

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

MASTER’S THESIS

Formal connectivity verification of clock and reset signals
in ultra-low-power SoC designs

 Author Aleksi Knuutinen

 Supervisor Jukka Lahti

 Second Examiner Jussi Jansson

 (Technical Advisor Juuso Rantanen)

December 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/389347107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Knuutinen A. (2020) Formal connectivity verification of clock and reset signals in ultra-

low-power SoC designs. University of Oulu, Faculty of Information Technology and Electrical

Engineering, Degree Programme in Electronics and Communications Engineering. Master’s

Thesis, 36 p.

ABSTRACT

This thesis investigates the usage of formal connectivity verification on clock and reset

signal connectivity in ultra-low-power SoC designs. The origin of power consumption in

CMOS circuits is explained, and the conflict between dynamic and static power on system

parameter level is introduced. Common power reduction techniques are introduced and

explained in some detail.

Overview of functional verification and its role in the design flow is presented. The main

classification of functional verification into logic simulation and formal verification is

discussed, and details of both are explained and compared. Challenges rising from low

power design methodologies are introduced. Detailed view of connectivity and integration

in SoC designs is provided, and a specified method of verifying connectivity is introduced

in the form of formal connectivity verification.

The practical part of the thesis starts with an explanation of the verification goal and

requirements for achieving it. Structure of the design environment used in the verification

task is explained, and the different stages that the verification was conducted on. Creation

of used connectivity properties and the used process flow for the chosen software tool is

presented.

The process of confirming falsified properties as design bugs is introduced. The results

of the verification task are presented, providing the total target amount for each

verification stage, as well as the found bugs. The found bugs and their circumstances are

explained. Comparison is made between the conventional method of verifying

connectivity and the investigated formal method. Results show a great decrease in overall

work effort, resourcing and time spent on the connectivity verification.

Key words: connectivity, formal verification, power management

Knuutinen A. (2020) Formaali liitettävyysverifiointi kello- ja reset-signaaleille ultra-

matalan tehonkulutuksen järjestelmäpiireissä. Oulun yliopisto, tieto- ja sähkötekniikan

tiedekunta, elektroniikan ja tietoliikennetekniikan tutkinto-ohjelma. Diplomityö, 36 p.

TIIVISTELMÄ

Tämä diplomityö tutkii formaalin liitettävyysverifionnin käyttöä kello- ja reset-signaalien

yhteyksille ultra-matalan tehonkulutuksen järjestelmäpiireissä. Tehonkulutuksen lähteet

CMOS piireissä selitetään, ja esitetään konflikti dynaamisen ja staattisen

tehonkulutuksen välillä systeemin parametritasolla. Tavanomaisia tehonkulutusta

vähentäviä tekniikoita esitellään ja selitetään jossain määrin.

Funktionaalisen verifioinnin yleiskatsaus ja asema suunnitteluvuossa esitellään.

Funktionaalisen verifioinnin pääjaottelua logiikkasimulaatioon ja formaaliin verifiointiin

käsitellään, ja molempien yksityiskohtia selitetään ja vertaillaan. Matalan

tehonkulutuksen metodologioiden aiheuttamat ongelmat esitetään. Yksityiskohtainen

kuvaus liitettävyydestä ja integroinnista järjestelmäpiireissä selitetään, ja eritelty metodi

liitettävyyden verifioimiselle esitellään formaalin liitettävyysverifionnin muodossa.

Käytännön osuus diplomityöstä alkaa verifoinnin tavoitteen ja vaatimusten

esittelemisellä. Käytetyn mallin rakenne ja verifiointitehtävä selitetään, sekä eri tasot

joilla verifiointi suoritettiin. Liitettävyys-ominaisuuksien luominen, sekä käytetty

prosessivuo valitulle työkalulle esitetään.

Vääriksi todistettujen ominaisuuksien varmistaminen suunnitteluvirheiksi esitellään.

Tulokset verifointitehtävästä esitellään, käsitellen verifioinnin kohteiden kokonaista

lukumäärää molemmilla verifiointitasoilla, sekä niistä löydettyjen virheiden määrää.

Löydetyt suunnitteluvirheet ja niiden seikkaperät selitetään. Vertailua tehdään

perinteisen liitettävyyden verifionnin metodin ja tutkitun formaalin metodin välillä.

Tulokset osoittavat suuren säästön kokonaisessa työmäärässä, resurssoinnissa sekä

liitettävyyden verifiointiin kulutetussa ajassa.

Avainsanat: liitettävyys, formaali verifiointi, virranhallinta.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1 INTRODUCTION .. 7

2 ULTRA-LOW-POWER SYSTEM-ON-CHIP ... 8

2.1 SoC architecture .. 8

2.2 Semiconductor power consumption basics ... 9

2.2.1 Dynamic power ... 9

2.2.2 Static power ... 10

2.3 SoC power management solutions .. 11

2.3.1 Clock-gating .. 12

2.3.2 Power-gating .. 13

2.3.3 Power domains .. 14

2.3.4 Power managing operational modes .. 15

3 SOC VERIFICATION .. 17

3.1 Introduction to functional verification .. 17

3.1.1 Functional/Logic simulation .. 17

3.1.2 Formal verification .. 18

3.2 Challenges of low-power SoC verification ... 19

4 FORMAL CONNECTIVITY VERIFICATION .. 21

4.1 Connectivity in SoC designs ... 21

4.2 Connectivity verification with formal applications ... 22

4.2.1 Connectivity property extraction ... 23

4.3 Disproving illegal connectivity ... 23

5 CLOCK AND RESET CONNECTIVITY VERIFICATION .. 24

5.1 Verification goal and requirements ... 24

5.2 Structure of verification environment ... 24

5.3 Verification stages ... 25

5.4 Creating connectivity properties ... 26

5.5 Formal verification tool process flow ... 27

6 VERIFICATION RESULTS .. 29

6.1 Bug confirmation ... 29

6.2 Results of property checks .. 29

6.3 Comparison to conventional simulation method ... 30

7 DISCUSSION ... 32

8 SUMMARY .. 34

9 REFERENCES ... 35

FOREWORD

The aim of this thesis was to investigate formal connectivity verification as a suitable method

for verifying clock and reset signal connectivity in ultra-low-power SoC designs. The thesis

work was conducted at Nordic Semiconductor Finland during the summer and autumn of 2020.

I would like to thank my manager Pekka Kotila for this great opportunity to work and

conduct this thesis work at Nordic Semiconductor. Special thanks to Senior R&D Engineer

Juuso Rantanen as the technical advisor and University Lecturer Jukka Lahti as the main

supervisor for guidance and supervision during this thesis. Thanks to Jussi Jansson for being

the second examiner. Finally, big thanks to all my colleagues who have always been ready to

help and guide me when needed.

Oulu, December 9, 2020

Aleksi Knuutinen

LIST OF ABBREVIATIONS AND SYMBOLS

AMBA Advanced Microcontroller Bus Architecture

CMOS Complementary Metal Oxide Semiconductor

CPF Common Power Format

CPU Central Processing Unit

CSV Comma-Separated Values

DSP Digital Signal Processor

DUT Design Under Test

DVFS Dynamic Voltage and Frequency Scaling

EDA Electronic Design Automation

FSM Finite-State Machine

GPU Graphical Processing Unit

HDL High-level Description Language

IC Integrated Circuit

I/O Input/output

IP Intellectual Property

RTL Register Transfer Level

SoC System-on-Chip

TCL Tool Command Language

UPF Unified Power Format

VHDL VHSIC Hardware Description Language

WIFI Wireless Fidelity

YAML Yet Another Multicolumn Layout

Cload Load capacitance

Cox Gate capacitance

Ileak Leakage current

ISUB Sub-threshold leakage current

L Length of a transistor

n Variable of device fabrication

Pleak Leakage power consumption

Psw Switching power consumption

Vdd Supply voltage

VGS Gate-Source voltage

VT Threshold voltage

Vth Thermal voltage

W Width of a transistor

α Switching activity probability

f Frequency

µ Carrier mobility

1 INTRODUCTION

The continued growth of complexity of system-on-chip (SoC) has forced the advance of power

reduction technologies. As semiconductor development has steadily advanced according to

Moore’s Law [1], said advancement in performance has also increased power consumption in

circuits. While transistor technology has enjoyed its rapid development, power storing

technologies didn’t have the same story and have advanced at a much slower rate.

