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Portugal

Abstract

In supply chain inventory management it is generally accepted that safety stocks are a suitable
strategy to deal with demand and supply uncertainty aiming to prevent inventory stock-outs.
Safety stocks have been the subject of intensive research, typically covering the problems of di-
mensioning, positioning, managing and placement. Here, we narrow the scope of the discussion
to the safety stock dimensioning problem, consisting in determining the proper safety stock level
for each product. This paper reports the results of a recent in-depth systematic literature review
(SLR) of operations research (OR) models and methods for dimensioning safety stocks. To the
best of our knowledge, this is the first systematic review of the application of OR-based approaches
to investigate this problem. A set of 95 papers published from 1977 to 2019 has been reviewed
to identify the type of model being employed, as well as the modeling techniques and main per-
formance criteria used. At the end, we highlight current literature gaps and discuss potential
research directions and trends that may help to guide researchers and practitioners interested in
the development of new OR-based approaches for safety stock determination.

Keywords: Safety stocks, Operations research, Systematic literature review, Inventory
management, Supply chain.

1. Introduction

Global market competitiveness and the need to meet customer requirements have triggered an
increase in uncertainty factors within the organizations [1]. These factors are frequently related to
manufacturing, transportation, demand, supply, or even external events, and can assume a short-
term nature (e.g., increase, reduction, cancelation or even forward-backward movements of orders)
or a long-term nature (e.g., price volatility) [2]. Coping with uncertainty is, therefore, relevant
given that in addition to its unavoidably presence in real-world operational contexts [3], it is one
of the major issues in supply chain management (SCM). A number of research studies, especially
in the field of supply chain risk management (SCRM) [4], have been focusing on the development
of techniques able to manage uncertainty phenomena and their repercussions throughout the SC.
In particular, as a “function of the cycle service level, demand uncertainty, the replenishment lead
time, and the lead time uncertainty” [5], safety stocks are considered to be a suitable strategy to
prevent stock-outs [6] and to deal with supply and demand variability [7, 8]. In fact, in spite of
the challenges inherent to their management, Koh et al. [9] emphasize that safety stocks are one
of the most robust strategies to soften supply and demand uncertainty.
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Typically, the research works on safety stock methods cover the problems of dimensioning,
positioning, managing and placement. Within these main problems, this research narrows its
scope to strategies for dimensioning safety stocks, consisting in determining the proper safety
stock level for each product [10]. It is known that no SC can operate without safety stocks [11]
which, together with adequate financial flows and funds, are deemed relevant to the prevention of
massive SC disruptions [12]. In effect, given the current concerns with the impact of SC disruptions
on business performance, a recent Forbes’ report [13] points out that companies will tend to be less
tolerant to risk and uncertainty. It particularly highlights the importance of safety stock planning to
cope with SC risks coming from scenarios related with natural disasters (e.g., hurricanes, tsunamis,
floods) or mass epidemic infections (e.g., 2019-nCoV), which have been increasing across the world.
As a first and important step before moving on to more advanced safety stock problems, such as
determining the optimal locations and quantities of safety stocks so as to maintain target service
levels whilst minimizing costs (commonly referred as to safety stock placement [14]), we consider
that it is fundamentally important to develop further understanding on how to correctly determine
safety stocks for each product.

The goal of this paper is to provide a concise overview on how academics working in SCM
have been addressing the safety stocks dimensioning problem, from an operations research (OR)
perspective. Although there is a large body of literature on safety stocks dimensioning models,
scarce attention has been given to review articles in this particular field. For instance, the work of
Guide Jr and Srivastava [3] discusses a set of methodologies and techniques to cope with uncertainty
in material requirements planning (MRP) environments. It points out several gaps in the context
of the previous literature. Caridi and Cigolini [10] provided an overall perspective on dampening
methods used to dwindle uncertainty within manufacturing systems. The authors discussed 14
papers related to the safety stock dimensioning problem as a basis to propose a novel safety stock
model encompassing two buffer strategies: one to face demand peaks for a given service level
(by taking into account their probability distribution) and another to address the variability of
steady demand (by analyzing the statistical distribution of forecasting errors). Later, Schmidt et
al. [15] compiled several stochastic approaches currently used for dimensioning safety stocks, and
conducted a set of controlled simulation studies in order to assess the performance of the proposed
methods in terms of the variance of demand and replenishment lead time. Of note, the need for
dynamic approaches to compute safety stocks is underscored by the authors.

However, upon searching the literature related to the use of OR models and methods to tackle
the safety stock dimensioning problem, we found that there is a lack of studies providing a replica-
ble and structured process of gathering around all the relevant scientific works on this topic in an
objective way. Thus, motivated by the alleged difficulty [15] regarding the survey of dimensioning
safety stock works, perhaps due to their wide application in the SCRM field, this paper presents a
systematic literature review (SLR), from 1977 to 2019, of OR-based approaches for dimensioning
safety stocks. The contribution of our research is threefold. In the first place, it compiles and
summarizes the state-of-the-art modeling efforts and techniques that have been studied for dimen-
sioning safety stocks. At this point, the sampled papers were classified, in terms of the proposed
OR model/method, into four distinct categories. Each paper is further discussed and characterized
according to the type of model employed, as well as the modeling technique(s) and main perfor-
mance criteria considered. Second, the drawbacks and limitations of the current dimensioning
safety stocks approaches are stressed. Third, based on the identified gaps, we provide suggestions
that could serve as gateways of opportunity for future research in this topic, both in a scholarly
and business context.

The remainder of this paper is organized as follows. The next section explicitly recalls some
standard approaches commonly adopted to treat the safety stock dimensioning problem and that
serve as foundations for many current research studies on this topic. Section 3 presents the re-
view methodology and objectives, and describes the paper selection phase. Section 4 performs
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a descriptive analysis on the selected papers. In section 5, the selected papers are categorized
according to the proposed strategy for dimensioning safety stocks. This process forms the basis for
the material evaluation. Then, we conclude in section 6, highlighting some important literature
gaps and potential directions for future research.

2. Traditional dimensioning safety stock strategies

Safety stocks are essentially affected by six factors, including service level, lead time, demand
volatility, order policy, component commonality and holding costs. The reasons are quite intuitive.
An optimal safety stock strategy should be small enough to reduce inventory-related costs while
satisfying demand and high service level customers on time. This naturally depends on how to
cope with different levels of demand volatility, and how large is the lead time variance. On the
other hand, the size of order releases and the degree of component commonality may also suggest
opportunities to optimize safety levels. This section recalls standard stochastic approaches for
dimensioning safety stocks, based on normally distributed parameters, which embody some of the
aforementioned factors. For a comprehensive knowledge on this topic, the reader is referred to the
fundamental texts of [16, 17, 18, 19, 20] and to the review of [15].

Assuming that the total demand during a lead time L > 0 is normally distributed with mean
μL and standard deviation σD

√
L, the most simple approach for dimensioning safety stocks for a

fixed target service level α is set as:

SS = Φ−1(α)σD

√
L (1)

where Φ(·) is the standard normal cumulative distribution function, Φ−1(α) is the safety factor,
and σD is the standard deviation of demand D per unit time. If L and D are assumed to be
independent random variables, the safety stock equation (1) can be rewritten as:

SS = Φ−1(α)
√
L · σ2

D + (σL ·D)2 (2)

where D is the average demand per unit time, and σL is the standard deviation for the lead time
L. At this point, it is clear that safety stocks are composed by two dimensions: the first to cover
demand uncertainty and the second to deal supply lead time variability.

A surrogate approach to consider the calculation of safety stocks for a given item as a function
of the service level and the past lead time demand forecast errors is defined as:

SS = Φ−1(α)σF (3)

where σF is the standard deviation of the forecasting errors for the respective lead time L, which
in its turn is typically assumed to be deterministic and known. Here, the central problem relies
on the estimation of σF . For that, one can follow a theoretical approach, in which an estimation
of σ1 (the standard deviation of demand forecasting errors made for a unit period) is provided
and further converted into an estimate of σF . On the other hand, parametric and non-parametric
empirical approaches can also be employed, where σF is directly estimated from the lead time
forecasting error [see 19, 63, for details]. When demand distributions do not follow the common
normality assumption, one can adopt a non-parametric forecasting approach to estimate safety
stocks:

SS = QL(α) (4)

3



where QL(α) is the lead time forecast error quantile at the target service level α. This quantile
can be obtained, in a non-parametrical fashion, from the empirical distribution of the lead time
forecast errors [21].

