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Abstract 
Nowadays, antimicrobial textile has been widely applied in several sectors, including hospitals 

and healthcare centres, food industry, clothing industry and in domestic environment. 

Antimicrobial textiles are particularly used in active patches and dressings for wound healing, 

infection prevention and control (IPC) articles, deodorization and anti-fungi clothing, among 

other applications. This chapter reviews the characterization, standard testing methods as well 

as existing regulations in Europe and the United States for antimicrobial textiles. Antimicrobial 

textiles were characterized based on their application area. A summary of the efficacy testing 

standards on antimicrobial textiles was presented and critically discussed. Safety evaluation, 

comprising the risk assessment was also introduced. The increasing use of antimicrobial textiles 

is in need of further development of regulations and international testing standards for safety 

and efficacy evaluation in vitro including preclinical testing if applicable. Moreover, particular 

attention was given to the development of durability test standards. 
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1 Introduction 
 

Nowadays, antimicrobial textile has been widely applied in several sectors, including hospitals 

and healthcare centres, food industry, clothing industry and in domestic environment (Espitia 

et al., 2012; Li et al., 2006; Page et al., 2009). The function of antimicrobial treatment may 

differ in diverse areas (Kramer et al., 2006). Generally, when antimicrobial agents are 

incorporated into a textile substrate, two purposes are intended. One, to protect the textile itself 

against bio-deterioration from microbial corrosion for longevity; the other one, which 

represents most of the cases, to provide new properties to protect humans and animals in the 

name of public health as antimicrobial textiles, and odour control (Gutarowska and Michalski, 

2012; Yuan and Cranston, 2008).  

In the critical nosocomial environment, surgical suture has been already incorporated with 

antimicrobial agents, namely triclosan, as a commercial available product decreasing 

postoperative wound complications (i.e. excessive inflammatory response) (Rasic et al., 2011). 

In the surgical practice, there are studies about incorporation of antimicrobial agents in articles 

such as surgical drapes, scrubs, masks, to reduce surgical site infections (SSI) (Li et al., 2006; 

Rozman et al., 2017). In addition, antimicrobial textiles have been extensively applied in wound 

dressing, reducing wound infection due to bacteria colonisation and thereby stimulating healing 

process (Silver et al., 2007; Simões et al., 2018). Numerous wound dressing products containing 

silver ions or silver nanoparticles (AgNPs) can be readily found in the market (Thomas and 

McCubbin, 2003). It is important to denote that healthcare textiles play a sizable role in the 

acquisition and transmission of healthcare-associated pathogens (Mitchell et al., 2015). 

Logically, there is no doubt that antimicrobial textiles can help prevent healthcare-associated 

infections (HCAIs) (Borkow and Gabbay, 2008). As an example, healthcare workers (HCWs) 

uniforms, patients bedsheets, privacy curtains etc. are also gradually being functionalized with 

antimicrobial compounds (Han and Yang, 2005; Schweizer et al., 2015). In the clothing 



industry, antimicrobial textiles are mostly applied for deodorization and anti-fungi action 

(Akira, 1995; Islam et al., 2012). Therefore, they are often found in sport clothes, socks, shoe 

lining, underwear etc.  

Antimicrobial textiles are often achieved by adding antimicrobial agents/substances on textile 

substrates by various chemical or physical means (i.e. build in, after-treatment, or grafting) 

(Liao et al., 2019). The term “antimicrobial” refers to microorganism repellent or reduction of 

microorganism load on the textiles or its surroundings. Therefore, their efficacy is normally 

evaluated by the microorganism reduction through antimicrobial tests. In the development of 

antimicrobial textiles, generally efficacy of both antimicrobial agents and antimicrobial textiles 

as a whole are tested. Several international recognized standards organizations, such as 

European Committee for Normalization (CEN - Comité Européen de Normalisation in French), 

American Society for Testing and Materials (ASTM), International, and American Association 

of Textile Chemists and Colorists (AATCC), Association of Official Agricultural Chemists 

(AOAC), International Japanese Industrial Standards (JIS), International Organization for 

Standardization (ISO) have issued standards for the efficacy test of antimicrobial agents and 

antimicrobial textiles. This chapter encompasses the reviews of both test standards for 

antimicrobial agents and antimicrobial textiles following critical discussion. Most used testing 

standards available in the literature were also summarized and discussed. It is denoted that the 

use of different standards in the evaluation of the antimicrobial efficacy leads to incomparable 

results (Pinho et al., 2010). Also, inadequate selection of antimicrobial test method in vitro 

results in performance discrepancy for similar biocides and textiles (Anderson et al., 2017). 

