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Abstract

Type 1 diabetes has an increasingly greater incidence and prevalence with no cure 
available. Vitamin D supplementation is well documented to reduce the risk of developing 
type 1 diabetes. Being involved in the modulation of cathelicidin expression, the question 
whether cathelicidin may be one of the underlying cause arises. Cathelicidin has been 
implicated in both the development and the protection against type 1 diabetes by 
mediating the interplay between the gut microbiome, the immune system and β cell 
function. While its potential on type 1 diabetes treatment seems high, the understanding 
of its effects is still limited. This review aims to contribute to a more comprehensive 
understanding of the potential of vitamin D and cathelicidin as adjuvants in type 1  
diabetes therapy.

Type 1 diabetes

Diabetes mellitus refers to a group of metabolic diseases 
characterised by chronic hyperglycaemia due to absent 
insulin secretion, insulin action or both (1). Diabetes 
is classically divided in type 1 and type 2 diabetes (2) 
and of all individuals diagnosed with this disease, type 1  
diabetes represents up to 10%, of which 80–90% are 
children or adolescents (3). Type 1 diabetes is commonly 
referred to as autoimmune diabetes and results from 
the autoimmune destruction of pancreatic β cells. 
On the other hand, type 2 diabetes, which accounts 
for the remaining 90% of cases, affects mostly adults, 
although its incidence in youth is increasing due to 
changes in lifestyle and increased obesity (4). Differently 
from type 1 diabetes, type 2 diabetes is characterised 
by insulin resistance and defective insulin secretion, 
which may be accompanied by the destruction  
of β cells (5).

Type 1 diabetes is one of the most common endocrine 
diseases in children (6); recent reports indicate a yearly 
increase from 3 to 4% on the incidence in childhood (7). 

This is most concerning in children with less than 15 
years and particularly less than 5 years (8).

Type 1 diabetes is a multifactorial disease. Genetic 
factors associated with certain haplotypes from the HLA 
complex have been shown to decisively influence the 
susceptibility (9). Additionally, environmental factors 
such as the seasonal environment at birth (3), infant diet 
(10), viral infections (11) and the gut microbiome (12) 
have also been suggested to play a role on type 1 diabetes 
development. The heterogeneity and variation in the 
pathogenic process and phenotypic characteristics makes 
it difficult to diagnose and to treat the disease at an early 
stage (13).

Pathophysiology

Type 1 diabetes is a chronic disease resulting from the 
autoimmune destruction of the insulin-producing β cells  
in the pancreas. Not all cases of type 1 diabetes are 
autoimmune mediated. For around 10–30% of patients, 
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the cause is idiopathic and the specific pathogenesis is 
unclear (14).

The triggering event that leads to the autoimmune 
elimination of β cells is still unknown but may be 
related to a failure in the elimination of self-reactive  
T cells, in the thymus. This leads to the escape of T cell 
populations – autoreactive against β cell proteins such as 
insulin, glutamic acid decarboxylase (GAD) and protein 
tyrosine phosphatase IA-2 – to the periphery (15, 16, 17). 
Upon encounter with the self-antigens, T cells undergo 
activation and expansion, releasing proinflammatory 
cytokines. This promotes pancreatic infiltration of more  
T cells, macrophages, B lymphocytes and plasma cells, with 
resultant autoimmune destruction of the insulin-secreting 
β cells (18). The symptoms are observed only when around 
two-thirds of the β cell mass is lost (19). During the pre-
symptomatic stage, markers of autoimmunity, presence of 
islet autoantibodies in circulation, as well as dysregulation 
of blood glucose start to arise due to the loss of β cells.  
With the continuous decline in β cells, the symptomatic 
stage is reached and signs of diabetes, polyuria, polydipsia, 
weight loss, fatigue, diabetic ketoacidosis (DKA) are 
identified (20). The rate of progression to the symptomatic 
stage can vary from months to decades, in both children 
and adults (13). 

Type 1 diabetes management strategies

Given the absence or reduced insulin secretion, an 
obvious strategy for type 1 diabetes management involves 
its exogenous administration (21). Since the discovery of 
insulin in 1922, much advances in health care has been 
achieved, such that the previously terminal disease is 
now treatable. Nowadays, the availability of new insulin 
analogues, with varying duration of activity, allows for 
a multiple-dose insulin therapy that better resembles 
the physiologic insulin release (22). The combination of 
the rigorous monitoring of blood glucose levels with the 
multifunctional insulin therapy enables the glycaemic 
control, and to prevent, or delay, the complications of 
type 1 diabetes (23). 

