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ABSTRACT

Herein, we propose and assess an iterative Bayesian-based indoor localization
system to estimate the position of a target device. We describe the Bayesian
network and then build graphical models for various measurement metrics,
namely Received Signal Strength (RSS), Time Difference of Arrival (TDOA),
and Angle of Arrival (AOA) which are collected by the distributed receivers
in the network area. The estimations are carried out by Markov chain
Monte Carlo (MCMC) methods which approximates the target’s position
using the Bayesian network model and measurements collected by the
receivers. We employ an iterative method by using previous estimations
of the target’s position as prior knowledge to improve the accuracy of the
subsequent estimations, where the prior knowledge is used as the prior
distributions of our Bayesian model. In our results, we observe that
the proposed iterative localization system improves the performance of
the Bayesian TDOA-based localization system by increasing the respective
estimate accuracy. Furthermore, we show that the number of measurements
collected by the receivers and the selected prior distribution also affect the
performance of the proposed iterative mechanism. In fact, the number of
measurements increases the accuracy of the mechanism, while its benefit
diminishes with more iterations as the mechanism progresses. Regarding
the prior distribution, we show that it can lead to good or bad estimations of
the target’s position, and therefore, needs to be carefully chosen considering
the measurement metric and the mobility of the target node.

Keywords: DAG, Bayesian networks, tracking, IPS, MCMC, TDOA, RSS,
AOA.



TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1 INTRODUCTION 6

1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 BAYESIAN INFERENCE AND SAMPLING METHODS 9
2.1 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Markov Chain Monte Carlo methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 SYSTEM MODEL AND EVALUATION FRAMEWORK 16
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Deployment scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Received Signal Strength-based source localization . . . . . . . . . . . . . . . . . . . 17
3.1.3 Time Difference of Arrival-based source localization . . . . . . . . . . . . . . . . . . 19
3.1.4 Angle of Arrival-based source localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Iterative Bayesian method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 PyMC3 Framework and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Implementation of the RSS-Based IPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 PERFORMANCE EVALUATION 33
4.1 Evolution of the position estimates with iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Impact of the Prior distribution on the algorithm performance . . . . . . . . . . . . . . 35
4.3 Impact of the number of observation per iteration on the algorithm

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Bayesian-based tracking mechanism using TDOA measurements . . . . . . . . . . . . 37

5 CONCLUSION AND FINAL REMARKS 40
6 REFERENCES 41



FOREWORD

This Master thesis concludes my cycle in the Master’s degree in Wireless Communications
Engineering at the University of Oulu.
Herein, I present the research I carried out during my Master’s studies. It is a

challenging topic that required knowledge that I did not have previously. However, with
the courses from the Master’s program, self-studying, and the support of my supervisor
I was able to write this document.
I would like to specially thank my supervisor Assistant Prof. Carlos Morais de Lima

and the Assistant Prof. Hirley Alves. Carlos thoroughly supported me in my research.
Hirley introduced the Master’s programme and the Centre of Wireless Communications
to me. They taught me different things and helped me in my scientific paper publications.
Also, I would like to thank my family and everyone that helped me in my formation from
Brazil and Finland.

Oulu, 3rd February, 2021

Henrique Hilleshein



LIST OF ABBREVIATIONS AND SYMBOLS

AP Access Point
AOA Angle Of Arrival
CDF Cumulative Distribution Function
DAG Direct Acyclic Graph
eMBB extreme Mobile Broadband
FG Full Gaussian
FP Full Posterior
GPS Global Positioning Systems
HMC Hamiltonian/Hybrid Monte Carlo
IIoT ndustrial Internet of Things
IPS Indoor Positioning System
KDE Kernel Density Estimation
KL Kullback–Leibler
MCMC Markov Chain Monte Carlo
MD Mixture Distribution
MH Metropolis-Hasting
mMIMO Multiple-Input Multiple-Output
MTC Machine-Type Communications
mMTC massive Machine-Type Communications
NOMA Non-Orthogonal Multiple Access
NUTS No-U-Turn Sampler
RMSE Root Mean Square Error
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
RV Random Variable
PGM Probabilistic graphical Model
TDOA Time Difference of Arrival
TOF Time of Flight
URLLC Ultra-Reliable Low-Latency Communication



1 INTRODUCTION

Recently, the number of devices with Machine-type Communications (MTC) devices
has grown exponentially and these devices are used for myriads of diverse applications
with different requirements of latency, reliability, throughput and security [1]. In such
deployment scenarios, wired connection is often not possible or affordable due to their
locations or applications, therefore, we alternatively resort to wireless communications.
In the 5th generation cellular networks, the mobile network will be driven to efficiently

serve such MTC devices while considering many applications that do not even exist
yet [2]. Actually, there is a paradigm shift because previously the mobile network was
only oriented to provide human-centric high quality services for personal devices such as
smartphones and tablets [3]. Conversely, the MTC devices have a different data traffic
pattern which commonly uses short packets and is also asymmetric concentrating on
the uplink direction [4]. Moreover, MTC devices have energy constraints which require
allocating resources of the network considering the energy efficiency requirements [5].
Therefore, the cellular network not only needs to handle such data load with strict
requirements but also maintain the present-day data traffic and considering the energy
efficiency of the network. In fact, such wireless network is challenging to implement,
and we can devise three essential types of 5G communications to comply with such
requirements: critical MTC, massive Machine-type Communications (mMTC), and
extreme Mobile Broadband (eMBB) [2].
In mMTC, the wireless network needs to provide services to a huge number of end

low-complexity devices [6], while in critical MTC, also known as Ultra-Reliable Low-
Latency Communication (URLLC), the applications require communications with very
low latency and high reliability [7]. For eMBB, the network has higher data-rate and
coverage than the provided by the 4G [2]. Due to these requirements, we need to create
new technologies and algorithms to cope with these new challenges such as millimeter
wave [8], massive Multiple-Input Multiple-Output (mMIMO) technique [9], and grant-
free Non-Orthogonal Multiple Access (NOMA) [10].
In such scenarios, the position of the MTC devices can be employed, for example, to

devise more efficient position-aided radio resource management procedures. By using
this information, we can indeed allocate the resources of our network more efficiently
as shown in [11], and provide more secure service as addressed in [12]. Moreover,
the positioning system is considered a key enabler for many applications [13] such
as warehouse management [14], beamforming antennas [15], facility management [16],
and automated guided vehicle for smart factories [17]. In fact, positioning systems
are important for the Industrial Internet of Things (IIoT) because applications of
processes in various verticals sectors including but not limited to manufacturing, logistics,
transportation, and mining can require position information of devices [18]. Therefore,
we need accurate positioning systems to support 5G location-based services [19].
Nowadays, there are commercial positioning systems that can accurately localize

devices in outdoor environments such as the Global Positioning System (GPS) which do
not work properly in urban canyon scenarios and fail completely in indoor deployments
[20]. Therefore, we should develop efficient Indoor Positioning Systems (IPS) that can
localize targets with high accuracy [21]. As MTC devices usually have cost constraints,
it becomes interesting to use the same wireless connection to transfer both data and
signaling to locate devices as it may reduce hardware costs. In this case, we can use



features of wave propagation to help us in estimating a target’s position, where the 5G
radio features play a strong role increasing the accuracy of IPSs due to its use of high
carrier frequency [22], high number of antenna elements [23], and smaller cells [24], for
example. We can use distinct measurement metrics to estimate a target’s position such
as Angle of Arrival (AOA) [25, 26], Received Signal Strength Index (RSSI) [27, 28] and
Time of Flight (TOF) [29, 30]. RSSI is a built-in measurement that is usually available in
different radio access technologies which makes it a cheaper option [21], while TDOA and
AOA techniques give more accurate estimation than RSSI but require extra hardware in
the APs [31].
The techniques used for IPS usually require a big dataset of measurements and/or

learning of the environment before using the system, and in many cases, these
requirements can be prohibitive [21]. Moreover, as the IPS is dynamic it would require
routine calibration which could be costly. Author in [21], tackled this problem by
proposing a RSSI-based IPS mechanism where we use Bayesian networks and Markov
chain Monte Carlo (MCMC) to estimate targets’ position. This mechanism does not
need any prior knowledge or preliminary measurements regarding to the environment
[21]. We use a Bayesian network to describe through graphs all the Random Variables
(RVs) of the statistical model, their interdependence and how they are related to our
desired event [32]. The quantity of interest or our desired event is the measurement
metric that we are using to estimate the target’s position. This method employs the
Bayes’ theorem which allows us to use our most updated knowledge regarding the RVs
and our assumptions about the measurement metrics to estimate the target’s position
[33]. Also, different from a point estimate of the frequentist approach, the Bayesian
approach gives the probability density estimation or quantification of uncertainty of the
RVs [33] which contains more information regarding the target’s position than a point
estimate. After designing the Bayesian graphical model, we need to use an estimator to
carry out estimations of the respective model, and MCMC is the most used method to
make inferences of Bayesian networks [34]. The MCMC method is a sampling technique
used to sample arbitrary unknown distributions using concepts of Markov chain and
Monte Carlo [34]. In a Bayesian network, the MCMC algorithm samples all the RVs
in the graphical statistical model based on our observations regarding the experiment
of interest and respective assumptions about the RVs [33]. The samples of a RV are
used to move between states of a Markov chain, where its equilibrium distribution is the
probability density estimation of the respective RV [33]. In other words, we estimate
the target’s position with on-the-fly measurements together with our assumptions about
radio channel propagation and network infrastructure.