Since most of the antimicrobial textiles applications are or may be in contact with human body, 

essential safety requirements are need (Seong et al., 1999). Generally, the biocompatibility, 

cytotoxicity, irritation potential, and sensitization are evaluated to fulfil the requirement in the 

regulation. This chapter also takes a look at the regulation side of antimicrobial textile labelling 

in Europe and the United States of America (USA). 

Overall, the chapter mainly answers the following questions regarding antimicrobial textiles:  

1) What are the available testing standards for the antimicrobial efficacy evaluation? 

2) What are the other tests required when considering the safe use of antimicrobial textiles? 

3) What is the current regulation for antimicrobial textiles in Europe and the USA? 

This chapter will guide the researchers and manufacturers selecting the appropriate testing 

methods for their products, ensure sufficient antimicrobial efficacy in situ, while fulfilling the 

regulatory compliance.  

 



2 Antimicrobial efficacy testing protocols for antimicrobial textiles  
 

2.1 Classification and characterization 

 

Before discussing the antimicrobial testing and regulation, it is important to clarify the category 

of antimicrobial textiles. As discussed in the introduction, antimicrobial textiles are defined as 

textiles functionalized with antimicrobials capable of microbial growth inhibition or/and 

biocide activity. A brief mention to microorganism repellent (anti-fouling) will be performed. 

However, the antimicrobial textiles targeting at protecting textile itself are not in the scope of 

this chapter. Such consideration is based on the claim made from the regulatory body (discussed 

elsewhere in the chapter). Based on their antimicrobial mechanisms of action, antimicrobial 

textiles can be divided into the following categories (Sjollema et al., 2018):  

i. Textile capable of control release of antimicrobials;  

ii. Textiles that kill adhering microorganisms directly by contact, without antimicrobial 

compound release (contact killing);  

iii. Textiles that prevent microbial adhesion (anti-fouling). 

The first two referred mechanisms are a proactive approach, being commonly applied in the 

clinical environment and clothing industry due to their ability to actively eliminate or inhibit 

the growth of microbes avoiding their proliferation. In the case of disposable textile products, 

there is no preference between these two mechanisms. However, in the case of reusable textile 

products, the release of antimicrobials from textile material is rather impractical due to the 

laundry process. Therefore, for reusable textile products, immobilization of antimicrobials is 

required. Anti-fouling textiles (category iii) act passively, repelling microorganisms from the 

textile surface through surface modifications, which is not the main focus of this chapter.  

The antimicrobial efficacy testing method in a large extent depends on their antimicrobial 

mechanisms of action and concentration. Furthermore, the regulation differs with the intended 

applications of antimicrobial textiles, as a brief example, wound dressings that will be applied 

in contact with damaged skin tissue possess different requirements than a textile that will 

contact with healthy skin. Thereby, the antimicrobial textile can be divided into three categories 

based on their field of application: 

a. Medical textiles 

b. Hospital textiles  

c. Clothing textiles  



Medical textiles (category a.), are medical devices that come in contact with class 1 sterile tissue 

or vascular system, class 2 mucous membranes or non-intact skin, and class 3 intact skin. 

Typical examples are surgical sutures, surgical drapes, surgical meshes in class 1, wound 

dressing in class 2, and surgical mask, surgical scrubs in class 3. 

Hospital textiles (category b.), comprise healthcare workers’ uniforms, bedlinens, privacy 

curtains in non-critical situations in clinical settings. 

Clothing textiles (category c.), normally refers to antimicrobial textiles application in the 

clothing industry, aiming to reduce the bio-deterioration, malodour, or fungi corrosion. They 

are commonly found in sportswear, underwear, socks, etc. 

 

2.2 Antimicrobial efficacy testing standards 

 

Antimicrobial textiles consist of active textiles which require efficacy tests of antimicrobial 

substances, fabric and their combination, are often required during their development. CEN, 

ASTM, AATCC, AOAC, ISO, Clinical and Laboratory Standards Institute (CLSI), the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST), and Organisation of 

Economic Co-operation and Development (OECD) are international recognized standard 

organizations providing different testing methods based on the intended application and context. 

Other national associations such as JIS and Canadian Standards Association (CSA) also 

stipulate relevant standards for antimicrobial efficacy tests.  

There are numerous variables affecting the antimicrobial efficacy in a testing procedure, namely: 

sample size, inoculum concentration, culture medium or buffer formulation (nutrients 

availability), and these factors vary according different test methods. It is hard to imagine a 

comparable result among all the available test methods (Deshpande et al., 2016; Pinho et al., 

2010). An adequate selection of testing methods plays an important role in leading to a 

successful application for the intended purpose. Many of the testing standards were noted to 

provide a “wet” condition (with a droplet of bacteria inoculum) in the tests, which is rather in 

favour of the antimicrobial efficacy of some antimicrobials (e.g. silver ions) (Liao et al., 2019). 

