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Abstract. Programming by demonstration allows non-experts in robot
programming to train the robots in an intuitive manner. However, this
learning paradigm requires multiple demonstrations of the same task,
which can be time-consuming and annoying for the human tutor. To
overcome this limitation, we propose a fast learning system – based on
neural dynamics – that permits collaborative robots to memorize sequen-
tial information from single task demonstrations by a human-tutor. Im-
portant, the learning system allows not only to memorize long sequences
of sub-goals in a task but also the time interval between them. We imple-
ment this learning system in Sawyer (a collaborative robot from Rethink
Robotics) and test it in a construction task, where the robot observes
several human-tutors with different preferences on the sequential order
to perform the task and different behavioral time scales. After learning,
memory recall (of what and when to do a sub-task) allows the robot to
instruct inexperienced human workers, in a particular human-centered
task scenario.

Keywords: Industrial Robotics, Assembly Tasks, Learning from Demon-
stration, Sequence Order and Timing, Rapid Learning, Dynamic Neural
Fields

1 Introduction

One of the current challenges of the Industry 4.0 Era is the implantation of
collaborative robots able to work side by side with (different) human-operators
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Soluções para a Indústria do Futuro” reference POCI-01-0247-FEDER-024541, co-
funded by Fundo Europeu de Desenvolvimento Regional (FEDER), through Pro-
grama Operacional Competitividade e Internacionalização (POCI).
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in a large variety of tasks [11]. This implies that this new generation of robots
(CoBots) have to master a wide variety of tasks and interaction scenarios that
cannot be completely designed in advance by experts as in traditional industrial
applications. For symbiotic and efficient human-robot collaboration in (sequen-
tial or supportive) tasks, it is fundamental to endow the robotic co-workers
with cognitive and learning capabilities [14][3]. In this paper, we focus on the
implementation of learning mechanisms that allow the robotic co-worker to ac-
quire high-level knowledge about the sequential structure of multi-part assem-
bly/disassembly tasks (which may have time constraints) without being explic-
itly programmed. We adopt the learning paradigm known as programming by
demonstration/observation since it allows non-specialists in robot programming
to train the robot in an intuitive and open-ended manner [9]. However, often this
learning paradigm requires multiple demonstrations of the same task which can
be time-consuming and annoying for the human tutor [10]. Thus, for user accep-
tance, it is crucial to make possible to the robot the acquisition of generalized
task knowledge in very few demonstrations. With this in mind, we implement
and test on the collaborative robot Sawyer (from Rethink Robotics) a computa-
tional model that integrates fast activation-based learning to robustly represent
sequential information from single task demonstrations by a human-tutor. Im-
portant, this learning system allows not only to memorize long sequences of
sub-goals in a task, but also the time interval between them. The integration
of these two features – ordinal and temporal information – allows the robot to
memorize in one shot ‘what to do’ and ‘when to do’ in a certain task scenario,
which builds a fast memory mechanism that significantly reduces the number of
demonstrations needed from a tutor. After learning, the autonomous reactiva-
tion of this memory can be used by the robot to instruct inexperienced workers,
or to make decisions when it plays the role of an active assist/co-worker. To build
this fast learning system, we apply the theoretical framework of dynamic neural
fields (DNFs), that has been proven to provide key processing mechanisms for
applications in cognitive robotics ([4],[13]) including robot learning ([16],[5]). As
a specific task example we consider a thrusters/pipes assembly task. One or more
human tutors show the robot Sawyer the assembly work consisting of a series
of assembly steps necessary to construct the structure from its parts/thrusters
(Fig. 1). Different tutors may have different preferences in the sequential order
of assembly steps, and may act with different time scales. The remainder of the
paper is structured as follows: section 2 describes the construction task and the
robotic platform Sawyer; Section 3 contains the description of the DNFs based
learning model; section 4 presents experimental results; and the paper ends with
a discussion and future work in section 5.
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I will show you

(a) Beginning of the task

I have finished

(b) End of the task

Fig. 1: Illustration of the construction task scenario: a tutor collaborates with the
robotic co-worker in assembling a structure composed of eight colored thrusters