1.1 Related works

Authors in [35], extended the Bayesian-based localization mechanism from [21] by
considering a heterogeneous network where APs carry out different measurements
metrics, namely RSSI and Time of Arrival (TOA) making it a IPS with hybrid metrics.
At the same time, they combined previous and current measurements for the target’s
position estimation. However, the corresponding estimations still exhibit error over a
meter which is too big for indoor applications that require maximum error of a few
centimeters. In [36], we propose an iterative method which uses the current estimation



of a target’s position to improve the position estimate at subsequent iterations of the RSS-
based IPS. As aforementioned, this mechanism uses Bayes’ rule to estimate the target’s
position as well as our assumptions or prior beliefs regarding the RVs in our statistical
model. After estimating the RVs, we then use such updated knowledge about variates
in the model in the subsequent estimations. In fact, these assumptions correspond to
the prior distribution of the Bayes’ theorem, while the updated knowledge represents
the posterior distribution [33]. Therefore, we repeatedly estimate and update the prior
distributions so as to obtain a more accurate and reliable Bayesian-based IPS. It is worth
noticing that the choice of prior distribution affects the estimation and in [37], we exploit
this same mechanism while using different prior distributions to confirm their effects on
the performance of the MCMC algorithm as previously addressed in [33].

1.2 Contributions

Herein, we continue working with our proposed iterative mechanism in [36, 37], while
detailing how the Bayesian networks and the MCMC sampling methods work. In fact,
the main contributions of this work are summarized next:

• investigate the MCMC sampling algorithms and compare their performances. The
Hamiltonian Monte Carlo (HMC) algorithm outperforms the Metropolis–Hastings
(MH) algorithm and the Gibbs sampling due to their random walk behaviour [33,
38, 39, 40], while No-U-Turn Sampler (NUTS) algorithm which extends the HMC
is more efficient than a well-tuned HMC algorithm according to Authors in [41];

• further study the effects of the selected prior distribution to carry out the
estimations, while we also discuss how the number of measurements affects the
performance of the proposed mechanism;

• employ the proposed mechanism for tracking of moving targets where we learn that
the choice of the prior distribution is even more sensitive;

• build the Bayesian graphical models for TDOA, AOA, and RSSI localization
systems.

All in all, we show the proposed iterative mechanism improves the performance of
a Bayesian TDOA-based IPS method, but the choice of the prior distributions can be
tricky depending on the used measurement metric and whether the target is moving
or not. Also, a higher number of measurements per iteration/estimation enhances the
accuracy of the target’s position estimation but its effects reduce through the iterations.
The reminder of this paper is organized as follows. Section 2 presents the fundamentals

of Bayesian networks and MCMC sampling algorithm methods. Afterwards, we introduce
our system model for AOA, RSSI, and TDOA in Section 3, while demonstrate the
implementation of our proposed mechanism for RSSI localization system. In Section
4, we demonstrate and assess our results in terms of Root Mean Square Error (RMSE),
Cumulative Distribution Function (CDF) and Kernel Density Estimation (KDE). Lastly,
we draw our conlusions and final remarks in Section 5.
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2 BAYESIAN INFERENCE AND SAMPLING METHODS

In this section, we first introduce the Bayesian theory and underlying concepts, then
explain how to create statistical models using this framework and how to use it to
infer quantities of interest. To begin with, the Bayesian network concept is explained,
subsequently, we describe the mathematical problem to be solved and how we can
make predictions using MCMC sampling methods. Thereafter, an iterative estimation
mechanism is devised using the aforementioned statistical framework.

2.1 Bayesian Network

A Bayesian network corresponds to a Probabilistic Graphical Model (PGM) which is
a statistical model to graphically represent RVs and their interdependence [33, 42].
It is advantageous to use diagrams to represent probability distributions because we
can visualize the probabilistic model via graphs. Moreover, we have better insights
into the properties of the statistical model while inspecting the diagram, and we can
manipulate complex computations through graphs [33]. Therefore, we visualize and
describe an arbitrary statistical model using graphs to obtain augmented analyses of its
joint distribution.
PGMs are composed of vertices and edges. The vertices represent the RVs, while the

edges describes the relation between the RVs [33]. The Bayesian networks are also known
as Directed Acyclic Graphs (DAGs) where loops in the graph are not allowed [33]. It
means that the graph does not have paths which leads a vertix/RV to itself as in the Fig.
1 [42]. The directed edges of the graph represent the interdependence of the RVs. For
better understanding, we will denote the RVs as children or parents depending on their
relationship. The RV at the head side of an edge is a child of the RV at the tail side,
while the RV at the tail side is a parent. In a Bayesian network, it is assumed that the
children are conditionally dependent on their parents while RVs not direct linked with
an edge are considered conditionally independent [43]. Therefore, a RV is conditionally
independent on all RVs in the graph aside from its parents.
We use this concept of children and parents interdependence to describe the joint

distribution of a Bayesian network. The joint distribution of a generic Bayesian network
can be denoted by [43]

f(V ) =
∏
v∈V

f(v| pa[v]), (1)

where V is the set of all RVs in the statistical model, while pa[v] is the parents of the RV v.
Let’s study the graph in the Fig. 1 to exemplify a Bayesian network. As aforementioned,
the children are just conditionally dependent on their parents. Therefore, the RV D is
conditionally dependent on B and C while it is conditionally independent on A, and C
is conditionally dependent on A but conditionally independent from the other RVs in the
graph. The RVs A and B are conditionally independent on all RVs in the graph. Taking
the relationship between the RVs into account, we can describe their joint distribution as

f(A,B,C,D) = f(A)f(B)f(C|A)f(D|B,C), (2)

where the conditional probabilities are in accordance with the relation of the RVs depicted
in Fig. 1. Indeed, we need to find all the conditional distributions to be able to find
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Figure 1. DAG Example. RV D is conditionally dependent on B and C, but it is
conditionally independent on A.

this joint distribution. We can solve the conditional distributions by applying the Bayes’
theorem [33].
The Bayes’ theorem allows us to build an estimator, while incorporates our prior

beliefs about the RVs related to the event of interest. Such prior beliefs are based on
our knowledge about the RVs before observing any data related to our experiment [34].
Moreover, after observing actual data of an event, we can make inferences about it and
verify if our prior beliefs regarding the event reflects the real world [34]. It means that
after making inferences, we can update our prior beliefs about the event and use it to have
more accurate estimations in the future. The Bayes’ theorem is formulated as follows
[33]

f(H|D) = f(D|H)f(H)
f(D) , (3)

where D is the observed data while H is our hypothesis/prior beliefs. Moreover, f(H)
is the prior distribution where its parameters represent all our knowledge regarding the
desired event before observing any data D. f(D|H) is the likelihood which represents the
correctness of our hypothesis regarding the desired event when compared to the observed
data D. f(D) is the normalization factor.
This approach was used in IPSs studies [21, 35, 44, 36] where we can use our knowledge

of wave propagation to describe RVs and their interdependence related to our desired
event. The event of interest could be one these measurement metrics RSSI, AOA and
TDOA, for example. Based on one of these metrics, we can describe all we know regarding
the RVs that contribute to the chosen metric and their interdependence through graphs.
Indeed, the coordinates of the target are part of the RVs that contribute to this event.
When we make observations of our desired event, we can estimate all the RVs present in
its statistical model based on our prior beliefs of the RVs. In other words, once we make
inference of this statistical model, we have the estimation of all RVs in this statistical
model which includes the estimated coordinates of the target. The estimated coordinates
are our updated beliefs/assumptions regarding the target’s position, and we can use these
new assumptions to improve the accuracy of the subsequent estimations of the target’s
position.
We can find the joint distribution analytically or numerically. The analytical method

gives an exact solution, but it can be challenging to solve it depending on the number
of RVs and conditional probabilities. Moreover, it is common to not have closed form
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Figure 2. Markov chain example.

solution [33, 34]. Therefore, we decided to use numerical approximation solutions to
find results for the statistical model of our positioning system, and the MCMC sampling
method is the most used tool to find numerical approximations of Bayesian network
models [34].