Further research studies have been presented to show scientific improvements on the previous
closed-form stochastic formulations, either via new safety stock formulations or incorporation of
current traditional approaches into more realistic albeit more complex inventory control systems.
Our aim is to provide a comprehensive review on how OR has been contributing to the safety stock
dimensioning problem, by exploring what OR-based models and methods have been employed to
tackle it and what type of performance criteria have been applied in such modeling approaches.

3. Research methodology and objectives

In this paper we propose a SLR [22] to identify relevant papers on OR-based models and meth-
ods for dimensioning safety stocks and to provide useful insights for future research in this field.
This type of review is particularly helpful to handle with large volumes of scientific literature, as
well as to reduce the bias inherent to the selection of research studies [23]. The review methodol-
ogy herein proposed is based on the following steps: material comprehensive search and selection
criteria; descriptive analysis, category selection; and material evaluation. These steps are deeply
characterized throughout the subsequent sections. In a nutshell, the main purposes of this review
are to:

i. Compile and explore the state-of-the-art modeling approaches and techniques which have
been proposed for dimensioning safety stocks;

ii. Understand what industrial sectors have been explored as application domains to safety
stocks;

iii. Highlight the drawbacks and limitations of the current safety stock dimensioning techniques;

iv. Discuss research opportunities that may help to guide future researchers and practitioners
interested in the development of new OR-based approaches for dimensioning safety stocks.

3.1. Material comprehensive search

Purposing to collect the most relevant papers to this research, the search process was con-
ducted on Scopus and Web of Science (WoS ) scholarly databases, under the fields “title, abstract,
keywords”. The search query firstly considers the context keywords “safety stock” and “safety
inventory” in combination with the broader keywords inventory and stock, to capture all possible
inventory management nomenclatures (e.g., inventory/stock planning, inventory/stock control), as
well as with the uncertainty/risk keywords uncertain* ; variation; variability ; volatile; volatility ;
fluctuate and fluctuation. The use of the wildcard character in the search string uncertain* makes
it possible to identify papers with the terms uncertain and uncertainty. Finally, following the
literature search strategy of [25], broader modeling keywords together with topics that, according
to INFORMS and EURO organizations, characterize OR methods were also added to the search
query. The search was then narrowed only to peer-reviewed scientific journals written in English,
as most of the high-quality research is typically published in journals. This resulted in a total of
696 papers in Scopus and 506 in WoS. At the end, the number of papers resultant of excluding
duplicates is 813. Table 1 summarizes the material collection process.
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Table 1: Material comprehensive search.

Research query (“safety stock” OR “safety inventory”)
AND

(inventory OR stock OR uncertain* OR variation OR

variability OR volatile OR volatility OR

fluctuate OR fluctuation)
AND

(“mathematical model” OR “numerical method” OR

“numerical model” OR “decision tool” OR “decision model”
OR “decision analysis” OR simulation OR heuristic OR

metaheuristic OR “meta-heuristic” OR optimization OR

optimisation OR “multi-objective” OR multiobjective
OR “multi-attribute” OR multiattribute OR stochastic OR

probabilistic OR probability OR programming
OR MINLP OR MILP OR MCDM OR “multi-
criteria decision making” OR

MCDA OR “multi-criteria decision analysis” OR markov OR

queuing OR statistics OR “neural networks” OR “data
analysis” OR “expert systems” OR parametric
OR “non-parametric” OR “data min-
ing” OR “data analytics” OR

“machine learning” OR “artificial intelligence”)

Time span All papers published up to January 2020

Article type Only peer-reviewed academic journals

Language English

Hits in Scopus 696

Hits in Web of Science 506

Hits excluding duplicates 813

3.2. Selection criteria

As a way of excluding papers which did not meet the purpose of this investigation, all 813
documents were subjected to a scan analysis of the content based on a complete reading of the
abstracts. In this process, papers that did not focus on the safety stock dimensioning problem
in a quantitative fashion have been excluded. After this procedure, a final sample of 95 papers
from 1977 to 2019 was derived. This set of articles formed the basis for the analyses presented
hereinafter.

In order to validate the filtering process and papers selection criteria, a keyword bibliometric
analysis based on co-occurrence data was performed in both initial (813 papers) and final (95
papers) sets of papers, by taking advantage of the software VOSviewer [24]. The left and right of
Fig. 1 depict co-occurrence maps of keywords present in the papers of the initial and final samples,
respectively. In both maps, the bigger the circle of a keyword, the more frequently that keyword
occurs in the respective sample. Moreover, the smaller the distance between two or more keywords,
the larger the number of co-occurrences of such keywords in the same paper. A closer examination
of the keywords presented in the final sample (right of Fig. 1) reveals that the papers included
therein match with the objective of this paper, in the sense that core keywords such as “inventory
control” and “safety stock” are not excluded during the process of refining the initial sample into
the final one.
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Figure 1: Co-occurrence maps for author and indexed keywords.

4. Descriptive analysis

The selected papers were descriptively characterized according to: the number of publications
over time and per international peer-reviewed journal; the modeling methodology employed; and
the sector of application. In what concerns the evolution of the number of published articles from
1977 to 2019, there appears to be an upward trend over the time window considered (see Fig. 2).
Particularly, we note a significant increase in the number of published papers from the year 2005
onwards. Fig. 2 also shows the main journals that published the highest number of papers contained
in our final sample. The International Journal of Production Economics lists the maximum number
of published papers over the time window considered (24 papers), followed by the International
Journal of Production Research (10 papers), the European Journal of Operational Research (9
papers), the Management Science (5 papers) and the Production Planning and Control ex-aequo
with the Expert Systems and Applications journal (4 papers).

Figure 2: Papers distribution by peer-reviewed international journal from 1977 to 2019.
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Table 2 presents the ten most cited papers so far in the safety stock dimensioning literature. Here,
we use the Scopus database as it is the largest abstract and citation database of peer-reviewed
research literature [25]. Yet, we found that not all papers listed on our sample appeared in Scopus.
In these particular cases (marked with ∗), we take advantage of the WoS database to collect the
number of citations. The most cited paper was published by Collier, D. [26] with 171 citations.
This paper studies the relationship of safety stocks with the component commonality index, a
fundamental concept in the material requirement planning (MRP) systems also introduced by
Collier, D. [27] in the early 1980s.

Table 2: The 10 most cited papers in the safety stock dimensioning literature.

R Title Author(s) TC Journal/Year

1 Aggregate safety stock levels and
component commonality

Collier, D. 171 Management Science (1982)

2 Production batching with machine
breakdowns and safety stocks

Groenevelt, H., Pintelon,
L., Seidmann, A.

113 Operations Research (1992)

3 Joint determination of preventive
maintenance and safety stocks in
an unreliable production environ-
ment

Cheung, K., Hausman W. 104 Naval Research Logistics (1997)

4 Determining safety stock in the
presence of stochastic lead time
and demand

Eppen, G., Martin, R. 100∗ Management Science (1988)

5 Scheduling the production of sev-
eral items with random demands
in a single facility

Gallego, G. 76 Management Science (1990)

6 Safety stock reduction by order
splitting

Kelle, P., Silver, E. 69 Naval Research Logistics (1990)

7 Possibilistic programming in pro-
duction planning of assemble-to-
order environments

Hsu, H., Wang, W. 69 Fuzzy Sets and Systems (2001)

8 Joint optimization of lot-sizes,
safety stocks and safety lead times
in an MRP system

Molinder, A. 67 International Journal of Produc-
tion Research (1997)

9 Multi-objective inventory planning
using MOPSO and TOPSIS

Tsou, C. 63 Expert Systems with Applications
(2008)

10 Multiple-buyer multiple-vendor
multi-product multi-constraint
supply chain problem with
stochastic demand and variable
lead-time: A harmony search
algorithm

Taleizadeh, A., Niaki S.,
Barzinpour F.,

62 Applied Mathematics and Compu-
tation (2011)

Nomenclature: R= Rank; TC = total citations; * TC according to WoS database.

