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Abstract
This paper introduces a virtual emulator software for additive manufacturing (AM) processes based on filament deposition,
the FIBR3DEmul. The presented software is capable of reading and parsing a G-Code file (ISO/DIN 66025), and realistically
emulating a custom-designed 5-axis printer or a standard 3-axis Cartesian printer. The FIBR3DEmul was designed and
implemented in two separate applications for reusability and scalability. First, the G-Code Interpreter is responsible for
parsing the g-code script, controlling the flow of its execution, and notifying the user about detected printer-printer or printer-
workpiece collisions. The second application involves the robotics simulator tool V-Rep. A custom plugin was implemented
to mediate the communication with the Interpreter application, to generate the tool trajectories, to emulate the extrusion
process, and to handle motion execution and collision detection. The process of designing and implementing a custom-printer
control and motion execution in these two software is described. The performance of the virtual 5-axis printer was compared
with the real machine in terms of position and velocity profiles. Results show a tight match between virtual and real printer-
generated plots. The presented solution can also be extrapolated to CNC machines or WHASPs. The FIBR3DEmul source
code is publicly available.

Keywords Additive manufacturing · Virtual simulation · G-Code interpretation · 5-axis printer

1 Introduction

Fused deposition modeling (FDM) is arguably the most
popular additive manufacturing technology. Its applicability
reaches well beyond the manufacturing industry, to most
R&D laboratories as well as the general public. There
are few limits to the versatility of conceptualizing and
fabricating parts using an FDM process [7].

Following CNC-based technology, the generic FDM
printer usually counts with the extrusion head, the print
plate, multiple controlled axes, and the central control unit.
Commonalities aside, different machine types are currently
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applied for 3D printing: Cartesian, Delta, Scara, or Polar.
The vast majority, however, operates solely with 3 degrees
of freedom (DoF) depositing consecutive thin layers of
extruded material from the bottom-up.

Conceptually simple, this FDM process has known
shortcomings such as limited motions, anisotropic material
properties, stair-stepping, and the need to use supporting
material to print structures with overhangs [4, 6]. One
obvious solution to these shortcomings involves multi-axis
deposition, where the actuated axes that control the tool or
print table that holds the workpiece change orientation to
permit material deposition in new planes.

Different architectures have been proposed for multi-
axis deposition, 6-DoF Stewart mechanisms [4], industrial
robotic arms with 6-DoF [5, 8], or adapted Cartesian
systems with a rotatory print table [1, 3]. Independent
of the followed approach, there is a significant shift in
the 3D printing paradigm. First, the 3D model slicing
algorithm needs to account for material deposition in
different deposition planes; second, a new motion script
protocol—typically a G-Code file—is required to address
simultaneously every degree of freedom; and third, the
printer should generate a coordinated motion between all
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actuated axes, in order to guarantee a correct position
and orientation of the tool relative to the printing bed.
Concurrently, the collision detection problem becomes
significantly more complex. In a similar topic, Lauwers et
al. [2] elaborate on how the tight integration between the
development of new control algorithms for 5-axis milling
machines and machine simulation permit optimization and
collision avoidance.

FDM solutions with more than 3 DoF are still relatively
rare, and consecutively there are limited resources to assist
the development and testing of new solutions, which brings
us to the main contribution of the FIBR3DEmul. The
FIBR3DEmul is a software package that permits the test
and validation of custom FDM systems with simultaneously
controlled axes using a robotics simulation environment.
The software package is divided into two parts: (i) an
application to interpret the new G-Code standard (based on
ISO/DIN 66025) to control up to 5-axis and (ii) a plugin
developed for the robotics simulator—V-REP—to receive
the commands from the parser tool and generate the motion
of each individual axis accordingly.

Several advantages arise from splitting the simulation
software into a two-part application:

• selection of better-fitting tools/frameworks for both G-
Code parsing and Motion control or 3D virtualization;

• scalability and reusability of the developed solution, for
example, a solution that can directly communicate with
either the virtual or the real machine controller;

• allow the user to control the flow of G-Code reading
and motion execution and still implementing a virtual
controller “closer” to the emulated printer with reduced
delay.