2 Experimental Setup

For the experiments we used the robot Sawyer (displayed in figure 2d) designed
by the company “Rethink Robotics” to execute collaborative tasks [12]. Sawyer
features a 7 degrees of freedom robot arm with 1.26 meters reach and its “head”
is the LCD display that sits on top. Sawyer displays different eyes movements in
a familiar way which contributes to its human-friendly design. The robot is also
equipped by two cameras, one located in the head and another in the arm. The
information about object color/type is provided by the head camera system. As
a test scenario, we used a task of building a structure of eight thrusters/pipes,
where the insertion of each one of the thrusters corresponds to one sub-task. We
considered three different Layouts that imply three different assembly sequences
and two tutors with different behavioral time scales. The disposal of the thrusters
in each scenario can be seen in Fig. 2. A tutor demonstrates how to assemble
the thrusters while the robotic co-worker observes and memorizes the serial
order and timing of each assembly step. Later, the robot acts as a tutor and
recalls the memorized task to a different operator, respecting the order and
time interval of each step. Depending on how the thrusters are disposed on the
workplace, different sequences can be used to assemble all the parts, which will
require the robotic platform to learn multiple possible sequences to build the
structure. Moreover, different tutors will assemble the sequence with different
time intervals: for example, an older tutor may take longer to reach and insert
all the thrusters/parts than a younger one. The speech synthesizer allows the
robot to communicate the result of its decision process to the human co-worker.
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(a) Layout A (b) Layout B

(c) Layout C (d) Construction Task

Fig. 2: Construction task and Layout scenarios used during the experiments

3 Model Description

The model presented in this paper is based on previous research on natural
human-robot interaction [2], [16], [17] based on Dynamic Neural Fields (DNFs).
DNFs provide a rigorous theoretical framework to implement neural compu-
tations that endow a robot with crucial cognitive functions such as working
memory, prediction and decision making [15]. DNFs are formalized by nonlinear
integro-differential equations in which activity of neurons is summarized into the
activity function u(x, t), which can be used to reduced computational complexity
and can be mathematically analyzed. The concept behind dynamic field mod-
els is that task-relevant information is expressed by supra-threshold bumps of
neural populations where each bump represents a specific action or sub-task. In-
put from external sources, such as vision, causes activation in the correspondent
populations that remain active with no further external input due to recurrent
excitatory and inhibitory interactions within the populations. Those interactions
are able to hold an auto-sustained multi-bump pattern which can be turned into
a memory mechanism for order and time interval of sequential processes ([6], [8],
[17]).

Fig. 3 presents the learning by demonstration of several sequence memory
fields. Each Sequence Memory field (uSM ) stores a sequence of stimulus events as
a multi-bump pattern. A bump represents an event triggered through excitatory
sensory input. The strength of each memory representation reflects the time
elapsed since stimulus presentation, resulting in an activation gradient from the
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Fig. 3: Sketch of sequence learning process.

first to the last event [6]. According to the context (e.g. position of the objects in
the workplace, characteristics of the co-worker), several sequences with different
order and timing can be memorized.

Fig. 4 depicts an overview of the sequence recall process. Taking into ac-
count a specific context, a Sequence Memory field (uSM ) is chosen from the set
of stored fields. The Sequence Recall field (uSR) receives the multi-bump pattern
of uSM as subthreshold input. During sequence recall, the continuous increase
of the baseline activity in uSR brings all subpopulations closer to the threshold
for the evolution of self-stabilized bumps. When the currently most active pop-
ulation reaches this threshold, the corresponding sensory output is triggered. At
the same time, the excitatory-inhibitory connections between associated popula-
tions in uSR and the Past Events field (uPE) guarantee that the suprathreshold
activity representing the latest sequence event becomes first stored in uPE and
subsequently suppressed.
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Fig. 4: Sketch of sequence recall process. Dashed lines indicate inhibitory con-
nections, solid lines excitatory connections.

