squat, and (iii) calf rise 

motion. The estimated torques by the musculoskeletal model were compared with the calculated joint 

torques using inverse dynamics. The results of the EMG-driven model were presented in 2.7 ± 0.48 ms. 

RMSE were always below 0.37 ± 0.12 Nm/kg and the smallest value observed was 0.01 ± 0.01 Nm/kg. 
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Pearson coefficients were also calculated and the values were always above 0.43 ± 0.36, and the highest 

correlation value obtained was 0.9 ± 0.07. 

2.4.3.    Empirical Methods 

From the literature research, it was verified that empirical methods, such as neuro-fuzzy models 

[53], [55] and neural networks [11], [65], [66] have been applied to estimate the joint torque based on 

EMG signals. 

Study [53] only used EMG data of eight muscles as input in a neuro-fuzzy model to obtain the hip 

and knee joint torques. To construct this model, twenty fuzzy IF-THEN control rules were defined and a 

value of joint torque was matched. In [55], the EMG signals along with the joint angles served as input to 

obtain the joint torque. In both works is not presented the comparison between the real torque and the 

estimated torque. When performing different movements, if the EMG signals were reduced, the research 

concluded that the EMG-based controller is adapted to the user. 

A Multilayer Perceptron (MLP) neural network was developed in [66] to estimate the knee joint 

torque. EMG data normalized to the maximal isometric activation, along with the body mass, height, age, 

gender, joint velocity, and joint position were entered as input variables in the three-layer neural network. 

The second layer was composed by a variable number of hidden units. The third layer estimated joint 

torque of the knee joint. The results (R = 0.96) demonstrated the effectiveness of this neural network to 

estimate the knee joint torque. Later, in [65], the authors improved the MLP presented in [66]. First, the 

research concluded that how many more muscles were incorporated, better results are achieved. Second, 

better results were obtained when normalized data at each isometric angle was used in training process 

of the neural network, because it was proved that the curve of the normalized joint torque at each angle 

is similar to the curve of the normalized EMG. Third, results pointed out that MLP neural network has a 

better joint torque estimation when compared with other neural networks, such as Fully Connected 

Cascade. At last, five neurons in the second layer were found as the best number of hidden units. 

A RBFNN with a two-step learning strategy was developed by [11] to convert the EMG signals into 

torque values. The performance of the methodology was evaluated through simulations and experiments 

with four healthy subjects only for the swing phase. A RMSE of 2 Nm and a R higher than 0.8 were found, 

between the measured and the estimated joint torque.  
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Table 4. Methods to convert EMG signals into joint torque values 

Study 
Conversion 

Method 

Used in 

Control? 
Calibration Parameters Inputs Joint Muscles 

Participants 

(number) 
Results 

[43] 
Proportional Gain 

Method 

Yes 
Two gain 

parameters/joint 
EMG data 

Hip 

Knee 
BF, VM, GM and RF Healthy (1) * 

[13] 
Proportional Gain 

Method 
Yes 

Two gain 

parameters/joint 
EMG data Knee VL, VM, SM and ST Healthy (2) 

NRMSE = 12 % 

Phase delay = 22 ms 

[44] 
Proportional Gain 

Method 
Yes 

One gain 

parameter/joint 

Joint angles and 

EMG data 
Ankle TA and GAS Healthy (8) 

RMSE = 3.56 ± 0.63 Nm 

RMSJ = 2.85 ± 0.78 Nm 

[48] 
Musculoskeletal 

Model 

No 
Eighteen parameters 

** 

Joint angles and 

EMG data 
Knee Thirteen muscles ** Healthy (6) R2 = 0.91 ± 0.04 

Mean Residual Error/body weight < 
0.2 Nm/kg 

[62] 
Musculoskeletal 

Model 
No Fmax, Fmt, and A 

Joint angles and 

EMG data 
Knee * Healthy (*) 

Good correlation between the shape 

of the knee joint torque obtained by 

inverse dynamics and by the EMG-

based model 

[49] 
Musculoskeletal 

Model 
No 

Fmax, Fmt, L0
m, ɸ and 

maximal speed of the 

muscle (vm) 

Joint angles and 

EMG data 
Knee 

SM, ST, BF, Sartorius (SAR), TF, 

GRA, VL, VM, VI, RF, 

Gastrocnemius Medialis (GASM) 

and Gastrocnemius Lateralis 

(GASL) 

Healthy (1) 

R = 0.892 ± 0.047 

RMSE = 8.1 ± 1.02 Nm 

Calibration time = 63.4 ± 1.20 s 
Joint torque estimation time = 

0.0630 s 

[51] 
Musculoskeletal 

Model 
Yes 

Fmax, Fmt, L0
m, ɸ, A and 

three constants 

Joint angles and 

EMG data 
Knee RF, VM, VL, BF, SM and ST Healthy (1) NRMSE = 12.4 % 
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[63] 
Musculoskeletal 

Model 
No Fmax, Fmt, L0

m, ɸ  
Joint angles and 

EMG data 
Knee RF, VM and VL Healthy (1) RMSE = 1.99 

R2 = 0.89 

[44] 
Musculoskeletal 

Model 
Yes Fmax, Fmt, L0

m
 and A 

Joint angles and 

EMG data 
Ankle TA and GAS Healthy (8) RMSE = 3.49 ± 0.57 Nm 

RMSJ = 1.21 ± 0.51 Nm 

[64] 
Musculoskeletal 

Model 
No Fmax, Fmt, L0

m
 and A 

Joint angles and 

EMG data 

Ankle 

and 

Knee 

BF, GASL, GASM, GRA, RF, SAR, 

SOL, SM, VL, VM, TA, Peroneus 

Longus (PL) and Peroneus 

Tertius (PT) 

Healthy (5) 
Joint torque estimation time = 2.7 ± 

0.48 ms 
RMSE < 0.37 ± 0.12 Nm/kg 

Pearson correlations > 0.43 ± 0.36 

[53] Empirical Model Yes *** 
EMG data 

GRF data 

Hip 

Knee 

TF, RF, VL, VM, AL, GRA, BF and 

ST 
Healthy (1) * 

[55] Empirical Model Yes *** 
Joint angles and 

EMG data 

Hip 

Knee 

TF, RF, VL, AL, GRA, VM, BF and 

ST 
Healthy (3) * 

[66] Empirical Model No *** 

Body mass, body 

height, age, gender, 

joint velocity, joint 

position and EMG 

data 

Knee VL and BF 
Healthy 

(20) 
R = 0.96 

[65] Empirical Model No *** 

Body mass, body 

height, age, gender, 

joint velocity, joint 

position and EMG 

data 

Knee VL, BF, RF, VM and ST Healthy (1) 

• More muscles imply a better 

joint torque estimation; 

• The data should be normalized 

at each isometric angle; 

• The second layer should have 
five neurons. 
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[11] Empirical Model Yes *** 

Joint angles, 

velocities and EMG 

data 

Hip QF and BF Healthy (4) 
RMSE < 2 Nm 

R > 0.8 

 

* Not specified 

** Consult [48] for more information 

*** Not Required 
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2.4.4. Discussion 

Among the different strategies, three methods were identified to convert the EMG signals into joint 

torque values: Proportional Gain Methods, Musculoskeletal Models and Empirical Methods. 

It was reported by [46], [67] that the muscle activation, the architectural and biomechanical 

properties of the muscle fibers and tendons are determinant factors in the force of muscle-tendon units. 

For this purpose, in a study developed by [68], reported that only the use of EMG signals in proportional 

gain method is not enough to predict the torque of the ankle joint. Moreover, [69] reported that the 

proportional torque control only using EMG values is not reliable for two-fold reasons: (i) the human body 

muscles and coactivation effects are exclusive from person to person; and (ii) the EMG readings are 

dependent on the electrodes placement, location and skin impedance. Study [70] showed the differences 

between using only EMG signals and motion data fusion (EMG and other sensors data), concluding that 

the fusion of biomechanical data with EMG signals improves joint torque estimation. Additionally, study 

[43] combined floor reaction force with EMG signals to improve the hip torque at extension motion and 

consequently, overcome the user discomfort during stance phase. 

Regarding the musculoskeletal models [44], [48], [49], [51], [62]–[64], there are several factors 

to consider to obtain a good EMG-torque conversion, as follows: the number of calibration parameters to 

find, the number of muscles to acquire the EMG signals, the complexity and the accuracy of the model, 

and the time to perform the conversion. The complexity of the model increases with the increment of (i) 

the number of calibration parameters; and (ii) the number of muscles. Consequently, the computational 

burden will increase. The works developed by [48], [62] are not capable to perform the conversion in 

real-time, in contrast with the works developed later by [44], [49], [51], [63], [64]. The real-time 

conversion is an important aspect to consider when it is desired to assist patients using EMG signals in 

torque controllers.  

As already referred, the proportional gain and the musculoskeletal methods require calibration 

steps that may not be realized by pathological individuals. For this purpose, the empirical models, as the 

ones presented in [11], [53], [55], [65], [66], can be a suitable strategy to convert the EMG signals into 

torque values, avoiding calibration steps.  

In the study developed by [65], some improvements in a MLP neural network were done. It was 

reported that the number of muscles, the inputs normalization and the number of hidden units had a 

strong impact in the performance of the conversion. However, the dataset used to construct the neural 

network presented twenty subjects where the age range of the participants, as well as the range of 

physical activity of the participants was small. Moreover, the EMG-torque conversion implemented in both 
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works [65], [66] is not completed in real-time. In [11], the joint torque is obtained through a RBFNN, 

where the increment of the number of muscles leads good results without calibration steps. However, the 

error of the torque estimation increases when the hip movement of the orthosis’s joint changed its 

direction. At last, this methodology was only developed for the swing phase, requiring more advances to 

cover all the gait cycle.   

2.5. General Conclusions 

There is interest in using EMG signals to control WPADs, since they are directly related to user 

motion intention. Two types of control strategies integrating EMG data were identified, the EMG-based 

control and the AAN EMG-based control. Both strategies contributed to muscular activity improvement 

and endurance. EMG-based control strategies can be used to re-train the lower limbs of patients with 

impairments. However, it is not expectable that these strategies have the potential to assist their motor 

condition. AAN EMG-based control strategies have the potential to assist and rehabilitate the lower limbs, 

such that the user can achieve autonomy to perform their daily life activities, in contrast to EMG-based 

control strategies. It is expectable that the integration of AAN EMG-based control strategies into WPADs 

may foster motor assistance, re-train, rehabilitation and autonomy when applied to disabled users. 

However, validation tests with pathological subjects are still missing to validate this phenomenon. 

Furthermore, until the moment, there is no explanation by the existence of AAN EMG-based control 

strategies only destinated to the knee joint. 

Further, this review concluded that most of the control methods which use EMG signals to control 

WPADs convert these EMG signals into torque values. There is evidence that only EMG readings are not 

enough to obtain the accurate values of joint torques, being necessary to fuse EMG data with 

biomechanical data, such as, joint angles, velocities, accelerations. Moreover, to perform the EMG-based 

torque estimation in AAN EMG-based control strategies, it was noticed that only musculoskeletal models 

were used. 

Overall, this dissertation aims the development of an AAN EMG-based control strategy destinated 

to the ankle joint assistance, using a musculoskeletal model fed with EMG signals, joint angles and 

velocities to perform the EMG-based torque estimation, since there were not found literature evidences 

of the use of these strategies to assist the referred joint.  
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CHAPTER 3 – SYSTEM OVERVIEW 

 

In this chapter, it is presented an overview relative to the orthotic system used in this dissertation 

to assist individuals with disabilities in the ankle joint. The control architectures already implemented in 

this orthotic system are briefly explained and the AAN EMG-based control strategy is proposed. At last, 

the chapter ends with the description of the constructed EMG acquisition system, that represents an 

essential element of the proposed control strategy.  

3.1. SmartOs Description 

SmartOs is a WPAD embedded with wearable sensors destinated to the analysis and control of the 

gait motion. SmartOs was developed in [71] and it presents the capacity of providing a personalized and 

repetitive gait training, such as joint trajectory tracking control, to assist the user according with its needs 

and to enable the abnormal gait pattern correction, such as drop foot gait in stroke survivors. Besides 

that, this WPAD invokes the user participation, in order to rehabilitate the ankle joint, by considering the 

user’s motion intention based on muscular information (an example of an EMG-based control strategy) 

and it was designed to achieve walking speeds ranging from 0.5 to 1.6 km/h [71]. Moreover, SmartOs 

also present a biofeedback system integrated in its architecture to accelerate the familiarization of the 

user to itself and to accelerate the gait recovery.   