As to the distribution of publications according to the modeling methodology employed, we
found that the safety stocks dimensioning problem is often treated by using analytical/optimization
models (e.g., stochastic, dynamic and goal programming; robust optimization, linear (nonlinear)
programming, mixed integer linear (nonlinear) programming); simulation models (e.g., Monte
Carlo simulation, discrete event simulation); or hybrid models, via simulation-based optimization
techniques. In particular, we found that analytical/optimization approaches play a pivotal role on
the dimensioning of safety stocks, inasmuch as they represent the vast majority of techniques used
for that purpose (88%). Concerning the remaining modeling methodologies, 6% of the papers take

7



advantage of hybrid (simulation-based optimization) approaches and another 6% employ simulation
methodologies (Fig. 3). Regarding the practical applicability of the selected papers, it was found
that in 62 out of the 95 papers (65%) there is no reference to real case studies or industrial
applications. The remaining 33 papers (35%) consider case studies in diverse industrial/practical
contexts, with a higher concentration in the pharmaceutical (6 papers), automotive (6 papers),
retail (3 papers) and electronics (3 papers) industry sectors. Section 5.5 provides details on the case-
based studies that have been explored when applying OR methods to safety stock determination.

Figure 3: Papers distribution by modeling approach.

5. Category selection and material evaluation

Building on the categorization presented in [83] for the safety stock dimensioning problem, we
found that the majority of the selected papers can be characterized into four distinct categories:

1. Papers in which safety stock dimensioning decisions are based on the variation of demand,
typically modeled as normally distributed;

2. Papers in which safety stock dimensioning decisions are based on the variation of the fore-
casting errors;

3. Papers that study how product structure and component standardization affect the safety
stock dimensioning problem;

4. Papers that do not follow, explicitly, neither of the three foregoing categories but accommo-
date, for instance, modeling approaches that do not settle as a whole on normally distributed
parameters or that encompass additional uncertainty factors apart from demand and supply.
This category of papers is referred to hereinafter as “Other models designed for dimensioning
safety stocks”.

5.1. Considering the variation of normally distributed demands

Great part of the sampled papers (35%) considers the dimensioning of safety stocks based on
demand variation. This section focuses on papers that, in the light of the central limit theorem,
have assumed normally distributed demands in the proposed models.

One of the overriding goals of SCM is to maintain customer service levels. Considering safety
stocks as a tool to meet this purpose, several studies have been including service level as main per-
formance criterion. Kelle [28] discussed an exact solution method and an approximate formula for
dimensioning safety stocks in contexts with random delivery and demand processes. Later, Kelle
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and Silver [29] studied a safety stock reduction strategy by exploring order splitting. The authors
acknowledge that decisions on order splitting can be complicated, often requiring the assessment of
nonquantitative factors (e.g., organizational considerations, vendor contracts). Dar-El and Malm-
borg [30] developed a service level-based model that considers rescheduling of replenishment during
the inventory cycle. Placing orders earlier within the cycle time to face stock-outs constitutes the
basis of that research. The proposed model allowed a reduction in the inventory carrying costs
without compromising service level. Vargas and Metters [31] proposed a cost-effective optimization
strategy based on a dual buffer methodology in which the former is able to provide safety stocks for
time-varying demand. Alternatively, simulation models have also proved efficient in setting safety
stocks under target service levels. In a multi-product environment with random demands, Gallego
[32] takes advantage of a Monte Carlo simulation-based method to derive safety stocks, given a
control policy and cyclic schedule. Similarly, a Monte Carlo approach was adopted by Bahroun
and Belgacem [33] but to determine dynamic safety levels for cyclic production schedules under
nonstationary demand patterns. Their results have shown service level and cost improvements
over the traditional constant safety stock approaches. Nonetheless, we recall a study conducted by
Benton [34] to emphasize that, in certain situations, little improvements of service levels generally
imply a high investment in safety stocks. In such a setting, the adoption of a safety time margin
when replenishing stock-on-hand should be properly tested as an alternative to the safety stocks
approach [see 35].

In spite of real-world studies have already proven the benefits, in terms of service level and
costs, of implementing safety stock strategies [36, 37], focusing on service level alone may increase
holding costs excessively, especially when uncertainty about market demand is high. As articulated
in Jodlbauer and Reitner [38], setting more safety stock increases the holding costs regardless the
cycle time considered. In contrast, lower safety stock levels could lead to stock-outs when demands
are volatile. This central trade-off between holding and stock-out costs is investigated by Badinelli
[39], who introduces an optimization procedure to determine safety stock levels under stochastic
demand patterns. In a continuous-review inventory framework, the proposed approach involves the
estimation of a disvalue function (via quadratic programming), an optimization method to derive
stock-out performance, as well as the determination of bounds on the optimal solution. Braglia et
al. [40] formulated a new model for safety stock optimization in a single-vendor single-buyer SC
framework, in which the lead time is assumed to be controllable and shortages are not permitted.
In that work, the service level is considered to be a function of number of admissible stock-outs and
order quantity. Safety stock decisions in a similar SC framework can also be found in the work of
Wangsa and Wee [41]. Nevertheless, we highlight that complex SCs rarely operate in environments
with just a single vendor or buyer.

As noticed previously, in section 2, safety stock formulations also depend on a safety factor
established according to a target service level. Many authors have often combined safety stocks
decisions, via safety factor, with batch size in multi-objective optimization problems. Agrell [42], for
instance, proposed a multicriteria decision-making (MCDM) model that considers batch size and
safety stock factor as decision variables. The model was treated as a convex nonlinear optimization
problem in which the purpose is threefold: minimize the expected annual total cost, the expected
annual number of stock-out occasions, and the expected annual number of items stocked out. This
problem was solved by using the interactive decision exploration method (IDEM). Very similar
objective functions are further addressed in the literature by taking advantage of techniques such
as multi-objective electromagnetism-like optimization (MOEMO), multi-objective particle swarm
optimization (MOPSO), technique for order of preference by similarity to ideal solution (TOPSIS)
or even multi-objective genetic algorithms (MOGA) [see 43, 44, 45, 46, 47, 48]. In addition,
regression-based methods have been as well exploited to compute the safety factor. Alstrom [49]
determined it as a function of the economic order, while Hayya et al. [50] have considered its
calculation in order crossover environments in which demand and lead time are i.i.d. random
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variables.
Safety stock determination can be particularly challenging in the presence of uncertainty factors

[52]. Disney et al. [53] study the effect of stochastic lead times with order crossover on dimension-
ing safety stocks. The authors derive a method to determine the exact safety levels for a linear
generalization of the order-up-to inventory control policy. To cope with uncertainties that are
caused by stochastic demand and different types of yield randomness, Inderfurth and Vogelgesang
[54] proposed closed-form approaches to determine dynamic safety stocks, and discussed ways to
convert these dynamic levels into static ones, easier to be applied in practical contexts. Interest-
ingly, in the context of MRP control systems with demand and supply uncertainty, Inderfurth [55]
showed that safety stock levels should not necessarily increase in a linear way with respect to yield
risk. Similar uncertainty factors were investigated by Lu et al. [56], who developed a general safety
stock method that accounts for nonstationary stochastic demand and random supply yield. The
proposed method can be described in three main phases. First, base-stock is expressed by consid-
ering the supply yield rate as random variable in order to formulate an inventory balance equation.
Secondly, stock material inbound and outbound flows are modeled by a coverage random variable.
Lastly, the safety stock is calculated via fixed-point iteration method under a given non-stockout
probability. At this point, a further observation we made is that despite the evident influence of
uncertainty factors in inventory management, very little attention has been given to the applica-
bility of safety stock strategies throughout the different life-cycle stages of a product (introduction,
growth, maturity, and decline), which are naturally subject to different levels of uncertainty. An
exception is the work of Hsueh [57], who studies inventory control policies and closed-form expres-
sions for the optimal safety stock across all the product life-cycle stages. Another very important
aspect is that accurate safety stock estimations must account for autocorrelated demands [58] and
data quality issues. Concerning the latter, the work of Kumar and Evers [59] is, to the best of
our knowledge, one of the few works covering such topic by proposing a computationally efficient
method that accounts for data quality and the correlation between demand and lead time in order
to compute the variance of lead time demand more accurately. By softening the effect of outlier
samples, the proposed method reveals to be helpful in volatile markets.