The dynamics of each Sequence Memory field uSM , the Sequence Recall field
uSR and the Past Events field uPE are governed by the following equations,
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respectively [1] [6]:

τSM
∂uSM (x, t)

∂t
= −uSM (x, t) +

∫
w(x− y)f (uSM (y, t)) dy (1)

+s(x, t) + hSM (x, t)

τSR
∂uSR(x, t)

∂t
= −uSR(x, t) +

∫
w(x− y)f (uSR(y, t)) dy (2)

−
∫
w(x− y)f (uPE(y, t)) dy + uSM (x) + hSR(t)

τPE
∂uPE(x, t)

∂t
= −uPE(x, t) +

∫
w(x− y)f (uSM (y, t)) dy (3)

+uSR(x, t)f(uSR(x, t)) + hPE

where uSM (x, t), uSR(x, t) and uPE(x, t) represents the activity at time t
of a neuron tuned to the feature value x. The parameters τSM , τSR, τPE > 0
define the time scale of each field. The connection function w(x) determines the
coupling between neurons within the field and to enable multi-bump solutions
is use the following function [7]:

w(x) = Ae−b|x| (b sin |αx|+ cos(αx)) , (4)

where b > 0 determines the rate at which the oscillations in w decay with distance
and A > 0 and 0 < α ≤ 1 control the amplitude and the spatial phase of w,
respectively. The function s(x, t) represents the time dependent localized input
at site x from the sensory input (s(x, t) > 0 when the encoded variable has an
excitatory input, and s(x, t) = 0 otherwise). The strength of individual memory
representations in uSM is controlled by the baseline dynamics hSM (x, t):

∂hSM (x, t)

∂t
= (1− f(uSM (x, t))) (−hSM (x, t) + hSM0

)+
1

τhSM

f(uSM (x, t)) (5)

where hSM0
< 0 defines the level to which hSM converges without suprathreshold

activity at position x and τhSM
measures the growth rate when it is present. The

baseline activity hSR(t) evolves continuously in time described by the equation:

∂hSR(t)

∂t
=

1

τhSR

, hSR(t0) = hSR0 < 0 (6)

where τhSR
controls the growth rate of hSR. The baseline activity hPE < 0 is

constant. f(x) is the output function of the neuron and is taken as the Heaviside
step function with threshold 0.
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4 Experimental Results

In this Section, we describe the experimental results of learning the sequential
order and timing of assembling the structure displayed in Fig. 2d, using the im-
plemented model described in Section 3. Two tutors with different behavioral
time scales, who already had experience with the construction task, were asked
to build the structure starting from three different Layouts (A, B and C, Fig. 2).
At the same time, the robotic co-worker Sawyer pays attention to the tutor and
stores the sequential order and time interval of each step, for all demonstrations.
Afterward, the robotic platform acts as a tutor and teaches two other inexperi-
enced workers with no knowledge of the construction task. From the memorized
sequences, the system selects the most suitable one according to the characteris-
tics of the new worker and the distribution of the pieces in the table. The robot
recalls the selected sequence, verbalizing the color of the piece that should be
inserted, according to the order and time stored in the Sequence Memory field
during the demonstration trials.

4.1 Learning the Sequence Order and Timing of the Assembly Task

During the demonstration period, when the system detects that one of the col-
ored thrusters is going to be inserted, an input stimulus is generated in the
location of the population of neurons encoding the respective colored thruster,
which leads to activation in the uSM field, forming a bell-shaped bump that
grows gradually as a function of time. Fig. 5 pictures the demonstration ex-
periment performed, where both tutors show to the robotic co-worker how to
build the structure. In the scenario illustrated in Fig. 5a and 5b, the colored
thrusters are distributed in the work table according to Layout A. A video of
this trial can be found in the following link: https://youtu.be/YTZTDJzzGYw.
Next, Fig. 5c and 5d are snapshots of the Sequence Memory fields stored during
the demonstration, where the amplitude of the bumps encodes the serial order of
the inserted thrusters, with the highest peak (orange) being the color of the first
inserted piece and the shortest one (light blue) being the last. Although the serial
order used by both tutors is the same, the intervals of time between each assem-
bly step in both trials are considerably different, which will be demonstrated in
Section 4.2.

