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Summary

Purposing to lessen malware propagation, this paper proposes optimal control
measures for a susceptible-carrier-infectious-recovered-susceptible (SCIRS) epi-
demiological model formed by a system of ordinary differential equations. By
taking advantage of real-world data related to the number of reported cyber-
crimes in Japan from 2012 to 2017, an optimal control problem is formulated to
minimize the number of infected devices in a cost-effective way. The existence
and uniqueness of the results related to the optimality system are proved. Over-
all, numerical simulations show the usefulness of the proposed control strategies
in reducing the spread of malware infections.
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1 INTRODUCTION

Given the usefulness and the fast growth of the Internet and information technologies, social networks are considered
to be the main channel for the dissemination of information, as well as a major target for malware attacks.1 Malware is
a common term used to lump together different malicious objects such as worms, viruses, and spyware, which, in fact,
are hard to distinguish.2 Presently, financial motivations lead to the development of new types of malware,3 which, in
turn, are constantly evolving not only in speed and number but also in discrepancy, a concept related to the emergence of
new types of malware.4 Within the technological context, in which the use of mobile devices has increased enormously,
Liu and Zhong3 highlighted the web-based malware as an attractive way to attack users, by exploiting vulnerabilities in
web pages (eg, via hyperlinks embedded in e-mail messages) or even social engineering.5 In this regard, ensuring secure
networks is a paramount condition to prevent malware propagation,6 which has become an acute threat to human beings
and companies across the world. Hence, in view of the cross-cutting impact of malware on ordinary and everyday tasks,
the design of new mathematical models able to simulate the dynamics of malware propagation is of utmost relevance to
counteract its prevalence, alongside other preventing mechanisms such as antivirus softwares.7

Over time, mathematical epidemiology together with optimal control theory have been increasingly exploited to study
viral marketing,8-10 to model infectious disease dynamics11,12 or even computer virus propagation.3,13 In this context,
this paper narrows its scope to mathematical modeling approaches applied to malware spreading. Apart from other
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types of mathematical models to study the dynamic features of malware propagation (see the work of Guillén and
del Rey7 and the references cited therein), compartmental models have been widely used for that purpose since the
very first study on epidemiological approaches applied to computer viruses conducted by Kephart et al.14 Concretely,
compartmental extensions of the classical version of the susceptible-infected-recovered epidemic model15 have been pro-
posed to better understand malware propagation phenomena and to control its prevalence (see, eg, other works16-21). At
this point, optimal control theory22 plays a pivotal role in finding optimal ways to control dynamical systems and has
been used to propose optimal strategies to minimize the prevalence of malware spreading. Zhu and Zhao19 proposed
a susceptible-infectious-recovered-susceptible model with time delay to assess malware propagation in wireless sensor
networks. Additionally, the authors proposed an optimal control strategy to minimize the number of infected nodes
and numerical simulations confirmed the effectiveness of the proposed control measure. In the work of Chen et al,23 a
susceptible-latent-breakingout-susceptible computer virus epidemic model was introduced to minimize the number of
breaking-out computers with low costs associated with it. By considering delay differential equations and optimal con-
trol, the authors showed that the number of breaking-out machines is higher whenever the proposed control measure is
not applied. On the other hand, Ahn et al24 proposed a novel C-SEIRA epidemic model and a control intervention related
to isolating infectious computers from the network.

Nevertheless, despite of optimal control theory has been used to model malware propagation, there is a lack of
research studies regarding the use of real data in this field. Moreover, with the recent exception of Guillén and del
Rey,7 current mathematical models do not consider devices that can be infected by malware but cannot be harmed
by it, a feature that is becoming more commonplace in mobile devices with specific operative systems. Thus, this
paper uses real numerical data related to the number of cybercrimes reported to the Japanese police from 2012 to
2017 (see the work of Statista25) to propose optimal control strategies for the minimization of the number of infected
devices, bearing in mind both the implementation costs and the effectiveness of control measures. For that, the
susceptible-carrier-infectious-recovered-susceptible (SCIRS) epidemic model presented in the work of Guillén and del
Rey7 is considered.

The rest of this paper is organized as follows. In Section 2, a short description of the SCIRS model is presented. At
this point, the parameters estimation process using real data from Japan cybercrime is also discussed. In Section 3, two
control functions are added to the model, as well as two real positive parameters to represent the effectiveness of the
proposed control strategies. Furthermore, an optimal control problem is formulated and the existence and uniqueness
of the results related to the optimality system are proved. In Section 4, numerical simulations are conducted aiming to
compare the theoretical results derived from the application of the control strategies with the Japan cybercrime real data.
Finally, concluding remarks are provided in Section 5.

