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1. Introduction 

The combination of high quality products at low cost has been a critical issue for manufacturers to remain currently 
competitive in global markets. Companies use a variety of methodologies (sampling inspection, 100% inspection, re-
inspection, control charts ...) that allows them to achieve the desired quality levels at competitive costs. Such 
methodologies focus on operations where there is a greater probability of occurrence of failures or its impact is more 
significant. In this way, an integrated approach to the quality of the manufacturing system is not done, resulting in a 
misuse of human, financial and material resources and increased quality costs. This situation is more relevant with the 
increasing rate of introduction of new products in companies [1].  

Manufacturing systems are generally composed of several workstations (WS) or stages, in which raw materials 
pass through various operations and are transformed into finished products. This type of systems is called multi-station 
(or multi-stage) manufacturing systems (MMS) [2]. In MMS, each WS will produce a proportion of defective items 
[3]. To economically maintain the product quality level is a critical issue for the MMS, in which each station may 
inevitably shift to the out-of-control condition resulting in higher nonconforming rate and larger quality loss [4, 5]. 

Quality planning should establish the quality control plan (QCP) of the MMS to achieve the desired quality level 
for the final product. This plan sets out the critical quality variables, the location of quality control stations (QCS) in 
the MMS, and the control method at each QCS. After defining the QCP, some control parameters may be changed, 
for example, defining different control limits to change the probability of getting false warnings. This second level of 
analysis is not part of this study, but several studies deal in depth with this subject [6, 7]. 

The implementation of the QCP results in quality costs (appraisal and failure costs) that can be bigger than ideal. 
Greater process control can result in a reduction of failure costs but also an increase in appraisal costs, while reducing 
the control can result in a reduction of appraisal costs but also an increase of failure costs. Several studies deal with 
this subject using, fundamentally, dynamic programming models [6, 8], non-linear programming models [9], or Monte 
Carlo simulation methods [10, 11].  

The importance of QCP as an element of management of MMS is recognized by academics and industrial 
engineers, however the poor practical application of the theoretical models can be difficult [12]. These models are 
complex, given the characteristics of the MMS, the high number of parameters/variables and the depth level of the 
models. The literature presents several barriers-difficulties [13, 14] for this situation of which are highlighted: lack of 
knowledge/information of how measure the high number of parameters/variables of the models, the ignorance of the 
benefits of a suitable QCP, the company culture which do not promote rigor and evaluation, the difficulty in identifying 
quality cost elements, and difficulty in collection of quality data.  

Considering technological developments and powerful data collection, processing and analysis, communication, 
and decision support systems available in industry 4.0 era, some of these barriers may be mitigated or eliminated. 
Assuming that the industry 4.0 context provides more data on process parameters/variables, these data can used in 
real time to establish the appropriate QCP, that minimize quality costs.  

The purpose of this paper is to provide a stochastic dynamic programming (SDP) model for designing the QCP in 
a MMS, which allows obtaining the desired quality level with the lowest cost.  The remaining of this paper is organized 
as follows. Section 2 presents the QCS allocation problem, the description of MMS and the quality control process 
decision of a WS. The introduction to SDP is presented in Section 3. The proposed model, with its assumptions and 
dynamic programming formulation for the QCP, is presented in Section 4. The last two sections present an illustrative 
example and conclusions. 

2. Problem statement 

2.1. Quality Control Station Allocation Problem 

The allocation of QCS in MMS has been studied extensively over the decades. Shetwan et al. [6] present a review 
the existing approaches, models comparison and solution techniques applied in allocation of QCS. 

The problem when designing the QCP for a new product is to know in which WS to implement quality control, 
what or which quality characteristics to control, and what type inspection / control should be implemented. As extreme 
QCP, we can have: no QCS in the whole process, or else; for each workstation WSn (n = 1, 2, ..., N) implement a QCSn 
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control station (Fig. 1). For QCP, the cost of quality can be estimated. Practice has shown that the best solutions are 
between these two extremes. The procedure of making decisions of whether or not to inspect a product at every 
processing workstation is shown schematically in Fig. 2.  
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Fig. 1. Multi-station manufacturing system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Quality control process decision of workstation n 
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nonconforming product rate d0, and in WSn nonconforming product rate is dn. Each QCS can be assigned to 
perform inspections of critical quality variables, influenced by one or more upstream WS. 

• QCS can determine conforming and non-conforming items. Conforming items are sent to the next stage and non-
conforming items may be repaired or replaced by a conforming item and sent to the next stage. 

