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Abstract. The main objective of this project, carried out in an indus-
trial context, was to apply a multivariate analysis to variables related to
the specifications required for the production of an agricultural tire and
the dimensional test results. With the exploratory data analysis, it was
possible to identify strong correlations between predictor variables and
with the response variables of each test. In this project, the principal com-
ponent analysis (PCA) serves to eliminate the effects of multicollinearity.
The use of regression analysis was intended to predict the behavior of the
agricultural tire considering the selected variables of each test. In the case
of Test 1, when applying the Stepwise methods to select the variables,
the model with the lowest value of Akaike Information Criterion (AIC)
was achieved with the technique “Both”. However, the lowest value of
AIC for Test 2 was achieved with “Backward”. Regarding the validation
of assumptions, both Test 1 and Test 2 were validated. Therefore, all the
quantitative variables are important, both in Test 1 and Test 2, because
they are a linear combination that determines the principal components.
In order to make it easier to compute predictions for future agricultural
tires, an application that was developed in Shiny allows the company to
know the behavior of the tire before it was produced. Using the appli-
cation, it is possible to reduce the industrialization time, materials and
resources, thus increasing efficiency and profits.

Keywords: Multiple Linear Regression - Principal Component Analysis
- Shiny application - Agricultural tires.

1 Introduction

In the industrial process of production of a new tire, it is necessary to consider
some specifications. The agricultural tire is constituted with different compo-
nents like the tread, belt, inner liner, sidewall, bead, among others. In this case,
it is important to define the mold, the material and the quantity. After that,
the tire has to pass some tests, for example, dimensional and endurance tests,
among others. The tire passes the test if the results are in accordance with the
legal norms, where the maximum and minimum of dimensional and endurance
values are defined. So, when the test result is greater than the maximum defined,
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the tire doesn’t pass and the company has to make changes in the type and/or
the quantity of materials.

In this study, the main goal was to apply multivariate analysis to variables
related to the specifications required for agricultural tire production and dimen-
sional test results, Test 1 and Test 2. The purpose of this was to understand
which variables influence the test results and to predict their values. So, to de-
velop a tire it is important to consider a lot of variables simultaneously and, if
it is possible to predict the values for the two tests, it will make it easier for the
producers. Multiple Linear Regression (MLR) will help to achieve the results
that we want, because the predictors variables are quantitative. MLR has many
assumptions to be considered and one of them is multicollinearity effects.

Multicollinearity effects are when two or more predictor variables have a
strong correlation among themselves. This can cause problems in MLR. When
we estimate regression coefficients and the predictor variables are highly corre-
lated, the coefficients tend to vary widely. Another problem is when we want to
make an interpretation of a regression coefficient, the signal can be misleading [5].
One possibility to correct this problem is using Principal Component Regression
(PCR), which is a linear regression using principal components. Maxwell et al.
(2019) wrote an article to tackle with multicollinearity effects and here 5 method-
ologies were tested: Partial Least Square Regression (PLSR), Ridge Regression
(RR), Ordinary Least Square Regression (OLS), Least Absolute Shrinkage and
Selector Operator (LASSO) Regression, and the Principal Component Regres-
sion (PCR). To compare the 5 methodologies, they used a different number
of observations and a number of predictor variables. Root Mean Square Error
(RMSE) and AIC were used to compare the performance of each model. With
this analysis the authors concluded that PCR has the lowest AMSE and AIC,
which means that according to them, PCR is the most efficient in handling crit-
ical multicollinearity effects [7]. Lafi and Kaneene used Principal Component
Analysis (PCA) to detect and correct multicollinearity effects in a veterinary
epidemiological study. In this article were compare OLS and PCR to adjust
regression coeflicents. The PCR coeflicients were more reliable than OLS [6].

After selecting the model for Test 1 and Test 2, a web application was devel-
oped to predict the test results before the tire was produced.