The conceptual design of SmartOs is presented in Figure 1 and a brief explanation of each block 

is provided. Nonetheless, the scope of this dissertation is the projection of an AAN EMG-based control 

strategy that has not yet been developed. 
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Figure 1. Conceptual design of SmartOs [71]. 

SmartOs presents two graphical interfaces (Mobile and Desktop Graphical Applications) that were 

established via wireless technology enabling an intuitive utilization, considering therapists or a technician 

as possible users. In order to provide a user-oriented assistance, the Mobile Graphical Application was 

developed to configure the system with the subject data (e.g. body height) and to configure the assistance 

settings, selecting the speed, the gravity compensation tool, the stiffness and the therapy mode. All 

configured information is transmitted via Bluetooth to the Central Controller Unit (CCU) of SmartOs, that 

includes a Raspberry Pi 3, a single board computer with 1 GB of RAM and a quad-core processing unit 

(1.2 GHz, 64 bit CPU). 

Desktop Graphical Application provides a real-time displaying from the user, allowing a real-time 

monitorization.  

The time-effective walking assistance in SmartOs is possible due to the presence a Bioinspired 

Hierarchical Control Architecture, organized from the low-level (comprehending the Proportional Integral 

Derivative (PID) and Feedback-Error Learning (FEL) controllers) to the high-level modules. This last 

module presents high-level controls that are executed in the CCU of SmartOs. CCU enables the gait 

analysis performed by Gait Analysis Tools and it is responsible to establish external communications with 

other applications. To generate control commands, the walking pattern is continuously analyzed based 

on gait tools. This time-effective gait analysis and monitorization of the user’s motor status is performed 

with recourse to wearable, ergonomic and stand-alone sensors, exhibited in the Wearable Motion LAB 

block. 
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In Chapter 2, it was referred that subjects with muscle atrophy present EMG signals that are weaker 

than the EMG signals of healthy subjects. Thus, the use of EMG-based control strategies (already 

implemented in the high-level of SmartOs) could not be efficient. Moreover, it was seen that a user-

oriented control strategy considering the user’s needs, such as an AAN EMG-based control strategy, may 

enhance motor assistance, rehabilitation and autonomy when applied to disabled users. However, this 

control strategy has not yet been developed, neither applied in SmartOs. Thus, the focus of this 

dissertation consists into develop an AAN EMG-based control strategy, aiming its future implementation 

in the high-level module of SmartOs. In this sense, in this chapter, the proposed control strategy is 

presented, ending with the construction of an improved EMG system, in order to acquire EMG signals to 

serve as input in the proposed strategy.  

3.2. Proposed AAN EMG-based Control Strategy 

To implement an AAN control strategy, it is required to predict the ankle joint trajectory that a 

subject should perform (reference trajectory) and compare it with an ankle joint trajectory that the subject 

is performing (real trajectory), in real-time. Since the parameter to control is the joint torque, it is required 

to predict the reference ankle joint torque that a specific subject should perform (Figure 2), in order to 

compare with the real joint torque that the subject is performing. The input data to achieve the reference 

joint torque will be discussed in Chapter 4 and Chapter 5. 

 

Figure 2. Proposed reference joint torque estimation diagram, where BH, WS, 𝜃ref(t), ѡref(t), αref(t) and τref(t) correspond to 

Body Height, Walking Speed, reference joint angle, angular velocity, angular acceleration and reference joint torque, 
respectively. 

In AAN EMG-based control strategy, the user’s motor intentions are estimated based on EMG 

signals. There are numerous methods to convert these signals into real joint torques performed by the 

user, also considering the joint angles, as presented in Chapter 2. Thus, the determination of the torque 
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of a specific joint in real-time conditions can be performed, as represent by Figure 3. This conversion is 

the focus of Chapter 6. 

 

Figure 3. Proposed real joint torque (τreal(t)) estimation based on EMG signals (EMG(t)) and real joint angles (𝜃(t)). 

 With these two blocks, the real and the reference joint torque can be determined and, therefore, 

it is possible to relate both, as presented by Figure 4. 

 

Figure 4. Proposed AAN EMG-based control strategy.  

The comparison between the real and the reference torque produces an error, e, that acts as input 

in the PID Controller. Based on this error, this last block produces a control command, u, that is 

interpreted by the DC motor of SmartOs, producing a value of torque corresponding to u. The angle 

performed by the ankle joint, 𝜃ℎ, is measured through a precision potentiometer with resolution of 0.5 º 

and this angle is responsible to close the loop, since it is used, along with the EMG signals, to determine 

the real joint torque performed by the user.   

3.3. Wired EMG Acquisition System 

Considering the necessity of an EMG acquisition system in the proposed control architecture, in 

the following sub-sections, the hardware of the EMG boards responsible to acquire EMG signals is 

presented. These signals will be acquired using a STM324F4 – Discovery development board that 

integrates a STM32F407VGT microcontroller [72].  

Furthermore, the protocol created to validate the system will be presented and the section ends 

with the discussion of the obtained results. 
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3.3.1. Hardware Specifications 

A. Electrode Configurations 

The bipolar configuration was chosen in this dissertation, along with a differential amplification, 

in order to suppress signals common to both detection electrodes, such as AC signals and EMG 

signals from distant muscles. Moreover, with this arrangement, EMG signals from muscles close to 

the detection electrodes will be amplified with better signal-noise ratio along with an increase in the 

spatial resolution of the EMG signal [31]. 

B. Instrumentation Amplifier 

In a bipolar configuration, a differential amplifier is required to introduce a gain with respect to a 

difference between two signals. In this sense, it was used a Low-Power Instrumentation Amplifier - 

INA128. This operational amplifier was selected due to its low offset voltage, high common-mode 

rejection ratio (CMRR), low input bias current and low quiescent current, which eliminates most of 

the noise of the signal. Moreover, this operational amplifier enables an easily adjustable gain, 

conferring the features referred above. The main characteristics of this component are presented in 

Table 5.  

Table 5. INA128 main features 

Parameter Value Units 

Offset Voltage 50 µV 

Quiescent Current 700 µA 

Input Bias Current 5 nA 

CMRR 120 dB 

 

A gain of 50 was chosen, enabling an amplification of the EMG signal without introducing too 

much noise. Besides that, to increase the performance of all components in the circuit, two 

capacitors were placed in the power supply lines.  

C. Bandpass Filter 

According to [31], [35], the typical frequency of the EMG signals varies between 0 to 500 Hz. 

However, due to the movement artifacts with low frequencies, it is recommended to filter the EMG 

signal with a high-pass filter with a cut-off frequency between 10 and 20 Hz. In addition, to avoid 

aliasing and to remove the noise of frequencies above 500 Hz, it is also recommended to apply a 

low-pass filter with a cut-off frequency of 500 Hz [31].  
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In this sense, an active second order high-pass filter and a low-pass filter of Sallen-Key with cut-

off frequencies of 20 Hz and 500 Hz, respectively, were implemented. These filters were chosen, 

because they present a better frequency response when compared with passive filters, allowing a 

better rejection of the undesired frequencies and a lower attenuation of the desired frequencies [73]. 

Both filters were dimensioned considering the damping ratio, trying to avoid unwanted oscillations 

during the performance of the system.  

D. Notch Filter 

In the case of this EMG system be supplied by the power lines, it should be able to clean the 

noise introduced by power lines, with a dominant component at 50 Hz. In this sense, an active second 

order notch filter with cutoff frequency of 50 Hz was implemented. 

E. Non-Inverting Summing Amplifier 

Typically, the EMG signals range from –10 mV to 10 mV and, since that this signal will be 

acquired and processed in a microcontroller, it is required to create an amplification stage. In previous 

developments, it was observed a little offset component different from subject to subject. In this 

sense, it was developed a summing amplifier to remove this offset component with a potentiometer 

of 2.2 kΩ. Moreover, to miniaturize the system, the rectification of the signal will be done in software. 

Thus, the non-inverting summing amplifier is also useful to introduce an offset component to the 

signal, considering its maximum signal range allowed to avoid the saturation. In this case, a DC offset 

component of 1.65 V was chosen, since the minimum and maximum voltage allowed by the 

processing unit ranges from 0 V to 3.3 V [72]. To confer a gain to the EMG signal, a potentiometer 

of 1 MΩ was used, allowing an adjustable gain from 1 to 200. 

Note that all the filters and the non-inverting summing amplifier used a high precision operational 

amplifier, the OPAx277. These operational amplifiers were selected, since they present ultralow offset 

voltage, high CMRR, low bias current, low quiescent current and a wide supply range. The main 

characteristics of this amplifier are presented in Table 6. 
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Table 6. OPAx277 main features 

Parameter Value Units 

Offset Voltage 10 µV 

CMRR 140 dB 

Input Bias Current 1 nA 

Quiescent Current 800 µA/amplifier 

Supply Range ±2 to ±18 V 

 

F. Voltage Limiter 

Finally, a voltage limiter circuit was implemented, in order to protect the inputs of the processing 

unit. However, it was not used a typical buffer configuration supplied between the referred voltages. 

Aiming the protection of the operational amplifier, a non-inverting amplifier with a diode Zener of 2.7 

V placed on the input of the amplifier was implemented. Thus, the inputs of the processing unit, as 

well as the inputs of the operational amplifier are protected. Moreover, in this stage a gain of 2 was 

conferred to the signal. 

G. Final System 

Before the practical hardware implementation, the filters were projected on National Instruments: 

MULTISIM software. Once implemented, the expected and the theoretical frequency responses of the 

system were compared and the results are presented in Figure 5.  

 

Figure 5. Theoretical and experimental frequency response (FR) of the Sallen-Key high-pass and low-pass 
filters, along with the notch filter. 
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Analyzing Figure 5, differences with respect to the attenuation levels between the experimental 

and theoretical implementations are visible. Based on the theoretical FR, it would be expectable to 

achieve higher levels of attenuation in the desirable range of frequencies. However, despite of lower 

levels of attenuation have been verified experimentally, this phenomenon does not compromise the 

proper functioning of the projected system. Moreover, the experimental attenuation levels introduced 

by the filters at frequencies ranging from 80 to 300 Hz are better than the expected ones, since at 

these frequencies, the signal is not attenuated. 

The final EMG system can be seen in Figure 6. Since this system was designed to acquire EMG 

signals from only one muscle, other boards must be used to acquire signals from other muscles. 

Thus, an input/output supply was projected to supply energy between consecutive boards. 

 

Figure 6. Final EMG system. 

3.3.2. Experimental Validation Protocol 

To analyze the feasibility of the developed EMG system, a validation trial was performed with a 

healthy male subject (with 23 years old, height of 1.70 m and weight of 78.1 kg) walking in a treadmill 

at 1 km/h, for 1 minute. The choice of the walking speed was based on the minimum (0.5 km/h) and 

maximum (1.6 km/h) range of speeds allowed in SmartOs [71]. The MuscleBAN EMG system of [40] 
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was used as ground truth. The detection electrodes were placed on the TA muscle and the reference 

electrode was placed on the knee, as exhibited in Figure 7. 

 

Figure 7. Electrode configuration adopted for a validation test to measure the electrical activity of the TA muscle. 

3.3.3. EMG Signal Processing 

During the data collection, EMG data from ten gait cycles were acquired. To this data, the DC 

offset component of 1.65 V introduced in hardware was removed to achieve a signal with null mean. 

Then, the rectification of the signal was performed, taking the absolute value of the signal. The envelope 

of the EMG signal was determined using the Root Mean Square (RMS) value of the signal with a 300 ms 

movable window. The RMS feature was used to create the EMG envelop since it is the most suitable 

method to represent a physical meaning of muscle force [74]. To confirm this fact, a recent study showed 

that the RMS method is better correlated with the muscle contraction force when compared with other 

methods, such as mean absolute value, median frequency and mean power frequency, since an 

increase/decrease of the muscle force contraction is more easily detected with RMS value [75]. The 

choice of the window length (below 300 ms) was based on [76]. Higher values of window length do not 

cause an increase of the information. In some cases, it was reported that an extreme increase of the 

window length could produce a loss of information [76].    