2 THE SCIRS MODEL

At this stage, we recall the original susceptible-carrier-infectious-recovered-susceptible (SCIRS) epidemic model proposed
in the work of Guillén and del Rey7 and some related features considered to be relevant for subsequent analyses. In this
sense, for more details on the model dynamics and formulation, the reader is referred to the original work.

In the SCIRS epidemic model, the number of devices in each compartment varies over time t. Concretely, the total
number of devices, N, is subdivided into four compartments: susceptible (S), ie, devices that can be infected by a malware;
carriers (C), ie, devices that can be infected and infect susceptible devices but cannot be harmed by malware; infected (I),
ie, devices that can infect susceptible devices; and recovered (R), ie, devices that suffered from a malware infection but
recovered after proper security interventions, becoming temporarily immune to malware attacks. Hence, by considering
that N is constant over time t, ie, S(t) + C(t) + I(t) + R(t) = N > 0, the SCIRS model is governed by the following system
of ordinary differential equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)
dt

= 𝜖R(t) − aS(t)(I(t) + C(t)) − vS(t),
dC(t)

dt
= a(1 − 𝛿)S(t)(I(t) + C(t)) − bCC(t),

dI(t)
dt

= a𝛿S(t)(I(t) + C(t)) − bII(t),
dR(t)

dt
= bCC(t) + bII(t) + vS(t) − 𝜖R(t),

(1)

with nonnegative initial conditions S(0) = S0,C(0) = C0, I(0) = I0,R(0) = R0. Regarding the model parameters,
a is the transmission rate, whereby susceptible devices are infected by carriers or infectious ones; 𝛿 is the fraction of
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TABLE 1 Number of cybercrimes in Japan from 2012 to 2017 (see the
work of Statista25)

Year 2012 2013 2014 2015 2016 2017
Cybercrimes 77 815 84 863 118 100 128 097 131 518 130 011

susceptible devices, which have an operative system vulnerable to the malware attack; v is the vaccination rate under
which susceptible devices can become temporarily immune to malware infections; bC and bI are the rates, whereby carriers
and infectious devices, respectively, become temporarily immune after the intervention of security countermeasures; and
𝜖 is the rate under which recovered devices lose their immunity and become susceptible again to new malware attacks.

To validate the numerical results, we consider the SCIRS model in the full form (1) notwithstanding it can be reduced
according to the following property:

dS(t)
dt

+ dC(t)
dt

+ dI(t)
dt

+ dR(t)
dt

= 0. (2)

The basic reproduction number, 0, for the model (1) traduces the number of secondary infections induced by a single
infected device and is given by

0 = aN(bI + (bC − bI)𝛿)𝜖
bCbI(v + 𝜖)

. (3)

Following the work of Guillén and del Rey,70 > 1 is a necessary condition for the existence of an endemic equilibrium
solution. The reader is referred to the aforementioned work7 for the detailed calculations of 0.

2.1 Model application to Japan cybercrime data
To give more realism to this work, the SCIRS model previously introduced is now calibrated according to the number of
cybercrimes reported to the Japanese police from 2012 to 2017 (see the work of Statista25). Hereinafter, it is assumed that
one cybercrime reported to the Japanese police corresponds to one, and only one, infected device. Table 1 presents the
evolution of the cybercrimes in Japan from 2012 to 2017.

Based on the data presented in Table 1, we adapted the Matlab code presented in pages 126 to 130 in the book of
Martcheva26 to estimate the parameters of the SCIRS model. The proposed algorithm takes advantage of thefminsearch
function from Matlab optimization toolbox. This function is based on Nelder-Mead simplex method.27 Following this
numerical procedure, we find that the optimal values of the model parameters are 𝜖 ≈ 0.8986, a ≈ 7.94 × 10−8, v ≈
1.1261, 𝛿 ≈ 0.0008, bC ≈ 0.0412, bI ≈ 0.0485. From these parameter estimations, it follows that 0 > 1. Furthermore,
according to the number of Internet users in Japan at Internet Live Stats,28 we assume the total population size, N, as
N = 101, 071, 581, and the following initial conditions for the SCIRS model are considered:

S(0) = S0 = N − 77815, C(0) = C0 = 0, I(0) = I0 = 77815, R(0) = R0 = 0. (4)

Due to the lack of real-world data information, the numerical values for S(0),C(0), and R(0) were assumed based on the
estimated value of I(0) from.25 A summary of the model parameters is presented in Table 2.