2 Methods

2.1 Principal Component Analysis

PCA is a statistic procedure for multivariate problems. It was introduced in 1901
by Pearson and in 1933 it was independently developed by Hotelling [8].

PCA is useful when there are many predictor variables regarding the num-
ber of observations in the dataset. It is also used when the predictor variables
are highly correlated with each other because it eliminates the effects of multi-
collinearity. Normally, PCA is used to reduce the dimensionality of a problem
and principal component represents most of the information contained in the
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dataset. This means that the first PC explains the greater proportion of the
original variables variation and the second explains the second greater propor-
tion, but it is independent of the first, and so on.

As it is widely known, PCA transforms the variation of a set of variables
highly correlated into a new set of variables that are uncorrelated and orthogonal.
This new set of variables is a linear combination of the initial p variables. Linear
combinations are described as follows (Eq. 1):

PCl =a1121 + a2 + ... + A1pTp

PCy = ag1x1 + agexs + ... + agpy

(1)

PC) = ap171 + apaza + ... + appTp
where a;; are the loadings, x1, 2, ..., , are the initial variables and PC,
PQCs,..., PC), are the p PCs [4].
After obtaining the linear combinations for each component, and when re-

placing them with the values of the initial variables, the scores are obtained
[5].

2.2 Multiple Linear Regression

With linear regression it is possible to study the linear relationship between
response variable (y;, ¢ = 1,...,n) and one or more predictor variables (z;;,
j = 1,...,p), where response variable is a quantitative variable and predictor
variables can be quantitative or qualitative. When there is more than one pre-
dictor variables it is called Multiple Linear Regression (MLR), (Eq. 2), where
Bo is the constant term and /3, are the coefficients for each variable.

Yi = Bo + Prxi + Paxiz + ... + BpTip + €5 (2)

To validate the model, it is necessary to verify some assumptions and this can be
performed through an explanatory analysis of residuals. Thus, the assumptions
to be validated are as follows [3]:

Ele;] = 0, this means the average of the errors must be zero;
Varle;] = 02, so the errors variance must be constant;

g; ~ N(0,0?%), with this, errors must follow a normal distribution;
Errors are independent.

Another condition to be verified is the existence of multicollinearity and this
can be identified by the correlations values and/or considering the Variance
Inflation Factor (VIF). When VIF is greater than 10, it means that there are
multicollinearity effects in the data. VIF is given by the expression:

1

2
1-R?

VIF; = (3)

where R? is the coeflicient of determination of x; relative to the other predictor
variables in the model [9].
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Variable Selection Method The stepwise method is used to obtain a model
with predictor variables that better explain the variable response and it is pos-
sible to consider different criteria, for example, AIC. The “Backward” method
builds the regression model using all the predictor variables and removes them
considering the chosen criteria. The “Forward” method adds the predictor vari-
ables one by one until there are no more candidates that increase the value of
the sum of squares in the regression model. However, it is possible to build a
regression model with the entry and elimination of the predictor variables, con-
sidering the chosen criteria, called “Both” method. The iterative process ends
when there are no more variables to be introduced or eliminated according to
the criterion adopted [9].

One way to analyze the model that better explains the data in study is the value
of AIC. This criterion compares the adequacy of the models when an attempt
is made to balance the accuracy of the adjustment and the smallest number of
explanatory variables [2]. The AIC value is calculated as follows:

AIC. = —2log(Ly) + 2p (4)

where L, is the maximum value of likelihood function for the model and p is
the number of predictor variables present in the model. The models with lowest
AIC are the chosen ones [1].

3 Results and Discussion

For this analysis were used 146 experimental agricultural tires, 31 predictor
variables, 4 of which are qualitative variables and 27 quantitative variables. We
used 2 response variables, y; and yo for Test 1 and Test 2, respectively. The
variables were coded due to a confidentiality agreement. All computations were
made in R software using the appropriate packages available to perform the
analysis.