Despite these advances, type 1 diabetes is still 
associated with a high medical, psychological and 
financial burden. Hypoglycaemia and ketoacidosis remain 
life-threatening complications, as well as an increased risk 
of co-morbidities (cardiovascular disease, retinopathy and 
nephropathy) and premature death (22, 24).

Efforts to manage the disease are not able to reach 
a cure but only a control of the symptoms. Given the 
heterogeneity of type 1 diabetes, treatment should 

also be looked as a multivalent strategy. Alternative 
strategies have been explored, including the use of 
immunosuppressant therapies, which leave the patients 
immunocompromised and susceptible to infections; 
the use of antigenic tolerance therapies, the protection 
of β cells and selective stimulation of their proliferation 
or reprograming of non-β cells into functional β cells 
(19). Although islets have limited regenerative capacity 
it has been found that, within islets, α cells and δ cells 
can undergo transdifferentiation to functional β cells or 
β-like cells (25, 26). Pancreatic β cells replicate at a high 
rate during the foetal and neonatal stages, a process that 
rapidly declines with age (27). Inducing β cells to undergo 
mitosis using harmine and 5-iodotubercidin, inhibitors of 
the dual-specificity tyrosine phosphorylation-regulated 
kinase 1A (DYRK1A), has shown promising to the recovery 
of β cell mass (28, 29). However, the limited potency 
and lack of β cell specificity, with undesirable off-target 
effects, limit their applicability. A drug able to stimulate 
β cell regeneration while simultaneously shifting the 
proinflammatory autoimmune islet milieu to an anti-
inflammatory one, to prevent future insulitis, would be 
the ideal candidate for type 1 diabetes cure (19). 

Vitamin D and the antimicrobial peptide cathelicidin 
have been proposed as promising candidates for this 
endeavour. On one hand, both pre-clinical and clinical 
research demonstrated vitamin D has a well-established 
role in the protection from type 1 diabetes development. 
On the other hand, although cathelicidin expression is 
directly induced by vitamin D, the mechanistic effects of 
cathelicidin in type 1 diabetes susceptibility and therapy 
are still poorly understood. 

Vitamin D

Vitamin D3 (cholecalciferol, hereafter mentioned as D3) 
is a liposoluble molecule precursor of human steroid 
hormones, which can be obtained through diet or 
exposure to UV-B sunlight. After production, D3 is partially 
stored in adipose tissues in a few hours, while other 
part is converted to 25-hydroxyvitamin D3 (25(OH)D3) 
by the liver. 25(OH)D3 is further hydroxylated into the 
active form 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) 
in the kidneys (30), which then acts to maintain serum 
calcium levels, although its activities go beyond calcium 
homeostasis and bone metabolism (31). 

The vitamin D receptor (VDR) has been identified in 
practically all immune cell types (32). After intracellular 
enzymatic activation of vitamin D and subsequent VDR 
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binding, dimerisation with retinoid X receptor (RXR) 
induces gene transcription at specific DNA sequences, 
termed vitamin D response elements (VDRE) (Fig. 1). 
1,25(OH)2D3, a potent pleiotropic hormone, acts as a 
molecular switch targeting hundreds of known human 
genes across a wide variety of tissues, including the 
human cathelicidin which will be later discussed (33). 
Many cell types are able to co-express VDR and the 
25(OH)D3-activating enzyme, 1α-hydroxylase, including 
macrophages, dendritic cells and β cells, enabling 
the intracrine metabolism and action of 1,25(OH)2D3 
generated from 25(OH)D3 (34, 35).

Immunomodulatory roles of vitamin D in type 
1 diabetes

Vitamin D has the ability to downregulate adaptive 
immunity and induce immunological tolerance and anti-
inflammatory effects, being significant in the context of 
autoimmune diseases. The immunomodulatory effects 
of 1,25(OH)2D3 with particular relevance for type 1 
diabetes are presented in Fig. 2. 1,25(OH)2D3 exerts 
immunomodulatory effects in the interplay between 
dendritic cells (DCs), macrophages, T CD8+ (cytotoxic), T 
CD4+ (helper) and B lymphocytes. 