Overall, our findings showed that the problem of dimensioning safety stocks under normally
distributed product demands have been intensively explored, using several types of OR models,
modeling techniques and performance criteria, as summarized in Table 3. We further acknowledge
that total cost is the most widely used performance criterion. However, we note that realistic SC
costs, in particular shortage and holding costs, are very difficult to be measured in practice [35].
Moreover, we emphasize that the use of the Gaussian distribution for modeling demand can be
fundamentally flawed in real-world SC contexts [60, 10, 61]. Further research into this subject is
called for.

5.2. Considering the variation of the forecasting errors

Another well-known approach for dimensioning safety stocks is based on the assumption that
they are proportional to the forecasting errors [83]. As safety stocks serve as a buffer strategy
against forecast inaccuracies, if demand is properly forecasted the required safety stocks are lower,
as are the levels of uncertainty. Yet, achieving accurate estimations of the standard deviation of
the forecasting errors remains a challenge.

A seminal work on this topic was proposed by Eppen and Martin [60], who used the variance
of the forecasting errors during lead time demand to set safety stocks, by taking into consideration
exponential smoothing techniques and probability theory. The authors have shown that the general
practice of assuming normal distributions for lead time demand can be misleading in safety stock
decisions. Here, the use of non-parametric kernel density approaches seem to be promising to avoid
the so common assumption of normal and i.i.d. forecasting errors [see 21, 63]. We additionally
found that many authors have assumed normally distributed lead times which, in certain cases,
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Table 3: A literature overview of modeling approaches for dimensioning safety stocks based on the variation of demand.

References OR method/Modeling technique(s) Main performance criteria

Agrell [42] Decision analysis/Convex NLP 1. Holding costs; 2. Short-
age freq.; 3. Stock-outs

Alstrom [49] Statistics/Regression; Heuristic 1. Holding and ordering costs;
2. Shortage freq.

Badinelli [39] Optimization/Quadratic programming 1. Holding, ordering and stock-out costs

Bahroun and Belgacem [33] Simulation/Monte Carlo 1. Service level; 2. Holding costs

Benton [34] Simulation 1. Service level

Braglia et al. [40] Optimization/PV; Exact & Approx-
imated minimization algorithms

1. Total costs (inc. ordering, setup,
transportation and holding costs)

Brander and Forsberg [51] Analytic/Inventory theory; Ba-
sic period approach

1. Holding and setup costs

Charnes et al. [58] Analytic/Inventory theory 1. Stock-out probability

Cheng et al. [46] Optimization/MOPSO 1. Holding and ordering costs;
2. Shortage freq.

Dar-El and Malmborg [30] Analytic/Inventory theory 1. Service level; 2. Holding costs

Disney et al. [53] Analytic/Inventory theory 1. Holding and backlog costs; 2. Availability

Gallego [32] Optimization/Control theory;
Simulation-based search method

1. Holding, backorder and setup costs

Hayya et al. [50] Statistics/Regression 1. Holding, ordering and shortage costs

Hsueh [57] Analytic/Closed-form expressions 1. Holding and manufacturing orders costs

Inderfurth [55] Analytic/Inventory theory; Control theory 1. Holding, shortage and production costs

Inderfurth and Vo-
gelgesang [54]

Analytic/Inventory theory; Control theory 1. Holding and backlog costs

Jodlbauer and Reitner [38] Optimization/2D-Newton method 1. Service level; 2. Holding,
setup and backorder costs

Jonsson and Mattsson [35] Simulation/DES 1. Service level; 2. Ordering costs

Kelle [28] Analytic/Inventory theory 1. Service level

Kelle and Silver [29] Analytic/Inventory theory 1. Service level

Kumar and Evers [59] Analytic/Inventory theory 1. (Estimated/simulated) variance

Lu et al. [56] Analytic/Inventory theory; Fixed-
point iteration method

1. Service level; 2. Inventory levels

Man-Yi and Xiao-Wo [52] Statistics/Credibility and Fuzzy theory 1. Fill rate

Mertins and
Lewandrowski [62]

Analytic/Inventory theory 1. Inventory costs

Ozbay and Ozguven [36, 37] Optimization/PVB; pLEPs 1. Total costs (inc. storage, surplus,
shortage and adjustment costs)

Srivastav and Agrawal [47] Optimization/MOGA and MOPSO 1. Ordering, holding and backorder costs;
2. Shortage freq.; 3. Stock-outs;

Srivastav and Agrawal
[48], Tsou [44]

Optimization/MOPSO 1. Ordering/holding costs; 2. Short-
age freq.; 3. Stock-outs

Tsou [45] Optimization/MOEMO and MOPSO 1. Ordering/holding costs; 2. Short-
age freq.; 3. Stock-outs

Tsou and Kao [43] Optimization/MOEMO 1. Ordering/holding costs; 2. Short-
age freq.; 3. Stock-outs

Wangsa and Wee [41] Optimization/Heuristic 1. Total costs (inc. ordering, holding, short-
age, setup and freight/transportation costs)

Vargas and Metters [31] Optimization/DEA; Inventory theory 1. Fill rate; 2. Holding and setup costs

Nomenclature: NLP: Nonlinear programming; PV: Present Value; DES: Discrete Event Simulation; MOPSO: Multi-
Objective Particle Swarm Optimization; PVB: Prékopa-Vizvari-Badics algorithm; pLEPs: p-level efficient points method;
MOGA: Multi-Objective Genetic Algorithm; MOEMO: Multi-Objective ElectroMagnetism-like Optimization; DEA: Data
Envelopment Analysis.
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also bears no relation to reality. A notable exception is the work of Fotopoulos et al. [64], who
proposed a novel method to derive a safety stock upper bound when demands are autocorrelated
and lead times do not follow a Gaussian distribution, but an arbitrary one. For that, Chebychev’s
inequalities and theory of moments are explored. The authors have also emphasized that demand
autocorrelation should not be overlooked in safety stock decisions, as pointed out in other studies
[58, 65].

As dimensioning safety stocks is typically a problem involving the optimization of a cost func-
tion, a number of different mathematical optimization models have been proposed. Purposing
to minimize the total cost of the system, Buffa [66] formulated a goal programming problem, in
combination with a demand forecasting model, to determine safety stocks in a multi-product envi-
ronment, subject to constraints related to the availability of resources. Potamianos et al. [67] used
dynamic programming to introduce a new interactive safety stock method that accounts for the
accuracy of the demand forecasts. The proposed approach was designed to be added to a modified
Wagner-Whitin algorithm, and well as to set safety stocks via interactions by management. Re-
ichhart et al. [68] developed a novel and accurate safety stock formula for multi-variant products
and responsive systems, by means of a Monte Carlo simulation process. An adjusted term for the
standard deviation of forecasting errors is included in their formulation. Hsu and Wang [69] pro-
posed a possibility linear programming model that encompasses forecast adjustments and demand
uncertainty in the safety stocks calculation. In assemble-to-order (ATO) environments, their work
presented one of the first models to deal with imprecise data in decision-making problems involving
safety stock as a decision variable. Several other methods were developed for dimensioning safety
stocks according to the production control environment [70, 71, 72]. We acknowledge, however, that
regardless the production environment, the generation of accurate demand forecasts is especially
challenging when exogenous factors are not considered in the forecasting process. An interesting
study raising relevant insights on this subject was proposed by Beutel and Minner [73], who studied
a data-driven framework for establishing safety stocks. In a first step, regression methods were
employed to forecast demand. The estimation errors are then used to set the targeted safety stocks.
In a second step, a linear programming approach is studied to minimize a cost objective function
subject to a service level constraint. One of the novelties here relates to the inclusion of external
factors that might have influence in demand estimation (e.g., price and weather dynamics). This
inclusion is particularly relevant since it allows to overcome the drawbacks of traditional univariate
time series models that disregard these factors.