Under the aforementioned parameters and initial conditions, Figure 1 shows that the SCIRS epidemic model (1) fits
well the real data. At this point, it should be noted that I(0) and I(5) correspond to the number of cybercrimes in Japan at
2012 and 2017, respectively.

3 OPTIMAL CONTROL PROBLEM

This section intends to use optimal control theory to propose control strategies that aim to minimize the number of
infected devices over time t, in a cost-effective way. For that, two bounded controls, u1 and u2, are added to system (1). The
control strategy u1 is introduced to represent the effort in potentiating the vaccination rate v (eg, by fostering a deep-seated
security culture within internet users via awareness campaigns). On the other hand, the control strategy u2 traduces
the fraction of infected devices in which standard security countermeasures are replaced by high performance and fully
updated antimalware software. This replacement is reasonable since better security countermeasures are more able to
detect and, eventually, remove malicious objects. In other words, whereas u1 intends to increase the vaccination rate,
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TABLE 2 Summary of the susceptible-carrier-infectious-recovered-susceptible model parameters

Symbol Description Value References

a Transmission rate 7.94 × 10−8 Estimated
v Vaccination rate 1.1261 Estimated
𝛿 Fraction of susceptible devices with a vulnerable operative system 0.0008 Estimated
bC Temporary immunity rate of carrier devices 0.0412 Estimated
bI Temporary immunity rate of infectious devices 0.0485 Estimated
𝜖 Loss-of-immunity rate 0.8986 Estimated
N Total number of devices 101,071,581 Internet Live Stats28

S(0) Initial number of susceptible devices N − 77815 Assumed
C(0) Initial number of carrier devices 0 Assumed
I(0) Initial number of infectious devices 77815 Statista25

R(0) Initial number of recovered devices 0 Assumed
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FIGURE 1 Susceptible-carrier-infectious-recovered-susceptible (SCIRS) model adjustment to the real number of cybercrimes in Japan
from 2012 to 2017 [Colour figure can be viewed at wileyonlinelibrary.com]

u2 intends to increase the rate bI. In addition, two parameters 𝛼i ∈ (0, 1), i = 1, 2, are also introduced to measure the
efficacy of the control strategies ui, i = 1, 2, respectively.

Let [0,T] be the time period in which the control strategies act on the SCIRS model (1). Additionally, it is assumed that
the admissible set of control functions is

Ω =
{
(u1(·),u2(·)) ∈ (L2[0,T])2 | (u1(t),u2(t)) ∈ [0, 1] × [0, 1],∀t ∈ [0,T]

}
, (5)

where L2[0,T] represents the set of all Lebesgue square integrable functions on [0,T]. Henceforth, based on the real-world
data under study, we consider T = 5. Note that the magnitude of the control measures is maximum when ui = 1, i = 1, 2,
and null when ui = 0, i = 1, 2. Thus, the SCIRS model (1) can be rewritten into the following controlled system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)
dt

= 𝜖R(t) − aS(t)(I(t) + C(t)) − (v + 𝛼1u1(t))S(t)
dC(t)

dt
= a(1 − 𝛿)S(t)(I(t) + C(t)) − bCC(t)

dI(t)
dt

= a𝛿S(t)(I(t) + C(t)) − (bI + 𝛼2u2(t))I(t)
dR(t)

dt
= bCC(t) + (bI + 𝛼2u2(t))I(t) + (v + 𝛼1u1(t))S(t) − 𝜖R(t),

⎧⎪⎪⎨⎪⎪⎩

S(0) = N − 77815
C(0) = 0
I(0) = 77815
R(0) = 0.

(6)

Due to the fact that the adoption of strategies to mitigate malware propagation is fairly expensive, the number of infected
devices should be minimized in a cost-effective way. Hence, we propose an optimal control problem to minimize the

http://wileyonlinelibrary.com
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following cost functional:

J(u1(·),u2(·)) =

T

∫
0

[
I(t) + 1

2

2∑
i=1

Wiu2
i (t)

]
dt, (7)

subject to (6), where the positive constants Wi, i = 1, 2, represent the relative cost of implementing the control strategies
ui, i = 1, 2, respectively. All in all, the main objective is to determine (S∗(·),C∗(·), I∗(·),R∗(·)), associated to an admissible
control pair (u∗

1(·),u∗
2(·)) ∈ Ω over [0,T], satisfying the controlled model (6) and minimizing the objective functional (7).