In the context of type 1 diabetes, T CD8+ cells 
bearing a self-reactive T cell receptor can recognise self-
antigens present on β cell surface, on MHC I, inducing 
apoptosis of the β cell through perforin or Fas/Fas ligand 
interactions. These self-antigens can also be picked up by 
resident or recruited DCs or macrophages which present 
these antigens to T CD4+ cells. In turn, these T cells may 
then directly kill the nearby β cells, initiate the immune 
response producing soluble mediators that induce β cell 

death or recruit other immune cells to the pancreas which 
further damage the β cells (36). 1,25(OH)2D3 inhibits the 
differentiation, activation and maturation of DCs as 
well as the expression of MHC II (37, 38, 39), decreasing 
autoantigen presentation and, thus, preventing the 
first step in the initiation of an immune response. 
Additional effects on DCs include downregulation of 
proinflammatory IL-12 and TNF α, and simultaneous 
upregulation of anti-inflammatory IL-10, TGF β and 
stimulation of immunosuppressive T-reg cells (40, 41, 
42). 1,25(OH)2D3 can also inhibit the differentiation of 
monocytes into macrophages and the activation of T 
CD8+ cells (43, 44). 

The presentation of the antigens by DCs and 
macrophages to T CD4+, leads to their differentiation into 
T helper (Th) 1 and Th17, which further stimulate IL-12 
and IFN γ production, consequently improving T CD8+ 
and macrophage attack to β cells. By decreasing the IL-12 
secretion required for T CD4+ activation and stimulating 
the release of IL-10, 1,25(OH)2D3 inhibits the proliferation, 
activation and differentiation of TCD4+ cells and enhances 
the prevalence of T-regs. Furthermore, the activation of 
T-regs promotes the downregulation of proinflammatory 
Th1 cytokines and favours anti-inflammatory Th2 
cytokines (45), diminishing type 1 diabetes progression. 
The presence of 1,25(OH)2D3 was reported to decrease 
IL-22-expressing CD4+ T cells and IFN γ accompanied by 
an increase in IL-4 levels (46). Likewise, 1,25(OH)2D3 effects 
on macrophages include the shift from a proinflammatory 
profile to an anti-inflammatory one, by downregulating 
proinflammatory mediators, such as IL-1 α, IL-1β, IL-6 and 
TNF-α (47, 48), and increasing IL-10 production (49). 

Following the initiation of the autoimmune process in 
type 1 diabetes, a further humoral reaction is triggered by B 

Figure 1
Classic vitamin D signalling pathway. Serum 
25(OH)D3 is converted to 1,25(OH)2D3 by 
mitochondrial 1α-hydroxylase, initiating the 
signalling cascade by binding to VDR, which 
dimers with RXR, and binds to specific DNA 
sequences, VDREs, regulating the transcription of 
several genes. 1,25(OH)2D3-VDR-RXR complex 
then synthesizes cathelicidin as an inactive 
pro-peptide (hCAP18) which is cleaved upon 
release of the active LL-37 by proteases.
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lymphocytes that differentiate into plasma cells and secrete 
antibodies that contribute to β cell destruction. 1,25(OH)2D3 
inhibits B lymphocyte differentiation and proliferation 
(50, 51), consequently reducing destructive antibodies. 
1,25(OH)2D3 enhances IL-10 expression by activated B 
lymphocytes by more than threefold, mostly by recruiting 
the VDR to the promoter of IL-10 (52). Drozdenko  et al. 
further showed that 1,25(OH)2D3-primed B cells display an 
impaired capacity to activate T cells (53). Overall, vitamin D  
exhibits a protective effect on β cells survival, which 
ultimately delays type 1 diabetes progression. 