This solution can realistically emulate the behavior of
the real machine at any workstation running the robotics
simulator and permits testing and adjusting the control
parameters without risking any damage to the material. It
facilitates the G-Code introspection by enabling the user
to run line-by-line, a specific block of lines, or the whole
script at once. At the same time, the application tracks the
line that is currently being executed and keeps track of
commands that generate collisions between printer/printer
or printer/work piece.

The FIBR3DEmul source code is available at: https://
github.com/neuebot/FIBR3DEmul. It contains the code for
the G-Code Interpretation application, as well as the code
for the plugin developed to control the 5-axis printer and the
virtual scene.

2 G-Code Interpreter

The “G-Code Interpreter” is a software application devel-
oped in C# (.NET Framework) to parse and interpret
G-Code commands and forward the motion/actuation com-
mands and respective parameters to a real or virtual con-
troller. The interface permits the user to inspect the G-Code

Table 1 Supported G-Code
commands and coordinate
identifiers

G-Commands (modal and non-modal) Coordinate identifiers

G00 - Rapid motion X - x-axis position

G01 - Linear motion Y - y-axis position

G02 - Arc motion clockwise Z - z-axis position

G03 - Arc motion counter clockwise I - center x-axis position

G04 - Dwell J - center y-axis position

G08/09 - Acceleration/deceleration at block end K - center z-axis position

G17/18/19 - Working plane XY/ZX/YZ R - radius of circle

G53 - Deselection of current offset A - filament advance

G54 to G59 - Selection of 1st to 6th offset B - y-axis rotation

G60 - Exact stop C - z-axis rotation

G70/71 - Units inch/millimeters F - advance velocity

G74 - Homing

G90/91 - Absolute/incremental dimension

G92 - Coordinate preset

G161/162 - Circle center point absolute/relative

G193/293 - Path/time interpolation

G130 - Acceleration weight specific axis

G131 - Acceleration weight all axes

G231 - Acceleration weight all axes specific G00
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Fig. 1 Graphical user interface of the G-Code Interpreter application

line-by-line and selectively forward the commands to the
controller. The ability to execute single commands or a
block of commands is of invaluable help when testing or
developing new routines. To avoid ambiguities with differ-
ent G-Code standards, it only operates with G-Code files
that comply with the norm ISO / DIN 66025.

The G-Code is a readable language commonly applied in
computer-aided manufacturing. From tool path and velocity
control, to coordinate system settings, the G-Code explicitly
or implicitly defines the settings under which the machine
operates and how it executes each command from the start
to the end of a cycle. Commands are generally contained
in a single line and preceded by a G- or M- character
and a number identifier. The remaining characters code the
parameters. The application parses each line from the G-
Code file individually using string manipulation to isolate
command and parameter “words”. Then, depending on the
command parsed, the read parameters are forwarded to a
specific function that handles and repacks the information
for the printer controller. A list of the implemented G-
Code commands and parameters supported are presented in
Table 1.

Two important details of G-Code parsing are embedded
in the application: the default and the modal commands.
G-Code has a rather vague specification of “grammatical
rules”, which makes the task of the interpreter more diffi-
cult. The G-Code may explicitly include every command
detail—making each line extensive but self-contained—as
opposed to relying on implicit information to reduce “word-
ing” and include only the new details. This behavior is
called modality. The context of a non-modal command is

limited to its line, while a modal command is in effect
until a new modal command of a related topic is read. Not
only commands but also variables may be modal; i.e., by
omission, the previously defined parameters are true until
redefined (this is especially useful to avoid constantly defin-
ing feed rates). If a command for a specific topic is never
explicitly defined, the default command is considered by
omission 1.

To simplify the virtual controller logic, the implicit and
explicit information contained in a G-Code line is translated
into a single and unambiguous command sent to the printer
controller. Messages are serialized into the JSON format
(lightweight and readable) and exchanged with the virtual
controller. The G-Code Interpreter works as the client in
a client-server communication model based on TCP/IP
sockets (.NET Berkeley socket implementation). The
interpreter and the controller communicate asynchronously
and bi-directionally. The applications may be launched from
the same host or across the network.

The G-Code Interpreter has a graphical user interface
(GUI) to interact with the G-Code file and send commands
to the controller (see Fig. 1).