Unfortunately, “there is no Moore’s Law for batteries” [2]. To combat rising power

consumption, developers have resorted to the development of low-power SoC technologies and

techniques. This thesis was conducted at Nordic Semiconductor, one of the leading developers

of wireless SoC technology that focuses on the development and production of ultra-low-power

SoC devices.

Power management systems in ultra-low-power SoC designs can be very complex, a result

of parallel use of multiple different power reduction techniques at multiple design abstraction

levels. This directly adds to the difficulty in SoC verification. Normally simple and

straightforward signal connectivity, such as those of clock and reset signals, can become quite

tedious to verify with typical simulation-based methods. Formal verification may offer the

solution, with its specified “applications” for verifying design connectivity. [3]

This thesis explores the usage of formal connectivity verification on clock and reset signal

connectivity in ultra-low-power SoC designs. The connectivity of these signals has become

much more difficult to verify with typical simulation-based methods and should have more

thorough verification. The primary goal is to investigate if formal connectivity verification

method could work as a better and easier alternative to simulation-based methods in this kind

of a verification task. As a direct result of the primary goal, the secondary goal is to explore the

possibility of adding formal connectivity verification as a core part of the in-house verification

flow.

Very little research can be found on this specific topic, as nearly all related research discusses

formal connectivity verification and other forms of SoC connectivity verification in a very

broad sense, not on any specific targets or verification tasks. This lack of specified research

may be due to formal connectivity verification still being fairly new, or due to the research done

being very product or company specific, and thus not being publicly available.

Chapters 2-4 focus on the theory concerning this work. Chapter 2 introduces the basic

structure and features of SoC designs, as well as the basics of semiconductor power

consumption. Chapter 3 provides an introduction of functional verification and presents the

main methods of verification: simulation-based verification and formal verification. Chapter 4

delves into SoC connectivity and its possible types, and presents formal connectivity

verification as a powerful method for verifying connectivity at IP, subsystem or the top SoC

level.

Chapters 5-6 focus on the practical work in this thesis. Chapter 5 presents the used

verification environment and targets, as well as the procedure for creating the connectivity

properties to be checked. Chapter 6 presents the results of the task and compares the

investigated method to the conventional verification method.

Chapter 7 discusses the aim of the thesis and the gained results. Chapter 8 is a recap of this

thesis, where the main contents and results are shortly summarized.

8

2 ULTRA-LOW-POWER SYSTEM-ON-CHIP

Chapter 2.1 introduces the basic architecture of SoC designs. Chapter 2.2 introduces the basics

of IC power consumption; how is it defined and classified, and how technology advancements

have affected it. Chapter 2.3 provides few solutions to SoC power management.

2.1 SoC architecture

System-on-chip is an integrated circuit that integrates various computer components on a single

chip. These components include a central processing unit (CPU), one or multiple memories,

input/output ports, and some interface for communicating with the user or other devices. In

addition to these, an SoC might be integrated with more advanced peripherals, such as Wireless

Fidelity (WIFI) modules, digital signal processors (DSP), graphical processing units (GPU), or

sensors for data collecting.

In SoC designs, these components are usually presented in forms of predesigned models of

complex functions known as cores. These cores may be designed in-house or bought from

separate core/Intellectual Property (IP) vendors. Cores are generally available in either

synthesizable high-level description language (HDL) form, for example in Verilog or VHSIC

Hardware Description Language (VHDL), or optimized transistor-level layout such as GDSII.

[4]

Figure 1 demonstrates an example of a standard SoC design architecture, with multiple

peripherals in the form of IPs, a memory block, one DSP core, and one CPU core. The

components communicate through a data bus, which usually follows some form of Advanced

Microcontroller Bus Architecture (AMBA) protocol. Input/output (I/O) interface exists for

communication outside the chip.

A more advanced and complex SoC design may include multiple CPUs, memories for each

CPU, and hundreds of IPs. In such a case, the top-level of the design may be divided into

separate sections called subsystems. These subsystems are not dependent on other SoC

components, and they contain all necessary components for a specific task, without overlapping

with other functions on the chip [5]. A WIFI-subsystem for example handles everything related

to WIFI communication and doesn’t need to rely on other cores like DSP or GPU for its

functionality.

9

Figure 1: Example architecture of a standard SoC.

2.2 Semiconductor power consumption basics

As SoC chips get increasingly complex, they also consume increasing amounts of power.

Maintaining a considerate power usage for a design is important, as high power consumption

increases the cost of device usage and its manufacturing costs while decreasing its reliability

and lifetime. This is especially important for portable battery-powered devices, which comprise

one of the fastest-growing segments of the electronics market [11]. While Complementary

Metal Oxide Semiconductor (CMOS) technology advances have seen transistor density

doubling roughly every 18 months, the equivalent advancement for battery technology is

greater than every 5 years [6].

Before attempting to reduce power consumption, one must first understand where it

originates and what affects it. Typically, Integrated Circuit (IC) power consumption is divided

into two parts, dynamic power and static power. In CMOS circuits, dynamic power is based on

switching activity of CMOS logic gates, and static power is based on leakage currents flowing

through transistors that are connected to a supply voltage. [7]

2.2.1 Dynamic power

Dynamic power is the power that is consumed when the device is active, meaning when signal

values are changing. Dynamic power consumption is mostly caused by switching power

consumption, which is the power dissipated by the charging and discharging of capacitance in

the cell, and can be described as in the following Equation 1. [8]

10

𝑃𝑠𝑤 = 𝐶𝑙𝑜𝑎𝑑 × 𝑉𝑑𝑑
2 × 𝑓 × 𝛼, (1)

where variables are as following:

 Cload is load capacitance

 Vdd is used supply voltage

 f is clock frequency

 α is switching activity probability.

As seen in the equation, reducing supply voltage Vdd is an effective way to reduce dynamic

power. However, lowering the supply voltage also affects performance, as the speed of a gate

decreases with a decrease in supply voltage [9]. A decrease in performance is very undesirable,

and usually, it must be compensated in some way, so this approach needs to be carefully planned

before execution.

2.2.2 Static power

Static power is the consumed power when the circuit isn’t active, meaning when input and

output signals aren’t changing. Even if a circuit is turned off, as long as it is receiving power,

it experiences power dissipation in the form of leakage power, which is power that does not

contribute to the circuit’s function. Leakage power dissipation occurs in both active and inactive

states of the device, but the main concern with leakage power is during inactivity. Leakage

power can be expressed as in the following Equation 2 [10].

𝑃𝑙𝑒𝑎𝑘 = 𝑉𝑑𝑑 × 𝐼𝑙𝑒𝑎𝑘 (2)

where variables are as following:

 Vdd is used supply voltage

 Ileak is leakage current of transistor.

Looking at this equation, it seems as if it would be quite easy to reduce static power

consumption by simply lowering supply voltage, as with reducing dynamic power. The problem

however, is that in order to maintain high performance, a lower Vdd value needs to be

compensated with a lower threshold voltage VT. Changes in threshold voltage have an

exponential effect on sub-threshold leakage current, which is one of the main components of

total leakage current. The effect can be seen in the following approximation for ISUB in Equation

3. [11]

𝐼𝑆𝑈𝐵 = 𝜇𝐶𝑜𝑥𝑉𝑡ℎ
2 ×

𝑊

𝐿
× 𝑒

𝑉𝐺𝑆 − 𝑉𝑇
𝑛𝑉𝑡ℎ , (3)

where variables are as following:

 𝜇 is carrier mobility

 Cox is gate capacitance

 Vth is the thermal voltage (25.9mV at room temperature)

 W is the width of transistor

11

 L is the length of transistor

 n is a variable of the device fabrication, varying from 1.0 to 2.5

 VGS is the gate-source voltage

 VT is the threshold voltage

As seen from the equation, a conflict is created. To reduce dynamic power, we lower VDD,

and to maintain performance, VT is correspondingly lowered. This in turn exponentially

increases leakage current, and thus increases leakage power.