3.3.4. Results and Discussion 

Results of the experimental validation trial are presented in Figure 8, where it is possible to verify 

that the signals acquired with the projected EMG boards present a considerable correlation level with the 

signals acquired with the system of [40]. Notwithstanding the ground truth system enable a better 
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muscular activation detection (verified by the higher amplitude voltage), comparing both systems, the 

muscular activations are detected at the same instant, conferring robustness to the constructed EMG 

system. Besides the comparison of the EMG signals acquired with different systems, another comparison 

was performed, in order to analyze the feasibility of the measure based on literature evidences. In this 

sense, the black perimeter delimited in Figure 8 was zoomed and the EMG signals of both systems were 

filled. The reason why this perimeter was chosen is because the range time selected corresponds to a 

single gait cycle.  

The EMG signals inside the zoomed perimeter were compared with literature EMG signals of a 

subject walking freely and, based on the results, it is possible to infer that the signals acquired with the 

proposed EMG system are similar to the expected ones.      

 

Figure 8. EMG signals acquired with the projected EMG system (blue line) and with a system from [40] (red line). The black 
signal represents the Literature data, where HS, LR, MSt, TSt, PSw, ISw, MSw and TSw mean Heel Strike, Load Response, 

Mid Stance, Terminal Stance, Pre-Swing, Initial Swing, Mid Swing and Terminal Swing, respectively. 
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3.4. General Conclusions 

In this chapter, the main characteristics and strategies presented in SmartOs were presented. 

Since it was identified the necessity to construct an user-oriented strategy, an AAN EMG-based control 

approach was proposed, aiming its future insertion into the presented WPAD.  

Furthermore, an EMG acquisition system was constructed to acquire signals from the main 

muscles reviewed in Chapter 2. A good correlation between the signals acquired with the constructed 

EMG system and the acquisition system of [40] was found. Moreover, the signals acquired with the 

developed EMG system were also compared with literature evidences with respect to the activation of the 

TA along a single stride. With the achieved results, it was concluded that the EMG system was correctly 

projected and it can be used and integrated in the proposed AAN EMG-based control strategy. 

Once constructed the EMG system to collect EMG signals from the muscles of interest, another 

requirement of the proposed AAN EMG-based control strategy is the prediction of user-oriented reference 

walking kinematics and kinetic trajectories, that will be the focus of the Chapter 4 and Chapter 5, 

respectively.  
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CHAPTER 4 – ANKLE KINEMATICS TRAJECTORY GENERATION 

 

To implement the AAN EMG-based control strategy, it is required to predict the ankle joint torques, 

to serve as the reference in the proposed architecture. Since the joint torque is associated with the joint 

kinematics [77], a fundamental step to predict the ankle joint torque consists of the generation of ankle 

joint kinematics for each subject. Moreover, in this field, some works already reported the possibility to 

model ankle joint angles based on the walking speed [78], [79]. 

For this purpose, it is necessary an ankle kinematics prediction model based on well-known data 

from the subject. In this sense, body height and body mass, as well as the walking speed are possibilities 

to accomplish this issue. From this perspective, this chapter is focused on the generation of reference 

ankle joint kinematics along the gait cycle, oriented to the subject.  

4.1. Introduction 

Usually, pre-recorded joint trajectories of healthy individuals represent the most used method to 

create joint kinematics in the sagittal plane to serve as reference in assistance applications of the human 

gait. These trajectories are normally recorded at slow (3.2 – 5.0 km/h), normal (5.0 – 6.5 km/h) and 

fast (6.5 – 7.5 km/h) speeds [80]. However, the walking speed of stroke, or ISCI, or Parkinson survivor 

is, approximately, from 1.8 km/h to 2.5 km/h [81]. A possible solution to overcome this issue could be 

the recording of joint trajectories using numerous walking speeds, in order to construct a huge database 

to be used as reference in gait assistant applications. However, this solution is not suitable due to the 

high time consumption of the data collection and large amount of data, becoming impracticable to 
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advance with this approach. In this direction, regression models have been proposed to enable the 

prediction of joint kinematics trajectories during gait cycle [78], [79], [82]. 

According to [78], the ankle angle waveform during gait cycle presents a linear and quadratic 

relationship with the walking speed. In this sense, if joint trajectories of healthy individuals at slow walking 

speeds are used as reference in control strategies integrated into WPADs, the assistance will not be 

efficient, because people with neurological injuries prefer lower walking speeds and, consequently, 

different joint trajectories. For this reason, in [78], four regression equations based on the walking speed 

were developed to predict the peaks of the ankle joint dorsiflexion and plantar flexion during the stance 

and swing phases. The R2 was used as metric to evaluate the accuracy of the model. However, the highest 

values obtained were 0.1110, demonstrating unsatisfactory results. The equations and the results 

obtained by [78] can be consulted in Table 7, where 𝑣 represents the walking speed. 

Table 7. Regression equations and the correspondent results, achieved in [78], for each peak of the ankle joint angle 

Parameter Equation 𝑹𝟐  

Peak Ankle Plantar Flexion (Stance Phase) −1.7583𝑣 +  9.190961 0.0496 

Peak Ankle Dorsiflexion (Stance Phase) −2.4𝑣 +  13.62415 0.105 

Peak Ankle Plantar Flexion (Swing Phase) 3.7834𝑣 +  12.88073 0.0870 

Peak Ankle Dorsiflexion (Swing Phase) 4.16𝑣2 –  10.7498𝑣 +  10.03869 0.111 

 

Contrary to the four equations presented by [78], in [79], only one regression equation was 

developed considering the linear and quadratic relationship between the walking speed and the ankle 

joint ankle. Better results were achieved using the equation exhibited in Table 8.  

Table 8. Regression equation and the correspondent results, achieved in [79], where a, b and c represent regression 
coefficients of the model 

Parameter Equation RMSE 

θ 𝑎𝑣2 + 𝑏𝑣 + 𝑐 2.79 ± 2.05º 

 

In accordance with other studies, the effect of the body height in the construction of the ankle 

trajectory is not relevant [80]. However, in [82], it was reported that if the variability of the body height is 

higher, this parameter may present a larger effect on the ankle trajectory. Based on this suggestion, in 

this dissertation, the body height was added to the equation presented in Table 8, as proposed by [82]. 

Thus, the ankle joint trajectories are dependent on the walking speed and body height of each subject. 

With this approach, the necessity of recording joint trajectories at many different body heights and 



 

38 

different walking speeds is avoided. The results of this approach are compared and validated with data 

acquired with a motion-capture system (Oqus; Qualysis – Motion Capture System, Göteborg, Sweden) 

under specific experimental conditions. 

4.2. Methods 

4.2.1. Data Acquisition 

The ground truth data were collected during locomotion tests. Despite only lower limbs joint 

kinematic and anthropometric data are required, joint kinetic and EMG data were also collected, being 

useful data for the next chapters.  

A. Volunteers 

The study was performed with sixteen adult subjects (8 males and 8 females with mean age of 

23.8 ± 2.02 years, mean weight of 67.5 ± 10.8 kg and mean height of 1.69 ± 0.109 m), with no evidence 

of any type of physical and physiological disorder that could interfere with their walking pattern, performed 

walking tests. The minimum and maximum body height registered in the data collection was 1.51 and 

1.83 m, respectively and, consequently, the reconstruction of the ankle joint trajectories can only be 

performed in this range. 

B. Materials  

The data acquisition was performed using a motion-capture system with 12 cameras (Oqus; 

Qualysis – Motion Capture System, Göteborg, Sweden), acquiring at 200 Hz, five force platforms 

embedded in the floor (with characteristics presented in Table 9), acquiring at 200 Hz and an 8-channel 

wireless electromyograph (Delsys, Massachussetts, United States of America) [37], acquiring at 2000 

Hz.  

Table 9. Force plates used in the data acquisition 

Force Plate System Model Quantity 

Bertec, Ohio, United States of America FP4060 2 

Bertec, Ohio, United States of America FP6090 2 

Kistler, Winterthur, Switzerland 9281 EA – FP4060 1 
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C. Subject Preparation 

The Newington-Helen Hayes model was adopted as marker set, integrating four more markers 

placed in trochanter, medial tuberosity of the femur, medial malleolus and in the first metatarsal head to 

obtain results more accurate [83]. In this sense, a total of 24 reflective markers were used. In relation to 

the EMG signals, they were extracted from TA, GASL, BF and VL of both legs. Both markers and EMG 

sensors are presented in Figure 9. 

 

Figure 9. EMG sensors and markers placement on the user’s body. 

First, the user was instrumented with EMG sensors. Then, two maximum voluntary contractions 

were performed for each muscle, in order to normalize all the EMG data to the maximum isometric 

contraction registered. After this step, the 24 reflective markers were placed on the body and then, the 

subjects were asked to perform a standing static calibration with their arms crossed in front of the chest, 

looking forward and with their feet in a comfortable position, aligned with the shoulders. This step was 

useful to fit the anthropometric data to the body model of the acquisition system.  

D. Walking Experiments 

All subjects were instructed to perform 10 walking trials on a 10-meter flat surface with 5 

embedded force platforms, at seven different speeds (1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 km/h), 

controlled with a metronome. Between each speed change, the subjects rested for one minute and they 

performed a habituation trial to become acquainted with the new walking speed.  

E. Data Collection and Processing 

The data collected were the joint angles, angular velocity and angular acceleration for ankle, knee 

and hip joints, the ground reaction force and the EMG data from TA, GASL, BF and VL. 
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Following the data collection of joint angles, the kinematic and kinetic data were filtered with a low-

pass Butterworth filter. The cutoff frequency chosen was 6 Hz, since in [84], a frequency around 6 and 

7 Hz was determined as the optimal cutoff frequency to smooth trajectories during the walking motion. 

Regarding the EMG data, a band-pass filter with 20 and 450 Hz as cutoff frequencies was applied to the 

raw data. Further, the EMG envelop was determined using the RMS value of the signal with a 300 ms 

movable window.  

In this chapter, only ankle joint position trajectories will be used. The kinetic and EMG data will be 

useful for the Chapters 5 and 6.    

4.2.2. Regression Model Implementation 

The implementation of the regression model to estimate ankle joint trajectories during walking 

motion was performed using MATLAB® and it was inspired in the work developed in [82]. Based on the 

collected kinematic data, the ankle joint angles were split into individual gait cycles, where the first sample 

corresponds to the heel-strike event. For each trial (that represents a single gait cycle), the joint angle 

values and the instant frame at seven key-events (listed in Table 10) were extracted.  

Table 10. Key-events considered to construct the ankle joint angle 

Key-event Instant of the stride 

1 Heel-Strike 

2 Minimum Angle of the Stance Phase 

3 Minimum Angular Velocity of the Stance Phase 

4 Maximum Angle of the Stance Phase 

5 Minimum Angle of the Swing Phase 

6 Maximum Angle of the Swing Phase 

7 Heel-Strike 

 

To detect all these events, two strategies were adopted: (i) creation of a detection algorithm based 

on the second derivative of the ankle joint angle (angular velocity); (ii) creation of a detection algorithm 

with reference to the maximums and minimums peaks of the ankle joint angle. 

In both strategies, the 1st and the 7th event correspond to the first and final samples of each trial, 

respectively. In case (i), the events number 2, 4, 5 and 6 were extracted based on a zero-cross detection. 

Every time that the angular velocity of the ankle joint crossed the zero value, an event was marked. To 

distinguish between a dorsiflexion or a plantar flexion event, the previous and the next samples in relation 
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to the zero-cross value were also considered. If the previous and the next samples corresponded to 

positive and negative values, respectively, a dorsiflexion event was considered, whereas if the previous 

and the next samples correspond to negative and positive values, respectively, a plantar flexion event was 

marked. Only two plantar flexion and two dorsiflexion events must be detected. At last, the event number 

3 corresponds to the minimum angular velocity between the minimum (second event) and the maximum 

angle of the stance phase (forth event). Figure 10 presents the detection of all key-events using the 

strategy (i). 

 

Figure 10. Identification of the seven key-events enounced on Table 10, for a walking speed of 4 km/h. 

However, mainly at slow walking speeds, the event detection procedure does not work efficiently due 

to irregularities in the pattern of the ankle joint angles and angular velocities collected, as presented in 

Figure 11.   