https://youtu.be/YTZTDJzzGYw
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(a) Older tutor inserting the Orange
thruster (1st piece)

(b) Younger tutor inserting the Yellow
thruster (3rd piece)

Green Yellow Blue Red Pink Orange Light Light
Blue Green

uSTM
sSTM
hSTM

Green Yellow Blue Red Pink Orange Light Light

uSM
sSM
hSM

(c) Sequence Memory Field A demon-
strated by the Older tutor

Blue Green
Green Yellow Blue Red Pink Orange Light Light

uSM
sSM
hSM

(d) Sequence Memory Field A demon-
strated by the Younger tutor

Fig. 5: Two different tutors assembling Sequence A: Orange Õ Green Õ Yellow
Õ Pink Õ Red Õ Blue Õ Light Green Õ Light Blue

Subsequently, Fig. 6 portraits the demonstration of two other sequences, this
time by the younger tutor. In Fig. 6a, the parts are organized in the scenario
according to Layout B, so the tutor starts the construction by inserting the
pink thruster, opting for a different assembly sequence. A complete video of this
trial can be found at https://youtu.be/0F8T d y2xs. Similarly, in the scenario
displayed in Fig. 6b, the tutor was asked to assemble the structure starting from
Layout C, which resulted in a new sequence. After the demonstration of each
trial, the information acquired in both fields - Sequence Memory B (Fig. 6c)
and Sequence Memory C (Fig. 6d) - is stored in the model, so later the robotic
platform can use the memorized information to instruct inexperienced workers,
taking into account the Layout of the parts that constitute the sequence.

https://youtu.be/0F8T_d_y2xs
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(a) Younger tutor assembling Sequence
B, starting from the Pink thruster (1st

piece).

(b) Younger tutor assembling Sequence
C, inserting the Pink thruster (6th piece)

Green Yellow Blue Red Pink Orange Light Light
Blue Green

uSM
sSM
hSM

Green Yellow Blue Red Pink Orange Light Light

(c) Sequence Memory Field B: Pink Õ

Yellow Õ Light Green Õ Orange Õ Green
Õ Red Õ Blue Õ Light Blue

Green Yellow Blue Red Pink Orange Light Light
Blue Green

uSM
sSM
hSM

Green Yellow Blue Red Pink Orange Light Light

(d) Sequence Memory Field C: Green
Õ Yellow Õ Blue Õ Orange Õ Red Õ Pink
Õ Light Green Õ Light Blue

Fig. 6: Younger tutor assembling Sequence B and C

4.2 Recalling the Memorized Sequences

In order to verify if the robotic co-worker was able to memorize not only the
sequence but also the time interval between each construction step, two workers
with no previous knowledge of the task were asked to collaborate with Sawyer
and follow its instructions to learn the assembly steps of the sequence A, which
was previously demonstrated by the two previous tutors, with different time in-
tervals. The system was programmed to verbalize each construction step, taking
into consideration the sequence and timing between each insertion.

Fig. 7a and 7b picture the robotic system as a tutor, guiding two different
workers through the construction sub-tasks of the structure, while Fig. 7c and
7d illustrate the time course of the maximal activation of each sub-neuronal
population when the sequence was assembled by each worker, according to the
instructions given by the robot. A video example can be found at https://youtu.
be/Vn0 1raKq4I.

https://youtu.be/Vn0_1raKq4I
https://youtu.be/Vn0_1raKq4I
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Insert the Pink thruster

(a) Older worker following Sawyer’s in-
struction to assemble Sequence A

Insert the Light Blue thruster

(b) Younger worker following Sawyer’s
instruction to assemble Sequence A
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(c) Older worker: Total time of 67s (slower)
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(d) Younger worker: Total time of 58s
(faster)
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(e) Contrast between the time intervals of consecutive assembly steps
during the construction of the sequence A, performed by an older
(slower) and a younger (faster) worker

Fig. 7: Co-worker Sawyer recalls the memorized sequence, respecting the time
interval of each demonstration