Following the Pontryagin's Maximum Principle,22 if (u∗
1(t),u∗

2(t)) is optimal for the control problem (7) subject to (6), then
there exists a nontrivial Lipschitz continuous mapping (the adjoint vector) 𝜆 ∶ [0,T] → ℝ4, 𝜆(t) = (𝜆1(t), 𝜆2(t), 𝜆3(t), 𝜆4(t)),
such that

dS(t)
dt

= 𝜕
𝜕𝜆1

,
dC(t)

dt
= 𝜕

𝜕𝜆2
,

dI(t)
dt

= 𝜕
𝜕𝜆3

,
dR(t)

dt
= 𝜕

𝜕𝜆4
and

d𝜆1(t)
dt

= −𝜕
𝜕S

,
d𝜆2(t)

dt
= −𝜕

𝜕C
,

d𝜆3(t)
dt

= −𝜕
𝜕I

,
d𝜆4(t)

dt
= −𝜕

𝜕R
,

where the function  defined by

(S,C, I,R,u1,u2, 𝜆1, 𝜆2, 𝜆3, 𝜆4) = I(t) + 1
2

2∑
i=1

Wiu2
i (t)

+ 𝜆1(𝜖R(t) − aS(t)(I(t) + C(t)) − (v + 𝛼1u1(t))S(t))
+ 𝜆2(a(1 − 𝛿)S(t)(I(t) + C(t)) − bCC(t))
+ 𝜆3(a𝛿S(t)(I(t) + C(t)) − (bI + 𝛼2u2(t))I(t))
+ 𝜆4(bCC(t) + (bI + 𝛼2u2(t))I(t) + (v + 𝛼1u1(t))S(t) − 𝜖R(t))

is called the Hamiltonian, and the functions 𝜆i(t), i = 1, 2, 3, 4 are the adjoint functions to be determined suitably.

Theorem 1 (Existence of optimal controls).
Given the controlled SCIRS model (6) and the objective functional (7), then there exists an optimal control u∗

i ∈ Ω, i = 1, 2,
such that J(u∗

1(t),u∗
2(t)) = minΩ J(u1(t),u2(t)).

Proof. Firstly, the control functions and state variables of the controlled system (6) are nonnegative. This together with
the boundedness of the state variables and coefficients of the controlled system (6) over the finite interval [0,T], make
it possible to use the existence result presented in theorem 9.2.1 in the book of Lukes29 to prove this theorem. Hence,
the following conditions should be satisfied (see the works of Fister et al30 and Xu et al31 for similar arguments):

(1) The set of solutions of the controlled system (6) and ui ∈ Ω, i = 1, 2, is not empty;
(2) The control space Ω is closed and convex;
(3) The right-hand side of the controlled system (6) is continuous, bounded, and can be written as a linear function

with respect to the controls with coefficients depending on the states;
(4) The integrand of the objective functional (7) is convex on Ω with respect to ui, i = 1, 2, and there exist constants

𝜌 > 1, C1 > 0, and C2 such that

I(t) + 1
2

2∑
i=1

Wiu2
i (t) ⩾ C1

( 2∑
i=1

|ui(t)|2)𝜌∕2

− C2. (8)

Attending to the definition of Ω and the nonnegativity of the state variables, the set of solutions of the controlled
system with initial conditions (6) and ui ∈ Ω, i = 1, 2, is not empty, which proves the Condition 1. The Condition 2 is
satisfied since the control set Ω is closed and convex by definition. One could note that system (6) can be rewritten as

V(x)
.
= dx(t)

dt
= Ax + B(x), (9)

where

x(t) =
⎡⎢⎢⎢⎣

S(t)
C(t)
I(t)
R(t)