 

Figure 11. Poor identification of the seven key-events enounced on Table 10, for a walking speed of 1 km/h. 
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To avoid the untruth event detection, strategy (ii) was developed. This algorithm is a simpler 

solution to identify the 2nd, 4th, 5th and 6th events. The 2nd and the 5th events represent the instants where 

maximum plantar flexion is verified during the stance and the swing phases, respectively. The maximum 

dorsiflexion during the same phases corresponds to the 4th and 6th events, respectively. In this sense, a 

simple max-min algorithm can be used to identify these events. Initially, to detect these four events, each 

stride was split into two phases (Phase 1 and 2), according to Figure 12. To perform this division, the 

instant frame where the minimum value of angular velocity occurs (that represents, approximately, the 

transition from stance phase to swing phase) was fixed. At this instant frame, a black dashed line was 

traced, giving rise to the blue and green sides, that represent Phase 1 and 2, respectively (Figure 12). 

With this division, the minimum and the maximum of both phases can easily be identified. Thus, the 

events number 2, 4, 5 and 6 are correctly identified. As in case strategy (i), the event number 3 

corresponds to the minimum angular velocity detected between the 2nd and the 4th events. 

 

Figure 12. Gait Cycle division based on the minimum of angular velocity. 

The regression model used to predict two parameters (joint angles and instant frames) at each 

key-event is represented by Equation (1): 

    

Where 𝑦𝑖 is a parameter that represents the joint angle or the instant frame for each key-event i = 

1, 2, 3, 4, 5, 6, 7, v represents the walking speed and l is the body height of each subject. The parameters 

𝛽1,2,3,4 consist in the regression coefficients found with recourse to a Robust Least Squares fitting with a 

bisquare weighting function. This method was chosen because, according with [85], it attributes smaller 

weights to points that are farther from the fitted line (designed as outliers), minimizing their contribution. 

𝑦𝑖 =  𝛽1 + 𝛽2𝑣 + 𝛽3𝑣2 + 𝛽4𝑙 (1) 
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The best 𝛽parameters were found using a cross-validation method to confer robustness to the regression 

model. A total of 56 𝛽parameters were found, being 28 to estimate the joint angles and the other 28 to 

estimate the instant frame at each key-event, covering all the heights and walking speeds in study. These 

parameters can be consulted in Table 11.  

Table 11. Regression coefficients for angle and instant frame estimation 

Parameter Key-event 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 

Angle 

1 2.38 -1.97 0.236 1.97 

2 3.22 -2.20 0.590 -3.61 

3 26.9 -4.41 0.644 -7.93 

4 44.5 -2.03 0.301 -13.5 

5 -59.8 23.0 -3.50 8.25 

6 6.41 2.00 -0.616 0.112 

7 1.95 -1.46 0.109 2.01 

Instant Frame 

1 1.00 0.00 0.00 0.00 

2 -49.1 17.4 -2.31 51.6 

3 192 -9.72 -0.134 51.3 

4 402 -3.43 1.12 47.4 

5 696 -44.5 6.73 14.4 

6 724 -89.8 17.0 119 

7 1.00 0.00 0.00 0.00 

 

After the prediction of the joint angles and the instant frames at each key-event, it was used a 

Modified Akima cubic Hermite interpolation to create a continuous trajectory, which, according with [82] 

is better for control. This Modified Akima cubic Hermite interpolation is based on piecewise functions of 

polynomials and it was chosen since this method does not produce continuous trajectories with high 

oscillations, neither flattened trajectories. 

4.2.3. Regression Model Evaluation Metrics 

Since the intra-subject variation in amplitude and timing was small, the prediction of the ankle 

angle was compared with the mean of the trials for each subject. In this sense, the performance of the 

regression model was evaluated based on four metrics: RMSE, R, Goodness of Fit (GOF) and NRMSE 

between the predicted and the experimental ankle angle. The first two evaluation metrics were calculated 

to compare the results of the implemented regression model with the results of [82]. Equations (2) and 

(3) present the formulas to calculate the GOF and the NRMSE, respectively. Regarding the GOF, this 
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metric is useful to perceive the performance of the fit, where −∞ represents a very poor fit and 100 % 

corresponds to a perfect fit. 

 

Where 𝑦𝑟𝑒𝑓 symbolizes the real parameter (angle or instant frame), 𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅, represents the mean of 

the real parameter and 𝑦 is the estimated parameter. 

The NRMSE is useful to provide a percentage of the RMSE in the range of the experimental data, 

where 0 % is the best case to achieve. 

 

In Equation (3), 𝑚𝑎𝑥𝑦𝑟𝑒𝑓
− 𝑚𝑖𝑛𝑦𝑟𝑒𝑓

 represents the range of the real parameter.  

4.3. Results and Discussion 

The results of the ankle angle prediction are exhibited in Table 12, presenting the mean and the 

standard deviation of the four metrics: RMSE, R, GOF and NRMSE.  

Table 12. Results of the ankle joint angle prediction 

RMSE (º) R GOF (%) NRMSE (%) 

Validation mean 

(std) * 
Test 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

3.99 

(1.20) 
4.01 

0.930 

(0.0482) 
0.925 

48.4 

(21.5) 
47.3 

13.8 

(6.33) 
14.1 

* Where std means standard deviation 

Based on the collected results, it is concluded that the regression model offers satisfactory 

performances. Comparing the RMSE and R results to those achieved in [82], the performances of both 

implementations are comparable. The RMSE results obtained in this dissertation are similar to those 

achieved in [82], whereas the R results obtained in this dissertation provided an increment of 0.14 upon 

the R results of [82], approximately. Furthermore, since the walking speed presents a greater contribution 

in the prediction of the joint angles, the effect of its variation was evaluated. To perform this analysis, 

boxplots were constructed for each walking speed, since these graphics indicate how each metric is 

spread out. The results are presented in Figure 13.  

𝐺𝑂𝐹 = ቌ1 − ቆ
ฮ𝑦𝑟𝑒𝑓 − 𝑦ฮ

ฮ𝑦𝑟𝑒𝑓 − 𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅ฮ
ቇቍ × 100 (2) 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑚𝑎𝑥𝑦𝑟𝑒𝑓
− 𝑚𝑖𝑛𝑦𝑟𝑒𝑓

× 100 (3) 
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Figure 13. Boxplots of the RMSE, R, GOF and NRMSE with the walking speed variation. 

In accordance with the results presented in Figure 13, it is possible to verify that, at slow walking 

speeds (below 2.5 km/h), the regression model presents higher prediction errors,  therefore, less capacity 

to produce a good fit with the real ankle joint curve. This phenomenon was also reported by [82]. In this 

dissertation, these errors at slow walking speeds can be related with the data collection, because some 

subjects reported more difficulties into maintain the equilibrium during walking trials at slow walking 

speeds. During the data collection, it was verified that these subjects spent more time in the stance phase 

to maintain the equilibrium. Consequently, the angle value of the sixth key-event (maximum peak of 

plantar flexion) increases and it occurs later, as exhibited in Figure 14.  

 

Figure 14. Collected ankle joint angle curves at different walking speeds, for a single subject. 

At slow walking speeds, nearly 61 % of the gait cycles presented not only this phenomenon, but 

also a plantar flexion peak inferior to – 15 degrees (that corresponds to the typical angle value of plantar 
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flexion) and 31 % exhibit a peak below – 25 degrees. In this sense, the regression model learns these 

wrong values (derived from the loss of balance during the data collection) as the suppose values to 

attribute to new input data from subjects walking at slow speeds. However, there were participants that 

presented a walking pattern more stable and, thus, they did not demonstrate joint angles below – 15 

degrees. From this perspective and considering most of the peak values of plantar flexion at slow speeds, 

when the data of these individuals act as input in the regression model, it is expectable that low values 

of plantar flexion are predicted. In fact, this phenomenon occurred, as evidenced by an example in Figure 

15 – a), producing outliers, low values of GOF and R and high values of RMSE and NRMSE. On the other 

side, as the walking speed increases, better ankle angle predictions were observed. Figure 15 – b) 

represents the best reconstruction achieved, that is confirmed by the highest value of GOF and R and 

one of the lowest values of RMSE and NRMSE. 

 

 

Figure 15. Worst (a)) and best (b)) ankle joint angle prediction achieved for a walking speed of 1 km/h (RMSE of 9.58 º, R of 
0.918, GOF of - 37.3 % and NRMSE of 31.7 %) and for a walking speed of 4 km/h (RMSE of 1.16 º, R of 0.988, GOF of 85.0 

%, NRMSE of 3.78 %), respectively. 
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Despite the best result has been achieved for a walking speed of 4 km/h, based on Figure 13, the 

walking speed that is able to produce results with a smaller error distribution is 3 km/h, because at this 

velocity, 99.3 % of the predictions present a RMSE below 5 º, a R between 0.871 and 0.981, a GOF from 

30 to 70 % and a NRMSE below 20 %. 

Additionally, there is another limitation in the current regression model. The proposed methodology 

will provide the same ankle joint trajectories for individuals with the same body height, walking at the 

same walking speed. However, based on the data collected, it is seen that the inter-subject variation for 

individuals in the same conditions is considerable. This phenomenon can be visualized in Figure 16. In 

this sense, as future work, a user-oriented regression method should be developed, in order to consider 

more characteristics of the subjects (e.g. body mass), constructing different joint trajectories for subjects 

in the same conditions. 

 

Figure 16: Subject 6 and 10 with a body height of 1.80 m, walking with a speed of 4 km/h. 

4.4. General Conclusions 

In this chapter, a regression model was implemented to generate reference ankle joint trajectories 

in the sagittal plane for subjects with body heights from 1.51 m to 1.83 m and walking speeds from 1 to 

4 km/h, according to the walking speed and body height of each subject. The results were satisfactory 

and similar to the results achieved in [82]. However, improvements are needed. The reasons that justify 

improvements can be related with two facts: the data collection and the regression model. If the data 

collection had been performed in a treadmill, certainly, the stability of the subjects walking at slow speeds 

would not have been compromised. Therefore, the ankle joint data derived from the walking motion would 

not have been so irregular. Furthermore, using the proposed regression model, subjects in the same 

conditions of speed and body height will acquire the same walking trajectory. However, it was seen that 
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the inter-subject variation is significant and, for this reason, it is recommended to develop a model 

oriented to the user, considering more data, such as body mass. 
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CHAPTER 5 – ANKLE KINETICS TRAJECTORIES GENERATION 

 

This chapter focuses on modeling of reference ankle joint torques based on five inputs, namely the 

reference ankle joint angles determined in the Chapter 4 and their derivatives (angular velocity and 

acceleration), body height of the subject and walking speed. The chapter starts with a brief explanation 

of the dependency of the joint torque on the body mass and then, machine learning methods used to 

create the reference joint torques are presented. At last, the results of each model are exhibited, 

compared and discussed, ending the chapter with the best approach to model the reference ankle joint 

torque. In this context, with the current and the previous chapter, the creation of reference ankle joint 

torques based on the walking speed, body height and body mass of each subject can be achieved. 

5.1. Introduction 

In the Chapter 4, based on [78], [82] and according to the achieved results, it was seen that the 

ankle joint kinematics during the gait cycle depends on the walking speed and the body height. Besides 

that, during the walking motion, the ankle plantar flexors muscles are responsible for providing the support 

required to boost the body forward [86]. In this sense, with an increase of the body mass, it is expectable 

that the support given by the ankle joint should be higher, increasing the muscle function and the joint 

torque and power. Some studies already verified that the ankle joint kinetics depends not only on the 

walking speed, but also on the body mass [87]–[89]. Thus, in this dissertation, all the joint torques were 

normalized by the body mass. 
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In the last years, studies have revealed that machine learning algorithms have capacity to model 

nonlinear relationships of data from the walking motion. In this field, most of these machine learning 

algorithms are selected to classify and to recognize locomotion modes [90]–[92]. There is no evidence 

of the use of machine learning were found to predict joint kinetics oriented to the subject during gait cycle. 

In this connection, this chapter focuses on the use of different machine learning algorithms to model the 

ankle joint kinetics. 

To explore the relation between variables, two approaches of machine learning can be used: 

supervised and unsupervised learning techniques. A supervised learning technique develops a prediction 

model, using a training dataset with a relation between the input and the output data. Then, this developed 

model can predict the output for a new dataset and its generalization capacity with high predictive 

accuracy is dependent of the variance of the training dataset. On the other hand, in unsupervised learning 

techniques, the learning process is based on learning patterns through grouping instances. While 

supervised learning techniques comprehend regression and classification algorithms, unsupervised 

learning techniques correspond to dimensionality reduction or clustering [93]. Thus, supervised learning 

techniques are used in this chapter to predict the reference ankle joint torque.  