2.2 Markov Chain Monte Carlo methods

MCMC is a computational approach that uses Markov chain and Monte Carlo concepts to
sample desired unknown probabilistic distributions [45]. A Monte Carlo method samples
probability distributions by running the same experiment several times to generate
numerical quantities of interest which allow us to understand the behavior of an observed
event [46]. Due to the Law of the Large Number, if the number of samples is large
enough, the outcome of the quantities should approximately converge to the exact correct
quantities which would be found by analytical methods. However, many times there are
no analytical form solutions, and numerical results are the only option [33].
Markov chain is a stochastic model that represents the set of possible states that an

observed event can be while describing the probability of such event to change its current
state to another [47]. It is a memoryless method where the next state is just conditionally
dependent on the current state [33]. The Fig. 2 is an example of Markov chain. The G,
E and J nodes are states and the edges represent the possible transactions between the
states. It means that if the current state of the observed event is state G, the next state
will be G or E with the same probability. In case the current state is J, the next state
is going to be G with 70% of probability or E with 30% of probability. As we can see,
the states prior the current state do not affect the transaction to the next state. The
change of state in the chain is denoted step where given enough number of steps we reach
the equilibrium distribution of the Markov chain. The equilibrium distribution gives the
probability of the event to be in any determined state of the chain after a large number
of steps independently which was the used initial state [33]. The equilibrium distribution
is an important property that we use in MCMC.
The MCMC sampling algorithms create a collection of Markov chains with arbitrarily

chosen initial value/state where the transaction between states happens according to a
sampling algorithm that tries to wander through the chain to find the states with higher
probability [33]. The random samples obtained by the Monte Carlo method are the states
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of the chain itself, and the more the algorithm pass through a specific state, the higher
is the probability of that state [33]. When the MCMC algorithm finishes exploring the
sampling space, we have the equilibrium distribution of the Markov chains created by the
samples. This equilibrium distribution is the posterior distribution that we are aiming
for in (3) [33].
In a Bayesian network, the MCMC sampling algorithm start with some initial values,

and then it samples all the RVs in the graph to simulate them based on observations
of the desired event and our prior distributions [21]. The observations are distributed
according to the joint distribution, and therefore, the MCMC samples every single RV
and its respective conditional distributions trying to find the combination of distributions
that results in the distribution in which the observations are distributed [33]. In other
words, the observations have embedded the information regarding all the RVs in the
model by providing the unnormalized joint distribution. The MCMCmethod exploits this
information to estimate all the RVs through a sampling process that depends on the used
algorithm, for example, the Metropolis-Hastings (MH). The time the MCMC algorithm
takes to find the equilibrium distribution depends on the chosen prior distribution, step
size of the sampling algorithm and the sampling algorithm itself as we will explain next.
We choose the prior distributions arbitrarily and they represent all we know about

the RVs before observing any data of the event of interest. This distribution affects the
accuracy and performance of the sampling algorithm depending on how our prior beliefs
reflect the real world [33]. The closer or similar this distribution is to the posterior
distribution, the better our MCMC method will converge to the approximated posterior
distribution [34]. Studies regarding the similarity of two distributions are out of the
scope of this work. However, the similarity of a prior distribution to the actual posterior
distribution can intuitively be described using Kullback–Leibler (KL) divergence as
defined in [48].
As aforementioned, the next state of the Markov chain depends only on the current

state where the states themselves are samples of the MCMC sampling algorithm.
Therefore, the sampling algorithm samples the next sample based on last accepted
sample. However, the algorithm should consider the distance between the current sample
and the next one. This distance is the step size of the sampling algorithm which has a
strong influence in its performance [33]. Samples drawn with a large step size have lower
correlation with the current state but reduces the probability of acceptance of the sample.
On the other hand, small step size gives high probability of acceptance of the sample but
causes strong correlation between the new sample and the current one. Therefore, too
large step size results in many rejected samples, and a too small step size requires more
samples to cover the whole sampling space. Both situations cause slow Markov chain
which is a slow convergence to the equilibrium distribution [33].
The sampling algorithm used by the MCMC method also affects strongly the

convergence time of the Markov chain to the equilibrium distribution. The
common samplings algorithms are the Metropolis–Hastings (MH), Gibbs sampling,
Hamiltonian/Hybrid Monte Carlo (HMC) [33] and No-U-Turn Sampler (NUTS) [41].
These algorithms generate the samples to create and to give steps through the states of
the Markov chain. We will explain the MH further because it gives the intuition regarding
MCMC sampling algorithms and because it is the base for all the other algorithms. This
algorithm was first introduced in [49] where the author proposed a Monte Carlo method
that was more efficient in sampling high dimensional probability distributions than the
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other methods available at that time by using Markov chains. He used Markovian
concepts and the Metropolis algorithm where the drawn samples candidates were just
conditionally dependent on the last accepted sample. Therefore, a sample candidate z∗
is sampled from an arbitrary proposal distribution q(z∗|z(τ)) in which z(τ) is our last
accepted sample or the current state of the chain. In [33], the probability of the sample
candidate z∗ being accepted is defined as

Ak(z∗, z(τ)) = min
(

1, p̃(z
∗)q(z(τ)|z∗)

p̃(z(τ))q(z∗|z(τ))

)
, (4)

where p̃(z∗) and p̃(z(τ)) are the likelihood of the unnormalized desired distribution
at z∗ and z(τ), respectively. The unnormilized desired distribution is obtained with
observations that were draw from desired distribution. q(z∗|z(τ)) is the distribution
which we take our sample candidates from, and therefore, the step size of our sampling
algorithm will depend on the variance of this distribution. It means that if the variance
of the proposal distribution is too large or too small, we have a slow Markov chain. If we
consider a symmetrical proposal distribution q(z∗|z(τ)) such as a Gaussian distribution,
then q(z(τ)|z∗) = q(z∗|z(τ)) as the probability of the transaction from the current state
to the sample candidate is the same than from sample candidate to the current state.
Thus, we can rewrite (4) as

Ak(z∗, z(τ)) = min
(

1, p̃(z
∗)

p̃(z(τ))

)
. (5)

As you can see in (5), the next state of the Markov chain depends only on its current
state. If the sample candidate has higher probability than the current state, we change the
state with probability 1. Alternatively, if the current state has higher probability than the
candidate one, we move to this next state with probability p̃(z∗)

p̃(z(τ)) . However, a symmetrical
proposal distribution causes random walk behaviour because the algorithm randomly
walk through the sampling space while trying to find places with high probability. This
behaviour allows the algorithm to travel the sampling space slowly as it progress with
the square root of the step size in average [33]. In this case, if we increase the step size,
we can help the algorithm to progress faster but we are limited due to the slow Markov
chain caused by the large steps. However, even if the MH has a random walk component,
it can sample any distribution and gives a good intuition how MCMC algorithms work.
In Algorithm 1, we provide a pseudo code of a MH algorithm. As we mentioned before,

we need to draw enough samples from q(z∗|z(τ)) to find the equilibrium distribution
where the sample acceptance is computed using (5). Once we finish sampling the desired
distribution, we take the equilibrium distribution from the Markov chain which is the
desired distribution itself. Note that we do not change the state in the Markov chain
when a sample is rejected. Also, replicas of a state should be deleted and the weight of
a repeated state should be increased [33].
It is not possible to draw infinite number of samples, and therefore, our numerical

approximation of the desired distribution is affected by the initial state. Hence, we
should draw some samples for tuning, where we discard the tuning samples and keep
the samples that follow them [50]. This process is also known as burn in and it is used
to reduce the correlation between the approximated distribution and the initial state,
while we can be sure that our samples are from the high probability region [50]. With
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Algorithm 1: MH algorithm - Symmetrical proposal distribution
Data: Unnormalized desired distribution
Result: Equilibrium distribution of the Markov chain
MarkovChainStates[0] = initial value;
i = 1;
while i < Number of Samples do

z(τ) = MarkovChainStates[i− 1];
Draw sample candidate: z∗ ∼ q(z∗|z(τ));
Probability of the sample candidate being accepted: Ak(z∗, z(τ)) = p̃(z∗)

p̃(z(τ)) ;
if Ak(z∗, z(τ)) >= 1 then

MarkovChainStates[i] = z∗;
i++;

else
Take a random number: randomnum ∼Uniform(0,1);
if Ak(z∗, z(τ)) >= randomnum then

Accept sample candidate;
MarkovChainStates[i] = z∗;
i++;

else
Reject sample candidate;
MarkovChainStates[i] = z(τ);

end
end

end
DesiredDistribution = ComputeEquilibriumDistribution(MarkovChainStates)

the intuition of the MH algorithm, we can advance and explain succinctly how the other
mentioned MCMC algorithms work.
The Gibbs sampling is a special case of the MH algorithm where we sample one RV at

a time [33]. The MH algorithm draws samples of all RVs at the same time and afterwards
rejects and accepts all of them based on the observations of the joint distribution. With
the Gibbs sampling, on the other hand, we sample one RV at time where the sample
is conditionally dependent on the previously sampled RVs [33]. This variation reduces
the number of rejected samples as we just reject one sample at a time instead of all of
them. However, this algorithm has the random walk component as well which limits
the efficiency of the MCMC method [51]. We can avoid the random walk behaviour by
using the Gibbs sampling with over-relaxation methods or HMC algorithms, however,
over-relaxation methods are inefficient for some distributions [51].
The HMC is an elaborated form of the MH which incorporates Halmitonian dynamics

to eliminate the random walk component [51]. This algorithm eliminates the random
walk component through finding the trajectory of the next sample in which we will likely
draw a sample that contributes to our desired distribution [51]. We find the trajectory
with the gradient information of the unnormalized desired distribution likelihood function
at the current state of the Markov chain [33]. Let’s consider that the desired distribution
is a random Gaussian, if we multiply this Gaussian by −1, we obtain the curve in Fig. 3.
The ball represents the current state z(τ) of the Markov chain and now we want to sample
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Figure 3. HMC algorithm analogy.