Each instruction is verbalized when each sub-neuronal population encoding
the corresponding colored thruster in the Sequence Recall field (uSR) reaches
the threshold level, as stated in Section 3. As can be observed in both figures, all
sub-neuronal populations seem to have a pre-activation strength that respects
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the temporal order of the sequential task, learned during the demonstration
trials. The first thrusters (orange) are inserted at t=30s (older tutor trial) and
t=27s (younger tutor trial), while the last ones (light blue) are placed at t=97s
(older tutor trial) and t=85s (younger tutor trial). By comparing both trials
(Fig. 7e), we can observe that the older worker was slower than the younger in
the majority of the steps and the younger worker took less time to perform the
complete task, as it should be expected since the workers are following the order
and time memorized in the previous demonstrations (Fig. 5).

5 Discussion

In this paper, we have proposed and tested, on a collaborative robot, a rapid
learning system that allows the robot to memorize knowledge about ordinal and
temporal aspects of sequential tasks in a learning by demonstration paradigm.
One benefit of this learning system is that a single demonstration is sufficient,
thus minimizing the efforts of the human tutor to train the robot. We have shown
that after learning, the recall of the memorized information can be used by the
robot to instruct inexperienced human operators, in the same context. This
instructional process was, however, performed in open-loop. This fast learning
system offers other benefits that will be explored in future work. For example,
the recall of the stored information can be used as input to a long-term learn-
ing mechanism that allows the robot also to learn the connections between the
several sub-tasks [16], thus extrapolating task knowledge, i.e. that a task can be
performed in many different ways. As future work, the collaborative robot Sawyer
can also contribute by using its robotic arm to interact with its co-worker and
jointly build the construction task, reducing the workload of the human partner
thus increasing the efficiency of the process.

Endowing a collaborative robot with the capacity to predict not only the
ordinal sequence structure but also the time interval between successive events
is central for efficient coordination of actions and decisions in space and time,
in human-robot joint action tasks. It allows the robot to anticipate what the
human operator will need, or will do, and when it should start an adequate
complementary behavior in the service of the joint task.

References

1. Amari, S.i.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics 27(2), 77–87 (1977). https://doi.org/10.1007/BF00337259

2. Bicho, E., Erlhagen, W., Louro, L., Costa e Silva, E.: Neuro-cognitive mechanisms
of decision making in joint action: A human-robot interaction study. Human Move-
ment Science 30(5), 846–868 (2011). https://doi.org/10.1016/j.humov.2010.08.012

3. El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative
industrial tasks: An overview. Robotics and Autonomous Systems 116, 162–180
(2019). https://doi.org/10.1016/j.robot.2019.03.003



12 Ana Cunha et al.

4. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cog-
nitive robotics. Journal of Neural Engineering 3(3), R36–R54 (2006).
https://doi.org/10.1088/1741-2560/3/3/R02

5. Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, C., Knoll, A., Schie,
H., Bekkering, H.: Goal-directed imitation for robots: A bio-inspired approach to
action understanding and skill learning. Robotics and Autonomous Systems 54,
353–360 (2006). https://doi.org/10.1016/j.robot.2006.01.004

6. Ferreira, F., Erlhagen, W., Bicho, E.: A dynamic field model of ordinal and timing
properties of sequential events. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) (2011). https://doi.org/10.1007/978-3-642-21738-8 42

7. Ferreira, F., Erlhagen, W., Bicho, E.: Multi-bump solutions in a neural field
model with external inputs. Physica D: Nonlinear Phenomena 326, 32–51 (2016).
https://doi.org/10.1016/j.physd.2016.01.009

8. Ferreira, F., Erlhagen, W., Sousa, E., Louro, L., Bicho, E.: Learning a musical
sequence by observation: A robotics implementation of a dynamic neural field
model. IEEE ICDL-EPIROB 2014 - 4th Joint IEEE International Conference
on Development and Learning and on Epigenetic Robotics pp. 157–162 (2014).
https://doi.org/10.1109/DEVLRN.2014.6982973
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