Initially, the user is required to provide a G-Code file,
which can be opened through the menu or simply by a drag-
and-drop operation. Once loaded, the dynamic list container
displays the G-Code file in separate selectable lines. When
a line of the list is selected, it is parsed and the interpreted

1For example, if no command relative to the actuation plane is
specified: G17*, G18, or G19, the printer defaults to the G17
command (X-Y plane).

Int J Adv Manuf Technol (2020) 106:3609–3623 3611



Fig. 2 V-Rep scene with
imported and assembled model
of the 3D printer

information is displayed as a JSON message in the view
to the right. Before sending G-Code commands, the user
is prompted to connect to the controller. Afterward, the
user may control the G-Code command execution with the
possibility to send:

• the next G-Code command in the list;
• a single selected command;
• all commands from the current until the selected line;
• all commands from the current line until the end of the

file.

At any moment, the current line being executed by the
controller is displayed. The application also keeps track of
G-Code lines that results in collisions between the printer
parts, or between the printer and the workpiece. These
collisions are detected when the physics engine of the V-
Rep simulator registers the intersection of physical bodies.
These physical bodies are designed to mimic the graphical
model of the printer or to represent the extruded material
(refer to Section 3.2.1).

3 Virtual scenario

The second part of the FIBR3DEmul concerns the
virtualization tool to emulate the 3D printer movements and
the deposition process. Although these points are related,
they concern two dissimilar problems: on one side, the
goal is to simulate coordinated movements of the printer
parts and tool path/velocity or check for possible collisions;
and on the other side, the objective is to replicate the
material deposition process. With no software solution
capable of realistically simulating both processes, we set
for the compromise of having a robotics simulator tool to
replicate the behavior of the 3D printer, and to develop a
process to visualize the material deposition.

The V-Rep (Coppelia Robotics, Zürich, Switzerland)
software was selected as the robotics simulator. It offers a
wide range of actuators, sensors, scenarios, and functionali-
ties to facilitate the development and testing of new robotic
platform solutions, such as the 5-axis printer. Moreover, V-
Rep is a cross-platform and supports multiple programming
languages and approaches, ranging from embedded scripts
to remote APIs or client plugins.

3.1 Models

The proposed system was tested with the 5-axis
“C3DPrinter” developed on the scope of the FIBR3D
project (POCI-01-0145-FEDER-016414). It is based on the
typical 3 DoF Cartesian printer with an additional 2 DoF
rotating print table (see Fig. 2).

The 3D printer model designed in CAD software was
imported as a set of independent meshes into a V-Rep scene.
Physical parts of the models that are tracked for collisions
are appended to the graphical counterpart, either by using
an agglomerate of simple shapes (cubes, cylinders, and
spheres) or by convex hull/decomposition (see Fig. 3). The
printer parts are scaled to the dimensions of the real 3D
printer, and prismatic/rotational joints are assigned between
moving parts. Each joint is modeled after the hardware of
the reference printer including the mechanical limits2 and
the control loop.

3.2 Extruder tool

The V-Rep robotics simulator lacks a feature to directly
emulate the extrusion of material as required for FDM
applications. Without the ability to accurately reproduce
fluid mechanics or material interface phenomena, the

2No limits are specified for joint C as it is cyclic.
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Fig. 3 a–c Extruder model
graphical and physical part

proposed application settles by representing the filament
deposition as it follows the tool path.

The “extruder tool” was developed based on the drawing
object functionality from V-Rep that permits painting

Fig. 4 Filament variations

shapes in runtime. The process of extruding the fused
filament is replicated by continuously drawing shapes as

Fig. 5 Collision detected between the extruder and the printer table,
which changed color to denote the occurrence

Int J Adv Manuf Technol (2020) 106:3609–3623 3613



Fig. 6 a–c Graphical and physical representation of the extruded filament

the tool moves relative to the print table.3 New shapes are
inserted into the scene at each simulation step to replicate
the process of extruding the filament.4 The simulator
requires the position, orientation, and reference system
where each shape is to be inserted—more about this process
in Section 4.3.

The user is given the option to customize the filament in
terms of shape type, color, size, and sparsity (see Fig. 4).