5.2. Methods 

In this section, different regression models are implemented to achieve the most proximal ankle 

joint torque for each subject. Based on a literature search, the most investigated machine learning 

approaches used in regression problems include Support Vector Machine (SVR), Random Forest (RF) and 

Artificial Neural Networks (ANN). In the field of ANN, MLP neural networks and Deep Learning 

architectures, including Long-Short Term Memory (LSTM) and Convolutional Neural Networks (CNN), 

have been widely used to solve regression problems [65], [66], [94]–[96]. In this sense, these regression 

models (SVR, RF, MLP, LSTM and CNN) were implemented, trained and optimized in MATLAB® and the 

best method was chosen to predict the reference ankle joint torque. 

5.2.1. Regression Models 

A. Support Vector Regression 

As in Support Vector Machine, developed by [97], SVR is widely used in regression problems due 

to its greater capacity of generalization [93], [98]. This technic is characterized to map a lower-

dimensional data into a high-dimensional feature space using kernel methods to achieve higher 

accuracies. The most commonly used kernels of this method are linear, polynomial and gaussian or radial 
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basis function. However, there is no evidence about the best kernel to use. In SVR, the train is performed 

using a symmetrical loss function. During this process, a flexible tube (ԑ-tube) is formed around the 

estimated function and the main objective of this method is to find the tube with the minimal width (ԑ - 

epsilon) that approximates the continuous-valued function, penalizing points outside the tube and 

providing no penalization to the points inside. At the same time, the model complexity and the prediction 

of the error are balanced. In addition to the great generalization capacity with high accuracy, the 

dimensionality of the input data does not affect the complexity of the model and, since it is less sensitive 

to the noise of the inputs, the model is more robust [93]. 

B. Random Forest 

Before providing a brief explanation about RF applied in regression problems, it is required to know 

some operation concepts behind Decision Trees (DT). When using this method (DT), a single prediction 

is made as a result of questions that are produced based on a splitting method. The decision starts at 

the root node, on the top of the tree, and it progresses through the tree considering the answers to the 

questions at each decision node. This process runs until reaching the best prediction, that is found at the 

terminal node, also known as leaf node, as presented by Figure 17.  

 

Figure 17. Example of an architecture of a DT. 

During the training process, the DT learns the best questions/decisions to ask/perform, as well as 

the order to ask, with the final purpose of achieving the most accurate estimation. The decision criteria 

related to the splitting method is normally based on the mean squared error and, thus, according to this 

value, during the training process, the model decides if it is required to split a node [99]. However, the 
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major problem related with DT is overfitting, because when training, the model tends to adapt itself too 

much to the training data. Another negative aspect of this method is the instability, producing a model 

with high variance. In these cases, small variations in the data imply a generation of a different DT. These 

issues can be overpassed using RF. This regression method aggregates many trees that are trained with 

different random parts of the same training dataset, in order to reduce the high variance, using a 

technique called bagging. This technique enables better predictions, since the different trees are not 

correlated. In this sense, this means that the average performance of many trees is less sensitive to 

noise, while the prediction of a single tree is considerably sensitive [99].  

C. Artificial Neural Networks: Multilayer Perceptron 

ANN are composed by three layers: input, hidden and the output layer, containing independent 

variables, activation functions and dependent variables, respectively. The input layer is connected to the 

hidden layer that is composed by hidden neurons. These neurons receive the information from the input 

layer, they calculate the weights of the variables using activation functions (such as, hyperbolic tangent, 

sinusoid, logistic, binary step or identity functions) and predict the final output [100]. If the output of one 

layer serves as input in the next layer and all nodes are fully connected, the network is called feedforward 

neural network and the information never fed back in the neural network because there are no loops in 

its architecture [101]. Figure 18 represents an example of an architecture of a feedforward neural network 

with two hidden layers. 

 

Figure 18. Feedforward neural network architecture with two hidden layers. 

Based on these characteristics, and according to [102]–[104], MLP is the most used ANN in the 

majority of the fields due to its simplicity. Thus, a MLP neural network was applied in this dissertation. 

The training process of MLPs has been widely used along with backpropagated algorithms, since 

the convergence of the neural network is improved [105]. The principle behind MLPs with 

backpropagation algorithms is based on the error gradient computation with respect to the weights and 
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it comprehends two phases: (i) to process the data from the input layer to the output layer, passing 

through the hidden layer(s); (ii) having the outputs, a comparison between the estimated and the real 

signal is done, computing an error. This error is backpropagated through the neural network based on 

the gradient descendent techniques. Thus, the weights are updated according with the error between the 

difference of the predicted output and the real signal. This can enable the achievement of predictive 

values closer to the target [101], [106]. Mathematically, the error/cost function in backpropagation 

algorithms can be calculated as the sum of squares, using Equation (4). 

 

Where C represents the cost function between the target (T) and the predicted output (O) for each 

output neuron, N. As reported by [107], for a network with only one layer with one neuron and a rectified 

linear unit activation, the prediction/target of the model corresponds to the activation of the neuron. In 

this case, the activation function is described by Equation (5). 

 

Where, w and b represent the parameters of the model (weight and bias, respectively) and X 

represents the model inputs. As a result, the cost function can be reformulated by Equation 6 and 7: 

 

 

Differentiating Equation (7) with respect to the weights, it is possible to update the current weights, 

at instant t, considering the error gradient descent and the weights of the previous instant t – 1, obtaining 

Equation (8). The derivation steps to achieve Equation 8 can be consulted in [107]. 

 

Notwithstanding the prediction can achieve better performances, the gradient descent algorithms 

used to backpropagate the error can stuck in a local minimum, as presented in Figure 19. 

𝐶(𝑇,𝑂) =  
1

𝑁
(𝑇𝑘 − 𝑂𝑘)2

𝑁

𝑘=1

 (4) 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑋) = 𝑚𝑎𝑥 (0, 𝑤 ∙ 𝑋 + 𝑏) (5) 

𝐶(𝑇,𝑂,𝑤,𝑏) =  
1

𝑁
(𝑇𝑘 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑋𝑘))2

𝑁

𝑘=1

 (6) 

C(T,O,w,b) =  
1

N
(Tk − max (0, w ∙ Xk + b))2

N

k=1

 (7) 

𝑤𝑡 = 𝑤𝑡−1  − 
𝛿𝐶

𝛿𝑤𝑡−1
 (8) 
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Figure 19. Gradient descent algorithm getting stuck in a local minimum. 

To solve this problem, two new parameters can be considered, namely learning rate, 𝜼 and 

momentum, 𝜶, as represented by Equation (9). 

 

With these parameters, the effect of the error gradient on the weights update is controlled. 

Moreover, the performance of the neural network and its time of convergence are also dependent on 

these parameters. Regarding the learning rate, it is required to consider that if this parameter is set too 

small, the algorithm will take too much time to converge, because the gradient descent algorithm will 

work slowly. In these cases, the convergence of the model is compromised and it is possible to stop again 

in a local minimum. On the other hand, if the learning rate is set too high, the algorithm will converge 

rapidly but with no stability. Thus, low values of learning rate are preferable, also considering the 

momentum parameter to escape from local minimums, since this parameter adds a percentage to the 

last update, improving the current update [108].  

However, the error on the training set can be small, but when the neural network predicts 

responses to unknown data, the error is large. This means that the neural network is not generalized and 

it cannot provide good responses to new situations. According with [109], in MLP, the generalization 

performance is better using Bayesian regularization. Another regularization technique that provides a 

generalized neural network is the Levenberg-Marquardt [100].  

In this sense, using the neural network toolbox of MATLAB®, in this dissertation, a MLP with 

backpropagation algorithm is applied, investigating two different training algorithms: trainbr and trainlm, 

corresponding to the Bayesian regularization method and Levenberg-Marquardt method, respectively. In 

both cases, the learning rate and momentum parameters were used as default. Moreover, based on 

wt =  wt−1 −  η
δC

δwt−1
− αwt−1 (9) 
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[109], the performance of the neural network can increase, obtaining a stable learning if the learning rate 

is updated during the training process. In this sense, another training algorithm, namely, traingdx was 

implemented to update the learning rate parameter.  

D. Artificial Neural Networks: Deep Learning 

Ankle joint torque is a continuous signal that is dependent on the time and, thus, it can be 

recognized as a Time-Series signal. In this field, studies reported that the use of Deep Learning methods, 

such as LSTM and CNN, can provide satisfactory results [110], [111].  

LSTM consists of a type of recurrent neural networks. As described in the previous sub-section, the 

behavior of the activation functions existing on the neurons of the hidden layers of a feedforward neural 

networks depends on the behavior of the activation functions of neurons of the previous hidden layers. In 

contrast, with the architecture of recurrent neural networks, the behavior of the activation functions of the 

hidden neurons depends not only on the behavior of the previous activation functions, but also on the 

behavior at an earlier time. For this reason, neural networks where the behavior of the activation functions 

is dependent of the time are called by recurrent neural networks and, thus, Time-Series data is learned 

in an efficient way [101]. Normally, these architectures are used to predict the future using past 

information. However, if the interval in time between the current prediction and the previous information 

is too large, the predictions of the recurrent neural network are not promising. According to [101], if the 

time to run of a recurrent neural network is too long, the gradient will become tremendously unstable and 

the capacity to learn will be minimal. To solve this problem, LSTM neural networks were proposed. These 

kind of neural networks are a conjugation of recurrent neural networks with gradient descendent learning 

algorithms, making easier to obtain good results with unstable gradient problems under control [112]. 

Information relative to the train of the LSTM neural network can be found in [112].  

CNN are another type of neural networks that is trained based on backpropagation algorithms. The 

architecture of these neural networks was inspired in the mammalian visual cortex, since according to 

[113], the first processing stages in the visual cortex consist in the detection of simple features, such as 

edges and bars. In the following processing stages, more complex associations are done and the object 

that is being seen is recognized. The behavior of CNN is identical, since these neural networks are 

composed by three layers (convolutional, pooling and fully-connected layers) and during the training 

process, the objective is to reduce the dimensionality of the representation based on feature extraction 

methods, in order to capture the most relevant spatial and temporal dependencies of an image [113], 

[114]. Thus, this neural network was used to extract the most relevant features to achieve the most 

proximal ankle joint torque. 
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The convergence and generalization performance of neural networks can be a difficult task to 

accomplish due to the difficulty into find the best learning rate and momentum value. Moreover, if only 

one learning rate and momentum value is applied to all weights, the weight update is the same to all 

neural network, causing the convergence performance less efficient. To improve the convergence 

performance, some gradient descendent algorithms have been emerged, such as, the Adaptive Moment 

Estimation (ADAM). With this algorithm, the weights of the neural network are updated using adaptive 

learning rates, avoiding the existence of a global one. Thus, the convergence performance is increased, 

while the learning error is reduced, obtaining a versatile neural network [115]. In Deep Learning 

algorithms explored in this dissertation, ADAM was used. In the neural network toolbox of MATLAB® is 

not possible to apply this algorithm when using MLP neural network and thus, the most proximal algorithm 

found was traingdx.  

5.2.2. Data Preparation 

The data collected in the Chapter 4 was used to train the implemented machine learning models. 

To train all the models, the data were randomly divided int blocks, where 60% of the data were used for 

training, 20% for validation and 20% for testing, corresponding to 10, 3 and 3 subjects, respectively. The 

inputs of the models were the ankle joint angles, angular velocity, angular acceleration, body height and 

walking speed. The output of the models was the ankle joint torque normalized by the body mass. A k-

fold cross-validation algorithm was implemented to analyze the robustness of the models. The number of 

folds was set to 4. 

Table 13 presents the maximum range and the units revealed by the input and output features. In 

accordance to these values, it is possible to infer that there is a discrepancy in the magnitude order of 

each feature.  

Table 13. Units and Maximum Variation Range of each model feature 

Feature Unit 
Maximum 

Range 

Ankle Angle degrees 76.0 

Ankle Angular Velocity degrees/s 3.75×102 

Ankle Angular 

Acceleration 
degrees/s2 3.68×103

 

Body Height m 0.320 

Walking Speed km/h 3.00 

Ankle Torque N·m/kg 2.18 
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Due to the difference in the range of each feature, if these data were applied in regression models, 

the model’s learning process would take a long time to find a global minimum and to converge. In this 

sense, before the training process, it is required to apply a normalization step to the input data to achieve 

better results with faster calculations [116]. In a small dataset, four types of normalization were examined: 

(i) Min – Max normalization between 0 and 1; (ii) Min – Max normalization between -1 and 1; (iii) Z – 

Score normalization; and (iv) Median normalization. Table 14 resumes the mathematical formulas of 

each normalization method.  