Traditionally, managing leakage power has been redundant, but the advance of

semiconductor technology has made it an increasing concern. The supply voltage of a transistor

is lowered with each successive process generation, from 5V at 800nm technology size, to only

1.0V at 65nm technologies. As the technology size gets smaller and smaller, the resulting

leakage power increases to a point where in some designs, the leakage power is nearly the same

as dynamic power. Figure 2 shows how leakage power is catching up to dynamic power as the

technology size scales further down[12].

Figure 2: Leakage power vs. dynamic power in a CMOS chip at different technologies.

2.3 SoC power management solutions

Increasing power consumption is a huge problem for modern powerful electronics. Dynamic

power consumption directly affects a device’s operating time, the length of which is a more and

more appreciated feature. Leakage power affects all devices that spend much of their operating

time in some form of standby mode, such as cell phones. Lowering power consumption is

highly desirable even for non-battery-powered devices, as it can reduce expenses in packaging

and cooling. The recent rise of demand for ecological and sustainable production, and through

it the demand for “greener” electronics, further drives the development of low power

circuitry[13].

0

50

100

150

200

250

0.25µm 0.18µm 0.13µm 0.10µm 0.07µm

P
o

w
er

 (
W

)

Technology size

Leakage Power
Dynamic Power

12

Design decisions made on the higher design abstraction levels can have a huge impact on

the total power dissipation of a design, while design decisions on the lower levels of abstraction

have a significantly smaller impact, as illustrated in Figure 3. Optimization on the lower levels

might not be able to overcome optimization mistakes done on the higher levels in order to stay

on the power budget of the design. To successfully reduce power consumption of the design as

much as possible while avoiding design reiterations, optimization should be done continuously

on all abstraction levels of the design. [14]

Figure 3. Power reduction opportunities in relation to design abstraction levels.

As power consumption in CMOS circuits can be divided into dynamic and static

components, it is convenient to categorize power reduction techniques in the same way into

dynamic and static categories. Many reduction methods span over multiple design levels, thus

classification by design abstraction level can be difficult. Furthermore, this categorization

reflects well to real life, where power reduction should be performed at every design abstraction

level and design step. [14]

The following subheadings introduce and explain some of the commonly used power

reduction techniques which were present and relevant in the practical part of this thesis. Some

of the common but unmentioned power reduction techniques, such as Dynamic Voltage and

Frequency Scaling (DVFS), were not relevant in the practical part, and thus are not needlessly

touched upon.

2.3.1 Clock-gating

A large amount of dynamic power consumption in a design is in the clock network. Clock

signals switch state on every cycle, so they naturally have the highest toggle rate in the system.

A connected clock in an idle module not only adds to the clock loading but can also cause

spurious activity in the logic. As the spurious activity under these conditions is quite random,

activity may actually be maximized instead of minimized [13]. The intuitive way to reduce this

power is to disconnect clocks from modules when they are not being used. This commonly used

technique is known as clock gating.

13

Clock gating describes logic where the distribution of a clock signal is controlled by an

enabling signal. The enable for a group of flip-flops is asserted only when those flip-flops have

switching activity, thus preventing unneeded clock pulses and activity at idle parts of the design.

Although the basic logic is the same for all clock gating modules, the implementation

techniques differ.

Figure 4 describes a commonly used clock gating module, based on the usage of a latch. The

latch is opaque when the clock signal is high, and it is driven on negative clock cycles. This

ensures that the enable signal feeding the AND gate doesn’t change during positive clock

cycles, ensuring that there are no glitches on the output clock. [15]

Figure 4: Latch based clock gating module.

2.3.2 Power-gating

As clock gating is a technique used for the reduction of dynamic power, power gating is a

corresponding technique for static power reduction. Since leakage power dissipation always

happens when circuits receive power, whether the circuits are active or not, the natural way to

reduce it would be to turn off inactive modules by disconnecting their supply voltages. This can

be done by using one PMOS and NMOS transistor in series with the module, with these

transistors working as switches between the module, supply voltage, and ground. Depending

on their position, these transistors are called “headers” or “footers”. The usage of these

transistor switches is depicted in Figure 5. Notice that in practice only one transistor is

necessary. NMOS transistors are usually used because of their lower on-resistance, unless the

circuit design has properties in favour of using PMOS header cells, such as multiple power

supplies. [16]

14

Figure 5. Power gating circuit structures.

During ACTIVE state, the transistors are on, and the circuit functions as usual. During

SLEEP state, the transistors are turned off, disconnecting the path between supply power and

ground, thus preventing leakage power dissipation from the logic. While the switching

transistors are ON, the switching transistors themselves contribute to a small amount of leakage

power consumption, but this is usually negligible in comparison to the leakage from the logic

circuit.

2.3.3 Power domains

All sections of an SoC design are not equally active. Some modules may spend a lot of time in

idle states and can be powered off temporarily with power gating to minimize leaking power

consumption. The timing requirements can also differ between sections. In a standard single

supply voltage circuit, the value of the supply voltage is determined by the clock requirement

of the critical delay paths[17]. However, the number of critical paths typically constitutes only

a small fraction of all paths within the design, and using the same supply voltage for every cell

in the design therefore wastes energy[17].

Multi-supply voltage domain technique is a method, where the design is partitioned into

separate voltage domains, each domain operating at a distinct power supply level depending on

its timing requirements. Time-critical domains run at a higher supply voltage to maximize

15

performance, while non-critical sections work at lower supply voltage to reduce power

consumption without impacting overall circuit performance. [18]

Figure 6 presents an example of an SoC design with 3 separate power domains. Power

Domain 1 is an “always-on” domain, working with a lower frequency and thus requiring a lower

supply voltage level. Power Domain 2 is reserved for time-critical modules, working at a higher

clock frequency, thus also requiring a higher power supply. This high-speed domain is switched

on only when required, due to its high power consumption. Power Domain 3 is a so-called

“switchable” domain, which is switched on when deemed necessary. It serves as a domain with

functionality somewhere between those of domains 1 and 2, not always being powered on, and

not having the lowest or the highest clock frequency or power supply voltage.

Figure 6. Typical power domain division in a system-on-chip.

2.3.4 Power managing operational modes

Low-power SoC designs usually have the chip, or sections of it, work on multiple operation

modes, switching modes depending on the current operation. The switching is controlled by a

Finite State Machine (FSM). The operating clock frequency is an important factor of switching

power consumption, and thus the highest frequencies should only be used in the high power

mode to avoid wasting energy. Furthermore, clocks can be disabled altogether for modules that

are not needed in the current operation mode. A high-frequency clock can be generated by a

Phase-Locked Loop (PLL) module, which multiplies a low-frequency clock to create a higher

frequency clock. This can then be divided down to provide any needed clocks for modules. [19]

In addition to controlling the operating clocks, FSM modules in low-power designs may also

oversee the control of power management structures. Power gating and used supply voltages

are usually directly related to certain operational modes, and a switchable power domain may

only activate during a single operational state.

Figure 7 shows a chart of state transitions in an example low-power SoC design. In this case,

four modes are defined: SLOW, NORMAL, IDLE and SLEEP.

16

(1) SLOW: When the system finishes reset or does not need to run in a high clock frequency,

the system enters SLOW mode. In this mode, the PLL module is disabled, and the CPU

and other modules run at the slower frequency input clock.

(2) NORMAL: In NORMAL mode, PLL is enabled, providing the system with the

maximum operational frequency. CPU and other modules run at this high frequency.