The type and the sparsity of the drawn shapes impact the
simulation performance, especially noted in larger printed
objects. A sphere-type filament more closely resembles
the extruded filament form but it is 3 times more time
consuming to draw as each sphere-shape is a 36-faced mesh
as opposed to the 12 faces of a cube mesh.

3.2.1 Collision detection

One of the principal contributions of the proposed
application is the ability to detect and notify about possible
collisions between machine parts, or between machine and
the workpiece. This proposition becomes significantly more
relevant for prototype technology such as the “C3DPrinter”,
which involves simultaneous motion of 3+2 axes.

The V-Rep collision detection module checks at each
simulation step for intersections between pairs of physical
bodies. For the printer/printer collisions, the physics engine
checks two collision pairs: between the print table and the
extruder body, and between the printer table and the Y-axis
bar (see Fig. 3c). When a collision occurs, the collided part
changes color, and an outline is drawn to demarcate the
intersection region, Fig. 5.

To detect printer/workpiece collisions, one has to
attribute a physical form to the extruded filament, since the

3Note that both the extruder (moves in the X-, Y-, and Z-axis) and the
print table (moves in the B- and C-axis) move relative to one another
4Parameters such as layer height and tool path velocity affect the
real filament deposition process. These effects will be addressed by
modeling the properties of the generated particles in a future version
of the proposed software.

drawn shapes (Fig. 4) are only graphical objects. Endowing
the filament with a physical body was achieved using
octree objects. Octrees are feature objects provided with
V-Rep that permit dynamically shaping a physical body
in runtime by adding or subtracting “leaves” to the tree
data structure. Leaves are isotropic voxels that occupy a
partitioned space. The user may adjust the space partitioning
dimensions to obtain a finer match between the octree
shape and the filament shape at a performance cost (see
Fig. 6). During filament extrusion, the extruder tool path
relative to the printer table is tracked and these position
coordinates are sent, at each simulation step, to the octree
object handler. Internally, a function checks for the octree
point occupancy. If the received position fits inside an
existing octree voxel, nothing happens; else, a voxel is
inserted in the new spatial partitioned cell. Two instances of
printer/workpiece collisions are routinely checked: between
the octree and the extruder, and between the octree and the
Y-axis bar.

4 Controller plugin

A plugin for the V-Rep simulator was developed to
communicate with the G-Code Interpreter and interact with
the virtual 3D printer (see Fig. 7). The choice of using a
plugin over other programming approaches was primarily
weighted on the completeness of the available API and the
fact that it interacts directly with the simulator’s execution
thread resulting in a no-delay communication between
controller and actuators.

The plugin was written in C++ according to the V-
Rep plugin guidelines and is loaded by the main client
application at start-up. It includes three base objects:

1. Printer - encapsulates data and methods relative to the
virtual machine joints and collision events;

2. Extruder - stores information about the filament
properties and octrees, and provides methods that
determine how to draw the filament shapes;

Int J Adv Manuf Technol (2020) 106:3609–36233614
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Fig. 7 UML diagram of the controller plugin

3. Communication Manager - handles the launch and
termination of the server to communicate with the
G-Code Interpreter application.

4.1 Communication

As aforementioned, the connection with the G-Code Inter-
preter application is based on the TCP/IP model. In the con-
troller plugin, the communication layer was implemented
based on Boost.Asio network libraries and provides bilateral
asynchronous message transmission. On simulation start-
up, the Communication Manager launches a Server in a
new execution thread. This server is responsible for accept-
ing incoming client connections and initiating the Sessions
(sockets) where the messages are sent or received. Two
types of sessions are initialized per-connection: an outbound
connection to forward messages from the plugin to the
interpreter, and one inbound that accepts and acknowledges
incoming messages. Exchanged messages follow the JSON
format and require marshalling/unmarshalling previous to
being sent or upon reception. This is the task of the Speaker
and Listener objects.