Fig. 1 represents the correlation coefficients (color intensity and the size of
the circle are proportional to the correlation coefficients) and there are strong
relationships with variable y;, variable response for Test 1, as well as with ys,
variable response for Test 2.

Taking into account the values of the correlations of Fig. 1, multicollinearity
effects are expected due to the values taken from r between the predictor vari-
ables once these variables are correlated with each other. It is also possible to
see that xg, 7, rs, 9, T12, T13, T18, T19, T23, T25, Ta7, 32 and y; are correlated
(where r > 0,90), as well as between x5, 19, 11, 15 and y2 (where r > 0,90).
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Fig. 1. Pearson’s correlations.

3.1 Principal Component Analysis Results

As referred in Section 2.1, PCA can be used to reduce the dimensionality of a
problem or to eliminate multicollinearity effects. In this study, it was necessary
to prove if multicollinearity effects exist. Regarding this problem, the data were
normalized since the variables take different scales of measures.

In Table 1, the VIF values for 19 quantitative predictor variables are pre-
sented and the results are the same in Test 1 and Test 2, when an MLR was
made for both tests. The VIF values for the other response variables are less
than 20. Regarding the results obtained in Table 1, there are multicollinearity
effects in the study, because most of the VIFs values are higher then 10.

Since the main objective is to build models that allow predictions for Test 1
and Test 2, the conditions of applicability of MLR models must be guaranteed.
For this reason, we opted to use PCA to eliminate the effects of multicollinearity.
For this reason, the 27 principal components were used in the models for Test 1
and Test 2 instead of the original variables.
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Table 1. VIF value for quantitative predictor variables.

Variable VIF

X5 927.10
X6 608.11
X7 405.50
X3 128.60
Xo 843.43
X0 37.90
X111 26452.1
X2 360.31
X3 2707.65
X4 49.92
X5 27120.15
X7 2591
Xis 510.04
X9 77.13
Xo3 927.66
Xos 51.99
Xo7 41.99
X32 193.62

The graph in Fig. 2 represents the biplot after the rotation varimax for the
first two principal components, where the first explains 52.5% and the second
15.6% of the total data variation. It can be seen in Fig. 2 that variables x5, 11
and x15 have the greatest positive contribution for the second principal compo-
nent. Variable 14 has the greatest negative contribution for the first component.
However, the other variables have the greatest positive contribution for the first
component.

In this study, the 27 principal components were used because it was necessary
to consider all the information and, for this reason, it was difficult to perform
the interpretation of each principal component.
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Fig. 2. Biplot for the first and second principal components.
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3.2 Multiple Linear Regression Models

After the determination of each PC we proceeded to the construction of MLR
models for each tire test. Two models were found using stepwise methods and
considering AIC criteria to select the model for Test 1 and Test 2.

In Table 2 the model using “Both” technique has the lowest AIC value, for
Test 1, for this reason it was the selected model. For Test 2, the lowest AIC value
is using “Backward” and this was the chosen one.

Table 2. AIC values for Test 1 and Test 2.

Test 1 Test 2
Backward 648.05 764.03
Forward 648.05 766.02
Both 647.45 778.42

Fig. 3 shows the set of graphs produced in R using the plot (model) function
to validate the assumptions. The first graph, Residuals vs Fitted, proves that the
variance of residuals is constant and that residuals are independent because there
isn’t any pattern or tendency. The second graph shows that the errors follow a
normal distribution, since the values are according to the diagonal, except on the
extremes, which can indicate the presence of outliers. The Kolmogorov-Smirnov
test was used to confirm if the errors follow a normal distribution, considering the
following hypotheses: Hy : &; ~ N(u,02) VS Hj : g; = N(u,02). For this test,
the p—wvalue = 0.615 reveals that the errors could follow the normal distribution
for a significance level a = 0.05. The last graph, Residual vs Leverage, shows
there are no influence points.
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Fig. 3. Validated assumptions for Test 1.
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Based on graphs in Fig. 4 it is possible to draw the same conclusions for
Test 2. Looking at the Normal Q-Q plot, most of the values are according to the
diagonal, except on the extremes, which means there isn’t evidence to reject the
null hypothesis. Regarding the Kolmogorov-Smirnov test, p — value = 0.966, the
null hypothesis isn’t rejected and the errors could follow the normal distribution
for a significance level a = 0.05.
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Fig. 4. Validated assumptions for Test 2.