Vitamin D role in diabetes prevention and 
treatment from pre-clinical to clinical evidence

The NOD mice model opened doors to several in vivo 
evidences on vitamin D potential as an adjuvant for both 
prevention and treatment of type 1 diabetes. Mathieu et al. 
long ago reported that treatment with 1,25(OH)2D3 not 
only reduced insulitis incidence, but more importantly, 
also reduced the cumulative incidence of diabetes 
(54). Short treatment of NOD mice with Ro 26-2198, 
a 1,25(OH)2D3 analogue, inhibited IL-12 production, 
blocked pancreatic infiltration of Th1 cells and arrested the 
progression of type 1 diabetes (55). Vitamin D deficiency 
plays a determining role by increasing the incidence of 
diabetes in female NOD mice from 46 to 88% and from 

0 to 44% in male mice, when compared to vitamin D 
sufficient animals (56). Additionally, oral administration of 
1,25(OH)2D3 significantly delayed disease onset, although 
also causing a significant rise in calcium serum levels. 
Furthermore, mice lacking a functional VDR exhibited 
impaired insulin secretory capacity compared to controls 
(57). In another study, vitamin D privation increased 
type 1 diabetes incidence and glucose intolerance (58), 
a precocious disease manifestation, suggesting a role of 
vitamin D in slowing down the development of type 1 
diabetes. Concordantly, the lifelong oral administration 
of high doses of 1,25(OH)2D3 safely prevented diabetes in 
NOD mice, both female and male, resulting in a decrease 
in cytotoxic T cells and an increase of T-regs, reducing 
severe insulitis and improving β cell function (59).

Compelling evidence from pre-clinical data 
encouraged the search for a clinical proof of concept. 
Serum 25(OH)D3 levels depend on many factors such as 
region, gender, season and age, normally in the 30–68 
ng/mL range, whereas concentrations <20 ng/L are 
considered deficient (60). Several studies have reported 
significantly lower levels of 25(OH)D3 in type 1 diabetes 
subjects compared to healthy controls (61, 62, 63), even 
in an environment of abundant sunlight (64). In the last 
20 years, many clinical studies have been performed on 
the use of vitamin D and derivatives as supplements to 
insulin in type 1 diabetes patients. 

Figure 2
Immunomodulatory actions of 1,25(OH)2D3 in 
innate and adaptive immunity.
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In a preventive context, D3 supplementation in 
children with ≥2000 IU daily has shown to reduce by 80% 
the risk of developing type 1 diabetes (65). Moreover, a 
meta-analysis of observational studies showed that in at 
least five reports vitamin D intake during early childhood 
is significantly associated with a reduced risk of type 1 
diabetes (66). D3 supplementation, with doses ranging from 
2000 IU/day to 4000 IU/day, has been shown to decrease 
HbA1c (glycated haemoglobin) levels, while increasing 
T-regs and C-peptide levels (a marker of insulin secretion) 
(67, 68, 69). In an attempt to avoid adverse effects,  
0.25 µg of 1,25(OH)2D3 administered on alternate days for 
1 year along with regular insulin therapy showed a modest 
effect on residual pancreatic β cell function and reduced 
the required insulin dose, although temporarily (70).  
Nevertheless, the same regimen has also been reported by 
others to have no beneficial effects of β cell function and 
insulin requirements (71, 72).

New analogues, with structural modifications and 
non-calcemic, are emerging and may help to overcome 
the issue of dosage limits. One of them, alfacalcidol 
(1α-hydroxycholecalciferol) has been shown to protect  
β cell function at a dose of 0.25 µg twice daily, as observed 
by a raise in C-peptide levels in children (73). Long-term 
treatment using this analogue appears to be safe and is 
likely to reduce the risk of hypercalcemia, as compared 
to 1,25(OH)2D3 administration. Other analogues 
tested in humans have shown higher efficacy, namely 
BXL-219 (formally Ro 26-2198) (74) and TX527 (75). 
Nevertheless, high serum calcium may be avoided not 
only by using analogues. Sixth-month supplementation 
with the precursor 25(OH)D3 in young patients, with 
increasing dosage, was reported to safely restore and 
maintain 25(OH)D3 levels up to 1 year after treatment; 
peripheral blood mononuclear cell reactivity against 
β cell autoantigens was reduced with no significant 
decrease of β cell function (76). The ability of immune 
cells to locally convert 25(OH)D3 into 1,25(OH)2D3, may 
support the use of this vitamin D metabolite over its 
analogues. 

Altogether, vitamin D deficiency significantly 
increases the susceptibility to type 1 diabetes and its 
supplementation may improve glycaemic control. 
Vitamin D is an inexpensive and readily available 
candidate for autoimmune therapy. In addition to 
1,25(OH)2D3-induced downregulation of cytokine/
chemokine production, stimulation of cathelicidin gene 
expression represents another very important pathway by 
which vitamin D regulates the innate immune response. 
Patients with 25(OH)D3 blood levels under 20 ng/mL 

may be unable to fully express cathelicidin (77), which 
could lead to increased susceptibility to type 1 diabetes. 