⎤⎥⎥⎥⎦ , A =
⎡⎢⎢⎢⎣
−𝛼1u1 − v 0 0 𝜖

0 −bC 0 0
0 0 −bI − 𝛼2u2 0

𝛼1u1 + v bC bI + 𝛼2u2 −𝜖

⎤⎥⎥⎥⎦ , B(x) =
⎡⎢⎢⎢⎣

−aS(t)(I(t) + C(t))
aS(t)(1 − 𝛿)(I(t) + C(t))

a𝛿S(t)(I(t) + C(t))
0

⎤⎥⎥⎥⎦ .
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Hence, from the Hölder's inequality, the following condition holds:|B(x1) − B(x2)| ⩽ M(|S1 − S2| + |C1 − C2| + |I1 − I2|), (10)

where M is a positive constant, independent of the state variables. Then, it follows that|V(x1) − V(x2)| ⩽ D|x1 − x2|, (11)

where D = max{M, ||A||} < ∞, which proves that V(x) is uniformly Lipschitz continuous. It is also easy to show that
V(x) can be written as a linear function in ui, i = 1, 2, with state variables as coefficients. Therefore, Condition 3 is
verified. Lastly, Condition 4 is proved by noting not only that the integrand in the functional (7) is convex on Ω but
also that inequality (8) is satisfied by choosing 𝜌 = 1.5, C1 = min{ 1

2
Wi}, i = 1, 2, and C2 = 1. Hence, the proof is

concluded.

Theorem 2 (Characterization of the optimal control).
At time t, let S∗,C∗, I∗, and R∗ be the optimal state variables. Then, given the optimal control pair (u∗

1(t),u∗
2(t)) and the

corresponding solution of the control problem (7) subject to (6), there exist adjoint variables 𝜆i(t), i = 1, 2, 3, 4 satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩

d𝜆1(t)
dt

= 𝜆1(t)
[
a(I∗(t) + C∗(t)) + v + 𝛼1u∗

1(t)
]
− 𝜆2(t)a(1 − 𝛿)(I∗(t) + C∗(t)) − 𝜆3(t)a𝛿(I∗(t) + C∗(t))

−𝜆4(t)
(

v + 𝛼1u∗
1(t)

)
d𝜆2(t)

dt
= 𝜆1(t)aS∗(t) − 𝜆2(t)

[
a(1 − 𝛿)S∗(t) − bC

]
− 𝜆3(t)a𝛿S∗(t) − 𝜆4(t)bC

d𝜆3(t)
dt

= −1 + 𝜆1(t)aS∗(t) − 𝜆2(t)a(1 − 𝛿)S∗(t) − 𝜆3(t)
[
a𝛿S∗(t) − bI − 𝛼2u∗

2(t)
]
− 𝜆4(t)

(
bI + 𝛼2u∗

2(t)
)

d𝜆4(t)
dt

= 𝜖(𝜆4(t) − 𝜆1(t)),

(12)

with transversality conditions
𝜆i(T) = 0, i = 1, 2, 3, 4. (13)

Furthermore,

u∗
1(t) = min

{
max

{
0, 𝛼1S∗(t)(𝜆1(t) − 𝜆4(t))

W1

}
, 1
}

, (14)

u∗
2(t) = min

{
max

{
0, 𝛼2I∗(t)(𝜆3(t) − 𝜆4(t))

W2

}
, 1
}

. (15)

Proof. Following the Pontryagin's Maximum Principle,22 the adjoint system (12) comes from⎧⎪⎪⎪⎨⎪⎪⎪⎩

d𝜆1(t)
dt

= − 𝜕(S,C,I,R,u1,u2,𝜆1,𝜆2,𝜆3,𝜆4)
𝜕S

|||S∗=S, C∗=C, I∗=I, R∗=R, u∗
1=u1, u∗

2=u2
d𝜆2(t)

dt
= − 𝜕(S,C,I,R,u1,u2,𝜆1,𝜆2,𝜆3,𝜆4)

𝜕C
|||S∗=S, C∗=C, I∗=I, R∗=R, u∗

1=u1, u∗
2=u2

d𝜆3(t)
dt

= − 𝜕(S,C,I,R,u1,u2,𝜆1,𝜆2,𝜆3,𝜆4)
𝜕I

|||S∗=S, C∗=C, I∗=I, R∗=R, u∗
1=u1, u∗

2=u2
d𝜆4(t)

dt
= − 𝜕(S,C,I,R,u1,u2,𝜆1,𝜆2,𝜆3,𝜆4)

𝜕R
|||S∗=S, C∗=C, I∗=I, R∗=R, u∗

1=u1, u∗
2=u2

.