However, this method does not encompass all real life situations. Humidity, temperature, and 

organic load of the surroundings are critical factors affecting the antimicrobial efficacy of 

antimicrobial textiles.  

In this section, both antimicrobial efficacy testing standards for active substances and 

antimicrobial textiles are introduced.  

 



2.2.1 Testing standards for antimicrobial active substances 

 

Antimicrobial active substances, are chemicals with antimicrobial properties against various 

bacteria, fungi, mycobacterial spores, virus etc. The most commonly used active substances in 

antimicrobial textile application are metal-based antimicrobials composed of metal ions or 

metal nanoparticles (NPs), being the most common: silver, gold, copper, zinc oxide; polymer-

based antimicrobials such as chitosan, quaternary ammonium compounds (QACs); natural-

based antimicrobials, i.e. antimicrobial peptides (AMPs) etc. (Jain et al., 2014; Lemire et al., 

2013; Morais et al., 2016). 

The minimum inhibitory concentration (MIC) test can be used for an initial screening of the 

antimicrobial activity of the active substances (CLSI, 2017; CLSI, 2018a; Watanabe et al., 2019; 

I. Wiegand et al., 2008). There is a high probability that the followed methodology and 

inoculum concentration can significantly influence the result of MIC (Arikan, 2007). For 

biocidal activity assessment, minimum bactericidal concentration (MBC) or minimum 

fungicidal concentration (MFC) is often adopted (CLSI, 1999). Zone of inhibition (ZoI) (also 

known as Kirby−Bauer radial disc diffusion, agar disk diffusion test) is another commonly used 

screen method as a qualitative assessment of the antimicrobial susceptibility (against bacteria 

and fungi) with direct active substances liquid (also known as agar well diffusion method) or 

filter paper disk inoculated with active substances (CLSI, 2018b; CLSI, 2018c) . This method 

is simple to implement, inexpensive, relatively quick and the results are easily visualized 

(Barnard, 2019). However, it is accurately difficult to distinguish the effect between growth 

inhibition or microorganism killing. Therefore, additional tests should be performed. 

When it comes to the antimicrobial efficacy test, the active substances can also be treated as 

disinfectant. CEN Technical Committee (TC) 216 – Chemical disinfectants and antiseptics – 

provides test methods for antimicrobial efficacy evaluation of disinfectants. CEN classifies 

testing standards into 2 phases. Phase 1 refers to suspension tests, giving basic antimicrobial 

evaluation without organic load (bovine albumin fraction V are normally used in the test) for 

generalized use. Phase 2 consists of a 2 step assessment. Phase 2 step 1 is either suspension-

based or carrier-based tests providing options of clean and dirty conditions targeting a more 

specific sector (food, industrial, domestic, institutional areas, medical field, or veterinary areas). 

While Phase 2 step 2 is simulating the practical use of disinfectant and antiseptics in the 

proposed field, such as disinfectant for a hand rub (EN 1500:2013) or disinfectant used with 

mechanical action (EN 16615:2015). Phase 2 step 2 test methods tests the antimicrobial efficacy 



of active substances integrated in other forms. Table 1 below exhibits a summary of CEN 

testing standards appropriate for active substances testing.  

 
Table 1 Testing standards for active substances of antimicrobial textiles from CEN. 

STANDARD  PRINCIPLE  
TARGET 

MICROORGANISM  
APPLIED AREA 

EN 1040:2005 Phase 1 Bacteria  / 

EN 1275:2005 Phase 1 Fungi or yeast  / 

EN 14347:2005 Phase 1 Spores  / 

EN 1276:2019 Phase 2 step 1 Bacteria  
Food, industrial, domestic 

and institutional  

EN 13704:2018 Phase 2 step 1 Spores  
Food, industrial, domestic 

and institutional  

EN 13610:2002 Phase 2 step 1 Virus  
Food, industrial, domestic 

and institutional  

EN 1650:2019 Phase 2 step 1 Fungi or yeast 
Food, industrial, domestic 

and institutional  

EN 

13727:2012+A2:2015 
Phase 2 step 1 Bacteria  Medical 

EN 14348:2005 Phase 2 step 1 Mycobacteria 
Medical (including 

instrument disinfectants)  