our next state. If we compute the potential energy and the gradient of the curve at the
current state z(τ), we have the momentum which we can use as the direction of the sample
candidates z∗. Therefore, we use this information to increase the chances of sampling
states that contribute more to the convergence of our Markov chain while using bigger
step size with low probability of rejection [33]. Conversely, sampling algorithms with
random walk component draw sample candidates towards random directions from the
current state1. The reader can get more information about this algorithm in [38]. Even
if the HMC has a better performance than algorithms with random walk component, it
requires tuning where the user should make careful choices regarding the parameters of
the length of the trajectories and the step size used in the Hamiltonian dynamics [51].
The NUTS algorithm simplifies the use of this powerful sampling algorithm and avoid U
turn as we explain next.
NUTS algorithm extends the HCM algorithm with U turn avoidance and self-tuning

properties [41]. The U turn happens in HMC when with the chosen step size, the
algorithm always returns to the same state which limits the algorithm to explore the
sampling space [52]. The self-tuning property means that we use the HMC algorithm
but the algorithm chooses the needed parameter by itself. This algorithm is able to adjust
its parameters to sample samples with low correlation (big step size) while keeping a low
probability of rejection of the samples [41]. We investigated MCMC sampling algorithms
in different studies, we found out that HMC outperforms the Gibbs and MH algorithms
[33, 38, 39, 40], while according to Authors in [41], the NUTS algorithm has at least
the same performance than a well-tuned HMC . Therefore, we decided to use the NUTS
algorithm in our work.

1This intuition explains how HMC eliminates random walk behaviour, but we will not go further in
the HCM formulation because it is based on differential geometry which is an advanced and challenging
field of mathematics that is rarely included in statistics courses [38].



16

3 SYSTEM MODEL AND EVALUATION FRAMEWORK

Herein, we explain our evaluation framework which is based on the iterative Bayesian
mechanism developed in [36] and the use of different prior distributions studied in [37].
In addition, we present the system model for TDOA and AOA while we demonstrate
RSSI localization system implementation in Python.

3.1 System Model

In this section, we first detail the deployment scenario, the relevant measurement metrics,
namely RSSI, AOA and TDOA, and then propose a Bayesian-based iterative method for
accurate indoor positioning.

3.1.1 Deployment scenario

Figure 4. Representation of the deployment scenario.

Fig. 4 depicts our target evaluation scenario which corresponds to a squared warehouse
of 100 m and is later used to evaluate the performance of the proposed Bayesian-based
iterative positioning mechanism. In this deployment scenario, we consider four APs and
one target which are represented as squares and a circle in this figure, respectively. There
is one AP at each corner of the warehouse and they use the signals received from the
target to collect the respective measurements. In our investigations, we aim to estimate
the position of the target node whose actual position is arbitrarily set to (20, 80) m. After
collecting the measurements, the AP forward all the relevant data to a common server
at the edge of the network that then computes the target position estimate according to
our model and considerations. Therefore, we evaluate the proposed mechanism in this
deployment scenario.
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An IPS needs to use one or more measurement metrics to be able to locate a target in
this deployment scenario. Any measurament metric model can be generalized as [53]

r = f(x) + n, (6)

where r is the vector of measurements, x is a bidimensional variable which is the target’s
position, f(x) is respective nonlinear function of the metric in x, and n is the vector
of disturbances following a zero-mean normal distribution with with variance σ2. We
extend this vectorial formulation to each one of the metrics studied in this work.
We can use nonlinear and linear frequentist inference approaches for localization of

targets. In the nonlinear approach, we directly employ a optimization problem with (6)
to solve for x by minimizing the cost function of the least squares and weighted least
squares which the error function is denoted by [53],

enonlinear = r− f(x̃), (7)

where vector x̃ is the bidimensional optimization variable [x̃ ỹ]T for x. This optimization
variable corresponds to the non-linear least Square and maximum likelihood estimators
[53]. In the linear approach, on the other hand, we can apply linear techniques to convert
(6) into a set of linear equations in x where the error function is denoted by [53],

elinear = b−Ax̃. (8)

When we employ least squares and weighted least squares on (8), we obtain linear least
squares, weighted linear least squares and subspace estimators [53].
In both frequentist perspectives for linear and nonlinear estimator, we are doing a

regression of the optimization variable x̃ to a point estimate of the target’s position [33].
The point estimate gives us a poor information regarding the target’s position because if
the estimation is incorrect, we do not have any other information regarding the target’s
position. Here, we propose a Bayesian approach where we do not have a point estimate
but a distribution that provides us a quantification of uncertainty [33]. In this case,
while we do not have a point estimation of the target’s position, we have a probabilistic
distribution that demarcates the region where most likely the target is located.
As mentioned in Subsection 2.1, we need to provide to the Bayesian statistical model

our assumptions regarding the event of interest. In this work, it is assumed that the
locations of the APs are known and the target device connects to the APs through line-
of-sight links. Other assumptions depend on the event being analyzed such as RSSI,
AOA and TDOA measurement metrics as we explain next.

3.1.2 Received Signal Strength-based source localization

RSSI is a typical measurement in present-day wireless communication system and
measures the power of a received radio signal [31]. For the ith AP, we assume that
the strength of a signal received from a source decays with the log of the distance [53].
Thus, we can derive (6) as

rRSS = fRSS(x) + nRSS, (9)
where fRSS(x) is formulated as [53]

fRSS(x) = ρo − η log d, (10)



18

where ρo is the signal strength of the transmitted signal in a referential distance (1 m
in our studies), η is the path loss coefficient, d is a vector of the Euclidean distances
between the APs and the target’s position (x) [35]. If we estimate the distances in vector
d, we can find the target’s position with the typical trilateration method by drawing the
lines representing the distance in a two dimensional Cartesian plane. If we have at least
three APs we can estimate a target’s position by using the intersection of these lines
[54]. It means that the joint distribution of the vector d results in the estimation of the
target’s position.
In the real world, we usually do not know the values of ρo and η. Therefore, we

need to estimate the RVs ρo and η as well. The Bayesian network together with the
MCMC sampling algorithm allows us to estimate ρo, η and d based on observations
rRSS and our assumptions regarding these RVs. In Fig. 5, we represent graphically the
interdependencies between the RVs describing the RSS-based localization mechanism by
means of a Bayesian network for n APs. The symbols in the spherical and squared
vertices are RVs and constants, respectively. Di is the Euclidean distance between the
ith AP and the target at the position (X, Y ), µi follows the equation (9) where χi
is normally distributed with distribution N (0,Σ), Σ is the covariance matrix of the
measurement error with main diagonal σ2

i , however, we consider that the measurements
are independent. The interdependence of the statistical model results in the joint
distribution which is denoted by,

f(V ) = f(X)f(Y )f(ρo)f(η)
n∏
i=1

f(σ2
i )f(Di|X, Y, xi, yi)f(µi|ρo, η, σ2

i ), (11)

where V is the set of all RVs. The probabilistic graphical model in Fig. 5 is initialized
as follows,

Figure 5. Bayesian probabilistic model of the RSS-based localization mechanism.
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X ∼ Uniform(0, L),
Y ∼ Uniform(0, W ),

Di ∼
√

(X − xi)2 + (Y − yi)2,

µi ∼ ρo + ηlog(Di) + χi, (12)
ρo ∼ Normal(0,100),
η ∼ Normal(0,100),
σ2
i ∼ HalfNormal(10).

When we do not have any information regarding the RVs, we should use distributions
with large variance or flat distributions [34]. The target has the same probability to be at
any coordinate of plane, and therefore, in (12) we select a flat distribution (i.e. uniform
distribution) to represent our previous knowledge about the target’s position. For σ2

i ,
η, ρo, we chose distributions with large standard deviation as we do not have any prior
knowledge about them either. σ2

i is a half normal because it can not have negative values.
The MCMC algorithm needs our assumptions as in (12) and RSSI measurements

to estimate the target’s position. The RSSI measurements are distributed according
to the joint distribution (11). Therefore, the MCMC sampling algorithm obtains the
unnormalized joint distribution from the measurements to simulate all the RVs in our
statistical model. It simulates the RVs through a sampling process where it tries to
find a combination of distributions that results in the joint distribution in which the
measurements are distributed. In this sampling process, the MCMC estimates the
target’s coordinates and all the other RVs in our statistical model.