(16)

Finally, by considering the optimality condition, it follows that

𝜕
𝜕u1

||||S∗=S, C∗=C, I∗=I, R∗=R, u∗
1=u1

= W1u∗
1(t) − 𝛼1S∗(t)(𝜆1(t) − 𝜆4(t)) = 0, (17)

𝜕
𝜕u2

||||S∗=S, C∗=C, I∗=I, R∗=R, u∗
2=u2

= W2u∗
2(t) − 𝛼2I∗(t)(𝜆3(t) − 𝜆4(t)) = 0. (18)

Thus, by (17) and (18), and considering the boundedness conditions of ui, i = 1, 2, on Ω, we get⎧⎪⎪⎨⎪⎪⎩
u∗

1(t) = 0, if 𝛼1S∗(t)(𝜆1(t)−𝜆4(t))
W1

< 0 ,

u∗
1(t) =

𝛼1S∗(t)(𝜆1(t)−𝜆4(t))
W1

, if 0 ⩽ 𝛼1S∗(t)(𝜆1(t)−𝜆4(t))
W1

⩽ 1 ,

u∗
1(t) = 1, if 𝛼1S∗(t)(𝜆1(t)−𝜆4(t))

W1
> 1,

(19)
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⎧⎪⎪⎨⎪⎪⎩
u∗

2(t) = 0, if 𝛼2I∗(t)(𝜆3(t)−𝜆4(t))
W2

< 0,

u∗
2(t) =

𝛼2I∗(t)(𝜆3(t)−𝜆4(t))
W2

, if 0 ⩽ 𝛼2I∗(t)(𝜆3(t)−𝜆4(t))
W2

⩽ 1,

u∗
2(t) = 1, if 𝛼2I∗(t)(𝜆3(t)−𝜆4(t))

W2
> 1,

(20)

which, in turn, can be rewritten in a compact form as

u∗
1(t) = min

{
max

{
0, 𝛼1S∗(t)(𝜆1(t) − 𝜆4(t))

W1

}
, 1
}

, (21)

u∗
2(t) = min

{
max

{
0, 𝛼2I∗(t)(𝜆3(t) − 𝜆4(t))

W2

}
, 1
}

. (22)

This completes the proof.

Based on the foregoing, the optimal control and states can be computed by solving the optimality system, which consists
in the state system (6), the adjoint system (12) and the transversality conditions (13) together with the characterizations
(14) and (15), ie,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS∗(t)
dt

= 𝜖R∗(t) − aS∗(t)(I∗(t) + C∗(t)) −
(

v + 𝛼1u∗
1(t)

)
S∗(t)

dC∗(t)
dt

= a(1 − 𝛿)S∗(t)(I∗(t) + C∗(t)) − bCC∗(t)
dI∗(t)

dt
= a𝛿S∗(t)(I∗(t) + C∗(t)) −

(
bI + 𝛼2u∗

2(t)
)

I∗(t)
dR∗(t)

dt
= bCC∗(t) +

(
bI + 𝛼2u∗

2(t)
)

I∗(t) +
(

v + 𝛼1u∗
1(t)

)
S∗(t) − 𝜖R∗(t)

d𝜆1(t)
dt

= 𝜆1(t)
[
a(I∗(t) + C∗(t)) + v + 𝛼1u∗

1(t)
]
− 𝜆2(t)a(1 − 𝛿)(I∗(t) + C∗(t)) − 𝜆3(t)a𝛿(I∗(t) + C∗(t))

−𝜆4(t)
(

v + 𝛼1u∗
1(t)

)
d𝜆2(t)

dt
= 𝜆1(t)aS∗(t) − 𝜆2(t)

[
a(1 − 𝛿)S∗(t) − bC

]
− 𝜆3(t)a𝛿S∗(t) − 𝜆4(t)bC

d𝜆3(t)
dt

= −1 + 𝜆1(t)aS∗(t) − 𝜆2(t)a(1 − 𝛿)S∗(t) − 𝜆3(t)
[
a𝛿S∗(t) − bI − 𝛼2u∗

2(t)
]
− 𝜆4(t)

(
bI + 𝛼2u∗

2(t)
)

d𝜆4(t)
dt

= 𝜖(𝜆4(t) − 𝜆1(t))
u∗

1(t) = min
{

max
{

0, 𝛼1S∗(t)(𝜆1(t)−𝜆4(t))
W1

}
, 1
}

u∗
2(t) = min

{
max

{
0, 𝛼2I∗(t)(𝜆3(t)−𝜆4(t))

W2

}
, 1
}
,

(23)

with S∗(0) = N − 77815,C∗(0) = 0, I∗(0) = 77815,R∗(0) = 0, and 𝜆i(T) = 0, i = 1, 2, 3, 4. Since the state and adjoint
functions are bounded over the finite interval [0,T] and systems (6) and (12) preserve the Lipschitz structure, the optimal
control pair (u∗

1,u∗
2) is unique for T sufficiently small (see the work of Jung et al32). However, the uniqueness of optimality

system holds for any value of T since the state system (6) is autonomous.
To derive the optimal controls and states, the system (23) should then be solved using numerical methods.