• For WSn, different values of dn correspond to different quality levels outputs ( )O
nQL . Typical values for QLn are: 

99% or 95% which corresponds to the nonconforming product rate, dn of 1% or 5%, respectively. 
• Every WSn is either in-control or out-of-control due to the equipment condition and the operating environment. The 

out-of-control condition has a higher nonconforming product rate [4] and, therefore, higher quality cost. 
• To reduce the quality loss of MMS, different decisions regarding control mechanisms in each WSn can be made. 

For example, the output of WSn may have no control, sampling control using control charts, or 100% inspection. 
Different control decisions result in different levels of product quality and have different quality costs. 

In production lines, decisions are made among alternative inspection strategies for any possible QCS, sometimes 
depending on each other. To find out the cheapest QCP of a MMS this study proposes to use the SDP method [15]. 

3. Stochastic dynamic programming 

Dynamic programming is a mathematical optimization [16] and has found applications in numerous fields, from 
aerospace engineering to economics. It refers to simplifying a complicated problem by breaking it down into simpler 
sub-problems in a recursive manner. The problem presented in this work regarding the MMS can be divided in 
decisions made at each QCS. Each decision will influence quality costs and output product quality levels, but it is also 
influenced by received quality level. So, the problem can be divided into smaller overlapping sub-problems and an 
optimum solution can be achieved by using an optimum solution of smaller sub-problems and memorization. 

In SDP the state at the next stage is not completely determined by the state and policy decision at the current stage. 
There is a probability distribution for what the next stage will be, which is completely determined by the state and the 
policy decision at the current stage. The resulting basic structure for SDP is described in Fig. 3. 

Given the state sn and decision xn at stage n, the system goes to state i with probability , nn x
ip (i =1, 2, …, S). If the 

system goes to state i, , nn x
iC is the contribution of stage n with policy decision xn to the objective function (S – denote 

the number of possible states at stage n+1 and label these states on the right side as 1, 2, …, S). When Figure 3 is 
expanded to include all the possible states and decisions at all the stages, it is sometimes referred to as a decision tree. 
If the decision free is not too large, it provides a useful way of summarizing the various possibilities. Because of the 
stochastic structure, the relationship between ( , )n n nf s x and *

1 1( )n nf s+ + is complicated, the precise form of this 
relationship will depend upon the form of the overall objective function. 

 

 

 

 

 

 

Fig. 3. Basic structure for stochastic dynamic programming 
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*
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S
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k

f s x p C f k+
=

 = +   with *
1 1 1( ) min ( , )n n nf k f k x+ + += where this minimization is taken over the feasible 

values of xn+1. 

4. Model formulation 

4.1. Assumptions  

1. For WSn (n=1, 2,…, N) the quality level output O
nQL will be equal to its quality level input I

nQL (with a 
probability p) or reduced one level, 1O I

n nQL QL= −  (with a probability q=1-p). In these conditions, for an MMS 
with N workstation there are N+1 admissible quality levels (states). 

2. After WSn can be placed a QCSn, as shown in Fig. 1. In each QCSn one of three alternative decisions can be 
made: 

a. do not do any quality control (xn = 0). In practice, there will be no QCS and, consequently, the control 
costs will be zero; 

b. to do a sample inspection using control charts (xn = 1), and incurring control costs; 
c. perform 100% inspection of the items produced in WSn (xn = 2), and incurring control costs. 

3. With policy decision xn = 0, the output quality of WSn  is identical to the quality of input of WSn+1 1( )O I
n nQL QL +=  

4. Adopting policy decision xn = 1, two situations may occur with a known probability distribution: 
a.  O

nQL is identical to 1
I
nQL + in case the operation performed in the WSn is under control (stable). The 

probability of this result is given by the probability that the operation is not under control (the  error is 
considered negligible);  

b. 1
I
nQL + improves one level compared to O

nQL if WSn is out of control. Under these circumstances a 100% 
inspection will be performed on the last items produced in WSn. 

5. The policy decision xn=2 will also allow two distinct situations with a known probability distribution:  
a. 1

I
nQL + passes to the maximum quality level (MQL) considered in this study; 

b. 1
I
nQL + passes to the quality level immediately below MQL, e.g. due to inspection errors in QCSn. 

6. At the end of the MMS, each level of quality of the final product will have an associated cost (related with 
potential of external failures), represented by vector F0. 

4.2. Dynamic programming formulation for the quality control plan 

Based on the assumptions presented in subsection 4.1 and the generic SDP model presented in section 3, the SDP 
formulation for the problem of QCS allocation in MMS is modelled by the following elements: 

• Stage n: QCS in a MMS (n=1, 2, 3, ..., N); 
• Policy decision xn: type of control for stage n (no control (xn=0); SPC (xn=1); 100% inspection (xn=2)) 
• State sn: Quality Level at beginning of stage n (sn ={1, 2, …N+1}). 
• ( , )n n n nf f s x= : minimum expected cost eared from the stages n, ... , N, given the state in stage n is sn and a decision 

xn is made in stage n; 
• * ( )n nf s : minimum total expected cost for stages n, ... , N, given the state in stage n is sn; 
• * ( )n nx s : optimal decision in stage n, given that the state in stage n is sn. 