The Speaker formulates an outbound message with two
fields, an integer notifying about the current G-Code line
being processed and a Boolean variable coding whether the
current command registers any collision. A new outbound
message is sent whenever the G-Code line being processed
advances or whenever a new collision is detected. The
Listener processes inbound messages from the G-Code
Interpreter. Each message codes a new command that is

identified by the unique keycode field and parameterized
by the remaining fields, refer to Fig. 1. After deserializing
the incoming message, the command is forwarded to the
Trajectory object.

4.2 Motion control

Messages deserialized are categorized into different types of
movements, which are processed by the Trajectory object.
The type of G-Code command dictates how the trajectory
will be handled out of the five possible categories: (i) rapid
movement, (ii) linear, (iii) arc, (iv) full circle, or a (v) dwell
(halt motion during a determined time).

With the exception to the dwell trajectory, which only
requires the initial joint positions and the time to halt the
movement, other trajectories expect the following parame-
ters: (a) initial joint positions, (b) target joint positions, (c)
trajectory velocities, (d) maximum acceleration, (e) type of
interpolation, and (f) other parameters. By other parameters,
understand the center position/radius of an arc trajectory,
the option to generate a clockwise or counterclockwise arc,
and the plane of reference. Since the program is emulating a
5-joint machine, the initial and target joint positions expect
coordinates for every actuated axis.

For clarity, the concept of a trajectory is broken down
into two ideas: the Path and the Velocity Profile, also known
as “feed rates”. The path represents the geometric shape
of the trajectory, while the velocity profile codes the time
law—how the extruder moves through the geometric path.
Logically, the type of trajectory affects primarily the path,
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since the velocity profile only depends on the type of path
interpolation.

4.2.1 Path

Considering the 5-axis machine, we split the final path into
the two constituents: the extruder path from X-, Y-, and Z-
joints and the printer table path from the B- andC-joints (see
Fig. 3c). The extruder path follows the movement command
specifications from the ISO/DIN 66025 norm, while the
print table joints (B and C) execute a joint interpolation
from the initial to the reference value. The objective of Path
object is to parametrize the geometric shape of the tool path.

For an extruder linear path, it means to determine the
unit vector �vxyz that points from the initial to the final joint
positions (X, Y, and Z). The same applies to the print table
path (B and C), �vbc. Since the C-joint is cyclic, its path
needs to be adjusted to the ] − 180◦, 180◦] interval without

breaking the movement continuity. Note also that the C-
joint always executes the shortest path motion between
the current and target joint coordinate; e.g., if the motion
command requires a movement from −170◦ to 170◦, the
joint executes a −20◦ movement rather than a +340◦
displacement.

To generate an arc or circle path, it is required that the
plane where the motion is inscribed (XY, ZX, or YZ),5 the
direction of the arc (clockwise � or counterclockwise �),
the initial and final joint positions, and either the center
position of the arc or its radius; and the output is the starting
angle of the arc (α), the arc angle (γ ), and the center point
or the radius. If the radius (r) is provided, the first step
is to determine the arc center position. Since the arc is
inscribed in a plane, the problem is defined inR2. Let pi and
pf denote the initial and final arc points, from which it is
determined the Euclidean distance in-between, d , as well as
the middle point pm. The arc center point pcen is determined
as follows,

5For conciseness, the position notation (p•) is presented for the
XY-Plane case.

pcen =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

pm,X +
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d

)
√

r2 −
(
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d

)
√

r2 −
(

d

2

)2

⎤

⎥
⎥
⎥
⎥
⎦

, if (r < 0 ∧ �) ∨ (r > 0 ∧ �)

⎡

⎢
⎢
⎢
⎢
⎣

pm,X −
(
pi,Y − pf,Y

d

)
√

r2 −
(

d

2

)2

pm,Y −
(
pi,X − pf,X

d

)
√

r2 −
(

d

2

)2

⎤

⎥
⎥
⎥
⎥
⎦

, if (r > 0 ∧ �) ∨ (r < 0 ∧ �)

. (1)

Once the arc center point is known, one might determine the
arc start (α) and final angle (β),

[
α

β

]

=
[
atan2(pi,Y − pcen,Y,pi,X − pcen,X)

atan2(pf,Y − pcen,Y,pf,X − pcen,X)

]

(2)

The arc angle γ is the angle between α and β. Finally,
the extruder and the table path lengths are determined,
the Euclidean distance of the X, Y, and Z movement in
millimeters and the spherical distance of the B and C
movement in degrees respectively.