EN 17126:2018 Phase 2, step 1 Spores Medical 

EN 

14476:2013+A2:2019  
Phase 2 step 1 Virus  Medical 

EN 13624:2013 Phase 2 step 1 Fungi or yeast Medical 

EN 1656:2019 Phase 2 step 1 Bacteria  Veterinary 

EN 14204:2012 Phase 2 step 1 Mycobacteria Veterinary 

EN 14675:2015 Phase 2 step 1 Virus  Veterinary 

EN 1657:2016 Phase 2, step 1 Fungi or yeast Veterinary 

EN 13623:2010 Phase 2 step 1 Legionella Aqueous systems 

 

2.2.2 Testing standards for antimicrobial textiles  

 

In CEN, (TC) 248 has the responsibility of standardization of textiles, textile products and 

textile components of products in the European Union. Minimum requirements for textiles 



products such as dimension stability, safety design, colour fastness, tensile properties, 

resistance to liquid depending on the final purpose of the textile products etc. are listed in the 

published standards under TC 248. However, in terms of other expected behaviours in a specific 

product, standardization may also be required by other CEN TC. For instance, TC 205 non-

active medical devices working on identifying, adopting, adapting or preparing standards 

supporting applicable European regulations for non-active medical devices such as surgical 

clothing and drapes (EN 13795-1:2019), medical face masks (EN 14683:2019+AC:2019), and 

wound dressing (EN 13726-1/2/3/4) etc. ISO TC 38 is in charge of standardization of textiles. 

However, antimicrobial property is an extra function added to existing textile products. 

Therefore, it is necessary to evaluate the fulfilment of the requirements of both the products 

and antimicrobial efficacy. It is worth to mention that, ASTM has published standard guide for 

the use of standard test methods and practices for evaluating antibacterial activity on textiles 

(ASTM E2922 – 15), which identifies some existing ASTM and other industry standard test 

methods applicable for testing the antibacterial performance on textiles and discusses options 

within each method that have been used to address specific end-use performance expectations 

(2015). There are principally two types of testing methods: qualitative and quantitative. The 

discussed testing methods are listed in Table 2 and 3.  

 
Table 2 Qualitative antimicrobial tests methods for antimicrobial textiles. 

Standard Code Standards/Methods 

AATCC TM 147:2004 

(accredited ISO/IEC 

17025) 

Antibacterial activity assessment of textile materials: parallel streak 

method. 

AATCC TM 90 
Antibacterial activity assessment of textile materials: agar plate 

method 

ASTM E2722 
Test method for using seeded-agar for the screening assessment of 

antimicrobial activity in fabric and air filter media 

JIS L 1902:2008 (Halo 

method) 
Testing for antibacterial activity and efficacy on textile products 

SNV 195920 
Examination of the antimicrobial effect of impregnated textiles by 

the agar diffusion test 

*Swiss Association for Standardization (SNV). 



Table 3 Quantitative antimicrobial tests methods for antimicrobial textiles. 

Standard Code Standards/Methods 

AATCC TM 

100:2004 
Antibacterial finishes on fabrics, evaluation of. (accredited ISO/IEC 17025) 

ASTM E2149-13a 
Test method for determining the antimicrobial activity of antimicrobial 

agents under dynamic contact conditions 

ASTM E2180 
Test method for determining the activity of incorporated antimicrobial 

agent(s) in polymeric or hydrophobic materials 

ISO 20743 
Textiles - determination of antibacterial activity of antibacterial finished 

products 

ISO 22196 Plastics - measurement of antibacterial activity on plastics surfaces 

JIS Z 2801:2000 Antimicrobial products - test for antimicrobial activity and efficacy 

IBRG* 

TEX13/005/1.0 
Quantitative method for evaluating bactericidal 

*International Biodeterioration Research Group (IBRG). 

 

The above-mentioned testing methods were well discussed in ASTM E 2922 – 15, therefore, to 

avoid repetition, only the remaining are presently further discussed. 

 

Qualitative antimicrobial testing methods 
ZoI, previously mentioned, was not only used for active substances testing, but also applied for 

testing fully developed antimicrobial textiles (Hudzicki, 2009). It is one of the most frequently 

used qualitative (or semi-quantitative in specific situations) method for the first step screen of 

antimicrobial activity of antimicrobial textiles. In fact, many aforementioned methods such as 

AATCC TM 147:2004, AATCC TM 90, SNV 195920, and JIS L1902 incorporated the 

principle of ZoI. AATCC TM 30-2004 (Antifungal activity, assessment on textile materials: 

Mildew and rot resistance of textiles) is similar test method but used to test against fungi. 

AATCC TM 174 Part I adapting from AATCC TM 147 against bacteria and Part III adapting 

from AATCC TM 30 against fungi is another test method based on ZoI. ISO 20645:2004 

Textile fabrics — Determination of antibacterial activity — Agar diffusion plate test is another 

example. ZoI-based standards are easy to operate when the specimen is flat (without crimping). 