Cathelicidin

Cathelicidins are small cationic peptides, with a 
size varying from 12 to 80 amino acid residues (78), 
expressed in many different species of mammals, the 
best-characterised are the human (LL-37), mouse and 
rat cathelicidin-related antimicrobial peptide (mCRAMP 
and rCRAMP). These naturally occurring antimicrobial 
peptides (AMPs) display a plethora of activities and a 
fundamental role in the innate immune system (79, 80). 

AMPs are evolutionarily conserved molecules of the 
innate immune system present in all complex organisms 
(81). As many other AMPs, cathelicidin has a modest 
antimicrobial activity against a broad range of pathogens 
including fungi, bacteria, enveloped viruses and protozoa 
(82). AMPs have a small size, 37 residues in the case of 
LL-37, being generally cationic due to the excess of lysine 
and arginine residues. This feature combined with the 
presence of around 50% hydrophobic residues favours 
interaction with the negatively charged membrane of 
bacteria which lead to its disruption (83). 

In humans, cathelicidin is synthesized as a 
preproprotein, the human cathelicidin antimicrobial 
protein (hCAP18), which must be cleaved by serine 
proteases upon its exocytosis to become the active LL-37 
(Fig. 1) (84). 

Cathelicidin has a broad range of activities, with 
a pleiotropic role in innate immune responses and 
inflammation. It has an important immunomodulatory 
activity (79), with anti and proinflammatory effects 
in different cells, according with the inflammatory 
environment (85), being chemoattractant for leucocytes (86), 
and also being involved in tissue healing, revascularisation, 
cell proliferation and differentiation (80). 

Vitamin D and cathelicidin partnership in  
type 1 diabetes

The expression of LL-37 is directly induced by vitamin 
D (87, 88) (Fig. 1), suggesting that the beneficial effect 
from vitamin D supplementation may be connected 
to a restoration of cathelicidin levels and raising the 
question whether a deficiency in LL-37 may be one of the 
underlying causes for type 1 diabetes susceptibility.

Positive correlation between circulating cathelicidin 
and 25(OH)D levels in healthy adults has been 
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demonstrated (89). Exogenous administration of 
cathelicidin to increase serum levels is hampered by 
toxicity risks, however, vitamin D supplementation  
may be used as a strategy to indirectly increase LL37 
serum levels.

To the best of our knowledge, no information is 
available on the clinical interplay between vitamin D, 
LL-37 concentration and disease severity in patients with 
type 1 diabetes. This topic has been relatively unexplored 
so far in pre-clinical studies probably because the 
pathway by which 1,25(OH)2D3 regulates the expression 
of cathelicidin gene is restricted to humans and other 
non-human primates. Since mice and other experimental 
animal models lack the VDRE in their cathelicidin gene 
promoters (90, 91), in vivo studies on this topic using mice 
would have limited significance.

Nevertheless, Zhou  et al. (92) showed that 25(OH)D3 
attenuates periodontitis by promoting the expression of 
cathelicidin in mice with type 2 diabetes, however, this 
may have resulted from an indirect immunomodulatory 
effect of vitamin D on intracellular signalling.

Recently, a transgenic mice that carries a genomic 
DNA fragment encompassing the entire human CAMP 
gene was generated (93). In this study, topically applied 
1,25(OH)2D3 induced CAMP expression and boosted 
Staphylococcus aureus killing. In the future, humanised 
mice may help to elucidate the biologic role of cathelicidin 
and vitamin D in type 1 diabetes. 

Controversial role of cathelicidin role in type 1 
diabetes development vs treatment

The intriguing role of cathelicidin in the pancreas was 
uncovered only recently. Diana   et  al. (94) hypothesised 
that in NOD mice, mCRAMP is involved in the initial stages 
of type 1 diabetes development. The authors demonstrated 
that, in young female NOD mice, the infiltration of 
innate immune cells, including neutrophils able to secrete 
cathelicidins, occurs as early as 2 weeks of age. If β cell 
damage has occurred, self-DNA can be present extracellularly 
and through electrostatic interactions with cathelicidin may 

form immune complexes able to activate macrophages and 
DCs via the toll-like receptor 9 (TLR9). This exacerbates 
the immune response by stimulating the release of IFN-α 
which can be deleterious, as observed in other autoimmune 
conditions (95, 96) and possibly initiating the inflammatory 
milieu of type 1 diabetes (94) (Fig. 3). 