4.2.2 Velocity profile

To determine the form of the velocity profile for a given
command, the following parameters are required: (i) the
start, travel, and end-velocity, (ii) the maximum allowed
acceleration, and (iii) the path length (S)—more about
this in Section 4.2.3. Two types of velocity profiles are

implemented according to the supported G-Code commands
(Table 1): the linear interpolation profile and the trapezoidal
profile.

If the commanded movement is specified according
to the linear interpolation profile, the velocity profile is
described by the first and second equations of motion with
a single acceleration slope transitioning from the initial to
the final velocity. Let the path be {s ∈ R, s ∈ [0, S]}, the
initial and final velocities (vi and vf ) and accelerations (ai

and af ) be known. The trajectory total time (T ) is,

T = 2S

vi + vf

, (3)

and the acceleration that is constant in this case (ai = af )

ai = vf − vi

T
. (4)

Int J Adv Manuf Technol (2020) 106:3609–36233616



Fig. 8 a, b The five different possible trapezoidal velocity profile shapes. For simplification, the initial ramp is depicted as a positive acceleration
and the final ramp as a negative acceleration (deceleration) although the opposite cases are also possible

According to the actuators’ time-step (ts), the velocity
profile determines the progression along the path (s(t)) from
si = 0 to sf = S.

By default, the movement is configured to the trapezoidal
velocity profile. Depending on the motion command
properties (whether G08/09 are set), the feed rate may
accelerate/decelerate at the beginning and/or at the end of
the block (see Fig. 8).

If the motion command involves a change in the feed rate
at the start and/or end of a block, the module and direction
of the acceleration vector(s) are first determined. From the
first and second equations of motion, one calculates the time
required to change the velocity (start to travel and/or travel
to end) and consecutively the length of path covered during
the acceleration phase(s).6If the path length traveled during
the acceleration phase is inferior to the total path length,
the remaining path is covered at constant velocity (travel
velocity).

6To avoid repetition, henceforth consider the “acceleration phase” as
the start, the end and/or both acceleration phases.

On the other hand, if the traveled distance during the
acceleration phase exceeds the total path length, the time
of the acceleration phase is recalculated to guarantee that
the end velocity, as well as the path length, is met, at the
cost of not reaching intermediate velocities. This velocity
profile is characterized by its “triangular shape” (Fig. 8b) as
there is a time spent moving at an initial acceleration and the
remaining time at the final acceleration. The path point that
marks the transition from the initial to the final acceleration
profile is referred to as sm. From the second equation of
motion, we gather that,

(si − sm) + viti + 1

2
aiti

2 = 0. (5)

The velocity profile is easily determined after calculating
ti that stands for the time of motion during the first accel-
eration phase, which is solved as a quadratic polynomial
equation. As boundary condition, we know that si = 0 and
sf = S, and sm can be determined using the third equation
of motion,

sm = vf
2 − vi

2 − 2af S

2(ai − af )
. (6)
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It logically follows that the total trajectory time (T ) is

T = ti + tf = ti + vf − (vi + aiti)

af

(7)

Since the quadratic polynomial problem might return up to
two solutions, it is selected the solution that permits the
smallest and possible total time.

Similarly to the linear interpolation profile case, path
progression for the trapezoidal profile is also discretized
according to the time step.

4.2.3 Trajectory

The trajectory object is finally responsible for combining
the geometric path with the velocity profile timing law. The
joint positions during the path progression are determined
using the geometric path parameters.

As referred in Section 4.2.1, the extruder and print table
paths are handled separately. The velocity profile, however,
codes the combined movement of the extruder and the print
table. To achieve this behavior, we determine a combined
path length that results from the extruder path distance and
the print table path distance. The combined path length is
passed as a parameter to the velocity profile calculation.

To guarantee synchronous motion of the extruder and
the print table, their movements are adjusted to the
corresponding ratio of the combined length. A set of the
5-axis joint positions is determined for each time step,
Algorithm 1. Once computed, the motion sums up to a

Fig. 9 Reference frames of the {W } world, {E} extruder, and {P } print
table

vector of joint positions, which is pushed into a concurrent
queue to be processed by the V-Rep execution thread.