From the works above, it can be concluded that constant safety stocks might not be the most
suitable approach to cope with erratic demand patterns. To overcome this disadvantage, time-
phased safety stocks were studied by Kanet et al. [74], who proposed a linear programming model
able to minimize inventory levels for a specific set of safety stock targets. Using real-world data
from the U.S. Industry as support, it was found that the adoption of time-phased safety stocks
leads to significant cost savings over the traditional constant safety stock strategy. Helber et al.
[75] presented a stochastic capacitated lot-sizing problem (SCLSP) where its solution serves as
the basis for determining dynamic safety stocks coordinated with the production quantities. Yet,
we highlight that cost-effective safety stock decisions should additionally be coordinated with the
outsourcing strategies defined with suppliers. In fact, in certain situations, it may be appropriate
to establish long-term agreements with costly suppliers and setting lower levels of safety stock,
rather than use several low cost suppliers and high safety levels [76]. On the other hand, such
decisions should also encompass the time interval over which no plan changes are allowed (also
known as frozen period) [77] in order to avoid the generation of unstable production plans for both
customer(s) and supplier(s).

Table 4 provides an overall characterization of the papers included in this subsection. Here, we
found that only 6 of the 17 studies included in this category reported real-world case studies [see
66, 67, 74, 73, 63, 21], suggesting that further research with empirical validations is warranted.
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Table 4: A literature overview of modeling approaches for dimensioning safety stocks based on the variation of
the forecasting errors.

References OR method/Modeling technique(s) Main performance criteria

Abdel-Malek et al. [76] Analytic/Markov chains; Queuing theory 1. Total costs

Beutel and Minner [73] Statistics; Optimization/Regression; LP 1. Service level; 2. Holding
and shortage penalty costs

Boute et al. [65] Analytic/Markov chains; Ma-
trix analytic methods

1. Fill rate

Buffa [66] Optimization/GP 1. Holding, stock-out and re-
sources acquisition costs

Campbell [71] Analytic/Inventory theory 1. Total costs; 2. Service level

Eppen and Martin [60] Analytic/Inventory theory; Cheby-
chev’s inequalities

1. Stock-out probability

Fotopoulos et al. [64] Analytic/Chebychev’s inequali-
ties; Theory of moments

N/A

Helber et al. [75] Optimization/MILP; Piecewise
linear approximations

1. Service level; 2. Holding,
overtime and setup costs

Hsu and Wang [69] Optimization/PLP; Zimmermann’s
fuzzy programming

1. Stock-out, holding and idle
capacity penalty costs

Kanet et al. [74] Optimization/LP 1. Shortage freq.; 2. Fill rate

Lian et al. [77] Optimization/Heuristic 1. Holding/expedited, order-
ing and setup costs

Potamianos et al. [67] Optimization/DP 1. Production, holding and setup costs

Reichhart et al. [68] Statistics; Simulation/Regression;
Monte Carlo

1. Service level; 2. Inventory,
production and backordered costs

Trapero et al. [63, 21] Analytic/GARCH models; Ker-
nel density estimation

1. Inventory costs (understocking
and overstocking); 2. Service level

Wacker [70] Statistics/Regression 1. Statistical efficiency

Zhao et al. [72] Simulation 1. Service level; 2. Produc-
tion setup, holding and stock-out
costs; 3. Schedule instability

Nomenclature: LP: Linear Programming; GP: Goal Programming; MILP: Mixed Integer Linear Programming;
PLP: Possibility Linear Programming; DP: Dynamic Programming; GARCH: Generalised AutoRegressive
Conditional Heteroscedastic; N/A: Not Available.

5.3. Considering product structure and component standardization

Very few researchers have paid attention to study the way how product structure and component
standardization may affect safety stock decisions. Indeed, only 7 papers (7% of the total sample)
are included in this category. Table 5 summarizes some representative approaches on this subject.

Carlson and Yano [78] proposed an heuristic upper bound solution to establish safety stocks
for each component in a product structure with periodic and replanned production schedules,
under stochastic demands. Numerical simulations showed that the proposed approach resulted in
savings up to 20% of total costs in comparison with the costs derived from not adopting safety stock
measures. Later, the same authors studied how the frequency of rescheduling affects safety stocks
decisions for a single product and its product structure in MRP contexts [79]. As a result, the fixed
scheduling policy revealed to be the most economical choice. Still in MRP contexts, Grubbström
[80] discussed the dimensioning of optimal safety stock levels in a single-level environment, by using
Laplace transformations and taking into account annuity stream as main performance criterion,
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in detriment of the average cost approach. This paper was later generalized in Grubbström [81]
for multi-level product structure systems, via input-output analysis. In any case, regardless the
product structure and production environment, proper safety levels should lead to low stock-
out/holding cost ratios [82, 83].

In extreme cases, in the presence of raw material disruptions, the manufacturing of several
end-items can be compromised. This situation can be easily aggravated in the presence of product
structures in which a component is common to several end-items (component commonality). Collier
[26] proposed an explicit formula for the computation of safety stocks that considers an analytical
metric, based on the bill of materials (BOM), to measure the commonality degree in a firm’s
product line. That formulation was assessed via simulation under contexts in which uncertainty
phenomena prevail. The results suggested that increasing the degree of component commonality
results in lower safety stocks, regardless the constant service level imposed. It is noteworthy
that the findings derived from the Collier’s model are particularly meaningful in practice if the
minimization of holding costs is regarded as a primary concern.

Table 5: A literature overview of modeling approaches for dimensioning safety stocks based on product structure
and component standardization.

References OR method/Modeling technique(s) Main performance criteria

Collier [26] Analytic/Chebychev’s inequalities 1. Service level; 2. Holding and setup costs

Carlson and Yano [78] Optimization/Heuristic 1. Holding and setup costs

Grubbström [80, 81] Analytic/Laplace transform;
Input-output analysis

1. Annuity stream

Molinder [82] Meta-heuristic/Simulated Annealing 1. Holding, stock-out and setup
costs; 2. Stock-out level

Persona et al. [83] Analytic/Inventory theory 1. Service level; 2. Holding and shortage costs

Yano and Carlson [79] Simulation 1. Service level; 2. Production/order
setup and holding costs

5.4. Other models designed for dimensioning safety stocks

As discussed in previous sections, many OR models and methods have been proposed to set
safety stocks in different production environments. However, we found other models designed for
dimensioning safety stocks that do not explicitly follow neither of the three foregoing categories and,
particularly, do not settle as a whole on normally distributed parameters. For ease of exposition,
we group the research studies included in this category according to the nature of the OR modeling
approach employed (see Table 6). These studies are reviewed as below.

5.4.1. Stochastic models

The stochastic models for dimensioning safety stocks are firmly grounded in probability and
statistical theory applied to inventory management, including queueing theory and Markov chains.
Van Donselaar and Broekmeulen [99] determined safety stocks in a lost sales periodic review
inventory control system with stochastic discrete demands. Linear regression was employed to
propose fast approximations for the fill rate. In the case of intermittent demand patterns, Zhou
and Viswanathan [97] propose a bootstrapping method to generate an estimate of the time period
demand variance and calculate the safety stocks required to attain target service levels. The
proposed method performed better for randomly generated demand data and high data volume.
However, when testing the proposed model with a real industry data set from the aerospace sector,
the bootstrapping method performed worse than parametric methods.

The studies of Hayya and Harrison [96] and Caceres et al. [103] offer an interesting perspective
on how to consider the effect of crossovers in the determination of safety stocks when demand
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Table 6: Summary of research studies classified as “Other models designed for dimensioning safety stocks” based
on different OR modeling approaches.