(3) IDLE: If CPU core finishes all tasks and would be idle for a long time, the system enters

IDLE mode. The system can enter this mode from either SLOW or NORMAL mode. In

IDLE, the clock to CPU core is disabled to reduce power dissipation. CPU core can be

enabled with a reset or an interrupt, in which case the system returns to the mode prior

to IDLE.

(4) SLEEP: If the whole system finishes all tasks and would be idle for a long time, the

system enters SLEEP mode. In SLEEP mode, PLL is disabled, as well as all clocks in

the system. SLEEP mode can be exited with a reset or an external interrupt and will

switch the system to NORMAL or SLOW operation mode, depending on the current

application. [20]

Figure 7: An example state transition chart for a low-power system.

17

3 SOC VERIFICATION

Chapter 3.1 provides an overview of SoC verification, and subheadings 3.1.1 and 3.1.2

introduce simulation-based verification methodology and its alternative, formal verification

methodology. Chapter 3.2 shortly discusses verification challenges arriving from low-power

methodology.

3.1 Introduction to functional verification

As the designs of SoCs have gotten highly complicated, it has become increasingly difficult to

thoroughly verify the functionality of the chip and identify all the design bugs before the chip

is sent to manufacturing. It has been estimated that in current industry designs, functional

verification may take up to 80% or more of the overall design time [21]. Therefore, viable

verification techniques for each stage of the design flow are indispensable, especially for earlier

stages, since fixing design bugs in later design stages is very expensive.

IC verification is done on every major step of the design flow, from verifying the compilation

of the first models on the Register Transfer Level (RTL), to the verification done on the

manufactured physical chip before the final tape-out. Functional verification focuses on the

design before any of its parts are built, attempting to determine if the design model operates as

intended [22]. Most design and verification effort is done at register-transfer level, which

presents the model on a less detailed abstraction level but detailed enough that all functional

detail is usually available in the model [22]. The work in this thesis focuses on the early parts

of the design and verification flow, thus only functional verification at the register-transfer level

is explored. Verification methodologies can be generically defined either as simulation-based

or formal methods [21].

3.1.1 Functional/Logic simulation

Simulation is an old and well-known but extremely useful verification method. The basic

concept of simulation is quite straightforward and is presented in Figure 8. An electronic design

automation (EDA) tool is used to create and exercise a simulation model of the design. A test

case is created, where a set of inputs are given to the design under test (DUT) as input, and the

resulting responses are captured and observed. These responses are then compared to a

specification of the design to see if the DUT adheres to it. If the results differ from what was

expected, there exists a bug in the design. After diagnosing the cause and editing the

implementation to fix the bug, the simulation is run again. This process is repeated until the test

case doesn’t issue any bugs, after which this pattern is repeated for all simulation scenarios until

finally the implemented design is bug-free. With enough different simulation scenarios, a

certain level of confidence is gained for the correctness of the design. [23]

18

Figure 8: Basic concept of verification by simulation.

Although verification by simulation is a common and good practice, the ever-increasing

complexity of SoC designs is starting to take its toll. Because the simulation results depend on

given input patterns, the design might include bugs that are harder to find, or ones that, without

a completely thorough verification, may even be completely invisible to logic simulation. The

increasing SoC design complexity requires exponentially increasing input patterns, which

makes it extremely difficult, or outright impossible to do thorough verification by logic

simulation. The development of formal verification techniques is essential to solving this

problem. [21]

3.1.2 Formal verification

Formal verification is a mathematical proof that two models, one that is implemented through

the written code, and one that is created through design specifications, are identical under all

conditions [24]. Formal methodology focuses on proving this using a mathematical process

rather than a simulation-based approach where specific test cases are created and driven on a

design.

In formal verification, the design and its specifications are translated into mathematical

models, which are used to prove the correctness of the design with mathematical reasoning. As

all possible cases in the mathematical model are explored, formal verification is basically

exhaustive and can be considered as simulating all cases in logic simulation. [25]

Formal verification can be classified into two classes, model checking and equivalence

checking. Model checking verifies if a design satisfies the properties given as its specifications,

whereas equivalence checking verifies whether two given designs are equivalent to each other

or not. The work in this thesis focuses on formal model checking, and thus equivalence

checking shall not be discussed in any more detail. [21]

The formal model checking methodology uses properties, created from design

specifications, to provide proof of design correctness. These properties are written as assertions,

which are concise descriptions of complex or expected behaviour, and they can be used to

present the functional intent of the design. These assertions can be static, meaning they must

always hold true, or temporal, meaning they must hold true only at a specific instance and time.

19

A formal verification tool reads design properties in the form of these assertions and attempts

to prove that they can never be violated. If such a case is found, the tool finds and presents a

stimulus sequence that violated the assertion. This is termed as a “counter-example”. If an

assertion can neither be proved or falsified, the assertion is termed as “indeterminate”. [25]

Figure 9 shows an example illustration of discussed behavioural checking. The design starts

at an initial state and then walks through all possible actions and transitions one by one in an

attempt to get the design to execute an illegal behaviour. If such behaviour cannot be executed

by any means, the design can be viewed to be correct.

Figure 9: Formal Verification behavioural check illustration

3.2 Challenges of low-power SoC verification

The usage of power management features in low-power SoC designs brings up some unique

challenges to verification. As the foremost issue, the design description languages at higher

levels of abstraction don’t have a notion of voltage as a variable. This is now being addressed

through the development of power formats such as Unified Power Format (UPF) and Common

Power Format (CPF), which reflect the power intent of a design. [26]

Besides the problem with description languages, low-power architecture itself significantly

complicates verification activities. Low-power designs can feature tens of power domains and

thus hundreds of power modes, making it prohibitive to verify that the design is functional

under all possible power modes [27]. The verification of specific targets through logic

simulation gets much more elaborate as well. In low-power designs, such as the one used in this

thesis, multiple different power reduction techniques are combined and used in parallel, making

the required configurations for verifying a specific target through simulation quite complicated.

Even a seemingly simple target, such as verifying a clock in an IP, may require a lot of

arrangements to be done before it can be tested and observed. The power domain under which

the IP is operating must be enabled and its power turned on correctly. The clock signal to the

20

IP must be enabled correctly. The power domain must have the correct operation mode to enable

the operation of the IP under verification. Finally, after all these configurations are set up, a test

case can be created, where the IP receives a stimulus, and through its simulation results the

activity of the clock signal can be observed. In addition, to ensure that the correct activity is

preserved in the future, the testbench requires checkers to continuously check and verify the

clock activity. As these checkers must operate under the specific condition configured for the

operation of the IP, creating them can be difficult as well.

These types of configurations are needed to verify the connectivity of one clock signal in a

specific IP through logic simulation, and they must be repeated for every separate IP in the

design to achieve complete clock verification. Conducting this sort of connectivity verification

on the entire SoC design can become a very difficult and time-consuming task without a suitable

method. In addition, it can only be conducted fairly late in the design flow, when all the modules

to be verified have fairly complete functionality.

21

4 FORMAL CONNECTIVITY VERIFICATION

Chapter 4.1 describes SoC integration and possible connectivity types inside the design. 4.2

introduces formal connectivity applications as a solution to verifying low-power SoC

connectivity. 4.3 discusses security applications as a way to supplement connectivity checking.

4.1 Connectivity in SoC designs

One challenging part of SoC development is top-level integration and verification. There are

multiple IPs which may have multiple owners. Each IP has input and output ports, which may

vary from tens to hundreds. Incorrect specifications, misinterpretations of specifications, and

misunderstandings between designers and verification engineers are just some of the reasons

for design errors during integration. It’s been observed in many in-house SoC designs that up

to 80% of errors during the design integration process are contributed by pure connectivity

errors [28].

Figure 10 presents possible types of pin to pin connections inside SoC designs. A connection

is described by its source and destination nodes. Source and destination may be connected

through flip-flops to create a delay, may have a conditional connection, or may be a

combination of two or more of these types. [29]

Figure 10: Possible types of pin to pin connections.

Verifying connectivity on the highest level of an SoC design can be very tedious. The

verification engineer needs to have some insight into the entire design to even begin the task.