When the extremes in Normal Q-Q plot are straight out it can mean there
are outliers. The graphs in Fig. 5 reveal that there are five outliers for Test 1 and
four for Test 2. All of them were individually analyzed to understand if it is a
process problem or a human error since most of the values are not automatically
introduced into company programs.

The entire analysis was repeated, for both models, after removing the outliers
and it was found that by using the same criteria the results were not very different
and outliers continued to exist. Since all the possible variables were not used in
this study and the values of each observation, considered as an outlier, do not
appear to be a human error, so it was decided to keep all the observations.
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Fig. 5. Box-plots for the residuals for Test 1 and Test 2.

3.3 Shiny Application

The main objective of this study was to predict the results for Test 1 and Test
2 based on the constructed models. For this reason, it was developed a web
application using Shiny. In the application it is possible to do two things: upload
the dataset and make predictions based on the values of the variables.

Before creating the application it was important to define the necessary steps
for its construction, which are represented in Fig. 6.

2

Upload dataset

l

Select data

Application 1

Predict

l

Insert Values

l

Standardise data

l

Use Principal
Components
. )\
' ¥
Test 1 Prediction Test 2 Prediction
Determine the Determine the
maximum maximum

Fig. 6. Flowchart to create the application.
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Programming code In order to obtain the application interface, a program-
ming code was developed. Shiny is divided into two parts, “ui” and “server”.
“ui”, known as the interface, is used to define how the web application is going
to look like. In contrast, “server” is used to define what the application is going
to do and this is where the calculations for making predictions for Test 1 and
Test 2, are made.

Before starting programming, four Excel documents were added to be used in
a later stage. Fig. 7 shows the information related to the dataset under study, the
coefficients for Test 1 and Test 2, and the loadings for each principal component.

10 Tibrary(shiny)

11 Tdibrary(markdown)

12 Tibrary(datasets)

13 # setw :/Users/Ana Antunes/Desktop/DADOS™)

14 setwd("C:/users/ana Antunes/Desktop/universidade/Tese/Tese/DaDOS™)
15 dados=read. csv2(file="pesos.csv",sep=";", header=TRUE)

16 testel-read.csv2(file="testel.csv",sep="1" header-TRUE)

17 teste2=read.csv2(file="test2.csv",sep= ,header=TrRUE)

18 exper-read.csv2(file="experimental2.csv",sep=":", header-TrRUE)

19 attach(exper)

-

Fig. 7. Information to start the web application.

Firstly, in “ui” the menus were defined as “Upload Dataset” and “Predic-
tion”. In lines 24 and 25 is where the user can choose the file to load for the
application. Regarding “Prediction”, it specifies the quantitative variables, using
“numericInput”, and the qualitative variables, using “selectInput” (Fig. 8).

23 ui <- navbarpage("agricultural Tire",

24 tabpanel("Upload Dataset”, fluid=TRUE,

25 fileInput("FileInput”, "Choose file"),

26 DT: :dataTableoutput(“table™)

27 ),

28 tabranel ("prediciton”™, fluid=TrRUE,

29 sidebarpanel("variables"”,

30 numericInput (inputId .
31 Tlabel = B

32 value = ),

33 numericInput (inputid = "obs2™,
34 label=" x&",

35 )

36 numericInput (i .
37

38

39 selectInput (inputId = "obs17",
40 Tabel="x21",

41 choices = c("1","2")),

Fig. 8. Interface code in Shiny.