However, ZoI-based test standards require that antimicrobial active substances are able to 

diffuse from the textile substrate into the agar, which means that it is not suitable for 

immobilized antimicrobial substances. Also, it detects only grow inhibition but not biocidal 



effect. Finally, it should be highlighted that this method is not appropriate for active substances 

that react with the agar or culture medium ingredients.  

 

Quantitative antimicrobial testing methods 
The OECD has published in its series on biocides and testing and assessment a guideline 

document for quantitative method for evaluation antimicrobial activity of porous and non-

porous materials (Ashworth et al., 2014). Porous materials are often referring to textile 

materials. The guideline details the requirements for test methodology, comprising the 

description of test bacteria, preparation of test materials, preparation of the test inoculum, 

inoculation of test materials, incubation, recovery of bacteria from the test samples and 

measurement of colony forming units (CFU), results and test report layout (OECD, 2014). 

Therefore, this chapter will solely refer its establishment and highlight the adequacy of this 

guideline than preforming its copy. In addition, the OECD member countries are encouraged 

to perform the test methods described in the guideline documents for evaluation of 

antimicrobial activity of materials.  

Besides the quantitative methods mentioned in the guideline ASTM 2922-15, another test 

standard ASTM E3160 entitled: quantitative evaluation of the antibacterial properties of porous 

antibacterial treated articles was developed in 2018 (ASTM, 2018). This new test standard is 

able to determine both bactericidal and bacteriostatic activity. 

Besides all the antimicrobial efficacy tests against planktonic microorganisms, it is also of great 

interest of antimicrobial textiles the ability to act against sessile bacteria (biofilm). Biofilm 

comprises accretions of microorganisms enclosed in a self-produced matrix of extracellular 

polymers attached on a surface, representing a robust mode of microbial growth (Hall-Stoodley 

et al., 2004). Increasingly more evidences show the correlation between the existence of biofilm 

and HCAIs, especially in wound infection (Black and Costerton, 2010; Percival et al., 2015). It 

is thereby of great importance for antimicrobial textiles to evaluate their antimicrobial efficacy 

against biofilm. The assessment of biofilm presence and growth in a consistent way is highly 

challenging. Currently, there are five methods developed for biofilm testing with standard 

procedures to evaluate biofilm growth. The methods developed are presented in Figure 1 

(according to their publication dates) (ASTM International, 2013; ASTM International, 2017a; 

ASTM International, 2017b; ASTM International, 2017c; ASTM International, 2019).  



 
Figure 1. Test methods of antimicrobial efficacy against biofilms. 

 

The standard methods allow a consistent biofilm growth and ensure the repeatability and 

reproducibility of the test against biofilm. By modifying the test methods, researchers can study 

factors of interest (e.g. testing surface) (Harrison et al., 2009; Pérez-Díaz et al., 2016). However, 

the test methods involving continuous flow system required expensive lab techniques, more 

complicated to executed unlike the assays with static biofilm systems (Merritt et al., 2011).  

Table 4 depicts antimicrobial efficacy testing method for antimicrobial textiles in literature 

studies. It is noticed that the most often used testing methods are ZoI based protocols, static 

contact-killing test (AATCC TM100 and JISL 2801) and dynamic contact-killing test (ASTM 

E 2149). 

 

ASTM E 
2196 Rotating disk reactor (medium shear and continuous flow) 

ASTM E 
2562

Center for disease control (CDC) biofilm reactor (low shear and 
continuous flow) 

ASTM E 
2647 Drip flow biofilm reactor (low shear and continuous flow) 

ASTM E 
2799

Minimum biofilm eradication concentration (MBEC) (against 
Pseudomonas aeruginosa biofilm)

ASTM 
2871 CDC Biofilm reactor (using the single tube method) 



Table 4 Antimicrobial efficacy test methods in literature studies, describing textile substrate (TS), antimicrobial substances (AMS), and coating 

methods (CM) investigated. 

Testing methods Textile substrate 
Antimicrobial 

substances 
Coating methods 

Application 

areas 
Reference 

MIC (AMS) 

AATCC TM 100 

(AMT) 

Spun-bond polypropylene 

(PP) (outer layer of 

N95mask) 

Nanoparticles (containing 

silver nitrate and titanium 

dioxide) 

Mathis 2-Roll Type HF-350 textile 

finishing machine (Padding 

machine) 

Surgical masks (Li et al., 2006)  

AATCC TM 100 Melt-blown PP nonwovens 
Gemini surfactant (GS) 

compounds: GS-12-6-12 

Applying a set of porous biocidal 

structures (SPBS) to the melt-blown 

nonwovens 

Respiratory 

protective 

devices (RPDs) 

(Majchrzycka 

et al., 2017)  

AATCC TM 100;  

EN ISO 20743:2007 
Cotton fibres 

Silver nanoparticles 

(AgNPs) 

Sol-gel coating with a reactive 

organic-inorganic binder 
N.S. 