4.3 Extrusionmechanic

If the received motion command includes the variable that
codes the filament advance (A—refer to Table 1), the virtual
extrusion process is initiated. A new Drawing Object is
created based on the type, color, size of the filament,
and base entity with a reference frame. As the extrusion

Int J Adv Manuf Technol (2020) 106:3609–36233618



Table 2 Standard Denavit-Hartenberg parameters of the print table
mechanism. Z0 amounts to the distance from {W } to {P }
i ai αi di θi

W → 0 0 −90 0 0

0 → 1 0 90 0 B

1 → 2 0 0 Z0 C

proceeds, new filament shapes (Fig. 4) are concatenated
to the drawing object item list, which is processed by the
simulator graphics renderer at each cycle. If the base entity,
or in this case, the print table moves, the drawn shapes
will also move accordingly. However, the position of the
new shapes only depends on the position of the extruder
relative to the world. The implications of this statement are
explained next.

To simulate the deposition of a filament, two points
are considered in each simulation step: the last position7

of the extruder relative to the world—transformed of the
differential print table movement in respect to the world
WpE,t−1—and the current position of the extruder relative
to the world WpE,t (see Fig. 9).

In each cycle, the extrusion handler will attempt to draw
shapes between both points. The number of items to be
added depends on the ratio between the Euclidean distance
and the extrusion resolution.

At the simulation start-up, the initial extruder transfor-
mation relative to the world reference frame is saved as
WTE,0. Thus, the current position of the extruder relative to
the world at each simulation cycle can be directly deduced
from the current X, Y, and Z joint positions (E,0pE,t =
[Xt, Yt , Zt ]),
WpE,t = WTE,0

E,0pE,t (8)

Determining WpE,t−1 requires additional steps, as it
depends on the differential transformation of the print table
from the previous iteration. The transformation from the
world reference frame to the print table can be determined
using the Denavit-Hartenberg notation (Table 2), and the
corresponding “relative transformation matrix”,

i−1Ti =

⎡

⎢
⎢
⎣

cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

⎤

⎥
⎥
⎦ .

(9)

7Let ApB,• represent the position of B relative to A at the time instant
•. Similarly, let ATB,• represent the transformation of B relative to A

in the time instant •.

The first DH parameter relative matrix (WT0) is required
to account for the orientation of the B-axis relative to the
world reference frame z-axis ({W }z). The print table and
the extruder transformations relative to the world reference
frame can now be calculated,
WTP = WT1

1T2 (10)

WTE =

⎡

⎢
⎢
⎣

1 0 0 Xt

0 1 0 Yt

0 0 1 Zt + Z0

0 0 0 1

⎤

⎥
⎥
⎦ . (11)

The transformation of the extruder frame relative to the print
table is calculated as,

PTE = (WTP )
−1WTE, (12)

and consequently the last position of the extruder relative to
the last position of the print table,

P,t−1pE,t−1 = (WTP,t−1)
−1WpE,t−1. (13)

Finally, WpE,t−1 can be calculated as,
WpE,t−1 = WTP,t−1

P,t−1pE,t−1. (14)

If the Euclidean distance between WpE,t−1 and WpE,t is
smaller than the resolution step, no item is drawn, and the
value of the last extruder position not updated. Else, shapes
are drawn between the points at equally spaced intervals.

5 Results and discussion

The FIBR3DEmul was tested with 3- and 5-axis G-Code
files (Figs. 10 and 11). By adjusting the virtual filament
dimension (3 to 0.4 mm), it is possible to produce with
pieces with higher resolution. While it is possible to
create shapes smaller than 0.4 mm, the impact in software
performance from the higher shape density would make the
simulation impractical.

To validate the FIBR3DEmul simulation tool in terms
of position and time precision, a G-Code script was
created and ran simultaneously in the virtual and in the
real “C3DPrinter”. The test G-Code includes commands
to move the extruder, the print table, and both parts
synchronously at with different motion commands and feed
rates.