Table 14. Normalization methods 

Normalization Method Formula 

Min-Max 

Normalization 

between 0 and 1 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)
 

Min-Max 

Normalization 

between -1 and 1 

𝑋𝑛𝑜𝑟𝑚 =  −1 + 2 ×
𝑋 − 𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)
 

Z-Score Normalization 𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝑚𝑒𝑎𝑛 (𝑋)

𝑠𝑡𝑑(𝑋)
 

Median Normalization 𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑋)

𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑅𝑎𝑛𝑔𝑒
 

 

The Min – Max normalization implies a linear transformation of the data between the maximum 

and the minimum of the feature. In this sense, the maximum and the minimum value of each feature 

correspond to 1 and 0 (in case (i)) or to 1 and  –1 (in case (ii)), respectively and, thus, all values of the 

feature are contained into range of [0,1] (in case (i)) or [–1,1] (in case of (ii)). Z – Score normalization 

consists into remove the mean of the feature to each value, dividing by the standard deviation. In this 

connection, after Z – Score normalization, the data present null mean and a unitary standard deviation. 

Regarding the Median normalization, the median of each feature is removed to each data point of that 

feature and then, the result is divided by the interquartile range, that correspond to the subtraction of the 

first quartile from the third quartile. The Min – Max normalization is more affected by outliers that, as 

reported by [117], reduce the performance of the models. In fact, this was verified in a previous study 

and, besides that, with the Median normalization, better results were achieved. Thus, this normalization 

method was used.  
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5.2.3. Machine Learning Evaluation Metrics 

To evaluate the performance of the regression models, two metrics were used: GOF and NRMSE 

between the predicted and the expected torque. The choice of these evaluation metrics was because (i) 

the GOF evaluates the performance of the fit achieved with each model, including a correlation and a 

similarity analysis between curves; and (ii) the NRMSE provides a percentage of the RMSE in the range 

of the experimental data.  

Thus, along the next section, the model parameterization and optimization, as well as their 

respective results are presented. 

5.3. Results 

5.3.1. Support Vector Regression 

SVR model is composed by five main hyperparameters: Box Constraint, Kernel Scale, Epsilon, 

Kernel Function and Polynomial Order. With recourse to optimization steps, the best model 

hyperparameters can be found. In this dissertation, these model parameters were optimized and the 

results of this optimization step are presented in Table 15. 

Table 15. SVR best hyperparameters 

Hyperparameter Range 
Hyperparameter 

value 

Box Constraint [1e-3, 1e3] 5.20 

Kernel Scale [1e-3, 1e3] 0.461 

Epsilon [1e-3, 1e3] 1.70e-3 

Kernel Function Gaussian, Linear, Polynomial Gaussian 

Polynomial 

Order * 
2, 3 or 4  

*Only when the Kernel Function is Polynomial 

Table 16 presents the results of the SVR model trained without and with the optimization step.  

 

 

 



 

60 

Table 16. SVR results without (in red) and with (in green) hyperparameters optimization 

Model Parameters 

Optimized? 

GOF (%) NRMSE (%) 

Validation mean  

(std) 
Test 

Validation mean  

(std) 
Test 

 

28.7  

(1.45) 
28.6 

15.5  

(0.531) 
15.1 

 

69.4  

(9.52) 
68.7 

5.97  

(2.01) 
6.59 

 

Based on the collected results, without the optimization of the parameters, the SVR model is not 

able to produce a good fit between the predicted and the real ankle joint torque, since the GOF and the 

NRMSE evaluation metrics presented low and high percentages, respectively. After the optimization step, 

an increment of 40.1 % in the fit performance for the test dataset was observed, along with a decreasing 

of 8.51 % in the NRMSE. 

5.3.2. Random Forest 

RF method is composed by six main hyperparameters, namely Ensemble Aggregation Method, 

Number of Learning Cycles, Learning rate, Minimum Leaf Size, Maximum Number of Splits and Number 

of Variables to Sample. As in the SVR method, a hyperparameters optimization was done and the results 

can be consulted in Table 17. 

Table 17. RF best hyperparameters 

Hyperparameter Range Hyperparameter value 

Ensemble Aggregation Method 
Bag 

LSBoost 
Bag 

Number of Learning Cycles [10, 500] 39 

Learning rate [1e-3, 1]  

Minimum Leaf Size [1, 
Number of Observations

2
] 1 

Maximum Number of Splits [1, 
Number of Observations

2
] 24748 

Number of Variables to Sample [1, 5] 4 

 

The performance of the RF method was evaluated with and without optimization steps and the 

results are presented in Table 18. 
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Table 18. RF results without (in red) and with (in green) hyperparameters optimization 

Model Parameters 

Optimized? 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

 

69.4 

(1.20) 
67.9 

6.66 

(0.321) 
6.75 

 

73.9 

(1.95) 
73.6 

5.68 

(0.470) 
5.56 

 

In accordance with the results, RF method provides satisfactory performances without 

hyperparameters optimization. Nonetheless, the hyperparameters optimization was investigated and the 

results of GOF and NRMSE of the test dataset presented an increase of 5.7 % and a decrease of 1.19 %, 

respectively.  

5.3.3. Multilayer Perceptron 

In MLP neural network, the main characteristics imposed in the training process are presented in 

Table 19. In this sense, the stopping criteria was based on the maximum number of epochs, maximum 

validation failures, minimum performance gradient or maximum momentum update (mu). If one of these 

values was reached, the training process ended.  

Table 19. Key parameters for MLP neural network 

Parameter Value 

Maximum number of epochs 10000 

Performance goal 0 

Maximum validation failures 10 

Minimum performance gradient 1e-7
 

Maximum time to train Infinite 

Initial mu 0.001 

mu decrease factor 0.1 

mu increase factor 10 

Maximum mu 1e10 

 

To determine the best structure of the neural network to obtain a most close ankle joint torque, 

three training functions were studied (trainbr, trainlm and traingdx), as already referred. Different numbers 
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of neurons (10, 70 and 110) and hidden layers (1 and 2) were explored. Table 20 presents the achieved 

results with this neural network under the conditions referred. The worst and the best results are colored 

in red and green, respectively. 

Table 20. MLP results 

Method 
Hidden  

Layers 

Hidden  

Neurons 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

MLP 

(trainlm) 

1 

10 
57.8 

(1.05) 
55.3 

9.17 

(0.320) 
9.41 

70 
67.3 

(2.12) 
66.8 

7.10 

(0.395) 
7.00 

110 
68.7 

(2.12) 
69.0 

6.79 

(0.395) 
6.54 

2 

10 
66.1 

(2.32) 
67.8 

7.37 

(0.475) 
6.78 

70 
70.4 

(1.26) 
69.4 

6.44 

(0.313) 
6.44 

110 
70.5 

1.26) 
69.8 

6.37 

(0.314) 
6.36 

MLP 

(trainbr) 

1 

10 
59.3 

(1.65) 
58.8 

8.85 

(0.390) 
8.67 

70 
69.9 

(1.58) 
69.1 

6.53 

(0.355) 
6.50 

110 
70.7 

(1.57) 
69.9 

6.36 

(0.360) 
6.33 

2 

10 
67.3 

(1.54) 
67.0 

7.10 

(0.380) 
6.95 

70 
67.3 

(1.57) 
70.9 

7.10 

(0.380) 
6.13 

110 
70.1 

(1.31) 
69.2 

6.48 

(0.328) 
6.50 

MLP 

(traingdx) 
1 

10 
45.9 

(1.19) 
46.9 

11.8 

(0.403) 
11.2 

70 
34.2 

(3.68) 
36.8 

14.3 

(0.801) 
13.3 

110 
28.4 

(5.66) 
32.5 

15.6 

(1.37) 
14.2 
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2 

10 
47.1 

(0.880) 
45.1 

11.5 

0.194) 
11.6 

70 
38.2 

(2.59) 
40.5 

13.4 

(0.778) 
12.5 

110 
28.4 

(0.944) 
28.3 

15.6 

(0.160) 
15.1 

 

Based on an overview of the results achieved with trainlm and trainbr training functions, the 

regression performance of both is similar. Generally, an increment in the number of hidden neurons is 

reflected by an improvement of the fit. Moreover, increasing the number of hidden layers increased the 

regression performance. However, it was noticed that this performance’s improvement caused when 2 

hidden layers are considered became less appreciable when the number of hidden neurons is higher. 

Using traingdx as training function, it would be expectable to achieve better performances, 

considering that an adaptive learning rate during the training process produces better results [109]. 

However, with this training function, the worst results were achieved and, thus, this training function must 

not be used to predict the ankle joint torque. 

In accordance to the obtained regression performance, a MLP with 2 hidden layer, 70 hidden 

neurons and trained with trainbr as training function is the architecture that provides the better 

performance to the predict the reference ankle joint torque. It should be noticed that when more than 

110 hidden neurons are considered, the neural network does not offer better results upon the results 

achieved with this number of hidden neurons, having been verified a stabilization or a decrease in the 

model performance. 

5.3.4. Long Short-Term Memory Neural Network 

The main options defined during the training process of the LSTM neural network are presented in 

Table 21. The neural network trained while the number of maximum epochs or the number of maximum 

validation failures were not reached. The initial learning rate value, the drop period, drop factor and the 

batch size were set according with the default values.  
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Table 21. Key parameters for LSTM neural network 

Parameter Value 

Maximum number of epochs 10000 

Maximum validation failures 10 

Gradient Descendent Algorithm ADAM 

Initial Learning Rate 0.01 

Learning Rate Drop Period 50 

Learning Rate Drop Factor 0.2 

Batch Size 64 

 

The results of the LSTM neural network with the parameters defined in Table 21 are presented in 

Table 22. 

Table 22. LSTM results with default parameters, where the worst and best results are colored in red and green, respectively 

Batch Size 
Hidden  

Neurons 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

64 

10 
78.1 

(0.400) 
77.7 

4.76 

(0.121) 
4.70 

70 
77.2 

(2.71) 
78.4 

4.96 

(0.634) 
4.55 

110 
79.4 

(0.195) 
79.6 

4.92 

(0.117) 
4.31 

 

Considering the regression performance achieved with LSTM, an increment of the number of 

neurons does not offer significative improvements. The best results were achieved for a LSTM neural 

network with 110 hidden neurons. 

The effect of the batch size was studied in this neural network, increasing and the decreasing its 

value, in order to find the architecture that provided the best results. Due to the high time consumption 

encountered during the initial developments of this neural network, the batch size was only varied for the 

LSTM with 110 hidden neurons, since that was the architecture that provided the best performance in 

default parameters. The results achieved are presented in Table 23, where the worst and the best 

performances are colored in red and green, respectively. 
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Table 23. LSTM results with batch size variation 

Batch Size 
Hidden  

Neurons 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

128 110 
79.3 

(0.200) 
79.5 

4.95 

(0.125) 
4.57 

64 110 
79.4 

(0.195) 
79.6 

4.92 

(0.117) 
4.31 

32 110 
77.4 

(0.352) 
76.8 

4.92 

(0.155) 
4.87 

 

According with Table 23, with a decreasing of the batch size, the performance of the neural network 

started to decrease. On the other side, considering a larger batch size, the performance of the neural 

network remains similar. Thus, an LSTM with 110 hidden neurons and trained with a batch size of 64 

can provide good performances. 

5.3.5. Convolutional Neural Network 

Generally, CNN are used for image processing and thus, this neural network operates with 3 – 

dimensional matrices. In this sense, the input data were treated as images, having suffered a 

transformation. Once there are five input features and several gait cycles, the data was organized in 3 – 

dimensional matrices, as follows: width – number of each gait cycle samples; height – number of input 

features; depth – number of gait cycles. 

Concerning the training process, this neural network also trained while the number of maximum 

epochs or the number of maximum validation failures were not reached. At the beginning, the initial 

learning rate value, the drop period, drop factor and the batch size were set according with the default 

values. The defined parameters are presented in Table 24. 
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Table 24. Key parameters for CNN 

Parameter Value 

Maximum number of epochs 10000 

Maximum validation failures 10 

Gradient Descendent Algorithm ADAM 

Initial Learning Rate 0.01 

Learning Rate Drop Period 50 

Learning Rate Drop Factor 0.2 

Batch Size 64 

Number of Convolutional Layers 
3 (with 8, 16 and 32 

filters applied) 

Kernel Size 5×5 

Pooling (Pool Size) Average (2) 

Stride  2 

Fully Connected Layers 

(Number of outputs) 
1 (1) 

 

According to [118], with smaller kernel sizes, the computational performance is more efficient than 

with larger kernel sizes and the neural network is able to learn more complex non-linear features. In this 

sense a kernel size of 3 was also experienced and the results are presented in Table 25. 