However, in different reports, the serum concentration 
of LL-37 has been shown to be reduced in patients with 
type 1 diabetes, as compared to that of healthy subjects (97, 
98) and although not significantly different, this finding 
suggests another role of cathelicidin in type 1 diabetes. 
Later, it was found that mCRAMP is also secreted by islets 
of various strains of mice, the ones of NOD mice secreting 
the lowest amounts (99). In healthy α and β cells, from 
both human and mice islets, cathelicidin is expressed and 
secreted constitutively, being scarce in female NOD mice, 
which are most susceptible to type 1 diabetes development 
(99). The role of LL-37 appeared even more relevant since 
the intraperitoneal administration of mCRAMP led to a 
change in the pancreatic immune infiltrate, increasing 
the relative abundance of M2 macrophages and T-regs. 
Given that an immunosuppressive phenotype is inversely 
associated with type 1 diabetes risk, cathelicidin treatment 
resulted in a lower incidence of autoimmune diabetes 
in NOD mice (99). Concordantly, diabetes-prone rats 
which were fed with a protective-diet that delayed the 
onset of type 1 diabetes, showed an increased expression 
of cathelicidin in the epithelial lining of the small 
intestine and an increase in the relative abundance of 
M2-macrophages (100). Sun  et al. (99) also demonstrated 
that CRAMP expression in the islets was inducible and 
dependent on short-chain fatty acids (SCFA), in particular 
butyrate, which in mammals are produced by bacteria 
of the gut during the fermentation of dietary fibres, 
thus establishing cathelicidin as a link between the gut 
microbiome and immune-regulation of the pancreatic 
immune environment (Fig. 4). 

The mechanisms by which cathelicidins are produced 
in the islets and modulate type 1 diabetes development 
were further unveiled by Sun  et al. (101). In this study, the 
authors showed that rCRAMP is constitutively expressed 

Figure 3
CAMP involvement in type 1 diabetes development 
in NOD mice. After a triggering event, which 
induces β cell damage, the release of self-nucleic 
acids may occur. The presence of neutrophils in the 
pancreatic tissue, which releases the CAMP, may 
result in immune complexes which activate 
dendritic cells via the toll-like receptor (TLR9) and 
enhancing the production of proinflammatory 
cytokines such as TNFα which exacerbate the 
immune response against β cells. 
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in the INS-1 832/13 insulinoma cell line (β cell model), 
promoting cell viability and growth via the EGFR, by 
increasing the expression of anti-apoptotic proteins and 
by modulating the cleavage of caspase, overall protecting 
β cells from apoptosis. Furthermore, pre-treatment with 
an EGFR inhibitor only partially blocked the cathelicidin 
stimulatory effect on cell viability, suggesting that the 
peptide may also act on β cells through other receptors 
(101). Importantly, it was observed that cathelicidin 
promoted the glucose-stimulated insulin release in 
isolated rat and mouse islets and improved the glucose 
tolerance in NOD mice (101) (Fig. 4).

In a report by Pound   et  al. (102), the expression 
of cathelicidin was also detected in β cells of rats, mice 
and human islets, but not on α cells, contrary to what 
was previously stated (99). In bio-breeding diabetes-
prone (BBdp) rats, downregulation of rCRAMP mRNA 
of approximately 60%, was observed before the onset of 
insulitis, again suggesting a connection of cathelicidin 
with diabetes susceptibility (102). The glucoregulatory 
effect was further demonstrated in isolated islets in which 
cathelicidin treatment promoted a significant increase 
in insulin or glucagon secretion, in a glucose-dependent 
manner. Reciprocally, cathelicidin expression was also 
induced after exposure to higher glucose concentration 
(16.7 mM) (Fig. 4), which suggests a role of cathelicidin 
in islet paracrine signalling that enhances islet function 
and glucoregulation (102). Notably in in vivo studies, 
the treatment of BBdp rats with rCRAMP showed short-
term (after a single administration) insulin release profile 

comparable to that of BB control rats and long term (1-week, 
daily administrations) enhancing β cell neogenesis from 
pancreatic duct cells (102). Since type 1 diabetes patients 
have a significant loss of β cell mass, the ability to enhance 
β cell regeneration and function could be therapeutically 
valuable (102). Additionally, cathelicidin expression was 
found to be downregulated in the gut of BBdp rats, which 
showed a clear shift in abundance of populations of gut 
microbiota, effects that were partially normalized by 
treatment with rCRAMP (102) (Fig. 4). 