3.1.3 Time Difference of Arrival-based source localization

By employing this method, the signal transmitted by a source is measured in different
known receivers locations to calculate the time of arrival. The TDOA is given by
the difference between the time of arrival at these receivers with respect to a common
reference location [53].1 In our work, the target corresponds to the transmitting source
while the receivers of the target signal represent the APs. This method requires that
the APs to be clock synchronized in order to properly compute the respective TDOA
metrics. The TDOAs values are stored in a vector of size L − 1 where L is the number
of APs whose components are given by, [53]

rTDOA,l = g1 + nTDOA,l, l = 1, 2, · · · , L− 1, (13)

where gl+1,1 is defined by,
gl = tl+1 − t1. (14)

The variable t is a vector of the time of flight from the target node to the lth AP, g
is the TDOA vector without considering the error, nTDOA is the intrinsic measurement
error drawn from a normal distribution with arbitrary mean and variance. Note that the
AP corresponding to t1 is chosen as the reference receiver to carry out our computations.
If we multiply rTDOA by the propagation speed, we obtain a vector whose components are

1This is a generalization of the time of flight technique where clock synchronization between the
target and the APs is not required.
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the respective distance differences between the APs and the target. Thus, by combining
(13) and (14) above, we can write

c · rTDOA,l = dl+1 − d1 + c · nTDOA, l = 1, 2, · · · , L− 1, (15)

where c is the speed of light and the vector d is the Euclidean distances between the APs
and the target. If we estimate the distances in d based on the propagation speed and the
known positions of the APs, we can draw a lines representing the distances from each
AP to the target based on the TDOA measurements. The drawn lines are hyperbolic
lines in the Cartesian coordinate system, and the intersection of the hyperbolic give us
an estimation of the position of the target [53]. Therefore, if we make the Bayesian
inference of the joint distribution of d, we will have the distribution that represents the
region where the target is located.
In the Fig. 6, we designed our Bayesian network model based on (15). In this model,

we consider that the mean of the measurement error is zero. The symbols inside circles
and squares represent RVs and constants, respectively. In this graphical mode, (xi, yi)
yields the known coordinates of the APs and c is the wave propagation speed, while Di,
µ and σ2 are respectively the Euclidean distance between the ith AP and the target, the
TDOA vector and the variance of the error, and (X,Y ) is a bidimensional RV representing
the position of the target in a Cartesian coordinate system. The assumptions we used in
our model are denoted by,

Figure 6. Bayesian probabilistic graphical model of the TDOA-based localization
mechanism.
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X ∼ Uniform(0, L),
Y ∼ Uniform(0, W ),

Di ∼
√

(X − xi)2 + (Y − yi)2, (16)
µk ∼ (Dk+1 −D1)/c+ n

σ2
k ∼ HalfNormal(10),

where n is the measurement error following distribution N (0,Σ), Σ is the covariance
matrix of the measurement error of the APs in which the main diagonal is the vector σ2.
In our work, we consider the error to be independent between the APs. The TDOA vector
depends on the speed of light, the separation distances between the target and each AP
and the variance of the measurement error. Moreover, Di depends on the location of the
target and of the APs. Therefore, the joint distribution can be defined as

f(V ) = f(X)f(Y )
L∏
i=1

f(Di|X, Y, xi, yi)
L−1∏
k=1

f(σ2
k)f(µk|Dk+1, D1, c, σ

2
k), (17)

where V is the set of RVs of the joint distribution.

3.1.4 Angle of Arrival-based source localization

In order to use this method, the APs need to employ an array of antennas to measure
the angle in which they receive the signal from the target [53]. The angle of arrival at
the ith access point is denoted by [53]

φi = arctan yt − yi
xt − xi

, (18)

where the xt and yt are the coordinates of the target, and xi and yi are the coordinates
of the ith access point. By account for the measurement error, our vectorial formulation
in (6) is updated as follows [53]

rAOA = φ + nAOA, (19)

where rAOA is the vector of the measured angles, nAOA corresponds to the measurement
error following zero mean Gaussian distribution and it is independent between the APs.
If we estimate φi with the AOA measurements, we have a line of bearing between the
ith AP. We need the intersection of at least two line of bearings to estimate the target’s
position [53]. In a Bayesian perspective, the joint distribution of φ provides us the region
of the probable target’s position. Fig. 7 represents the statistical graphical model of an
AOA-based IPS with N APs whose the RVs are defined by

X ∼ Uniform(0, L),
Y ∼ Uniform(0, W ),

µi ∼ arctan Y − yi
X − xi

+ nAOA (20)

σ2
i ∼ HalfNormal(10),
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where µi follows (19) and σ2
i is the variance of nAOA. Considering our prior knowledge

about the parameters of the model, we use a bidimensional uniform and half-normal
distributions to model the target node coordinate (X, Y ) and the respective measurement
error standard deviation σ2

i , respectively. The joint distribution of this statistical model
is formulated as

f(V ) = f(X)f(Y )
N∏
i=1

f(σ2
i )f(µi|X, Y, xi, yi, σ2

i ), (21)

where V is the set of RVs of the joint distribution.
After estimating the joint distribution of TDOA, RSSI or AOA using MCMC methods,

we have an updated knowledge about the RVs in the model and we can use this new
knowledge to the subsequent estimations of the respective joint distribution. The use of
the updated knowledge regarding the RVs is the base of our iterative Bayesian method
as we describe next.

Figure 7. Bayesian probabilistic model of the AOA-based localization mechanism.

3.1.5 Iterative Bayesian method

The iterative Bayesian method sequentially update our prior distribution with our
posterior distributions. It means that we repeatedly/iteratively make measurements,
estimate the target’s position based on our prior distributions and measurements, and
update our prior distributions using the estimated posterior distributions.
As mentioned in Section 2.1, the Bayes’ theorem enable us to make inferences based

on our current knowledge regarding a statistical experiment of interest. Our current
knowledge of the RVs in a Bayesian statistical model is represented by the prior
distributions of the RVs. The MCMC method samples all the RVs of the Bayesian
network model in order to estimate their posterior distribution, and we can use this new
knowledge regarding the RVs for the subsequent iteration [55]. In this case, we are not
discarding the knowledge that we obtained previously and we are keeping a statistical
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history of our targeted event. The purpose of updating the prior distributions with
the estimated posterior distributions is to find more accurate estimations as the prior
distributions affect the performance of the MCMC sampling method [33]. Indeed, when
we reuse the posterior distribution to update the next iteration prior distribution, we will
carry out biased estimations, which can add error to our proposed mechanism estimation
over time [55]. We denoted it as biased estimations because the estimator uses our bias
or beliefs regarding the RVs to estimate them.
The Fig. 8 describes the algorithm of our proposed IPS mechanism using a flowchart.

The description of the blocks in the flowchart is below:

• Measuraments: These are the observations used by the MCMC sampling
algorithm. The observations are generated according to the metric used such as
(10), (15) and (19);

• Take the first assumptions of prior: We set the initial assumptions and prior
distribution of our proposed mechanism. They could be the assumptions and prior
distribution in (12), (16) and (20), for example;

• MCMC: We run the MCMC sampling algorithm to estimate the posterior
distributions based on our prior distributions and observations;

• Take the last posterior distribution: We take our last estimated posterior
distribution which is our updated knowledge about the RVs. The current/last
estimated posterior distribution provides us information that can be used by the
prior distribution in the next iteration;

• Model the distribution that will be used as prior: We create the prior
distributions and set their parameters according to the current estimated posterior
distribution;

• Update prior: We updated our statistical graphical models in (12), (16) and (20)
with the prior distributions created in the previous block;

• Estimation/Posterior Distribution: This is the output of the MCMC sampling
algorithm. Here, we can plot and analyze the estimated posterior distributions.

In the first iteration, our mechanism uses the prior distributions defined in (12), (16)
or (20) depending what is being measured. From the second iteration onward, we model
the RVs’ prior distributions based on the current posterior distributions which is our
updated information about them. However, the variance of measurement error can change
drastically in the real world as the indoor environments are dynamic. It means that from
one iteration to another the actual value of σ2 in (12), (16) or (20) can be significantly
different. In this case, we can not be certain about our updated knowledge regarding
this RV and we should use a prior distribution with large variance [34]. Therefore, we
arbitrary do not update the prior distribution of σ2 by always reusing our initial prior
distributions.
In this work, we evaluate three distinct schemes to update prior distributions which are

based on the posterior distribution estimate. We denote them as Full Posterior (FP), Full
Gaussian (FG) and Mixture Distribution (MD). In FP, we model our prior distribution
using the current posterior distribution directly as the prior distribution, while in FG,
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Figure 8. Iterative Bayesian method flowchart.

we model the prior distribution as a Gaussian with the same mean and the double of
the standard deviation of the current posterior distribution. The MD distribution is a
mixture distribution of FP and FG prior distributions with 50% of weight each where
the weight value is a arbitrary. These prior distribution schemes are equivalent to the
block “Model the distribution that will be used as prior” in Fig. 8.
Now that we have all the information of the system model, we can advance for the

implementation of our Bayesian-based IPS.

3.2 Implementation

In this section, we describe the implementation details of the proposed iterative
mechanism. Firstly, we introduce the PyMC3 framework along with its requirements and,
secondly, we show how to describe our Bayesian network models using this framework
and how to use the MCMC sampling algorithm. We decided to describe the code for
the RSSI because the the graphical model of the RSS-based source localization is more
didactic than the others, i.e. easier to follow and understand.