Table 25. CNN results with kernel size variation 

Kernel Size 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

5×5 
81.1 

(0.721) 
80.5 

4.10 

(0.122) 
4.10 

3×3 
81.0 

(1.08) 
80.7 

4.13 

(0.188) 
4.06 

 

Based on the achieved results, the performance of the neural network with both kernel sizes was 

identical, achieving smaller better results in the test dataset with a kernel size of 3.  

Since the last layer of CNN is a fully connected layer identical to a MLP and considering that an 

increment in the number of hidden neurons in MLP caused an improvement in the regression 

performance, another fully connected layer was added to CNN. Since at the end of the last convolutional 

layer, a vector with a length of 32×3 is created and considering the desired output torque value, the 
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number of neurons of the fully connected layer added was set to 32. The results achieved with this new 

architecture are presented in Table 26.    

Table 26. CNN results with two fully connected layers 

Kernel Size 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

3×3 
80.6 

(0.596) 
80.0 

4.20 

(0.0814) 
4.22 

 

In contrast to the expectable, the performance of CNN decreases with the addition of another fully 

connected layer. Thus, only one fully connected layer should be considered. In this neural network, the 

batch size was also varied. The performances achieved are exhibited in Table 27, where the worst and 

best performances are colored in red and green, respectively. 

Table 27. CNN results with batch size variation 

Kernel Size Batch Size 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

3×3 

128 
81.6 

(0.533) 
81.2 

3.99 

(0.137) 
3.97 

64 
81.0 

(1.08) 
80.7 

4.13 

(0.188) 
4.06 

32 
79.9 

(0.548) 
79.7 

4.36 

(0.137) 
4.27 

 

By analyzing Table 27, a reduction of the batch size is not favorable, since the regression 

performances started to decrease. On the other side, with an increment of the batch size, better results 

were achieved. Thus, a CNN with 3 convolutional and 1 fully connected layer, a kernel size of 3×3 and a 

batch size of 128 was found as the architecture that provides better results.  

5.4. Discussion and General Conclusions 

Machine learning algorithms have been used in the last years to model nonlinear relationships of 

the walking. However, to the best of the author’s knowledge, there are no literature evidences on the 

using of machine learning to predict the ankle joint torque oriented to the subject. In this sense, the most 
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used regression models applied to model nonlinear relationships, namely SVR, RF, MLP, LSTM and CNN, 

were used to predict the reference ankle joint torque based on five inputs: ankle angle, angular velocity, 

angular acceleration, body height and walking speed.  

Table 28 presents the best results obtained per each machine learning algorithm. 

Table 28. Best results of the implemented regression models where the best model performances achieved are colored in 
green, while the worst are colored in red 

Method 

GOF (%) NRMSE (%) 

Validation mean 

(std) 
Test 

Validation mean 

(std) 
Test 

SVR 
69.4 

(9.52) 
68.7 

5.97 

(2.01) 
6.59 

RF 
73.9 

(1.95) 
73.6 

5.68 

(0.470) 
5.56 

MLP 
67.3 

(1.57) 
70.9 

7.10 

(0.380) 
6.13 

LSTM 
79.4 

(0.195) 
79.6 

4.92 

(0.117) 
4.31 

CNN 
81.6 

(0.533) 
81.2 

3.99 

(0.137) 
3.97 

 

In addition to the best results summarized and presented by Table 28, Figure 20 exhibits the 

ground truth ankle joint torque and the predictions achieved with each one of the models for a random 

selected range of the test dataset.  

 

Figure 20. Predictions of the SVR, RF, MLP, LSTM and CNN machine learning models in comparison with the real ankle joint 

torque. 
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 In accordance to Figure 20, it is possible to infer that the predictions made by LSTM and CNN 

models produced an ankle joint torque closer to the expected one, when compared to the remaining 

regression models. This fact is confirmed by the higher GOF and lower NRMSE value presented by these 

models, in Table 28. Nonetheless, performing a deeper analysis centered on the gait cycle, during the 

stance phase, it was verified that all the models present capacity to model the ankle joint torque. However, 

in the swing phase, irregularities and sudden peaks were verified for the predictions achieved by the SVR 

and MLP. This phenomenon can be confirmed by the lowest evaluation metrics presented by these two 

models. Thus, considering the obtained results, the CNN was the model chosen to predict the reference 

ankle joint torque oriented to the subject.  
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CHAPTER 6 – AAN EMG-BASED CONTROL STRATEGY 

 

This chapter describes the proposed AAN EMG-based control strategy presented on Chapter 2. The 

importance of the regression models developed in Chapter 4 and Chapter 5 is investigated. Additionally, 

it is developed a method to estimate the real ankle joint torques based on EMG signals and joint angles. 

The performance of the ankle joint torque estimation is evaluated and the chapter ends with a discussion 

of the achieved results.   

6.1. Introduction 

The literature analysis in Chapter 2 demonstrated that the EMG-based control strategies 

integrated into WPADs only follow the intentions of the user and, consequently, it may be possible that 

individuals with impairments of the lower limbs and whose EMG signals are weak do not receive the 

required support to walk. AAN control strategies integrating EMG signals represent a recent alternative 

to overcome these limitations, taking advantage of the anticipatory performance of these signals. Thus, 

this dissertation aims to construct an AAN EMG-based control strategy for a future integration at 

SmartOs. 

To advance with the proposed strategy, it is required to determine two parameters: a reference 

and a real joint torque, as represented in Figure 4. Regarding the reference ankle joint angle determined 

in Chapter 4, its impact is determinant on the prediction of the reference ankle joint torque. According 

to [77], the joint torque about the ankle joint is dependent on the angular acceleration. Since this 

parameter corresponds to the second derivative of the joint angle, the prediction of the reference ankle 
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joint torque is dependent on the reference ankle joint angle prediction. In this sense, through this 

chapter, the connection between the Chapter 4 and Chapter 5 is evaluated: i.e., the prediction of the 

reference ankle joint torques with the best model found in Chapter 5 fed with the predicted ankle joint 

kinematics determined at Chapter 4.  

Considering the collected works responsible for converting the EMG signals into joint torque 

values, the study developed by [64] was chosen to perform this conversion due to present the shortest 

conversion time, offering promising results. Furthermore, the toolbox to perform this estimation is open 

source, programmed in C++ language and it is available on [119]. Thus, in this chapter, the code of 

the toolbox is adapted to the architecture of SmartOs, in order to estimate the real ankle joint torque in 

real-time.  

6.2. Reference Ankle Joint Torque Prediction 

The prediction of the reference ankle joint torque (τref(t)) was based on the prediction of kinematic 

data for each subject. Five inputs were involved, namely, BH, WS, 𝜃ref(t), ѡref(t) and αref(t), as presented 

in Figure 2.  

 To evaluate the performance of the reference ankle joint torque prediction, two cases are 

analyzed: (i) the worst; and (ii) the best ankle joint angle prediction. Based on the results achieved in 

Chapter 4, the worst prediction was verified for a subject with a body height of 1.79 m, walking at 1 

km/h, while the best results were achieved for a subject with a body height of 1.65 m, walking at 4 km/h. 

For each case, the body mass was 81.9 and 60.0 kg, respectively. Thus, for both cases it was predicted 

the reference ankle joint torque using the best regression model found in Chapter 5, namely, CNN with 

a kernel size of 3×3, 3 convolutional and 1 fully connected layers, trained with a batch size of 128. The 

results of the predictions are represented in Figures 21.  
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Figure 21. Reference ankle joint torque prediction based on the worst (a)) and best ((b)) reference ankle joint angle 
prediction. 

Although the ankle joint angle prediction for the first case ((i)) has been less favorable, the 

prediction of the torque for this joint is acceptable and comparable with the real joint torque, presenting 

a GOF of 74.7 % and a NRMSE of 8.02 %. Based on Figure 15 – a), (that represents the worst ankle joint 

angle prediction), the ankle joint angle predicted presents a wider range of motion (ROM) when compared 

with the real ROM. Hence, the angular acceleration also presents a wider range and, since the joint torque 

is directly dependent on this parameter, it would be expectable that the predicted joint torque could 

present higher values than the real one. In fact, this phenomenon occurred, as it is proven by Figure 21 

– a). Concerning the second case ((ii)), the prediction of the joint torque is quite similar to the real joint 

torque, presenting a GOF of 89.8% and a NRMSE of 3.16%. 
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Overall, even the predicted reference ankle joint kinematics present less favorable fits, the 

implemented machine learning algorithm (CNN) can model the reference ankle joint torques with high 

accuracy. 

6.3. EMG-based Real Joint Torque Estimation 

Once the prediction of the reference ankle joint torque has been achieved, it was required to 

estimate the real ankle joint torque of a subject, in real-time. Along this section, all the algorithms 

implemented are exhibited, ending the chapter with the validation of the proposed estimation. 

6.3.1. Model Presentation 

Figure 22 presents the block diagram to estimate the real ankle joint torque, based on real EMG 

signals and real ankle joint angles. 

 

Figure 22. Block diagram to estimate the real ankle joint torque, τreal. 

The toolbox available on [119] performs the conversions illustrated in the Blocks 1, 3, 4 and 5 of 

Figure 23. However, it does not calculate the musculotendon lengths (LMTs), neither the moment arms 

(MAs) illustrated in Block 2, both required to estimate the real ankle joint torque. To solve this problem, 

an algorithm presented by [120] and adapted by [121] was used to obtain the LMTs and MAs based on 

real ankle joint angles. To determine these two parameters, a calibration step is required, in order to 

identify six calibration parameters, namely, Fmax, vmax, L0
m, optimal length of the tendon (Lslack), ɸ and type 

I fibers percentage. In the work advanced by [121], these six parameters (presented in Table 29) were 

found for a healthy subject with 1.80 m and 80 kg. 
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      Table 29. Muscle parameters 

Calibration Parameter 
Muscle 

GL TA 

Fmax (N) 1500 800 

vmax (m/s) 12.0 12.0 

L0
m (m) 0.0500 0.0600 

Lslack (m) 0.400 0.240 

ɸ 0.700 0.700 

Type I fibers percentage 0.810 0.500 

 

6.3.2. Model Adaptation 

The study presented by [64] used six muscles to estimate the ankle joint torque: TA, SOL, GASM, 

GASL, PL and PT. Considering the information reviewed in Chapter 2, the most important muscles to 

perform dorsiflexion and plantar flexion of the ankle joint are the TA and the GAS or the SOL, respectively. 

In this connection, during the data collection exhibited in Chapter 4, only data from TA and GASL were 

collected. Thus, the model of [64] was adapted to receive data only from these two muscles. 

Considering the hierarchical control and the non-centralized architecture presented in SmartOs, 

the proposed AAN EMG-based control strategy will be executed by the CCU of SmartOs into a SmartOs-

dedicated program. However, it is not possible to implement the proposed EMG-based torque estimation 

model into the SmartOs program, given the no compatibilities between this framework and the SmartOs 

program. Thus, a bidirectional Transmission Control Protocol/Internet Protocol (TCP/IP) was developed 

to simulate the communication between the EMG-based torque estimation model and the CCU of 

SmartOs. In Figure 23 is presented the flowchart of the proposed communication.  
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Figure 23. Flowchart with the implemented TCP/IP communication. 

To explain the flowchart of Figure 23, it is required to remember the AAN EMG-based control 

strategy proposed in Chapter 3 and the EMG-based torque estimation exhibited in Figure 3. The inputs 

required to estimate the real ankle joint torque are the real EMG signals and the real ankle joint angles. 

In a future integration, the EMG signals will be acquired with recourse to the EMG boards developed in 

Chapter 3, integrated into SmartOs. On the other side, the joint angles will be provided by the 

potentiometer also integrated into SmartOs. In this sense, in the beginning, the proposed estimation 

model waits for a connection with the orthosis. If a connection is established, the communication starts 

and the EMG signals along with the ankle joint angles are sent from SmartOs to the EMG-based torque 
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estimation model. After the operational computations schematized in Figure 23, the joint torque is 

estimated and sent to SmartOs, which is waiting for a real torque value to be compared with the reference 

ankle joint torque. Once received, the next EMG signal and ankle joint angles are sent to the model and 

another estimation is performed.   