Policy decision: No control (xn=0) 

In Fig. 4 it is shown, for the policy decision xn = 0, all possible transitions between states i and j, of stage n, Ɐijk S. 
The matrix Pn represents the probabilities of the WSn to maintain the quality level of its input ( )I O

n nQL QL= or degrade 
quality of the output relative to the quality of the input to the level immediately below ( 1)O I

n nQL QL= − . We consider 
that this matrix does not change with the different policy decisions that can be taken for stage n. With this policy 
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decision, since no control action is considered for the WSn output, 1
O I
n nQL QL += (n=1, 2, …N). The matrix C0n presents 

the contributions of stage n to xn=0 (quality costs associated with every possible transition between states). In this 
particular case, the appraisal costs in stage n are null.  
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Fig. 4. Graph of the possible transitions between states i, j and k of stage n for a policy decision xn=0 

Policy decision: SPC control (xn=1) 

Fig. 5 shows, for policy decision xn=1, the possible transitions between states i and j of stage n, Ɐij S. The matrix 
Pn represents the probabilities of maintaining or changing among quality levels. The matrix Z1n represents the 
probabilities of maintaining or changing among quality levels due to the quality policy (SPC) and the matrix C1n 
represents the contributions of stage n (SPC costs). By combining the admissible transitions for the WSn with the 
allowable transitions for the CSn (Fig. 5-a) we obtain the graph represented on Fig. 5-b. 
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Fig. 5. Graph of the possible transitions between states i, j and k of stage n for the policy decision xn=1 

The transition probabilities of 1
nR are given by 1 1 1n n n n n

ii ii ii ij jir p z p z= + ; 1 1n n n
ij ij jjr p z= ; 1 1n n n

ji jj jir p z= ; 1 1 1n n n n n
jj jj jj jk kjr p z p z= + . 

Policy decision: 100% Inspection (xn=2) 

For policy decision xn=2, all the possible transitions between states i, j and k of stage n, Ɐijk  S are represented in 
Fig. 6, taking into account the possibilities of transitions referred in section 4.1. 
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Fig. 6. Graph of the possible transitions between states i, j and k of stage n for the policy decision xn=2 

5. Illustrative example 

To illustrate the practical application of the proposed SDP model, let us consider an MMS under conditions 
described in section 4, with N=3 and S=4. Thus, the SDP model has 3 stages (n ={1, 2, 3}), 3 policy decisions (xn ={0, 
1, 2}) and 4 states (S={QL1, QL2, QL3, QL4}). In order to limit state space, it is assumed that the state QL1 holds all 
states ≥ QL1 and state QL4, all states ≤ QL4. Without loss of generality, let us also consider that S={≥99, ]99, 95], ]95, 
09], ≤90},  0 0 100 1000 10000TF =  and that for each xn, 𝑅𝑅1

𝑥𝑥𝑛𝑛 = 𝑅𝑅2
𝑥𝑥𝑛𝑛 = 𝑅𝑅3

𝑥𝑥𝑛𝑛  and 𝐶𝐶1
𝑥𝑥𝑛𝑛 = 𝐶𝐶2
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1
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Solving the example using the SDP method [16] we obtain the optimal solution of the problem i.e., the policy 
decision to be made at each stage n, knowing the state sn (state at the beginning of stage n). For example, if the quality 
level of the WS1 input is QL2 then the optimal QCP is as follows: 

 

Stage n 1 2 3 
State sn at the beginning of stage n QL2 QL2 QL3 QL1 QL2 QL3 
Policy decision xn 1 1 2 0 1 2 
Cost of optimal QCP 254,4 

6. Conclusion 

Modern MMS requires significantly larger number of inspections to be considered. The inspection allocation 
problem has been studied using several analytical optimization and simulations methods. Although a number of 
methods are available to address this problem, there is still a considerable gap between theoretical methods and their 
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practical application. The focus of this work is related to reducing this gap because we consider that obtaining a good 
QCP for a MMS is a key element in achieving the desired quality level with the lowest control cost.  

The proposed approach makes it possible to obtain the QCP of an MMS using an SDP model. As shown by the 
example the approach is simple to understand and to implement. Some obstacles to its implementation may arise from 
the difficulty of obtaining the inputs of the model. Here we suggest the use of other studies to obtain the probabilities 
of transition and inspection costs in each operation, as well as the use of estimations made by operators and experts 
deep knowledge of the MMS under analysis 
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