Modeling approach Research studies

Stochastic Van Ness and Stevenson [84]; Van der Veen [85]; Groenevelt et al. [86];
Glasserman [87]; Cheung and Hausman [88]; Hung and Chang [89];
Dohi et al. [90]; Martinelli and Valigi [91]; Gharbi et al. [92]; Wang
et al. [93]; Sarkar et al. [94]; Sana and Chaudhuri [95]; Ruiz-Torres
and Mahmoodi [61]; Hayya and Harrison [96]; Zhou and Viswanathan
[97]; Chakraborty and Giri [98]; Van Donselaar and Broekmeulen
[99]; Chaturvedi and Mart́ınez-de-Albéniz [100]; Manzini et al. [101];
Huang et al. [102]; Caceres et al. [103]; Altendorfer [104]

Mathematical Programming Bourland and Yano [105]; Maia and Qassim [106]; Louly and
Dolgui [107]; Teimoury et al. [108]; Janssens and Ramaekers
[109]; Taleizadeh et al. [110]; Rappold and Yono [111]; Keskin
et al. [112]; Rafiei et al. [113]; Ben-Ammar et al. [114]

Simulation-based Optimization Bouslah et al. [115]; Gansterer et al. [116]; Avci and
Selim [117, 118]; Benbitour et al. [119]

Neural Networks Zhang et al. [120]

and lead times are correlated. However, the former study failed to account for nondeterministic
demand and the latter to operate under a multi-product inventory system. Similarly, Wang et
al. [93] discussed the problem of calculating optimal safety stocks when demand and lead times
are correlated but the proposed method does not consider crossovers. The authors derive robust
equations for determining mean and variance of lead time demand using different distributional
forms of demand and lead time. At this point, note that safety stock is, by definition, the reorder
point minus the expected lead time demand. Thus, the problem of determining the reorder point
can equally be understood as determining safety stock [84]. By way of example, Ruiz-Torres and
Mahmoodi [61] studied an expected value reorder point method to determine safety stock levels
without considering the common assumptions related to the adoption of normally distributed lead
time demand. Their work highlights the need for a proactive management of safety stocks in
environments characterized either by volatile or stable demands.

In some situations, demand and supply variability also induce additional uncertainty factors
within general production systems, namely related to manufacturing capacity and processes, that
directly affect safety stock decisions. Unreliable manufacturing systems with machine breakdowns
are likewise included in this context. Chaturvedi and Mart́ınez-de-Albéniz [100] argued that ca-
pacity and safety stock decisions should be jointly optimized. Their results show that the man-
ufacturer’s responsiveness levels to supply uncertainty increase whenever both safety stock and
capacity increase. Huang et al. [102] studied the combination between the ability to ramp up
production (reactive capacity) and safety stocks to face unexpected demands while minimizing
long-term costs and maintaining a proper service level. Glasserman [87] and Altendorfer [104]
also addressed the problem of setting safety stocks in inventory systems with production capacity
constraints. In the seminal studies of Hung and Chang [89] and Cheung and Hausman [88], early
work regarding the determination of safety stocks in uncertain manufacturing environments is con-
ducted. The former study proposed a safety stock estimation method to soften uncertain related
to variability of both flow times and yield rates in available-to-promise environments. Here, safety
levels are presented as a linear function of the production rate and can be determined according
to a given on-time-delivery specification. In the latter study, the authors account for the trade-off
between the investment in preventive maintenance plans to reduce the machine failure rate and
the establishment of safety stocks to face demand in case of machine breakdowns. In short, both
works have proved that safety stocks and preventive maintenance must not be treated in isolation.
Later, Dohi et al. [90] extended the work of Cheung and Hausman [88] by developing a novel
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stochastic model with random machine breakdowns to obtain the manufacturing quantity and the
required safety stocks that minimize the expected costs per unit time. Other interesting model
variants for the problem of dimensioning safety stocks in unreliable manufacturing systems can
further be found in [86, 91, 92, 95, 94, 98].

5.4.2. Mathematical programming models

Bourland and Yano [105] explicitly introduced, for the very first time, safety stocks together
with idle time and overtime in a stochastic economic lot scheduling problem. In the proposed
approach, a nonlinear mathematical program is presented to determine the safety levels required
to avoid, when possible, the use of overtime in production. Maia and Qassim [106] formulated a
nonlinear optimization model that incorporates delivery performance of suppliers in the calculation
of safety stocks, purposing to minimize the sum of inventory and opportunity costs. It was shown
that safety stocks should not be considered whenever opportunity costs are low. Conversely, safety
stocks revealed to be a reasonable strategy to mitigate stock-out events when opportunity costs
increase. Louly and Dolgui [107] developed a novel optimization approach together with an efficient
branch and bound algorithm to calculate safety levels for components under random procurement
lead times. The proposed model holds whatever the discrete distribution probability and reveals to
be applicable in several domains. Taleizadeh et al. [110] studied a multi-buyer multi-vendor supply
chain problem under budget constraints related to the acquisition of the products by the buyer, as
well as to the space limitation in the vendor. Safety stock is formulated as a decision variable of the
proposed model that, in turn, is treated as an integer nonlinear programming problem and solved
using a harmony search algorithm. Janssens and Ramaekers [109] formulated a linear programming
model to establish safety stocks under incomplete information regarding the demand distribution.
Rappold and Yono [111] proposed a stochastic modeling approach that can be used to provide the
necessary safety stocks to stabilize production cycles while protecting against demand uncertainty
and minimizing holding and backorder costs.

We note, however, that although a number of mathematical programming models have been
proposed and successfully applied to real-world case studies (reporting the usefulness of safety stock
strategies not just in enhancing service levels [113] but also in optimizing production, inventory
quantities and backorders [108, 112]) optimal planned lead times might be preferable over safety
stocks in certain situations [114].

5.4.3. Simulation-based optimization models

In the past, simulation and optimization were typically considered as two separate operations
research approaches. Yet, the rapid developments in computational capabilities have triggered the
use of these two approaches in a combined fashion [121]. Oftentimes, this fruitful combination
is used for: (i) optimizing model inputs, (ii) computing model parameters, or (iii) sampling of
scenarios for mathematical programming models.

Bouslah et al. [115] approximated the optimal control parameters of an integrated lot sizing
model and a feedback control policy through a simulation-based experimental approach, with re-
course to the response surface methodology. The proposed approach jointly determines economic
production quantity, the optimal safety stock level and the economic sampling plan while minimiz-
ing the expected overall costs. Gansterer et al. [116] proposed a simulation-optimization framework
for hierarchical production planning in which planned lead time, safety stock and lot size are op-
timized. Interestingly, the authors have shown that, under certain modeling assumptions, safety
stocks do not necessarily need to be increased when demand volatility is high.

Aiming to react to supply failures, companies often resort to premium freights, or rush deliveries
[119], in order to guarantee the product availability under proper service levels. In this context,
Avci and Selim [117] have recently introduced a decomposition-based multi-objective differential
evolution algorithm (MODE/D) for inventory optimization that operates in a simulation-based
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optimization fashion. Particularly, in the simulation phase, safety stocks are evaluated in terms
holding cost and premium freight ratio. Then, in the optimization phase, the outputs of the
simulation are used to generate new safety stock levels. This work was further generalized in Avci
and Selim [118] to consider supply and demand uncertainties in convergent supply chains.

5.4.4. Neural network models

Artificial intelligence (AI) has emerged as a powerful technique that, based on computer-aided
systems, allows to generalize from training examples. As a prominent AI technique, neural network
models have often been applied in decision-making problems in different SC contexts, including
time series forecasting [122], supplier selection [123] and smart logistics [124], to name a few.
Recently, a study proposed by Zhang et al. [120] used a back-propagation neural network to
estimate safety stock levels. The authors have considered selling frequency, storage/shortage costs,
demand, and purchasing quantity as model features that may have influence on dimensioning safety
stocks. However, if the values of safety stock used as training instances are not optimal in the
sense of minimizing inventory costs while maximizing service level, the predicted safety stocks may
also not be optimal. In any case, given that AI models have the potential of finding interesting
features patterns in large amount of data, numerous research opportunities might arise in this area,
particularly those regarding the enhancement of SC demand forecasting.

5.5. Industrial applications and real-world case studies

In this section, we focus our attention to surveyed papers that consider real-world industrial
applications in their modeling approaches. Concretely, 33 (out of 95) papers used case studies to
demonstrate the practical relevance of their modeling approaches.

Table 7 provides the classification of the case study papers according to the categorization
introduced in section 5 and the type of product and uncertainties considered. The pharmaceutical
and automotive sectors dominate the industrial applications. However, with the exception of Cheng
et al. [46], we found that all the papers with applications to the pharmaceutical industry generally
assume supply chain topologies operating with a single product, which makes it difficult to assess
the scalability of the proposed models to multi-product environments. In contrast, 60% of the
papers providing empirical evidences from the automotive industry consider multi-product models,
which are far more realistic. As examples, Benbitour et al. [119] show that the costs savings realized
using an ATO inventory control model with safety stock considerations may amount to 66%. On
the other hand, Kanet et al. [74] explore the concept of time-phased safety stocks and report 14%
safety stock savings compared to the solution obtained by the constant safety stock policy. Another
relevant observation from the results presented in Table 7 is that few works have been carried out
to fully understand the significance of safety stocks in the field of humanitarian logistics. This
becomes particularly valuable at a time where natural disasters, catastrophes and pandemic viral
infections are continuously rising. At this point, Ozguven and Ozbay [37] is the only surveyed
paper that, by taking advantage of real information of Hurricane Katrina in New Orleans, USA,
studies optimal safety stocks of emergency inventories to prevent disruptions. Further research is
needed to make a better basis for the assessment of the real potential of safety stocks in this field.
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Table 7: Details of case studies in the safety stock dimensioning literature.