The connectivity path may go through multiple blocks and levels of hierarchy. Inverters may

exist along the path, and state elements like registers and flip-flops result in multi-cycle delays

between the source and destination points. Global signals such as clock and reset are routed to

thousands or millions of state elements, and the correctness of those connections should also be

22

verified. These reasons render connectivity verification by inspection completely impractical.

[3]

4.2 Connectivity verification with formal applications

Today, EDA vendors of formal verification tools have started providing their software with

specified “apps”, which target specific verification challenges. These apps typically generate

most, or even all of the properties needed for formal analysis. This ease of accessibility allows

even users with no prior formal experience to start using formal verification. One of these apps,

connectivity checking, is one of the most widely used applications of formal technology. [3]

Connectivity checking, as the name implies, is an application targeted at ensuring proper

interconnections among design blocks. In formal connectivity, a connection between a Source

and a Destination is defined by three conditions:

 Source and Destination always have the same value, when a given Enable expression

is true

 A structural path exists between Source and Destination

 The connection is directional from Source to Destination

If all these conditions hold, the connection can be deemed as proven, whereas if even one of

these conditions fails, the connection is deemed as falsified. [30]

A formal verification tool uses given information on the Source, Destination and Enable

expression, and automatically generates a property that exhaustively verifies the connection.

The created property can be thought of as a SystemVerilog Assertion (SVA) of the following

type:

assert property @(posedge clk) (enable |-> (source==destination))

where at every positive edge of the clock, if the enable expression is valid, source and

destination should be equal.

The important difference is that the created connection property also indicates directionality

and a structural connection, whereas with an assertion, the Source and Destination could as well

both be tied to a constant. They would always have the same value, thus according to the

assertion, they would have a connection. [30]

The design connectivity specifications themselves can be given to the tool in multiple ways,

including Comma-Separated Values (CSV), Yet Another Multicolumn Layout (YAML) and

Tool Command Language (TCL) formats. Spreadsheets in CSV format, as shown in Figure 11,

have all property arguments separated into different columns, which brings a lot of ease to

property writing and readability of the specifications.

Figure 11: An example of a CSV format spreadsheet

23

4.2.1 Connectivity property extraction

In an ideal situation, the connectivity that needs to be verified is defined in design specifications

or separate connectivity specifications with perfect accuracy. The source and destination signals

are defined accurately down to the correct bit-indexing, as well as all needed enable expressions

on the path. Unfortunately, this isn’t always the case, most likely during early parts of the design

flow, where the design requirements are not yet solid, and the design structure and functionality

are constantly being reworked. Due to the constant changes in the early design, the

documentation can be very incomplete. For a verifying engineer who is not involved in the

design process, finding out the correct connectivity specifications can be a very difficult and

time-consuming task.

Synopsys’ formal verification tool VC FormalTM, which was used in this work, has a feature

to automatically find and extract connectivity properties from actual connections present in the

RTL. The tool takes a given source and destination in the form of signals or even whole module

instances and tries to find any existing structural connections between them. If a structural

connection is found, the tool creates a connectivity property from said connection, including

any corresponding enable expressions. Naturally, the automatically created properties might

not be consistent with specifications and must be reviewed to ensure they are correct. [31]

While results from properties that were created with accurate specifications are arguably

more trustworthy, property extraction can save a lot of time during the early design stages, when

design verification doesn’t need to be completely thorough. It enables designers to focus on the

design work and enables verification engineers to proceed with design verification without a

need to investigate the design functionality and structure from written RTL-code.

4.3 Disproving illegal connectivity

When verifying proper connectivity in a design, proving only the existence of wanted

connectivity may not be enough. For a complete connectivity verification, one may need to

ensure that the selected source is connected only to the proper ports and nothing else. This

means also proving the absence of incorrect connectivity. This type of check is non-trivial and

may not be accomplishable by the connectivity application, forcing one to find other options.

[32]

There are certain tools, or specific features of tools, that are focused on verifying data

propagation in a secure manner, meaning they prove that data doesn’t propagate between two

points, where one is considered secure and the other non-secure [33]. Security verification tools

of this type are exactly what is needed to prove that only the proper connection exists, and any

other possible connections are absent in the design. These tools function in a similar way to

connectivity checking applications, as they also create the properties to be checked from the

given source and destination information [32]. The big difference is that instead of a wanted

connectivity destination, they take in an unwanted or illegal connectivity destination, and verify

that the connection doesn’t exist. Combining this checker with connectivity checking gives an

arguably solid proof for connectivity validity.

24

5 CLOCK AND RESET CONNECTIVITY VERIFICATION

Chapter 5.1 introduces the goal and requirements for the verification work done in this thesis.

Chapter 5.2 describes the structure of the resource distribution system present in the used

design. Chapter 5.3 presents the different stages that the verification work was done on. Chapter

5.4 discusses how the used connectivity properties were created. Chapter 5.5 provides an

overview of the used process flow for the used software tool.

5.1 Verification goal and requirements

The goal in this thesis was to investigate formal connectivity verification as a viable method to

verify clock and reset connectivity in an ultra-low-power SoC design, where power reduction

solutions are pushed to their limits. To prove the viability of this verification method, the

following goals needed to be reached:

1. Existence of wanted connectivity between a clock/reset source and its destination must

be verified (proven or falsified).

2. Verification method must be usable on the highest level of the SoC design, where all

parts/subsystems are integrated.

3. The procedure of verifying wanted connectivity must not take too much effort and

manhours (even for a good method, too much effort can make it unbeneficial).

Complete proof for correct connectivity has an additional requirement where illegal

connections must also be disproved, as presented in Chapter 4.3. However, due to restrictions

on timing and software licenses, this requirement was left out from the work in this thesis and

is discussed in Chapter 7 as a supplementary improvement in future research.

5.2 Structure of verification environment

The used verification environment for this thesis was an ultra-low-power SoC design,

consisting of multiple subsystems. Each of these subsystems consists of multiple IPs, AMBA

interconnect buses, CPUs, and their own power, clock and reset controlling systems. For ease

of reading, from now on these signals shall be bundled together and referred simply as PRC-

signals, after “Power, Reset and Clocks”. Each subsystem works as its own individual region

and has its own power domain division for used peripherals. The distribution of PRC-signals

for each subsystem is controlled by an outer resource management system, which grants these

subsystems resources depending on their activity.

The PRC-signal distribution inside each subsystem follows a certain gating logic structure,

which is described in a simplified form in Figure 12. Each power domain in each subsystem

has a resource controller, with the main power domain having the controller with the “highest

authority”. The main resource controller then handles incoming requests for PRC-signals from

receivers, that can be peripherals, CPUs or separate power domains working “under” the main

domain. According to the request protocol, the controller may distribute the requested resources

to the receivers requesting them or deny them in the case of an invalid request.

25

Figure 12: Resource distribution system in used verification environment.

The resource controllers, while controlling PRC-signal distribution, also control the

operational mode of the domain they are in. By extension, they also control the power

management structures of that domain. Each resource controller is individually parameterizable

according to the needs of the domain it is placed in, making them much more complex and

difficult to outline than how they initially seem.

While the subsystems have total control of their inner resource distribution, the subsystems

themselves work “under” the main resource control unit, which activates and deactivates the

subsystems according to their activity. This unit and its connections are illustrated in Figure 13.

The activity of one subsystem may also have effects on other subsystems, such as asserting

resets in the case of an error. These cross-domain requests and commands are directed to the

main resource control unit, which then distributes resources to the subsystems according to the

request or command.

5.3 Verification stages

The connectivity of clock and reset signals was verified on two different stages: first on the

highest level of SoC architecture between the global resource distributor and each subsystem,

and later within two separate subsystems. The environments in these two stages are illustrated

in Figure 13.

The first stage was a simple and straightforward connectivity check to verify the correct

integration and connections of subsystems on the topmost level of the SoC. Request signals

from subsystems must be correctly connected to inputs of the global resource distributor.