4 NUMERICAL SIMULATIONS AND DISCUSSION

This section intends to present the results of the numerical implementation of the optimality system (23) with cost func-
tional (7). The numerical implementation was conducted in Matlab by using the Forward-Backward Sweep numerical
method,33 as well as the model parameters presented in Table 2.

Obviously, to decrease malware propagation, it is a common practice to invest in security countermeasures. However,
it is not clear that the number of malware infections will be lower the greater the security investment costs. In this sense,
it is important to assess whether these investments should increase or decrease to minimize the number of malware
infections without incurring significant costs. By looking at the cost functional (7), the parameter Wi, i = 1, 2, should be
seen as a trade-off factor to minimize the number of malware infections and the costs associated with it. Equally relevant
is to analyze how effective the proposed security countermeasures are in reducing the number of malware infections. For
these reasons, we investigate the effects of the parameters Wi and 𝛼i, i = 1, 2, on the optimal control, as well as on the
optimal states, over the time interval [0, 5]. Attending to the nature of the control strategies u1 and u2, the subsequent
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FIGURE 2 The influence of optimal control on the number of infected devices, for W1 = 250, W2 = 550, 𝛼1 = 𝛼2 = 0.5 and parameter
values from Table 2. A, I(t) with and without controls; B, Optimal controls u1 and u2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 State variables dynamics with and without controls, for W1 = 250, W2 = 550, 𝛼1 = 𝛼2 = 0.5 and parameter values from
Table 2. A, S(t); B, C(t); C, R(t) [Colour figure can be viewed at wileyonlinelibrary.com]

analyses assume that the cost of implementing u1 cannot be greater than the cost of implementing u2, ie, W1 ⩽ W2. In
Figure 2, the number of infected devices with and without the adoption of control strategies is compared for W1 = 250,
W2 = 550 and equally effective controls (𝛼1 = 𝛼2 = 0.5). One could see that the number of infected devices decreases
whenever control strategies are adopted (Figure 2A). In addition, Figure 2B suggests that if the goal is to minimize the
number of infected devices in a cost-effective way, the control u1 is at the upper bound until t = 4, and then it decreases to
the lower bound. On the other hand, the control u2 is at the upper bound practically throughout the entire time window.
Therefore, both control measures are relevant to minimize the objective functional (7).

At this point, it should be stressed that the extra effort on the implementation of both control measures is accommodated
through a substantial reduction in the number of infected devices. The benefits derived from the application of the control
strategies on the remain state variables are also depicted in Figure 3. Here, a relevant aspect relates to the fact that the
number of carrier devices is lower whenever the controls are applied (Figure 3B). This means that the proposed control
strategies enable to reduce the number of devices that, in spite of being immune to the malware, can infect susceptible
devices over time t. Moreover, the number of recovered individuals is also higher whenever control policies are employed
(Figure 3C).

The effects of the variation of the control weight W2 when W1 is fixed, for 𝛼1 = 𝛼2 = 0.5, are presented in Figure 4.
It is then possible to see that the magnitude of the controls u1,u2, as well as the number of infected devices, is the same
regardless the value of the relative investment cost W2 over time t. This particularly indicates that the investment in the
control strategy u2, the most expensive one, should be properly assessed since that higher investment costs in the control
policy u2 do not translate into lower levels of malware infections (see Figure 4C).