6.3.3. Model Validation 

Once established the TCP/IP communication to simulate the connection between the proposed 

EMG-based torque estimation and the CCU of SmartOs, it was required to validate the adapted model. 

Since the calibration parameters already enounced were found for a subject with 1.80 m and 80 kg, EMG 

signals from TA and GASL along with ankle joint angles from a subject with the same physical 

characteristics was used to serve as input in the model.  

The results of the torque estimation for a walking speed of 1 km/h are presented in Figure 24 

and compared with the expected ankle joint torque. Varying the walking speed, the model estimation 

presents the same behavior. 

 

Figure 24. Comparison between the real (blue) and the ankle joint torque estimated by the model (red), considering TA and 
GASL. 

Based on the assumption that only two muscles were considered to estimate the real joint torque, 

it would be expectable that the obtained values reveled a lower magnitude, when compared to the real 

ankle joint torque. However, since TA and GASL are the muscles that provide the most relevant ankle 

joint motion, it would also be expectable that the magnitude of the estimated values was lower but not 

too much inferior to the real value. Nonetheless, based on Figure 24, the obtained results presented a 
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magnitude much smaller than the expected one. In order to try to understand this phenomenon, a third 

muscle was considered, namely, GASM and fed with the data of the GASL. The results of this modification 

are presented in Figure 25. 

 

Figure 25. Comparison between the real (blue) and the ankle joint torque estimated by the model, considering TA and GASL 
(Model 2 – red) and considering TA, GASL and GASM (Model 3 – green). 

 

Results of Figure 25 show that an increment in the number of muscles, produces a higher 

magnitude. However, this increment of the magnitude was not enough to achieve the expected ankle joint 

torque. In order to try to find the reason behind this phenomenon, the LMTs and MAs achieved were 

compared with the results presented in [64], [122]. The pattern and magnitude of the curves achieved 

for both cases was identical to the pattern of the curves presented in the literature. Since the computation 

of the muscle activations, fiber lengths and muscle forces were performed based on [64], the reason that 

can justify the magnitude difference between the results achieved and the results presented by [64] is 

the use of a small number of muscles. Furthermore, a delay around 100 ms was verified between both 

curves. However, this phenomenon requires a deeper investigation, since studies [64], [120] reported a 

delay of 3 ms in their implementations. 

Overall, the model requires more EMG signals from other muscles to achieve the real ankle joint 

torque, since only two muscles are not recommended, despite being the main muscles that act in the 

ankle joint.  
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6.4. General Conclusions 

This chapter presents the implementation and validation of the two main blocks of the proposed 

AAN EMG-based control strategy: (i) the prediction of a reference ankle joint torques oriented to each 

user; and (ii) the estimation of the real ankle joint torques for each user, based on real EMG signals and 

real ankle joint angles. 

In what concern to the first point, considering the worst and the best scenario for the reference 

ankle joint torque prediction, good results were demonstrated. With the regression model proposed in 

Chapter 4 responsible to predict the reference ankle joint angles, along with the architecture of the CNN 

developed in Chapter 5, reference ankle joint torques with a GOF ranging from 74.7 to 89.8 % and a 

NRMSE between 3.16 and 8.02  % can be achieved for a subject with (i) a body height from 1.51 m to 

1.83 m, (ii) a body weight between 52.0 kg and 83.7 kg and (iii) walking with a speed ranging from 1 to 

4 km/h. Moreover, it was verified that the implemented machine learning algorithm (CNN) can model 

the reference ankle joint torques with high accuracy, even considering predicted reference ankle joint 

kinematics with less favorable fits. 

In relation to the EMG-based torque estimation, a musculoskeletal model was applied, using EMG 

signals from TA and GASL muscles and ankle joint angles. Based on the obtained results and comparing 

with the results achieved in [64], it is concluded that more muscles must be considered, in order to obtain 

magnitude values of torque similar to the real ones. On the other hand, a more in-depth investigation is 

required to understand the delay around 100 ms, introduced by the model. The proposed musculoskeletal 

model depends on calibration parameters. This fact conducts to a limitation of the implemented EMG-

based torque estimation, since only one subject was used to validate the proposed model. 
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CHAPTER 7 – CONCLUSIONS 

Neurological diseases, such as stroke, can be the origin of disabilities in the lower limbs and, thus, 

producing abnormal gait patterns. In this field, WPADs, such as orthosis or exoskeletons, have been 

widely used to promote adequate assistance to neurological patients or patients with motor injuries, 

aiming to restore the lower limb functions.  

Human-machine interactions integrating EMG signals has been explored, based on the 

construction of bioinspired control architectures with user-oriented control strategies, considering the 

motor intention and condition of the patient. Nonetheless, in cases of disabilities of the lower limbs, the 

use of these EMG-based control strategies into WPADs may not provide the assistance required by the 

patient, since the EMG signals are weaker when compared with healthy subjects. Thus, AAN EMG-based 

control strategies have emerged to provide a personalized assistance, considering the motor condition of 

the user and what the user should perform under healthy conditions. 

In this master dissertation, an AAN EMG-based control strategy was proposed to assist the ankle 

joint and its future insertion in SmartOs (a bioinspired, modular and time-effective WPAD) was explored. 

The future integration of the proposed strategy into SmartOs comprehends an innovative aspect, since 

there are few studies where AAN EMG-based control strategies are used to manage the assistance 

provided by the WPAD to the user. 

In the first step, a literature analysis was performed in order to identify the main muscles 

responsible for the motion of the ankle joint. The knee joint was also investigated for a future 

implementation. TA, GAS and SOL were the muscles identified that provide a major contribution in the 

dorsiflexion and plantar flexion movement of the ankle joint. After that, an extensive literature search was 
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performed to identify the EMG-based and AAN EMG-based control strategies already developed, as well 

as the most relevant methodologies to estimate the joint kinetics based on EMG signals, since this 

conversion is performed in the majority of the control strategies using EMG signals. Proportional 

myoelectric, musculoskeletal and empirical models were investigated as methods to convert the EMG 

signals into torque values. Empirical models may be more appropriated to perform the desired conversion 

for disable persons, since calibration steps are not required. 

An EMG system was projected, implemented and validated with a healthy subject walking at 1 

km/h. The results achieved when compared with a commercial system and with literature findings, 

revealed a good performance. 

In this dissertation, a regression model was explored to predict the reference ankle joint kinematics 

trajectory for a specific subject in the sagittal plane, based on the walking speed and body height. The 

results achieved were satisfactory and similar to the results obtained in [82]. However, improvements 

related to (i) the data collection; and (ii) the regression model must be done. Regarding the first point, 

during the data collection, it was verified that at slow walking speeds, the postural stability of most of the 

subjects was compromised. During the regression model training, in the presence of slow walking speeds, 

the regression model learned irregular ankle joint trajectories. Regarding the second point, it was verified 

that the proposed regression model attributes the same reference ankle joint angle for subjects with the 

same body height and walking at the same walking speed. However, the inter-subject variation is 

considerable and, for this reason, it is recommended to develop a model oriented to the user, considering 

more data, such as body mass. 

Based on ankle joint kinematics, body height of the subject and walking speed, machine learning-

based methods were explored to generate the reference ankle joint kinetics. The performance of five 

machine learning models was explored, namely: SVR, RF, MLP, LSTM and CNN, where the best results 

were achieved for a CNN.  

The results demonstrated that CNN can accurately predict the reference ankle torque trajectories, 

even considering reference ankle joint kinematics with less favorable predictions. The correct prediction 

of the reference ankle joint torque oriented to the user based on predicted reference ankle joint 

kinematics, body height and walking speed is utmost importance in the AAN EMG-based control strategy, 

in order to compare the reference ankle joint torque with the real one. In this field, considering the best 

acknowledge of the author, there is no evidence on the literature regarding the ankle joint torque 

prediction oriented to the subject. 
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To estimate the real ankle joint torque, an EMG-based torque estimation was performed, based on 

a musculoskeletal model presented in [64]. Only two muscles were used to perform the estimation, in 

contrast to the six muscles used in [64]. Thus, EMG data from TA and GASL were used with real ankle 

joint angles to estimate the real ankle joint torque. Since the model depends on calibration parameters 

that were found for a subject with 1.80 m and 80 kg, the validation of this methodology was performed 

only considering one subject with the referred physical characteristics. Based on the obtained results, it 

was verified that the magnitude of the torque provided by the model was inferior to the real magnitude, 

indicating that only two muscles are not enough to estimate the ankle joint torque. Thus, it is necessary 

to include more EMG contributions from GASM, SOL, PT and PL muscles. 

Aiming the future integration of the proposed AAN EMG-based control strategy into SmartOs and 

considering that the EMG-based torque estimation was developed as a standalone framework, a TCP/IP 

communication was created to simulate the protocol between the EMG-based torque estimation model 

and the CCU of SmartOs.  

Furthermore, with the developed master thesis, the goals that were established in Chapter 1 were 

all achieved and the RQ can be answered: 

• RQ1: Which are the contributions and the main differences of the EMG-based control and the 

AAN EMG-based control strategies? 

This RQ was addressed in Chapter 2. Both strategies contributed to muscular activity 

improvement and endurance, avoiding muscle atrophy. Most of the EMG-based control 

strategies verified a decreased muscular activity while the joint angles were controlled. However, 

these reviewed strategies were only tested in healthy subjects. Thus, the joint angles were 

controlled given the motor ability of the healthy subjects. Nonetheless, it is not expectable that 

these strategies have the potential to assist the lower limbs of disabled subjects. In contrast, 

the AAN EMG-based control strategies compare, in real-time, the user’s motor performance 

with the desired user’s motion to ensure a sufficient level of assistance oriented to the user’s 

needs. Thus, AAN EMG-based control strategies have the potential to assist and rehabilitate the 

lower limbs, such that the user can achieve autonomy to perform their daily life activities. 

• RQ2: Is it possible to obtain joint torque measures only using EMG signals? 

This RQ was addressed in Chapter 2. Based on the reviewed information, it was 

concluded that most of the control methods which use EMG signals to control WPADs convert 

these EMG signals into torque values. Nonetheless, there are literature evidences that only EMG 
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readings are not enough to obtain the accurate values of joint torques, being necessary to fuse 

EMG data with biomechanical data, such as, joint angles, velocities, accelerations.  

• RQ3: Is it possible to predict reference walking kinematics and kinetics trajectories relying 

exclusively on the walking speed and anthropometric data? 

This RQ was approached in Chapters 4, 5 and 6. Based on the results achieved in 

Chapter 4, it is possible to predict reference walking kinematics using exclusively walking speed 

and anthropometric data. The results of this dissertation show the needed for adding more 

anthropometric data (such as, the body mass) to avoid the attribution of the same ankle joint 

angle to subjects with the same body height, walking at the same walking speed. However, 

based on the results achieved in Chapter 5 and Chapter 6, this is not a limitation to predict the 

reference walking kinetics, since good performances were obtained. 

• RQ4: Can EMG-based torque estimation strategy present a good performance? 

This RQ was approached in Chapter 6. Based on the results achieved in the literature 

[64], the EMG-based torque estimation with joint angles can be performed in real-time with 

good performances, when six muscles are considered. In this dissertation, only EMG data from 

two muscles (TA and GASL) and ankle joint angles were considered. Based on the achieved 

results, the magnitude of the estimated ankle joint torque was inferior to the expectable. With 

the addition of one more muscle (GASM), higher magnitudes were achieved. Thus, more 

muscles must be considered to estimate the real ankle joint torques, considering EMG signals 

and real ankle joint angles. 

7.1. Future Work 

Future work in the scope of this dissertation include: (1) the improvement of the 

regression model to predict reference ankle joint angles, in order to avoid the attribution of the 

same trajectory for subjects with the same body height and walking speed; (2) the improvement 

of the quality of the data acquisition by performing walking test in a treadmill with force 

platforms to avoid loss of the balance, specially at slow walking speeds; (3) the inclusion of 

more muscles to estimate the real ankle joint torque based on EMG signals and joint angles; 

(4) the exploration of machine learning algorithms operating in real-time to estimate the real 

ankle joint torque based on EMG signals and joint angles, since these empirical methods may 
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be more appropriated to perform the conversion in motor impaired persons, because calibration 

steps are not required.   
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