In order to show the prediction for Test 1 and Test 2, in line 124, was created
a button “Go” and the next line is to show the table. On the following lines the
colors of the application are defined (Fig. 9).
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actionButton("go2", "Go"),
mainPanel(DT: :dataTableoutput(“"tabela™))

tags$style(type — 'text/css', '.navbar { background-color: #04E2FF;
font-family: calibri;
font-size: 13px;
color: #232426; }°,

' navbar-dropdown { background-color: #04E2FF;
font-family: calibri;

font-size: 13px;

color: #232426; }°,

*.navbar-default .navbar-brand {
color: #232426;

Fig. 9. Interface code in Shiny (continuation).

The next step was to define the necessary calculation to predict the value for
Test 1 and Test 2. In the first place, the data have different scales and for this
reason the data were standardized and the values introduced for each variable
were saved (Fig. 10).

160
161
162
163
164
165

- observeEvent (inputigo2,{

a <- ifelse(inputiobsl-=1,round((inputiobsl-mean(experixs)) /sdlexperixs),6
b <- ifelse(inputiobs2>=1,round((inputiobs2-mean{experix6)) /sd(experixeé),6
<- ifelse(inputiobs17=="1",1,0)

),0)
),0)

<- ifelse(inputiobs17=="2",1,0)
c <- ifelse(inputfobs3>=1,round((inputiobs3-mean(experix7)) /sd(experix?),6),0)

Fig. 10. Server code for the values introduced.

Thereafter, it was important to define which variable is quantitative to de-
termine the principal components for the 27 variables. After that, using the
quantitative variables and the loadings obtained before, the principal compo-
nents were calculated (Fig. 11).

206
207
208
209
210
211
212

quant

<- c(a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,s,u,w,x,y,z,aa,ab,ac,ad,ae)

# componentes

cpl «
cp2 <
cp3 «
cpd <

round({quant %% dados[,1],5)
round(quant %*% dados[,2],5)
round({quant %*% dados[,3],5)
round(quant %*% dados[,4],5)

Fig. 11. Server code for creating the principal components.

Finally, the models for Test 1 and Test 2 were calculated using the selected
model coefficients for each test and the principal components obtained before.
In Fig. 12, nl and n4 represent the MLR for Test 1 and Test 2, respectively.
The maximum is calculated using the expression in n2 and n5. After this, one
condition was created to verify if a tire passes the test, represented by n3 and
n6. With this information, lines 264, 265 and 266 were used to construct the
table with the calculated results. The last line is used to run the application.
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240 nl <- testel [1,2]+testel[2,2] ;cp1+testel[3,2] “cp2+testel[4,2]“cp3+testel[5,2] “cpd+testel
241

242 # maximum for test 1

243 n2 <- (i1+0.4*(wl*25.4-i1%0.8))*1.05

244

245 # see if the tire passes in test 1

246 n3 <- ifelse(n2<nl,"Not Passed”, "Passed")

247

248 # prediction for test 2 using Backward

249 nd <- teste2[l,2]+testez[2,2]*cpl+teste2[3,2]*cp2+testez[4,2]“cp3+teste2[5,2]“cpd+teste
250

251 # maximum for test 2

252 ns <- 27((i1%§1)/100)“1.04+k125.4

253

254 # see if the tire passes in test 2

255 neé <- ifelse(n5<nd4, "Not Passed”, "Passed")

256

257 outputisuml <- renderPrint(nl)

258 outputisum2 <- renderpPrint(n2)

259 outputisum3 <- renderprint(ni)

260 outputisumd <- renderpPrint(nd)

261 outputisums <- renderprint(ns)

262 outputisumé <- renderpPrint(né)

263

264 tabela <- data.frame(round(nl,3),n3,round(nd,3),n6)

265 colnames (tabela) <- c("Test 1"," result”, "Test 2", "result™)
266 outputitabela <- DT::renderDataTable({DT::datatable(tabela, options = list(dom = "t'))})
267

268 )

269 1

270

271 # Run the application
272 shinyapp(ui = ui, server = server)

Fig. 12. Server code for predicting Test 1 and Test 2.