However, when the investment costs in the control strategies u1 and u2 are the same (Figure 5), the magnitude of the
control u1 increases when the value of Wi, i = 1, 2, decreases notwithstanding the dynamics of both the control u2 and the
state variable I be the same as in Figure 4. This means that to cope with the minimization of the objective functional (7),
the control u1 should be applied with higher intensity when the related investment cost is low (see Figure 5A), and the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Effects of varying the control weight W2 when W1 = 250, for 𝛼1 = 𝛼2 = 0.5 and parameter values from Table 2. A, Control u1;
B, Control u2; C, I(t) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Effects of varying the control weights Wi, i = 1, 2, for 𝛼1 = 𝛼2 = 0.5 and parameter values from Table 2. A, Control u1;
B, Control u2; C, I(t) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Effects of varying the control efficacy parameter 𝛼i, i = 1, 2, for W1 = 250, W2 = 550 and parameter values from Table 2.
A, Control u1; B, Control u2; C, I(t) [Colour figure can be viewed at wileyonlinelibrary.com]

control u2 is at the upper bound during the entire time horizon. Moreover, in this case, the investment in the control u2
should be suitably cut down when the costs of new security countermeasures do not confer any advantage to minimize
the number of infected devices.

Now, we analyze the implications of varying the control efficacy parameters 𝛼i, i = 1, 2, for W1 = 250 and W2 = 550.
For that, three scenarios are considered: the scenario 1 (Figure 6), in which the efficacy of both control strategies is the
same; the scenario 2 (Figure 7), in which the efficacy of the control strategy u2 is fixed to 0.5 and the efficacy of the control
strategy u1 increases; and the scenario 3 (Figure 8), in which the efficacy of the control strategy u1 is fixed to 0.5 and the
efficacy of the control strategy u2 increases.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 7 Effects of varying the control efficacy parameter 𝛼1 when 𝛼2 = 0.5, for W1 = 250, W2 = 550 and parameter values from
Table 2. A, Control u1; B, Control u2; C, I(t) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Effects of varying the control efficacy parameter 𝛼2 when 𝛼1 = 0.5, for W1 = 250, W2 = 550 and parameter values from
Table 2. A, Control u1; B, Control u2; C, I(t) [Colour figure can be viewed at wileyonlinelibrary.com]

Firstly, whatever the considered scenario, an increasing in the efficacy of the control strategy leads to a decrease in
the number of infected devices when compared to the real number of Japanese cybercrimes (see Figures 2A, 6C, 7C,
and 8C). Regarding the scenario 1, Figure 6A indicates that the magnitude of the control u1 increases when 𝛼i, i = 1, 2
increases. On the other hand, the control u2 remains at the upper bound over the time window considered, regardless of
the efficacy tested (Figures 6B). In this context, both control strategies are important to minimize the cost functional (7).
Analogous dynamics are obtained when 𝛼2 is fixed to 0.5 and 𝛼1 increases (scenario 2) (Figure 7). Nonetheless, this is
not the case in scenario 3 (Figure 8). Indeed, whereas the control u2 remains at the upper bound regardless the value of
𝛼2, the magnitude of u1 slightly decreases whenever 𝛼2 increases (Figures 8A and 8B). This fact indicates that to meet
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FIGURE 9 The dynamics of infected devices under different control applications, for 𝛼1 = 𝛼2 = 0.5, W1 = 250, W2 = 550 and
parameter values from Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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the objective functional (7) when 𝛼2 increases, particularly attention should be given to control strategies related to u2 in
detriment of ones associated with u1.

Transversally, the number of malware infections is lower whenever optimal control strategies are employed and Figure 2
had already shown this statement. Aiming to understand the role of each control policy in minimizing the number of
infected devices, the left of Figure 9 demonstrates that when the control policy u1 is applied alone the number of malware
infections does not decrease over time, albeit the levels of infected devices be smaller than the real infections recorded
in that period by the Japanese police. Hence, despite of the control u1 can in fact contribute for lower levels of malware
infections, the right of Figure 9 shows that the best strategy to minimize the cost functional (7) is to apply both control
policies concomitantly.

5 CONCLUDING REMARKS

This paper proposes two control strategies to address the issue of how to soften malware propagation. In this regard,
an optimal control problem is formulated to minimize malware propagation in a cost-effective way, under real-world
numerical data related to the number of reported cybercrimes in Japan from 2012 to 2017. Under the Pontryagin's
Maximum Principle, the necessary conditions for the optimal control problem are derived. The existence and unique-
ness of the results associated with the optimality system are proved. Numerical simulations show the usefulness of the
proposed approaches in reducing the number of cybercrimes in Japan in that period. It is our understanding that the pre-
sented model provides relevant guidelines to control malware propagation in real-world scenarios. Nevertheless, further
investigations should be conducted to test different control parameter values. The application of several types of delay,
multiobjective optimization, and Bang-Bang controls are also pointed as future research.
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