(Tomšič et al., 

2008)  

AATCC TM 100 
50 % Polyester (PET) / 

50 %cotton fabric 

Silane quaternary 

ammonium compounds 

(Si-QAC) 

Create covalent bonding form in the 

finishing process of the fabric 

HCWs 

uniforms 

(Rozman et al., 

2017) 

Modified AATCC 

TM 100 
Cotton fabric 

Monomer 3-(4 –

vinylbenzyl)-5,5-

dimethylhydantoin 

(VBDMH) 

Admicellar polymerization using a 

cationic surfactant 
N.S. 

(Ren et al., 

2008) 

Modified AATCC 

TM 100 
Wool/acrylic blended yarns 

Rose Bengal (RB) 

photosensitizer 
Specified dyeing process  

Limited use-

garments in 

hospital 

(Chen et al., 

2019) 



Modified AATCC 

TM 100 

Poly(methyl methacrylate-

co-methacrylic acid) 

polymer composite 

nanofibers doped with 

montmorillonite (MMT) 

Cationic photosensitizer 

methylene blue (MB) 

Immersion in MB for six days 

following desorption equilibrium 

with phosphate-buffered 

saline solution for around three days 

N.S. 
(Wang et al., 

2018) 

Modified AATCC 

TM 100 

Para-aramide and PET 

fabric  
Copper (II) 

Copper coating after poly-pyrrole 

(PPy) coating 

Hospital 

textiles  

(Irene et al., 

2016) 

Modified JISL 2801 
100 % PET plain weave 

fabric 
PPy nanoparticles Ultrasound-assisted coating process N.S. 

(Sanchez 

(Ramirez et al., 

2019) 

Modified ASTM 

E2149-01 
Cotton fabric 

Silver nanoparticles 

(AgNPs) 

AgNPs deposition by immersion, 

coated with γ-methacryloxypropyl 

trimethoxysilane (MPS) 

N.S. 
(Kurajica et al., 

2012) 

ASTM E2149-01 

(Shaking-Flask 

Test) 

Cotton fabric Chitosan derivatives 

Using citric acid (CA) as the 

crosslinking agent (between the 

synthesized chitosan and cotton 

fabric) 

N.S. 
(Fu et al., 

2011) 

Modified ASTM e 

2149-01 

50 % PET/ 50 % cotton 

fabric 
Silver ions Immersion in a ceramic carrier N.S. 

(Condo et al., 

2015) 

JISL1902:2002 Viscose fabric 
Silver nanoparticles 

(AgNPs) 

Sol-gel process following dip 

coating method 
N.S. 

(Mahltig et al., 

2011) 

JIS L 1902: 2002 Alginate Ionic Ag and AgNPs Commercial available 
Wound 

dressing 

(Wiegand et al., 

2009) 



JIS L 1902: 2002 Cotton fabric 
β-cyclodextrin-antiseptic-

complex 

Covalent boding with a reactive 

anchor 

Wound 

dressing 

(Reddersen et 

al., 2016) 

Modified ZoI 

Modified ASTM 

E2149-01 

50 % PET / 50% cotton 

fabric 

Eugenol-loaded human 

serum albumin 

(HSA)/silk fibroin (SF) 

nanocapsules 

Crosslinking reaction using 

EDC/NHS system 

Wound 

dressing 

(Quartinello et 

al., 2019) 

FZ/T 73023-2006 

standard method 
Cotton fabric 

Silicone quaternary 

ammonium salt based 

nanocomposite 

(OQAS/(Ag/ZnO)) 

Immersion in the nanocomposite 

dispersion, following padding and 

drying process 

N.S. 
(Gao et al., 

2019) 

ZoI and growth-

inhibition assays 

(grow in liquid 

broth) 

Silk fibron AgNPs Dropping 
Wound 

dressing 

(Uttayarat et 

al., 2012) 

ZoI Cotton fabric  
Chitosan–silver 

hydrogels 
Padding–squeezing–drying method N.S. 