3.2.1 PyMC3 Framework and Requirements

The PyMC3 is a open-source probabilistic programming framework developed using the
general purpose Python language [52]. This framework allows to describe statistical
models intuitively with syntax and notation very similar to the statistical formulation
using mathematical symbols [52]. The PyMC3 framework provides the powerful and
modern HMC and NUTS MCMC sampling algorithms [52]. These MCMC algorithm are
powerful because they eliminate random walk behaviour as we mentioned in Section 2.2,
and have a good performance with high dimensional and complex posterior distributions
[52]. MCMC sampling algorithms with random behavior component need more time to



25

converge the Markov chain to the equilibrium distribution [40]. NUTS extends HMC with
self tuning whereby the parameters required by the HMC are automatically set and with
U-turn avoidance [41] as we mentioned in Section 2.2. It allows inexperienced users to
use a powerful sampling algorithm that has at least the same performance of a well-tuned
HMC according to the Authors in [41]. In other words, this tool allows the user to focus
on the design process and evaluation of statistical models instead of the mathematical
and sampling algorithm details [34]. Note that this framework uses the library Theano
from Python to make its computations including the gradient computation for HMC and
NUTS through automatic differentiation [52]. We can find all the documentation of this
framework available in [56]. The code Listing 3.1 shows the initial setup of libraries we
need to load to run our scripts.
We carry out our simulation campaign in a cluster running operational system CentOS

Linux 7 with Python version 3.6.8.
1 # The libraries needed
2 import numpy as nump
3 import theano . tensor as tens
4 from scipy import stats
5 import pymc3

Listing 3.1. Loading Python libraries.

3.2.2 Implementation of the RSS-Based IPS

Here, we implement the system and graphical model described in the Section 3.1 using
the PyMC3 framework. We start with the deployment scenario detailed in Subsection
3.1.1 where we describe the environment as well as the location of the target and the
APs. The code of the deployment scenario is below.

1 # Number of measurements for each AP
2 sp_size = 50
3

4 # The dimensions of the warehouse
5 L = 100 # Length
6 B = 100 # Breadth
7

8 # APs position
9 anchor_pos = nump.array ([[0 , 0], [0, B], [L, 0], [L, B]])

10 num_anchors = len( anchor_pos ) # Number of APs
11

12 # Position of the target
13 target_pos = nump.array ([[20 , 80]])

Listing 3.2. Warehouse deployment scenario.

We need to simulate the measurements which the APs will carry out. Therefore, we
firstly need to compute the real distance between the target and the APs as implemented
in Listing 3.3.

1 # Function that computes the Euclidean distance equation using the
2 # numpy library
3 def nump_euclidean (x, y):
4 return nump.sqrt (((x - y)**2).sum(axis = 1))
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5

6 # The actual distance between the APs and the target .
7 distance = nump.zeros (( num_anchors ,1))
8 for i in range (0, num_anchors ):
9 distance [i] = nump_euclidean ( anchor_pos [i], target_pos )

Listing 3.3. The Euclidean distance between the APs and the target.

In Listing 3.4, we generate the measurements of the APs according to (10) based on
the distance between the target and APs where the measurements are assumed to be
independent.

1 # We firstly create measurement error
2 var_err = .5 # Variance of the error arbitrary chosen
3 cov_err = cov*nump. identity ( num_anchors ) # Covariance matrix
4

5 # Error matrix compatible with the sample size and number of APs
6 error = nump. random . multivariate_normal (mean=nump.zeros( num_anchors ),

cov=cov_err , size= sp_size )
7

8 # We arbitrary choose the path loss coefficient and the transmission
9 # power of the target .

10 bb = 3 # Path loss coefficient
11 aa = 3 # RSSI in one meter of distance from the target
12

13 # We take the real distance and repeat it to be compatible the sample
14 # size
15 d_mtx = nump. repeat (distance , sp_size , axis = 1)
16

17 # We compute the RSSI in ideal conditions and add error
18 mu = aa - bb*nump.log(d_mtx) # RSSI ideal condition
19 ρ_hat = mu + error # RSSI with error

Listing 3.4. RSSI measurements.

Now that we have our observed data, we model the Bayesian network following
(12). The corresponding Python code is shown below. Note that we consider the
joint distribution a multivariate normal distribution because the four APs make RSSI
measurements with a Gaussian error. It means that our estimated target’s position
follows a Bayesian approach where the estimation is probabilistic distribution. It is
different from the frequentist inference where we have a point estimate of the target.

1 # PyMC3 uses theano for computation . Therefore , we need to compute the
2 # Euclidean distance using theano .
3 def tens_euclidean (x, y):
4 return tens.sqrt(tens.sqr(x - y).sum(axis = 0))
5

6 with pymc3.Model () as rssi_model :
7 x = pymc3. Uniform (’x’, 0, L)
8 y = pymc3. Uniform (’y’, 0, B)
9 ϕ = tens.stack ([x, y], axis = 1)

10 α = pymc3. Normal (’α’, mu = 0, sd = nump.sqrt (10**3) ) # ρo

11 β = pymc3. Normal (’β’, mu = 0, sd = nump.sqrt (10**3) ) # η
12 anchors_range = range( num_anchors )
13 d = [[] for i in anchors_range ]
14 µ = [[] for i in anchors_range ]
15 σ = [[] for i in anchors_range ]
16 for i in anchors_range :
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17 d[i] = pymc3. Deterministic (’d’ + str(i),
18 tens_euclidean ( anchor_vt [i], ϕ))
19 µ[i] = α - β*tens.log(tens. repeat (tens. stacklists ([d[i]]) ,

sp_size , axis =0))
20 σ[i] = pymc3. HalfNormal (’σ’ + str(i), sd = 10)
21 covariance = tens. nlinalg . alloc_diag (σ)
22 µ_rssi = tens.stack(µ).T
23 # joint_dist is joint distribution of our statistical model. It is
24 # a multivariate normal distribution .
25 joint_dist = pymc3. MvNormal (’joint ’, mu=µ_rssi , cov=covariance ,
26 observed =ρ_hat)

Listing 3.5. Probabilistic graphical model of the RSS-based source localization
mechanism.
The joint distribution implemented in Listing 3.5 incorporates our assumptions regarding
path loss, distance, and also our prior knowledge about the RVs. With this probabilistic
model, we use the NUTS algorithm to sample the corresponding RVs so as to estimate the
target’s position. Listing 3.6 has the code which runs the NUTS algorithm 3.6. We use
four chains which explore the sampling space starting from different initial positions. We
use this together with tuning to reduce the influence of the initial sample to the resultant
posterior distribution. For each chain, we draw 2000 samples for the estimation plus
1000 samples used for burn in. We set the target of acceptance of samples to 80% which
means that the sampler will try to keep a step size where 80% of the sample candidates
are accepted.

1 n_draws , n_jobs , n_cores , n_tunes = 2000 , 4, 4, 1000
2 # n_samples is the number of accepted sample per chain
3 # n_chain is the number of chains used by the algorithm
4 # n_cores is the number of process which will run in parallel
5 # n_burn is the number of samples used as burn in
6

7 # Running the NUTS algorithm for our model rssi_model
8 # The variable traced_samples has the output MCMC sampling algorithm
9 with rssi_model :

10 traced_samples = pymc3. sample (draws = n_samples ,
11 step=pymc3.NUTS( target_accept =.8) ,
12 chains = n_chain , cores =
13 n_cores , tune = n_burn )

Listing 3.6. NUTS algorithm sampling joint distribution.
The sampling function from PyMC3 returns samples of the traced RVs in the model.

Fig. 9 shows the estimated position of the target in a 2D plane using a Kernel Density
Estimate (KDE) heatmap. We can see that the black circle representing the actual
position is indeed within the region where the MCMC method estimated for the target’s
position. The approximated posterior distributions of the RVs X, Y , ρo, η and Di

estimated by the MCMC algorithm are in the Fig. 10, while the RVs σ2
i are in the

Fig. 11. The MCMC method estimate these distributions based on unnormalized joint
distribution taken from the RSSI measurements. Therefore, the algorithm estimates or
simulates the RVs by approximating their joint distribution to the unnormalized joint
distribution. We can see that the estimated values of the RVs are close to the actual
values. The Table 1 compares the values side by side. The estimated position of our
target is (19.69, 80.94) m which by applying the Euclidean distance with the actual
position results in an error of 98.98 cm.
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Figure 9. Kernel density estimate of the target’s position

Table 1. Actual value vs Estimated value of the RVs in our statistical model.