Likewise, the distributed clock and reset signals from the global distributor must be correctly

connected to their corresponding inputs for each subsystem. With these requirements

26

successfully proven, the integration of subsystems on accord of clock and reset signals can be

considered correct.

The second stage was focused on the correct integration of individual IPs within a subsystem.

Each power domain within a subsystem has one resource controller module, and they are each

individually configured according to the domain they are in and the IPs working under them.

This makes it possible for a clock or reset signal path to go through multiple resource

controllers, creating a lot of complexity to a seemingly simple connection. Each IP may also

use multiple clocks and resets for different purposes, requiring verification for each of them.

Figure 13: Verification environment on stage 1 (SoC) and stage 2 (Subsystem)

5.4 Creating connectivity properties

As explained previously in Chapter 4, connectivity properties can mainly be created in two

ways: Writing accurate source, destination and enable expressions in CSV-format or some other

compatible format, or using an extraction feature to automatically generate the properties and

their enable statements. Both methods were used in this thesis, with each method being used on

a different target.

Reset signals in the used design were asynchronous and didn’t have special gating structures,

therefore their connectivity properties didn’t require any enable expressions or other conditions,

such as latency. Reset-properties were created through a CSV-format spreadsheet, with accurate

information on source and destination.

The property extraction method was used on clock signal properties. Although clock signals

seem to have the same pathing as reset signals, unlike resets they have a strict and complex

gating logic within each resource controller, requiring a huge combinational set of enable

expressions. Clock signals also propagate through the design in an orderly signal package, each

clock having a separate bit-wide part of the signal package. Their order in the package can also

be scrambled inside each resource controller module, depending on the configurations done for

the module. Writing accurate property-expressions, although possible to do, would be very

tedious and time consuming for anyone not involved in the design process. By using property

extraction, the right connection can be automatically found from all available signal-bits,

including any needed enable conditions for the path, making the method very suitable for clock

signal properties.

27

5.5 Formal verification tool process flow

As mentioned earlier in Chapter 4.2.1, the formal verification tool used in this thesis was VC

Formal from Synopsys, more specifically its Connectivity Checking application. The used

process flow for the tool was given in a single TCL-file, and that flow is presented in Figure

14. The process starts by defining the used application mode and all variables associated with

it. Any variables affecting the software tool itself should also be set at this point.

Next step is to read and compile the design. The design is given as a set of all necessary files,

or a single file list containing all the files. The tool will use given files and compile the design.

After compilation, clock and reset signals should be configured. Clocks are mainly used for

properties that have some latency, and they are negligible in other scenarios. The targets in this

thesis’s design do not have any latency, so clock configuration was not necessary. Resets are

used in the simulation phase to set the design to default stage before creating formal models.

Resets in the used design were asynchronous, so they didn’t require clock configuration either.

Next step is the simulation phase. During this phase, the design is simulated for a set amount

of time to get the default state for formal analysis. By default, the previously configured resets

are asserted during this phase, but any signal can be forcibly driven during this phase in order

to get the design to a wanted state. The simulation can be run for a user-defined set of time, or

until the design is deemed “stable”.

After the simulation phase, the verification itself can begin. Properties can be loaded and

created from a format of the user’s choice. As previously stated, in this work CSV-format and

VC Formal property extraction commands in TCL-format were used. After the properties are

loaded, they are checked against the formal model created at the end of the simulation phase.

Finally, the results of the check are presented and can be saved in an output file. Any properties

that were successfully verified can also be used afterwards in a toggle-coverage analysis, the

results of which are saved as a coverage database file.

28

Figure 14: Used process flow for the verification tool

29

6 VERIFICATION RESULTS

Chapter 6.1 describes the procedures to confirm a falsified property as a design bug. Chapter

6.2 provides the concrete results of the task in this thesis. The number of verification targets

and found design bugs for each verification stage is shown, and a short description of the details

of the bugs. Chapter 6.3 compares the used verification method to the conventionally used in-

house methods.

6.1 Bug confirmation

When the formal verification tool has completed checking the properties, it classifies them with

either PROVEN, FALSIFIED or INCONCLUSIVE status. For any property that receives a

FALSIFIED status, it must be confirmed to be due to actual design bugs, and not due to

incorrectly written property or faulty specifications. The correctness of the property is easy to

confirm, but the correctness of specifications is more difficult and is usually discovered only

after reporting the discovered bug. In the situation where a fault in specifications is found, it is

preferable to recheck all the properties, including the PROVEN ones, in case of false positives

and false negatives.

After a falsified property is deemed as a design bug, the next step is to find the reason behind

it. The formal verification tools produce a “counter-example” for the falsified property to

support the debugging process [21]. The counter-example shows waveforms of the property

signals, as well as any signals that had an effect with reaching the situation in the counter-

example. By inspecting these signals, the cause of the bug can often be easily found.

Sometimes the counter-example is not clear at showing the cause, or it just isn’t enough to

decipher it. The formal tools may also feature a schematic viewer, with which one can directly

investigate the signal path and even its values at every step. Some tools also feature automatic

debugging features that can automatically search for the error cause. If none of these methods

manage to find the origin of the bug, it should be consulted with the designer in charge of the

DUT being verified. If the bug is due to a fault in the specifications, it would be found at least

at this point of the debugging process.

6.2 Results of property checks

The gained verification results of the work in this thesis were divided into two, based on the

two verification stages mentioned in Chapter 5.3. Table 1 shows the total number of verification

targets for clocks, resets and reset requests on each verification stage, as well as the number in

these targets that were deemed proven or falsified. Reset requests were present only at stage 1,

and thus there are no targets for it included in the stage 2 section. The verification task resulted

in finding two bugs in the used design, each on a different verification stage.

Table 1: Verification target amount on each stage, and the amount of proven/falsified targets

 Stage 1 Stage 2

Clocks 9 (9/0) 80 (79/1)

Resets 18 (18/0) 62 (62/0)

ResetRequests 7 (6/1) -

Total: 34 (33/1) 142 (141/1)

30

The bug on stage 1 was found in the connectivity of reset request signals between one

subsystem and the main resource controller module. During the integration of said subsystem,

the signal was left unconnected, simply left to a floating state. However, by consulting with one

of the designers of the subsystem, it was found to be in accordance with the design intentions,

but the description of this signal connectivity in the design specifications was stated vaguely,

or arguably incorrectly. This bug was thus deemed to not have been a bug at all and resulted

from unneeded verification, resulting from conflicting design descriptions.

The bug on stage 2 appeared in the clock signal connectivity between a PRC-signal

controller and a single IP working under it. The connection under verification was found to be

missing, which was due to incomplete implementation of the IP under verification.

As a proof of concept, the used verification method has proven itself useful, being able to

find design bugs even in a relatively complete design. Although both of these bugs can be

considered as already-known beforehand, they serve well to give credibility to the used

verification method.

6.3 Comparison to conventional simulation method

A comparison of the needed resourcing, tool runtimes and total work effort for the investigated

method in comparison to the conventional simulation method is shown in Table 2. The

information on the simulation side of the table was gathered from in-house verification and

simulation statistics, as well as from consultations with colleagues in charge of design

verification work. As seen from the comparison, the investigated formal method requires far

less personnel and work effort to achieve connectivity validation. The conventional method

requires a team of people to focus on the task, with each person having a different duty to fulfil.

These duties may include creating the testing environment, creating test cases and stimulus for

the DUT, and creating checkers and properties that survey the DUT for the possible design

bugs. With the formal method, all of this can be achieved by just one person, who creates the

formal environment and the connectivity properties for the DUT. Creating stimulus separately

is not required, as the formal tool goes through all possible scenarios automatically to

exhaustively prove or disprove the created properties.