References Case study Paper Model Type of product Type of uncertainty Main results(s)
category type

Single Multiple Demand Lead time Other

Agrell [42] Pharmaceutical industry VD A/O � – � – – Interactive decision support system for multi-criteria inventory control

Altendorfer [104] Children’s mattress manu-
facturing industry

O A/O – � � – – The item specific order rate has proved to be a critical factor affecting optimal safety stocks

Avci and Selim [117] Automotive industry, Europe O H � – � � – Simulation-optimization framework to determine optimal safety stocks
and supplier flexibility in divergent supply chain topologies

Avci and Selim [118] Automotive industry, Europe O H � – � � – Extension of the work of [117] for convergent supply chains and outbound premium freights

Benbitour et al. [119] Automotive industry O H – � � – – Implementation of the proposed model in a real-world ap-
plication with cost savings up to 66%

Beutel and Minner [73] Retail industry, Europe VFE A/O � – � – – Framework for safety stock planning using external factors affecting demand

Brander and Forsberg [51] Metal stamping industry VD A/O – � � � – Proposed method can be used (on single facilities) for any fixed cyclic sequence
for the production of multiple items with stochastic demands

Buffa [66] Retail merchandising industry VFE A/O – � � � – Significant reduction in (holding, stock-out, acquisition) costs in multi-product firms

Cheng et al. [46] Pharmaceutical industry VD A/O – � � – – Same application with [43, 44, 45] for a multi-product inventory system

Disney et al. [53] Global supply chains for for-
warders and retailers

VD A/O – � � � – Safety stock requirements under stochastic lead times with order crossovers

Gansterer et al. [116] Automotive industry O H – � � � – Simulation-optimization framework to find optimal planning
parameters in make-to-order environments

Hung and Chang [89] Semiconductor wafer industry O A/O – � – � � Use of flow time and yield uncertainties for determining safety stocks

Jonsson and Mattsson [35] Miscellaneous (manufacturing, distri-
bution, wholesale industries, Europe)

VD S – � � – – The number-of-days method seems to be more efficient when calcu-
lating safety stocks to achieve a targeted order line fill rate for a
group of items than does the demand fill rate approach

Kanet et al. [74] Automotive industry, USA VFE A/O – � � � – Introduction of dynamic planned safety stocks; 14% safety stock savings
compared to the solution obtained by the constant safety stock policy

Kelle [28] Steel & textile industries, Hungary VD A/O – � � � – Inventory cost reduction while maintaining high service levels

Keskin et al. [112] Tire manufacturing indus-
try (BRISA), Turkey

O A/O – � � – – Implementation of a MILP safety stock model with realistic production
process constraints in a large-scale industrial environment

Lu et al. [56] Construction industry VD A/O – � � – � 0-7% increase in service level and 20-46% decrease of inventory levels compared
to the solution obtained with the day of supply safety stock rule

Mertins and Lewandrowski [62] Electronics industry VD A/O � – � – – Reduction of inventory costs of materials in process by 60%

Ozguven and Ozbay [37] Hurricane Katrina in New
Orleans, USA

VD A/O – � � � – Inventory control methodology for determining minimum safety stocks
of emergency inventories in humanitarian operations

Persona et al. [83] Air conditioning & cater-
ing industries, Italy

PSCS A/O – � � – – Implementation of a safety stock method for subassemblies of components;
Reduction of safety stocks while minimizing global SC costs

Potamianos et al. [67] Electronics industry VFE A/O – � � – – Application of an interactive safety stock method; 26.9% inventory
cost savings and 25% stock-out reduction

Rafiei et al. [113] Wood remanufacturing industry O A/O – � � � – 10.7% reduction of backorder quantities

Rappold and Yono [111] Process manufacturing industry O A/O – � � � – Stochastic inventory model that can be used to estimate safety stocks
to support a production policy that stabilizes cycle lengths

Ruiz-Torres and Mahmoodi [61] Electronics industry O A/O – � � � – Safety stock determination without making any distributional as-
sumptions; ≥ 7% holding costs savings

Srivastav and Agrawal [48] Pharmaceutical industry VD A/O � – � – – For the easy use of practitioners, regression equations are formulated for the
objective functions and decision variables (including safety factor)

Teimoury et al. [108] Chemical detergent industry
(PAKSHOO), Iran

O A/O – � � � – Application of queueing techniques to develop a computationally efficient model
for safety stock determination in a multi-item capacitated warehouse

Trapero et al. [63] Fast-moving consumer goods
manufacturer, UK

VFE A/O – � � – – Parametric and non-parametric approaches for safety stock determination

Trapero et al. [21] Fast-moving consumer goods
manufacturer, UK

VFE A/O – � � – – Quantile combination of empirical approaches for safety stock determination

Tsou [44, 45] Pharmaceutical industry VD A/O � – � – – Flexible multi-objective optimization methods providing suitable lot sizes
and safety stocks according to decision-makers’ preferences

Tsou and Kao [43] Pharmaceutical industry VD A/O � – � – – Safety stock determination without using any surrogate measure (e.g., service level
or shortage cost) and prior preference information from decision-makers

Zhang et al. [120] International logistics group, China O A/O – � � – – Back-propagation neural network to estimate safety stocks

Zhou and Viswanathan [97] Aerospace industry O A/O – � � – – Bootstrapping approach for safety stock determination of intermittent items

Abbreviations: VD = variation of demand; VFE = variation of forecasting errors; PSCS= Product Structure and
Component Standardization; O = Others; A/O = Analytic/Optimization; H = Hybrid; S = Simulation.
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6. Conclusion and directions for future research

This paper presents the results of a systematic literature review to understand the development
history and trends regarding the safety stock dimensioning problem, from an operations research
(OR) perspective. Descriptive analyses showed that extensive research has been conducted to
understand this problem, which is far from a closed research domain. A detailed content analysis
to the collected papers allowed to describe safety stock dimensioning strategies from four different
perspectives. In each one of them, each paper was further characterized according to the model
type, modeling technique and performance criteria employed.

As we have shown, extensive research has been conducted in the application of OR-based models
and methods to safety stock determination. Yet, extracting relevant insights from the safety stock
dimensioning problem and translating them into practical benefits remains a challenge. In what
follows, we highlight current shortcomings and discuss potential directions and trends for future
research towards enhanced safety stock determination.

Generalizing demand modeling . Firstly, it has become apparent that inventory manage-
ment heavily depends on accurate forecasted demands, but the question of how to forecast lead-time
demand variance – essential for dimensioning safety stocks [51] – is far from a closed topic [11]. Our
findings revealed that several research studies have been assuming normally distributed lead time
demands, notwithstanding the existence of several works warning against this generalized assump-
tion [60, 10, 61]. Besides, several approaches for dimensioning safety stocks consider, oftentimes,
constant/stationary or even known demand rates [see, e.g., 78, 88, 91, 92, 96, 98, 115], which, in
general, do not reflect the reality of major supply chains with multi-product environments, typ-
ically characterized by stochastic demands with high levels of uncertainty. This shows the need
to have results beyond these deterministic assumptions. A valid and interesting starting point
could be the further exploitation of non-parametric approaches (e.g., neural networks or support
vector regression) able to properly and accurately capture the real dynamics of SC demand over
the product’s life-cycle. Secondly, demand for products could be affected by external factors (e.g.,
weather conditions or price volatility) that are not properly assessed, or not at all, by the current
dimensioning safety stock strategies. An exception to this can be found in the work of Beutel and
Minner [73]. Integrating exogenous variables (if available) into multivariate demand forecasting
models would be an appealing yet challenging research pathway. Finally, the application of em-
pirical safety stock estimations, as an alternative to the theoretical approach for estimating the
standard deviation of forecast errors for a given lead time, is another interesting area that merits
further research. We refer an interested reader on this topic to the works of Trapero et al. [21, 63].