(Kozicki et al., 

2016) 

ZoI, long-term 

antimicrobial 

activity assessment 

 

Gelatin nanofiber mats Antibiotics 
Incorporation of antibiotics in the 

electrospinning process 

Wound 

dressing 

(Dhand et al., 

2017) 

ZoI Cotton fabric Chitosan 

Immersion in a blend of chitosan 

(CS), polyethylene glycol (PEG) and 

polyvinyl pyrolidone (PVP) 

Wound 

dressing 

(Anjum et al., 

2016) 



Tissue 

compatibility 

studies 

Wound healing 

studies 

overnight, padding, PVP coating 

outside, Freeze drying (-80) 

Bacterial growth 

was monitored 

under light 

microscope 

Bacterial cellulose 
Antimicrobial peptides 

(AMP) ε-poly-L-Lysine 
Carbodiimide chemistry 

Wound 

dressing 

(Fürsatz et al., 

2018) 

Preclinical tests 

with murine 

diabetic model 

Viscose/rayon Copper oxide particles 
PP fibres impregnated with 

Copper oxide particles 

Wound 

dressing 

(Borkow et al., 

2010) 

Note: GS-12-6-12 Hexamethylene-1,6-bis(N,N-dimethyl-N-dodecylammonium bromide); N.S. Not specified; MMA Methyl methacrylate; MAA Methacrylic 

acid; MAA1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide EDC/N-hydroxysuccinimide (NHS).



2.3 Safety test  

 

The antimicrobial textile market has increased considerably during the last decade mainly due 

to the advances in biomaterials and nanotechnology (Agnihotri and Dhiman, 2017). This fact 

raised several concerns about the safety of these materials, promoting the development of new 

procedures in biocompatibility tests (Morais et al., 2016). Biocompatibility is an extremely 

important element to ensure that the materials will not cause unwanted biological reactions 

when in contact with human/animal tissues and, consequently, induce the reaction of the host 

immune system (Shah and Dobrovolskaia, 2018). Several methods have been designed to 

determine local and systemic reactions that may present potential toxicological effect and 

objectively evaluate the biological safety of the products and ensure that there are no associated 

health risks (Williams, 2016). The use of antimicrobial materials may cause adverse effects 

owed to chemical and physical reactions associated with the properties of textile surface. 

Therefore, the biocompatibility tests may: i. indicate the chemical and physical interactions 

between the material and the eukaryotic biological tissue and also the eukaryotic biological 

response to these reactions; ii. pin point harmful components of the materials and avoid 

significant adverse effects; iii. establish the potential risk of the material may pose to the user 

(Gad, 2019). In addition, the biocompatibility tests should be performed in the final product 

and not just in the individual components. Even if the individual components do not present 

cytotoxicity, their interaction including any addition during the manufacturing process may 

result in unacceptable biocompatibility results (Tan et al., 2019). Processes like sterilization, 

washing, anodization/passivation and rising may also influence the biocompatibility. Therefore, 

the biocompatibility tests should be performed to the final product, after all the processes are 

adopted during the production (Escudero-Castellanos et al., 2016). 

After a brief explanation about pre-testing, the most common biocompatibility tests will be 

discussed in this section. They are mentioned as “the big three” and include cytotoxicity, 

irritation and sensitization testing. The evaluation of these three biological effects are 

mandatory on medical applications and strongly recommended in other antimicrobial textiles 

applications. However, there are numerous other tests to evaluate the biological effects of 

antimicrobial textiles namely systemic toxicity, genotoxicity, hemocompatibility and 

carcinogenicity (De Jong et al., 2020). The available standards for biocompatibility are 

recommended for the testing of medical devices but they are also applied for the testing of 

antimicrobial textiles in general (Hilgenberg et al., 2016). 

 



2.3.1 Pre-testing and risk assessment  

 

Currently, the biocompatibility testing demands a meticulous planning in order to obtain the 

required results within the shortest time span. The ISO 10993 presents a series of guidelines for 

the biological evaluation of materials to manage the risks of the products for human health and 

safety. The ISO 10993-1 standard (Biological evaluation of medical devices, Part 1: Evaluation 

and testing within a risk management process) was updated in 2018 and provides the pretesting 

considerations about how to plan the biocompatibility tests for materials depending on the 

contact site, contact time and host tissues particularities. It is presented a systematic approach 

to perform a biological evaluation, select the most appropriate methods and propose the risk 

assessment of a product. The standards ISO 10993-18:2020 (Biological evaluation of medical 

devices, Part 18: Chemical characterization of medical device materials within a risk 

management process) and ISO 10993-17:2020 (Biological evaluation of medical devices, Part 

19: Physico-chemical, morphological and topographical characterization of materials) display 

the guidelines for a complete chemical and material characterization to identify and quantify 

the leachable compounds released from the material and understand the basic mechanisms to 

assess the potential cytotoxicological risks. The initial characterization using chemical, physical, 

morphological and topographical methods provide relevant information for risk assessment and 

can support the biocompatibility testing in order to minimize the need for in vivo testing, due 

to its associated costs, time, and animal welfare risks (Brown, 2020; Qin, 2016; ISO, 2018; ISO 

2020a; ISO, 2020b). 