RV Actual value Expected value Variance
X 20 m 19.69 m 2.77 m
Y 80 m 80.94 m 3.39 m
ρ0 3 dBm 2.49 dBm 0.93 dBm
η 3 2.88 0.05
D1 82.46 m 83.31 m 2.51 m
D2 28.28 m 27.43 m 4.88 m
D3 113.14 m 114.02 m 4.93 m
D4 82.46 m 82.56 m 1.98 m
σ2

1 0.5 dBm 0.54 dBm 0.002 dBm
σ2

2 0.5 dBm 0.54 dBm 0.002 dBm
σ2

3 0.5 dBm 0.52 dBm 0.002 dBm
σ2

4 0.5 dBm 0.46 dBm 0.002 dBm

98.98 cm of error is too big for applications that require a maximum error of a few
centimeters. Therefore, we proposed an iterative mechanism to reduce the error and allow
this Bayesian method to be used in applications with more strict requirements regarding
the estimation of targets’ position. The proposed iterative method reuses the output of
the the first iteration generated by the MCMC sampling algorithm which contains the
information of our posterior distributions as our prior distributions of the next iteration.
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The Listing 3.7 has the code used for this purpose. This code is an example of FP prior
distribution as defined in the Section 3.1.5. It is worth noting that the PyMC3 requires
prior distributions that can be represented analytically, and the output of our MCMC
sampling algorithm is a numerical approximation. It means that we can not assign the
posterior distribution approximation directly as prior distribution, however, the PyMC3
has a function that interpolates our approximated distribution which then allows to
incorporate approximated distributions in our statistical model [56]. An example of this
function named “Updating Priors” is available in the documentation of the library [56].

1 def from_posterior (RV , RV_samples ):
2 min_value , max_value = nump.min( RV_samples ), nump.max( RV_samples )
3 diff_max_min = max_value - min_value
4 x_axis = nump. linspace ( minimum_value , maximum_value , 100)
5 pdf = stats. gaussian_kde ( samples )(x)
6 x_axis = nump. concatenate ([[ x_axis [0] - 3 * diff_max_min ], x_axis ,
7 [ x_axis [-1] + 3 * diff_max_min ]])
8 pdf = nump. concatenate ([[0] , pdf , [0]])
9 return pm. Interpolated (RV , x_axis , pdf)

10

11 all_traces = [ traced_samples ]
12 for iterations in range (5):
13 # Generate observation for the next iteration
14 error = nump. random . multivariate_normal (mean=nump.zeros( num_anchors ),
15 cov=cov_err , size= sp_size )
16 ρ_hat = mu + error # RSSI with error
17 with pymc3.Model () as rssi_model_iterative :
18 x = from_posterior (’x’, traced_samples [’x’])
19 y = from_posterior (’y’, traced_samples [’y’])
20 ϕ = tens.stack ([x, y], axis = 1)
21 α = from_posterior (α, traced_samples [α]) # ρo

22 β = from_posterior (β, traced_samples [β]) # η
23 anchors_range = range( num_anchors )
24 d = [[] for i in anchors_range ]
25 µ = [[] for i in anchors_range ]
26 σ = [[] for i in anchors_range ]
27 for i in anchors_range :
28 d[i] = pymc3. Deterministic (’d’ + str(i),
29 tens_euclidean ( anchor_vt [i], ϕ))
30 µ[i] = α β*tens.log(tens. repeat (tens. stacklists ([d[i]]) ,

sp_size , axis =0))
31 σ[i] = pymc3. HalfNormal (’σ’ + str(i), sd = 10)
32 covariance = tens. nlinalg . alloc_diag (σ)
33 µ_rssi = tens.stack(µ).T
34 # joint_dist is joint distribution of our statistical model. It is
35 # a multivariate normal distribution .
36 joint_dist = pymc3. MvNormal (’joint ’, mu=µ_rssi , cov=covariance ,
37 observed =ρ_hat)
38 # Using the NUTS algorithm to sample the RVs of our joint
39 # distribution
40 traced_samples = pymc3. sample (draws = n_samples ,
41 step=pymc3.NUTS( target_accept =.8) ,
42 chains = n_chain , cores = n_cores ,
43 tune = n_burn )
44 # Storing our numerical approximations in a vector
45 all_traces . append ( traced_samples )

Listing 3.7. Updating our prior distributions.
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The Listing 3.7 updates the prior distributions five times after our initial
estimation/iteration. The estimated target’s coordinates are in Fig. 12. We can see
that our proposed mechanism converged to the wrong coordinate of Y because the
small variance given by the FP prior distribution. It means that the bias of the FP
scheme provides prior distributions with a too small variance, and therefore, the MCMC
algorithm can not explore the sampling space efficiently because of the small variance of
the prior distribution. The Table 2 helps us to compare the estimated value with the
actual value of the target’s coordinates. We can see that our proposed mechanism using
FP prior distribution brought the initial error from 98.98 cm to 101.07 cm. Therefore,
our proposed mechanism using FP has a poorer estimation than just using the initial
prior distributions in (12). We already discussed and solved this problem using FG and
MD prior distributions in [36, 37] which provide better results.

Table 2. Actual value vs Estimated value of the RVs in our statistical model after five
iterations.

RV Actual value Expected value Variance
X 20 m 19.96 m 0.10 m
Y 80 m 81.01 m 0.13 m

As we aforementioned, we can implement our statistical graphical model using a syntax
and notation similar to the statistical formulation with PyMC3. Therefore, we can use
the same intuition that we used in the RSS-based IPS for TDOA and AOA by employing
the formulation from Subsections 3.1.3 and 3.1.4, respectively. Next, we evaluate our
proposed mechanism for static and moving targets using a TDOA-based IPS.
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Figure 10. Estimation of the RVs of our model - Part 1.
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Figure 11. Estimation of the RVs of our model - Part 2.

19.0 19.5 20.0 20.5 21.0
Coordinate (m)

0.0
0.3
0.6
0.9
1.2
1.5

Pr
ob

ab
ilit

y 
de

ns
ity

Posterior Distribution of X

0 250 500 750 1000 1250 1500 1750
Samples

19

20

21

Co
or

di
na

te
 (m

)

Samples of X

Mean
Variance

79.5 80.0 80.5 81.0 81.5 82.0 82.5
Coordinate (m)

0.0
0.3
0.6
0.9
1.2
1.5

Pr
ob

ab
ilit

y 
de

ns
ity

Posterior Distribution of Y

0 250 500 750 1000 1250 1500 1750
Samples

80

82

Co
or

di
na

te
 (m

)

Samples of Y

Mean
Variance

Figure 12. Estimation of the coordinates of our model after five iteration
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4 PERFORMANCE EVALUATION

In this Section, we discuss and evaluate the performance of the proposed iterative TDOA-
based IPS. An exhaustive simulation campaign is carried out and the results are shown in
terms of RMSE and CDF of the mean error. CDF to mean error is the accumulated error
between the estimated and the actual target’s position where the estimated position is
considered to be the mean of the approximated posterior distribution. We consider the
variance of the measurement error as 1 · 10−15 s which corresponds to a variance of 100
m in terms of the distance between the target and the APs. For an increasing number of
measured samples per iteration and distinct prior distributions, the evaluation framework
is first used to assess how the proposed TODA-based mechanism performs in a baseline
scenario where the target node is stationary. Thereafter, we evaluate how the proposed
mechanism performs when the target node moves and compare the results against the
baseline scenario.

4.1 Evolution of the position estimates with iterations

To begin with, we assess how the iterative operation of the proposed algorithm affects
the accuracy of the target node position estimates. In fact, the estimation accuracy
improves through the iterations of our proposed mechanism as shown in Fig. 13. Each
AP is assumed to collect 50 measurements per iteration and we employ the FP scheme
to update the prior distribution. In this figure, the mean of the posterior distribution
gets closer to the actual coordinate through the iterations, and our uncertainty about
the coordinate reduces as well. It happens because at each new iteration the MCMC
sampling algorithm is fed back with a prior distribution that has lower KL divergence
to the actual target coordinate distribution which thus provides a better estimation
[34]. Fig. 14 shows how the error reduces through the iterations in terms of RMSE.
This result asserts the potential of our proposed mechanism which estimates the target
node position with an RMSE error of approximately 27.25 cm. However, we observe a
diminishing returns effect after around five iterations when the estimate gains in terms
of RMSE reduces significantly at each new step. This behaviour is due to the fact that
at the beginning we had prior distributions with little or no information regarding the
posterior distribution, while later iterations already use prior distributions closer to the
actual target coordinates. As our beliefs about the target’s coordinates are close to the
actual coordinates, we do not gain much new information in the last iterations. It is also
worth noticing that, the performance of our mechanism is limited by the measurement
errors.
Fig. 15 presents the CDF of the mean error which can be used to assess how the

iterative method improves the estimation of the target’s position. When comparing the
curves of 1 and 20 iterations at the 50th percentile, we observe the former has an error
higher than 1 meter while the latter undergo approximately 23 cm only. Different from
the traditional frequentist approach which provides a point estimate, these curves give
more information about the reliability of our proposed mechanism so that 99% of the
estimations have an error lower than 64 cm for 20 and 15 iterations. However, at the 80th
percentile, 20 iterations curve exhibits an error lower than 36 cm while the 15 iteration
curve has error about 41 cm. We also can see that the accuracy gain per iteration reduces
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Figure 13. Evolution of the X coordinate posterior distribution.
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with the number of iterations. It means that if we estimate the target’s position with b
iterations where b tends to infinity, the estimation at the iteration (b + 1)th is equal to
the one at bth.