A real-time logger, running in both virtual and real
controllers, collected the position and velocity of each of
the 5 axes at each 10 ms. The comparison of the virtual
and real printer movements can be visualized at https://
www.youtube.com/watch?v=VFvln1082aQ. These results
are presented in Figs. 12 and 13. With respect to the extruder
axes (Fig. 12), the virtual X- and Y-axis positions as a
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Fig. 10 Examples of detailed
printed 3D models using
FIBR3DEmul. The cube printed
with a filament width of 0.8
mm, the other two with filament
width of 0.4 mm

function of time are identical to the values found for the
actual machine. The Z-axis curves depict a difference of 100
mm throughout the trajectory. This discrepancy is due to
the fact that the virtual printer is unable to account for the
offsets that are locally set in the real machine controller. The
velocity curves of the virtual and real extruder axes mostly
overlap. Upon close inspection, it is noticeable in the final
part of the trajectory (around 150 s of the Z-axis velocity
plot) that the virtual printer has a delay of about 50 ms
when compared with the real printer. This delay might be
attributed to the mechanism of receiving and stacking new
joint trajectories as discrete vectors of joint positions (see
Section 4.2).

The B-axis position plots for the virtual and real printer
(Fig. 13) are mostly overlapping. Around the 70-s mark,

there is a mismatch between the values of the C-axis.
This is an expected behavior and is attributed to how the
simulator and the real controller handle cyclic rotational
joint limits. In the simulator, the value of a rotational joint
is comprehended between [−180, 180] degrees, whereas in
the real controller, this interval is [0, 360]. The time delay is
also noticeable in the velocity plots of the print table axes.

It should be noted that as of this moment, the proposed
solution does not emulate filament deposition dynamics.
As explained in Section 3.2, the FIBR3DEmul generates
a string of particles to emulate the filament considering
only the tool path. Deposition parameters such as layer
height and nozzle velocity, which affect the profile of the
filament, are currently not accounted for. The proposed
FIBR3DEmul does allow for the customization of the

Fig. 11 Example of a 3D-printed model with 5 simultaneously actuated axes
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Fig. 12 Position and velocity plots of the extruder axis of the virtual and the real “C3DPrinter”

particles in run-time, which means that one can model the
generated filament in terms of position, size, sparsity, shape,
and color. In future work, the extrusion mechanism (refer

to Section 4.3) will be adjusted to model the characteristics
of the generated filament—especially size and position—
based on the layer height and nozzle velocity. While the
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Fig. 13 Position and velocity plots of the print table axis of the virtual and the real “C3DPrinter”

relation between nozzle velocity and the size of the thinning
of the filament might be straightforward to implement
programmatically, the impact of the layer height on the
flattening of the filament might involve adjusting the size,
shape, and position of the particles that form the filament.

6 Conclusion

This paper presents the FIBR3DEmul software, a simulation
tool capable of interpreting ISO/DIN 66025 G-Code and
translating the commands to a robotics simulator to virtually
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emulate the real machine operation. At the moment, the
FIBR3DEmul software permits testing FDM processes for
the standard 3-axis architecture, as well as for a new
standard with 5-axes simultaneously actuated (Cartesian-
type actuator controlling the extruder and a 2-axis rotating
table).

It is explained how the simulation solution was designed
and implemented in two separate applications, the G-
Code Interpreter and the V-Rep simulator with a custom-
developed controller plugin. It is described how a custom
printer is introduced and controlled in the virtual scenario,
as well as the simulation process.

It is expected that the presented solution will have
more impact next to developers of new FDM machine
architectures or typologies. The presented solution allows
the developers to control the G-Code execution flow,
check for printer-printer or printer-workpiece collisions,
and, most importantly, permits testing G-Code scripts from
any workstation without the risk of damaging equipment
and with very comparable results to the real machinery.

The simulation software permits adjusting the filament
color, size, and sparsity in runtime. This flexibility can be
explored in the future to tackle some of the limitations of
the proposed solution, i.e., to emulate deposition parameters
such as temperature, velocity, or layer height, which vary
according to the material being deposited. Adjusting these
parameters to test the machine output becomes particularly
relevant when we consider operating with less common and
more expensive materials as is the case of PEEK (polyether
ether ketone), which is 7 to 10 times more expensive than
the more common ABS or PLA.
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