Application Interface In Upload dataset it is possible to filter the data con-
sidering what is necessary to predict the value for Test 1 and Test 2. In Fig. 13
there is an example using a created dataset for an agricultural tire to explain
only this functionality.

- e _

Choose file
Browse... | exp.csv
Show entries Search: [370881]
Tire_ID Mold_Number ANSW ACS ARTICLE_DIAMETER
1 370881 2564 280 70 24
2 370881 2671 280 70 24
Showing 1 to 2 of 2 entries (filtered from 16 total entries) Previous. \j Next

Fig. 13. Upload dataset.

In this case there are five variables and “Search” is an input for what we
want to look for: for example, the tire identification number. The data have 15
different tires, where there are 2 tires that contain the number identification
370881 (lower left corner). Whoever wants to use the application for agricultural
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tires can filter for the tire number identification and its specification appears.
This will be necessary for predicting Test 1 and Test 2.

Making predictions was one of the aims for this study and by using the
developed application, the results for Test 1 and Test 2 can be predicted before
tire production (Fig. 14).

) C:/Users/Ana Antunes/Desktop/Universidade/ Tese/Tese/DADOS - Shiny - O X
http://127.0.0.1:4678 Open in Browser “%- Publish ~

~
Agricultural Tire Upload Dataset Prediciton

Variables
x5 Test1 Result Test 2 Result

0 -
1 516.654  Not Passed 1967.289  Not Passed

X6

0 >

Fig. 14. Making Predictions.

The chosen models for Test 1 and Test 2 use principal components that are
a linear combination of the initial variables and for this reason it is fundamental
to insert the 27 initial variables and the 4 qualitative variables. Therefore, when
the variable is quantitative the user has to introduce the value, and when it
is qualitative he has to select the pretended level. To make predictions, all the
variables have to be filled and after that the results appear when the button
“Go” is clicked. The application gives the results for Test 1, y1, and Test 2, ys.
In addition, the “Result” (Fig. 14) indicates if the tire passed the test. For the
production of agricultural tires it is necessary to consider legal norms and both
tests have a maximum that cannot be exceeded. When the result is greater than
the maximum, the tires do not pass the test, the specification has to be modified
and in “Result” appears “Not passed”. Otherwise, the agricultural tire passes
the test and in “Result” appears “Passed”.

4 Conclusion

The main goal was to apply multivariate analysis to variables related to tire
production and identify the influences on the two tires tests. In the exploratory
analysis it was possible to identify strong correlations between the quantitative
variables, including the response variables for each test. With the variance infla-
tion factor, it was possible to identify the existence of multicollinearity between
quantity variables and this could be a problem when applying linear regression.

Principal component analysis was used to eliminate multicollinearity effects
and to retain as much information as possible to apply to the models. For this
reason, it was decided to use the 27 principal components and it was difficult to
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understand the meaning of each principal component considering the loadings’
values.

Multiple linear regression was used to identify the significant variables to im-
prove the agricultural tire production. This was also difficult to identify because
we considered the 27 principal components and the qualitative variables. One of
the objectives of this study was to find a multiple linear regression for the two
tests. For the selection of variables we used Stepwise methods and the choice of
the model to be considered was made taking into account the AIC value.

After obtaining the models for the two tests, an application was developed
in Shiny in order to quickly and efficiently determine the test results for future
agricultural tires. By using the application it is possible to reduce the quan-
tity of materials and resources as there is an increase in efficiency and profits
since this application can predict the performance of the tire before starting its
production. In addition, reducing the industrialization time is also an advan-
tage, because some specifications can be canceled before the production phase.
It also helps to preserve the environment by reducing the destruction of tires
with bad performances. Therefore, this application helps the users to select the
best specification for the agricultural tire, thus generating more security in the
specification to be used and enabling a reduction of errors by the research and
development department.
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