Figure 15. Evolution of the mean error cumulative distribution function.
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4.2 Impact of the Prior distribution on the algorithm performance

When considering a static target, we assess the proposed mechanism for different prior
distribution models. Fig. 16 shows our results in terms of RMSE using the FP, FG
and MD definitions of priors distribution selection schemes as defined in Subsection
3.1.5. In the test scenarios where the target remains static, the FP outperforms both
FG and MD for static targets. At the 20th iteration, the FP scheme has a RMSE of
approximately 27.25 cm, while FG and MD have 79.96 cm and 68.95 cm, respectively.
The FG and MD have higher variance regarding the posterior distribution when compared
to the FP prior distribution. Here, we define prior distributions with higher variance or
higher uncertainty than the approximated posterior distributions as prior distributions
with weaker information regarding the posterior distributions [34]. We use a weaker
information when we are not sure if the updated knowledge about an event corresponds
to the reality or when we do not want limit our posterior distribution approximation
with our bias [34]. We observed the posterior distribution’s estimator being limited in
Subsection 3.2.2 where after five iterations of our RSS-based IPS using FP scheme, the
approximate posterior distribution converged to the wrong target’s position because the
FP prior distribution scheme limits the sampling space of the MCMC method. We solved
this problem for RSS-based IPS in [36, 37], where we obtained a better performance
when using FG and MD. Therefore, a weaker information enabled the MCMC method
to explore better the sampling space. In our TDOA-based IPS, on the other hand, if
we increase our uncertainty regarding our updated knowledge of the target’s position
by modeling our prior distributions with a weaker information about the posterior
distributions, we reduce the performance of our TDOA-based IPS.
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Figure 16. RMSE of the Euclidean distance for different priors.

Fig. 17 depicts the CDF of the mean error at the 20th iteration. The FP scheme shows
an average error lower than around 67.8 cm for 99% of the time. Conversely, FG and MD
have an error greater than 1m for 24% and 12% of the estimations, respectively. The FP
greatly outperforms FG and MD where we can see a significant difference of reliability
for estimations with an error lower than 40 cm. This difference happens because the
approximate posterior distributions of the target’s coordinates using FP scheme has lower
KL divergence to the actual posterior distribution than FG and MD.
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Figure 17. CDF of the mean error for different priors at the 20th iteration.

4.3 Impact of the number of observation per iteration on the algorithm
performance

Fig. 18 depicts how the FP-based prior distribution approach and the number of
observations or measurements carried out by the APs affects the estimation of stationary
target position. Actually, more measurements increase the corresponding evidence and
provide more information about all the RVs in the model, and therefore, we can find more
precise results. If the number of observations tend to infinity, different prior distributions
will asymptotically converge the same posterior distribution [34]. From this figure, we
can also observe that the number of observations affects more in the initial iterations
where 25 observations in the first iteration resulted in an error of approximately 80
cm higher than 100 observations in terms o RMSE, while at the 20th the error is just
approximately 20 cm higher. We observe the same behavior when comparing the CDF
of the error mean in the Figs. 19 and 20. Both figures show a better performance when
we using 100 observations per iteration but the relative gain of collecting more against
fewer measurements reduces with more iterations.
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Figure 18. RMSE of the Euclidean Distance for different number of measurements.

Intuitively, the benefit of increasing the number of samples is similar to when
we are verifying a histogram of the observations of a random event. The more
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Figure 19. CDF of the mean error for 1 iteration.
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Figure 20. CDF of the mean error for 20 iterations.

observations/evidence we have, the smoother is the curve of the histogram and we can
understand how the observations are distributed easier. In our case, it means a better
approximation of the unnormalized joint distribution of the model, and the MCMC
methods use the unnormalized joint distribution to compute the acceptance probability of
the sample candidates of the Markov chain [33]. Therefore, a more accurate unnormalized
joint distribution results in a more precise estimation. For HMC and NUTS algorithms,
it also means a more accurate computation of the gradient which is used to find the
trajectory of the sample candidates [33].

4.4 Bayesian-based tracking mechanism using TDOA measurements

In this section, we extend the Bayesian-based localization mechanism to tracking a
moving target. In each iteration, we collect new observations of the target’s reference
signal, and therefore, we have a new unnormalized joint distribution of the observed event.
It means that if we change the target’s position during the iterations of our proposed
mechanism, the unnormalized joint distribution used by the MCMC method will be based
on the current target’s position. Fig. 21 illustrates a target moving in circles. The target
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is moving with constant speed while our proposed mechanism iteratively estimates the
target’s position to track its trajectory. We assume that the target is slow enough such
that the measurements collected in an iteration correspond to the target’s reference signal
of the same position.
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Figure 21. Tracking a target moving in circles.

We evaluate the proposed mechanism by considering just one position update. The
initial position of the target is (20, 80) m and the target moves to the position (21,
81) m in two iterations. In the first iteration, we use the flat distributions as priors as
in (16), while in the second iteration, the prior distributions are updated based on the
posterior distributions of the previous iteration. We consider that the APs collect 50
TDOA measurements in each iteration. Fig. 22 shows the performance of our proposed
mechanism in the second iteration for Flat, FG, MD and FP prior distributions. Flat
prior distributions are the distributions in (16) where we consider that the target could
be in any position of our evaluation scenario. The FP prior distribution has the worse
performance so that it would be even better to just use the Flat distribution. Fig.
23 gives intuition on why the FP prior distribution works well for static targets but
underperforms for moving ones. We can note the distance between the approximated
posterior distribution mean to the actual target’s position. The mean and variance of the
FP prior distribution does not allow the MCMC sampling algorithm explore the sampling
space as it is needed. This mean and variance took from our previous estimation is our
bias or beliefs about the RVs which can increase or decrease the estimation error. It is
the same problem to the RSS-based IPS for static targets where the bias of the FP prior
distribution limits the sampling space of the MCMC method. Therefore, when employing
the FP prior distribution, the mean of the approximated posterior distributions of the
X and Y coordinates are closer to the initial position (first iteration). The FG and
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MD prior distributions have this bias component as well, however, it is less than FP
because they have weaker information regarding the posterior distribution. Thus, the
MCMC sampling has more freedom to explore the sampling space, while using updated
knowledge about the target’s position to find more accurate estimations.
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Figure 22. CDF of the mean error of a moving target.
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Figure 23. Posterior distributions of the X coordinate of a moving target.

As we aforementioned, we use prior distributions with weaker information when we
are not certain how much our current knowledge corresponds to the actual posterior
distribution. It means that we should use distributions that are more flat. Therefore,
if we update our knowledge about the target’s position and it moves afterwards, the
correspond prior distribution is not valid anymore. However, we can still use the latest
updated knowledge about the target’s position and increase uncertainty by using a prior
distribution with higher variance. Do to that, FG and MD prior distributions provide
better estimations than using completely flat distributions. The problem is to know how
uncertain we should be about our previous knowledge because it will depend on the speed
of the target, where the faster is the target, the higher should be the variance of the prior
distributions.
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5 CONCLUSION AND FINAL REMARKS

In this work, we presente an iterative Bayesian-based localization mechanism to
accurately estimate the position of the target node in an indoor environment. This
method can use different metrics such as TDOA, RSSI and AOA, while exploits any
previous knowledge about the experiment by updating the prior distributions in the
Bayes’ theorem with our latest information regarding the event of interest. During our
investigations about MCMC sampling algorithms in our literature review, we found out
that the HMC algorithm outperforms the MH and Gibbs sampling algorithms. However,
the NUTS algorithm which is an extension of HMC has at least the same performance
than the HMC. We use the NUTS algorithm for the TDOA-based localization mechanism
and our results show that the proposed iterative method outperforms Bayesian-based
localization systems that do not use the latest information about the target’s position.
We also observe that the prior distribution greatly affects the estimation of the

target’s position because the MCMC methods achieve better estimations using prior
distributions with lower KL divergence to the actual posterior distribution. However, a
prior distribution that limits the MCMC method to travel to the sampling space where
the target is actually located will cause erroneous approximated posterior distributions.
We observe this behavior by employing the FP distribution with RSS-based IPS or when
assessing a moving target. Therefore, the choice of the prior distribution should be done
carefully. Moreover, different from RSS-based IPS, the FP prior distribution has the best
performance compared to MD and FG in TDOA-based IPS for static targets. It means
that a prior distribution model can have different performance for different metrics such
as AOA, RSSI and TDOA.
Moreover, the number of measurements collected by the APs per iteration affects

the performance of the proposed Bayesian-based positioning system all. Our results
show that a higher number of measurements leads to lower estimation errors. For a
static target, the TDOA-based localization procedure is more affected by the number
of measurements at the first iteration than afterwards. However, it still influences
the performance of the last iterations which could be game-changing for many of
applications that need IPS with lower estimation errors. Therefore, optimizing the
number measurements made by the APs per iteration is a issue that could be addressed
in the future.
As shown by our results, the proposed Bayesian-based localization mechanism can also

be used for source tracking in indoor deployment scenarios. However, we can not use prior
distributions with low variance when the target is moving because our latest knowledge
about the target’s position does not correspond to the post-movement target’s position.
Hence, FG and MD prior distributions outperform the FP approach for tracking because
their distribution have higher variance than FP scheme. Thus, It would be important to
study how uncertainty can be considered when updating our latest knowledge about the
target’s position as a function of the speed of the target.
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