Table 2: Work effort comparison between formal and simulation methods

 Formal verification Simulation

Total personnel 1 person Team (eg. 2-5 people)

Work task division

Formal env. creation and

writing CC properties:

1 person

Stimulus/test cases:

1-3 persons

Checkers/Assertions:

1-2 persons

Compile runtime
Subsystem: ≈5 minutes

SoC/Top level: ≈30 minutes

Subsystem: ≈1 minute

SoC/Top level: ≈5 minutes

Test case/Property-check

runtime

Subsystem: <1 minute

SoC/Top level: <5 minutes

Subsystem: ≈1 minute

SoC/Top level: ≈30 minutes

31

Total time spent on

verification task

With clear specs: 2-3 weeks

Without clear specs: 2-4 weeks

Testbench/checkers: 2-3 weeks

Testcases: N x Weeks

There are some big differences between formal and simulation tool runtimes, some in favour

of the formal method and some in favour of the simulation method. Formal tools take a

substantially longer time to compile the design, due to the creation of the mathematical models

needed for the formal analysis. The runtimes for test cases and formal property checks are a bit

more divided, where a smaller design is run faster through simulation, but the top SoC level is

run faster through the formal method. At least on lower levels, such as on subsystem-level,

simulation method seems to be faster.

However, two of the greatest advantages of the formal method can easily remain unnoticed

in the result table. The first of these advantages is the number of needed test cases or property

checks. Because the conventional simulation method doesn’t verify connectivity directly, but

through functionality verification, it requires the creation of a bunch of different test scenarios,

which all need to be run separately. The formal method, however, can exhaustively prove all

of the created properties in parallel and during only one run of the tool. This makes the formal

method incredibly faster when there are a lot of verification targets, with the difference growing

larger the more there are targets to be verified.

The total time spent on verification is also directly related to the number of needed test cases.

Whereas the formal method requires the connectivity properties to only be written once for

them to be exhaustively verified, the simulation method usually requires multiple test cases, all

of which require work effort and time to be created. As the time spent with simulation method

directly scales with the number of required test cases, the advantage of the formal method scales

with the size and complexity of the used design.

The second advantage of the formal method is about its place and timing in the design flow.

Because the simulation method verifies connectivity through functionality verification, it

requires the modules under verification to be fairly complete before their connectivity can be

verified. The formal method directly verifies connectivity, so it only needs the modules to be

integrated to conduct verification. This means that the formal method can be used much earlier

in the design flow to discover connectivity issues before they have a chance to negatively affect

functionality verification.

32

7 DISCUSSION

The main goal of this thesis was to investigate formal connectivity verification in verifying

clock and reset connectivity in an ultra-low-power SoC design. The work was done in order to

find a better and easier alternative to conventional simulation-based methods for this kind of

verification task. The conventionally used simulation methods during the verification flow do

not focus on checking connectivity, but rather certify it as a side product of functional

verification. As pure connectivity errors cause a huge percentage of errors during integration, a

verification method focusing only on connectivity verification is highly welcome.

The gained results fulfil the aim and requirements set for this study. The method was proven

to be usable even at the highest architectural level of the used SoC design, where all or most of

the design components have been integrated. Pre-required experience of the design under

verification and the verification technique itself was deemed quite low, providing ease of

accessibility for new users. The resourcing needed for a task like this was shown to be

substantially lower than through the conventional methods, only requiring a single person to

conduct the task, rather than a team where each person has a different role to perform. The work

effort and time requirements were effectively lowered as well, where the difference scales with

the increasing size and complexity of the design. Although the formal method has limitations

where it can’t verify design functionality, it can easily check and discover basic connectivity

issues that can’t be exclusively sought with simulation methods. Also, perhaps most

importantly, the formal method can be used at a much earlier stage of the design flow, where

the bugs in connectivity are less harmful and easier to fix.

In a view of complete verification of clocks and resets in a design, this verification method

would have its own suitable place in it. The complete verification of clocks and resets could

roughly be divided into three different sections: clock or reset generation, their correct

connectivity, and verification of their individual features (correct frequency and frequency

monitoring for clock signals, reset cycles and correct system activity after a reset instance for

reset signals). While the signal generation and the individual features would require functional

verification, the investigated formal verification method easily fulfils the connectivity section

of this verification plan, leaving the other two sections to be conducted through some other

methods.

One valid criticism of the performed work would be the way that the property extraction

feature was used in proving clock connectivity. Since property extraction creates the

connectivity property automatically from a path that structurally exists in the design, it is not

ensured that the found connectivity has the correct path or enable expression. Should it be

possible, the created connectivity properties must be checked for whether they are consistent

with the design. The used design in this thesis, however, did not have proper connectivity

specifications to check the properties against, and thus their correctness was left somewhat

vague. But as the goal of this thesis was to investigate formal connectivity verification more as

a proof of concept, rather than as an already valid verification method, and as the goals and

requirements were fulfilled, this point of criticism need not be further addressed.

For future use or research in this topic, the design to be used should have pre-existing

connectivity specifications that would be used for property creation. At the very least they could

be a part of the main design specifications, where a verifying engineer can see the connectivity

descriptions in a table or described as text. The best scenario would have the design connectivity

described as a list of input and output ports in a file form that can be directly used by the formal

verification tool, such as a YAML or a CSV file. This would require some extra work from the

33

designers who would need to maintain this connectivity list, but it would save a lot of time and

effort from the verification engineer in charge of connectivity verification.

As shortly mentioned in chapter 4.3, a connectivity checker alone doesn’t provide complete

connectivity validity and should be supplemented with a formal security verification tool. A

security verification tool can be used to disprove unwanted or illegal connectivity, which is not

a trivial task to do with a connectivity checking tool. This type of a tool was not used in the

work of this thesis due to some previously stated restrictions, but it should be taken to account

in any future research on this topic, or when making a verification plan for connectivity

verification.

34

8 SUMMARY

This thesis contains a study of formal connectivity verification in ultra-low-power SoC designs.

The aim was to investigate formal connectivity checking as a viable method for the verification

of clock and reset signal connectivity, which lacks a consistent verification method in typical

simulation-based methods. Requirements for verifying proper connectivity are presented, as

well as requirements for proving the viability of the investigated method. The used verification

stages and process flow are shown to fill these requirements.

An overview of basic SoC architecture is provided. The power consumption in CMOS

circuits and its classification to dynamic and static power is explained. Due to the advancement

of CMOS technology, the required supply voltage of a transistor is constantly being lowered.

A lower supply voltage is compensated with a lower threshold voltage to maintain performance,

which in turn exponentially increases static power consumption, creating a conflict between

dynamic and static power. Common power reduction techniques are introduced and explained

in detail.

Modern SoC designs have gotten very complex, resulting in the verification process

becoming more difficult and taking a large percentage of total design time. The classification

of functional verification into logic simulation and formal verification is presented, and the

details of both are explained and compared. Low-power design methodologies have introduced

problems to design verification, with some being fundamental problems in the description

languages themselves, and others bringing difficulty to test case creation, even in seemingly

simple scenarios such as connectivity verification.

Connectivity and integration in SoC designs are introduced. A large percentage of errors

during integration is from incorrect connectivity. Connectivity comes in many different types

and can be a combination of multiple of them. Issues with connectivity verification by

traditional methods have given a rise to formal connectivity verification, which can verify

connectivity through formal methodology with relative ease. The requirements for proper

verification of connectivity are introduced, and how a formal tool fulfils these requirements.

A set of requirements for the practical work are presented, all of which must be fulfilled to

show the viability of this verification method. Clock and reset signals were chosen as the

verification targets, and the structure of the used design environment is presented. The task was

conducted on two verification stages, first on the highest architectural SoC level, between

subsystems and the main resource controller module, and second on subsystem level, between

the subsystem inputs and modules inside the subsystem. The connectivity properties were

created in two different ways, directly through CSV-file specifications for the reset signals, and

through a property extraction feature for the clock signals. Finally, the used process flow for

the chosen formal tool is presented and explained.