Further connection between cathelicidin and the 
microbiome was demonstrated by Ahuja   et  al. (103) 
in mice knocked-out for a calcium channel (Orai1), 
dampening the release of AMPs to the gut by the acinar 
cells from the exocrine pancreas. This allows bacteria 
outgrow and dysbiosis, intestinal inflammation, systemic 
infection and death, effects that can be prevented by 
mCRAMP supplementation, restoring the phenotype 
of Orai1-deficient mice (103). These studies reveal once 
more a close relationship between the pancreas and the 
intestine. Disturbing this balance can cause predisposition 
to pancreatic and intestinal diseases (104). 

Deng   et  al. (105) showed that cathelicidin is also 
implicated in the protection against acute pancreatitis 
(AP). Immune cell infiltration, release of inflammatory 
mediators and apoptosis of pancreas acinar cells are 
characteristic of AP, which can evolve to diabetes depending 
on the severity and extent of pancreatic necrosis (106). 
In mice in which the cathelicidin gene was knocked-out, 
the severity of drug-induced AP was higher, with greater 

Figure 4
Model summarising the role of cathelicidin in the 
interplay between the pancreas and the gut. 
Short-chain fatty acids (SCFA) are produced by the 
gut microbiome during alimentary fibre 
fermentation, stimulating the expression of 
cathelicidin in the epithelial lining of the gut. SCFA 
stimulates the expression of cathelicidin by 
pancreatic islets, which reciprocally control and 
modulate the bacterial growth in the gut, 
preventing gut microbiome dysbiosis. Cathelicidin 
expression in the β cell is also induced in the 
presence of high glucose concentration and may 
also be induced by vitamin D, as seen in other cell 
types. Extracellular cathelicidin stimulates insulin 
granule exocytosis via the epidermal growth 
factor receptor (EGFR). It is not completely 
elucidated if intracellular cathelicidin can also 
induce insulin release directly. Cathelicidin 
expression also induces the prevalence of 
regulatory T cells (T-regs) and M2 macrophages 
which are associated with a lower risk of type 1 
diabetes development.
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neutrophil infiltration, a more pronounced acinar cell 
injury and an increased production of proinflammatory 
cytokines, relative to the wild-type mice, showing that 
the anti-inflammatory effects of cathelicidin protect mice 
from AP (105). 

With the exception of a recent report by Stenwall  et al. 
(107), in recent years this topic was not further explored. 
In this study, the expression of several AMPs in the 
exocrine and endocrine pancreas of healthy and diabetic 
patients was evaluated and the presence of cathelicidin 
in the islets was detected using immunohistochemistry. 
These authors also reported a generally lower level of 
antimicrobial peptides in the pancreas of a type 1 diabetes 
donor (107). 

Overall, these reports indicate that the absence of 
cathelicidin is associated with a higher risk of pancreatic 
inflammation and type 1 diabetes. Consistently, its 
administration seems to improve β cell function, normalise 
microbiome imbalances and reduce the inflammatory 
response. Therefore, its potential applicability in type 1 
diabetes therapy is promising, although further studies 
are required. 

Concluding remarks

Vitamin D as well as cathelicidin have been implicated 
in both type 1 diabetes susceptibility and protection. 
Although the role of vitamin D has been subject to a 
more extensive research, the role of cathelicidin and 
the mechanistic effects by which its expression from  
β cells may help prevent type 1 diabetes still need further 
exploration. The main results revised in this state of the 
art suggest that cathelicidin may mediate the interplay 
between the gut microbiome, the immune system, β cell 
function and type 1 diabetes development and that the 
serum vitamin D may modulate those activities. Further 
studies are required to understand whether cathelicidin 
may be therapeutically valuable in type 1 diabetes. 
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