Modeling supplier disruptions . There is a new trend towards the use of data analytics in
predicting supplier disruptions. In fact, with respect to empirically based contributions, evidence
for the role of predictive data analytics in anticipating and managing for future disruptions is
surprisingly scarce [125]. As lead time is a critical factor affecting optimal safety stocks, future
research could be devoted to the development of machine learning based decision support systems
for modeling supplier delivery performance. Such systems can be built upon descriptive and
predictive analytics models and include triggers/alert generation mechanisms allowing for improved
decision-making. This research pathway is not just of methodological interest, in the sense that
there exist no such intelligent systems in the current literature, but also of practical significance
as it allows to proactively set dynamic safety stocks to buffer against supplier-related delays.
Nonetheless, we acknowledge that supply disruptions are notoriously hard to predict, which makes
the efficient development and coordination of these systems a promising research direction.

Improving the content of information . We consider that there is a pressing need to
formulate mathematical models that take into account data quality issues in the safety stock de-
termination. In this review, the only research works that account for this issue are the ones of
[59] and [69]. From a practical standpoint, many companies experience data consistency and/or
data completeness issues that make it difficult to optimize data-driven decision-making. Both is-
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sues translate into inaccurate estimations of safety stock parameters, such as lead time forecast
error variance, which depend heavily on both the availability and quality of data. As an informed
decision-making process is only as good as the data on which it is based, further studies may inves-
tigate safety stock modeling extensions that account for mechanisms for monitoring and controlling
data quality information. At the same time, company managers should be aware of the importance
of achieving and maintaining high data quality in order to determine cost-effective safety stocks.
We also found a lack of reported real-world case studies applying safety stock dimensioning models
to major supply chains with multiple products and, above all, with large amounts of data. In this
context, the term Big Data Analytics (BDA) has emerged as a key area of SCM, by providing
effective tools to enhance decision-making processes dependent upon a large volume of data. In
particular, the management of safety stocks and supplier performance can significantly benefit
from BDA approaches [126]. Given the need of proactive safety stock management [61], this area
would also be an excellent research direction to be exploited, especially in Industry 4.0 inventory
systems.

Developing multi-product empirical evaluations. We found that several research studies
have been suggesting safety stocks models based on single-product inventory systems [see, e.g.,
42, 44, 88, 91, 94, 95, 100, 101, 48, 103]. As the vast majority of supply chains interoperates with
multiple products that, in its turn, have different characteristics, single-product models are not
able to capture the real dynamics of real-world production environments, making unfeasible their
application in multi-product firms. Further safety stock investigations should focus on modeling
approaches, supported by real-world case studies, that encompass multi-product SC settings. Also
relevant is the extraction of historical insights regarding the interactions between relevant logistics
variables associated with the various products (e.g., inventory levels and costs, demand variability)
and their relationships with safety stocks. Unsupervised learning might be a reasonable approach
for perceiving these relations, as well as to identify inventory risk profiles among multiple products.

Improving safety stock determination at upstream SC stages . Finally yet important,
if the ultimate purpose is to set safety stocks at the component level rather than at the finished
product level, another interesting research avenue concerns the development of forecasting models
that capture manufacturers’ demand for components without having to resort to end-customer
forecasts, which can be strongly distorted from erratic market information. From a modeling per-
spective, there are two classical approaches for forecasting manufacturers’ demand for components:
the first is aligned with the material requirements planning (MRP) methodology and takes advan-
tage of the BOM to provide the component requirements for future time periods based on finished
product forecasts. Yet, by definition of BOM, if a given component is used to produce a large set of
finished products, forecasted demands of all these products are required in order to further provide
the component requirements via BOM explosions. In the end, this procedure would lead to both
significant cumulative forecasting errors and inventory-related costs. The second approach consists
of using univariate time series forecasting models directly on historical records of manufacturers’
demand, but such strategy might be biased since it uses no information from the customer(s)
demand behavior. Hence, the integration of relevant leading indicators of manufacturer’s demand
into forecasting models can be an interesting opportunity to meet this gap.

Overall, this review allows to conclude that the safety stock dimensioning problem continues
to be a hot research topic that presents challenges for both academics and practitioners. It is
our belief that this study could be beneficial to foster the development of new OR-based modeling
approaches, as well as to guide practitioners interested in applying safety stock dimensioning models
in real-world supply chain contexts. However, it is important to retain that safety stocks should
not be used as a panacea to be applied in all inventory management problems with uncertainty
issues. In this regard, there exists an extensive scientific literature proposing interesting strategies
to increase flexibility, visibility and performance of SC management processes of which the problem
of dimensioning safety stocks is part.

20



Acknowledgments

We would like to thank the anonymous reviewers for their helpful suggestions. This work has been
supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope:
UIDB/00319/2020, and by the European Structural and Investment Funds in the FEDER com-
ponent, through the Operational Competitiveness and Internationalization Program (COMPETE
2020) [Project no. 39479, Funding reference: POCI-01-0247-FEDER-39479].

References

[1] A. Gupta, C. D. Maranas, Managing demand uncertainty in supply chain planning, Com-
puters & Chemical Engineering 27 (8-9) (2003) 1219–1227.

[2] S. Subrahmanyam, J. F. Pekny, G. V. Reklaitis, Design of batch chemical plants under
market uncertainty, Industrial & Engineering Chemistry Research 33 (11) (1994) 2688–2701.

[3] V. D. R. Guide Jr, R. Srivastava, A review of techniques for buffering against uncertainty
with MRP systems, Production Planning & Control 11 (3) (2000) 223–233.

[4] C. S. Tang, Perspectives in supply chain risk management, International Journal of Produc-
tion Economics 103 (2) (2006) 451–488.

[5] S. Chopra, G. Reinhardt, M. Dada, The effect of lead time uncertainty on safety stocks,
Decision Sciences 35 (1) (2004) 1–24.

[6] A. S. Eruguz, E. Sahin, Z. Jemai, Y. Dallery, A comprehensive survey of guaranteed-service
models for multi-echelon inventory optimization, International Journal of Production Eco-
nomics 172 (2016) 110–125.

[7] D. C. Whybark, J. G. Williams, Material requirements planning under uncertainty, Decision
Sciences 7 (4) (1976) 595–606.

[8] Y. Boulaksil, Safety stock placement in supply chains with demand forecast updates, Oper-
ations Research Perspectives 3 (2016) 27–31.

[9] S. C. L. Koh, S. M. Saad, M. Jones, Uncertainty under MRP-planned manufacture: review
and categorization, International Journal of Production Research 40 (10) (2002) 2399–2421.

[10] M. Caridi, R. Cigolini, Improving materials management effectiveness: A step towards agile
enterprise, International Journal of Physical Distribution & Logistics Management 32 (7)
(2002) 556–576.

[11] A. A. Syntetos, Z. Babai, J. E. Boylan, S. Kolassa, K. Nikolopoulos, Supply chain forecasting:
Theory, practice, their gap and the future, European Journal of Operational Research 252 (1)
(2016) 1–26.

[12] D. Bogataj, B. Aver, M. Bogataj, Supply chain risk at simultaneous robust perturbations,
International Journal of Production Economics 181 (2016) 68–78.

[13] R. Howells. Will COVID-19 change global supply chains forever? [online] (2020) [cited on
11 August 2020].

[14] S. C. Graves, S. P. Willems, Optimizing strategic safety stock placement in supply chains,
Manufacturing & Service Operations Management 2 (1) (2000) 68–83.

21



[15] M. Schmidt, W. Hartmann, P. Nyhuis, Simulation based comparison of safety-stock calcula-
tion methods, CIRP Annals-Manufacturing Technology 61 (1) (2012) 403–406.

[16] R. G. Brown, Smoothing, forecasting and prediction of discrete time series, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1963.

[17] E. A. Silver, D. F. Pyke, R. Peterson, Inventory management and production planning and
scheduling, Vol. 3, Wiley New York, 1998.

[18] P. H. Zipkin, Foundations of inventory management, McGraw-Hill, Boston, 2000.

[19] E. A. Silver, D. F. Pyke, D. J. Thomas, Inventory and production management in supply
chains, CRC Press, 2016.
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