After conducting a property check, any falsified properties must be confirmed as design

bugs. A process for this confirmation is presented with debugging features typical to formal

verification tools. The results of the property verification in this thesis shows the investigated

method to be valid as a proof of concept, as the done verification resulted in the finding of two

design bugs. Although both found bugs could be considered as known beforehand, their

discovery still gives credibility to the method. The comparison between the investigated method

and the conventional simulation method shows the enormous differences in resourcing, tool

runtimes and total work effort. As the formal method can verify connectivity directly rather

than indirectly through functionality verification, it is incredibly faster, less resource consuming

and less time demanding than the conventional method, and it can be used much earlier in the

design flow, where connectivity issues are easier to fix.

35

9 REFERENCES

[1] Moore, G. (1965). Cramming more components onto integrated circuits. In: Electronics,

vol.38, no. 8 (pp.114-117).

[2] Schlachter, Fred. (2013). No Moore's Law for batteries. Proceedings of the National

Academy of Sciences of the United States of America. 110. 5273.

10.1073/pnas.1302988110.

[3] Anderson, T. (2019). Automated connectivity checking with formal verification.

[4] Rajsuman R. (2000). System-on-a-chip: Design and Test.

[5] Mutschler A. (Accessed October 1st, 2020) IP Subsystems: What Works, What Doesn’t.

URL: https://semiengineering.com/the-ip-subsystem-what-works-what-doesnt/

[6] Bennet P. (Accessed September 29th, 2020) The why, where and what of low-power SoC

design. URL: https://www.eetimes.com/the-why-where-and-what-of-low-power-soc-

design/#

[7] Päivänsäde V. (2016) Dynamic Power Estimation with a Hardware Emulation Acquired

Switching Activity Model. University of Oulu.

[8] Piguet C. (2005) Low-Power CMOS Circuits: Technology, Logic Design and CAD

Tools. CRC Press.

[9] F. Mitu, G. Brezeanu, G. Dilimot, L. Anghel and I. Enache, "Method to increase the

switching speed of MOS transistors by dynamic bias of the bulk," 1995 International

Semiconductor Conference. CAS '95 Proceedings, Sinaia, Romania, 1995, pp. 241-244,

doi: 10.1109/SMICND.1995.494907.

[10] Sarwar A. (1997) CMOS Power Consumption and Cpd Calculation. Texas Instruments

[11] Keating, M. & Flynn, David & Aitken, Rob & Gibbons, A. & Shi, K.. (2007). Low power

methodology manual: For system-on-chip design. 1-300. 10.1007/978-0-387-71819-4.

[12] T, Suguna & M, Janaki. (2018). Survey on Power Optimization Techniques for Low

PowerVLSI Circuitsin Deep Submicron Technology. International Journal of VLSI

Design & Communication Systems. 9. 01-15. 10.5121/vlsic.2018.9101.

[13] Jan Rabaey. 2009. Low Power Design Essentials (1st. ed.). Springer Publishing

Company, Incorporated.

[14] Haataja M. (2016) Register-Transfer Level Power Estimation and Reduction

Methodologies of Digital System-On-Chip Building Blocks. University of Oulu.

[15] A. R. Durgam and K. Choi, "Optimized clock gating cell for low power design in

nanoscale CMOS technology," Fifth Asia Symposium on Quality Electronic Design

(ASQED 2013), Penang, 2013, pp. 85-88, doi: 10.1109/ASQED.2013.6643569.

[16] Massoud Pedram and Jan M. Rabaey. 2002. Power Aware Design Methodologies.

Kluwer Academic Publishers, USA.

[17] Kursun, V. and E. Friedman. “Multi-voltage CMOS Circuit Design.” (2006).

[18] M. Lanuzza, P. Corsonello and S. Perri, "Fast and Wide Range Voltage Conversion in

Multisupply Voltage Designs," in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 23, no. 2, pp. 388-391, Feb. 2015, doi:

10.1109/TVLSI.2014.2308400.

[19] Daying Sun, Shen Xu, Weifeng Sun, Shengli Lu and Longxing Shi, "Low power design

for SoC with power management unit," 2011 9th IEEE International Conference on ASIC,

Xiamen, 2011, pp. 719-722, doi: 10.1109/ASICON.2011.6157306

36

[20] Z. Yu and J. Wei, "Low power design and implementation for a SoC," 2008 9th

International Conference on Solid-State and Integrated-Circuit Technology, Beijing,

2008, pp. 2184-2187, doi: 10.1109/ICSICT.2008.4735003..

[21] Pradhan, D., & Harris, I. (2009). Practical Design Verification. Cambridge: Cambridge

University Press. doi:10.1017/CBO9780511626913

[22] Meyer, Andreas. Principles of functional verification. Elsevier, 2003

[23] Fujita, M., Ghosh, I., & Prasad, M. (2010). Verification techniques for system-level

design. Morgan Kaufmann.

[24] Semiconductor Engineering (Accessed October 13th, 2020) Functional Verification.

URL: https://semiengineering.com/knowledge_centers/eda-

design/verification/functional-verification/

[25] Vasudevan, S.. (2006). Effective functional verification: Principles and processes. 1-256.

10.1007/0-387-32620-0.

[26] B. Kapoor, S. Hemmady, S. Verma, K. Roy and M. A. D'Abreu, "Impact of SoC power

management techniques on verification and testing," 2009 10th International Symposium

on Quality Electronic Design, San Jose, CA, 2009, pp. 692-695, doi:

10.1109/ISQED.2009.4810377.

[27] W. Chen, S. Ray, J. Bhadra, M. Abadir and L. Wang, "Challenges and Trends in Modern

SoC Design Verification," in IEEE Design & Test, vol. 34, no. 5, pp. 7-22, Oct. 2017,

doi: 10.1109/MDAT.2017.2735383.

[28] S. K. Roy, "Top Level SOC Interconnectivity Verification Using Formal Techniques,"

2007 Eighth International Workshop on Microprocessor Test and Verification, Austin,

TX, 2007, pp. 63-70, doi: 10.1109/MTV.2007.22.

[29] H. Saafan, M. W. El-Kharashi and A. Salem, "SoC connectivity specification extraction

using incomplete RTL design: An approach for Formal connectivity Verification," 2016

11th International Design & Test Symposium (IDT), Hammamet, 2016, pp. 110-114, doi:

10.1109/IDT.2016.7843024.

[30] Nordstrom A. (2017) (Accessed October 13th, 2020) Are you formally connected? URL:

https://www.techdesignforums.com/practice/technique/are-you-formally-connected/

[31] Synopsys Inc. “VC Formal User Verification Guide” Synopsys Inc. Mountain View, CA,

2020.

[32] Ikram, Shahid & Derrico, Joseph & Farhan, Yasmin & Ellis, Jim & Parikh, Tushar.

(2019). Connectivity and Beyond.

[33] Synopsys (Accessed October 14th, 2020) VC Formal. URL:

https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html

	ABSTRACT
	TIIVISTELMÄ
	TABLE OF CONTENTS
	FOREWORD
	List of Abbreviations and symbols
	1 Introduction
	2 Ultra-Low-Power System-On-Chip
	2.1 SoC architecture
	2.2 Semiconductor power consumption basics
	2.2.1 Dynamic power
	2.2.2 Static power

	2.3 SoC power management solutions
	2.3.1 Clock-gating
	2.3.2 Power-gating
	2.3.3 Power domains
	2.3.4 Power managing operational modes

	3 Soc Verification
	3.1 Introduction to functional verification
	3.1.1 Functional/Logic simulation
	3.1.2 Formal verification

	3.2 Challenges of low-power SoC verification

	4 Formal Connectivity Verification
	4.1 Connectivity in SoC designs
	4.2 Connectivity verification with formal applications
	4.2.1 Connectivity property extraction

	4.3 Disproving illegal connectivity

	5 Clock and Reset Connectivity Verification
	5.1 Verification goal and requirements
	5.2 Structure of verification environment
	5.3 Verification stages
	5.4 Creating connectivity properties
	5.5 Formal verification tool process flow

	6 Verification Results
	6.1 Bug confirmation
	6.2 Results of property checks
	6.3 Comparison to conventional simulation method

	7 Discussion
	8 Summary
	9 References