 

2.3.2 Cytotoxicity  

 

Cytotoxicity testing is a primary method for establishing the safety of a material. It allows an 

early assessment of the material destiny, determining if the material can continue further testing, 

or if it requires any modifications, or even, if the martial must be abandoned, all at the initial 

stages of development (Srivastava et al., 2018). The cytotoxicity evaluation of materials 

described in ISO 10993-5:2009 is based in in vitro tests and expresses the toxicological effect 

of the leachable compounds in the material after the incubation of cultured cells in contact with 

the material either directly or through diffusion (De Jong et al., 2020; ISO, 2009). Three 

different methodologies are presented: i. test on extract, ii. test by direct contact and iii. test by 

indirect contact. The first type is the most commonly used technique, where the material is 

immersed in a culture medium, and the fluid extracts are seeded with cells, and after an 



incubation period, the cytotoxicity is assessed. It is extremely useful for soluble substances and 

the results are consistent with the in vivo tests. The extraction solutions (polar and nonpolar) 

should simulate or exaggerate the final use situations to determine any potential toxicity 

(Przekora, 2019). The second method, the direct contact, is highly sensitive, able to detect weak 

cytotoxicity as the samples are directly deposited over cell cultures (Srivastava et al., 2018). As 

for the indirect method, the agar overlay assay, is suitable for material with large toxicity, 

comprising the use of a bulk filter (Li et al., 2015). ISO 10993-12:2012 also regulates the 

samples to test, the control samples (at least one negative and one positive, noncytotoxic or 

cytotoxic response, respectively) and the extraction methodology and preparation. This 

standard also includes a testing plan to guide the operators to the most appropriate test for the 

material to be evaluated (Przekora, 2019). These methods are designed to determine the 

biological response of mammalian cells in vitro using appropriate biological parameters and 

several cell lines are accessible for cytotoxicity testing. Nevertheless, the American Type 

Culture Collection (ATCC) methodology is preferred (De Jong et al., 2020). 

The cytotoxicity can be assessed by the evaluation of cell morphology, cell damage, cell growth 

or by measuring the cellular activity, via quantitative and qualitative methods. Quantitative 

methods include the tetrazolium salt assay (e.g., 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide (XTT), water-soluble tetrazolium salt (WST-1)), the colony 

formation cytotoxicity test, trypan blue, neutral red uptake and lactate dehydrogenase LDH 

assay. Qualitative analyses include direct contact, morphological grading of cytotoxicity of 

extracts. The combination of the LDH assay to indicate the membrane damage and a metabolic 

activity assay (e.g., tetrazolium salt) is frequently used (Liu et al., 2018; Iqbal and Keshavarz, 

2017; Sampaio et al., 2016).  

 

2.3.3 Irritation and sensitization potential 

 

Assessment of potential allergic reactions, namely irritation and sensitization, belongs to the 

basic set of toxicology tests of antimicrobial textiles. An irritation reaction occurs immediately 

after the first exposure and is a non-immunologic local inflammatory reaction caused by 

external stimuli. The sensitization reaction only takes place after repeated or prolonged 

exposure and is independent of the dose. A slight exposure may cause a severe or even possibly 

lethal toxic reaction, inducing vesiculation or necrosis, and may be systemic. These 

characteristics may hinder the perception of the toxic reaction (Park et al., 2018). ISO 10993-



10:2010 describes the in vitro, in silico and in vivo methods for the assessment of materials with 

regard to their potential to produce irritation and skin sensitization. It evaluates the possible 

contact hazards from chemicals released from textile materials that may produce irritation of 

the skin, mucosal and eye or skin sensitization. The initial in vitro methods are recommended 

for the initial screening prior to animal testing. Despite the numerous information extracted 

from in vitro testing results, an animal test is usually required prior to human testing (ISO, 

2010). According to ISO 10993-10, there are in vitro and in vivo methods available for irritation 

evaluation. However, the in vitro test for skin irritation has been validated just for neat 

chemicals. Therefore, antimicrobial textiles have to be tested using in vivo methods. The active 

and control samples are deposited directly in the skin of healthy rabbits and the appearance of 

each application site (redness and swelling) is evaluated in terms of erythema and eschar 

formation after 1, 24, 48, and 72 h. The skin irritation degree (from negligible to severe) of the 

material is determined by hematoxylin and eosin (H&E) stained images (Gu et al., 2018). After 

this, human studies can be carried out due to the discrepancies from animal and human skin 

irritation reactions. The human tests are only permitted if the material had no negative effects 

in previous animal tests (Hilgenberg et al., 2016; Qin, 2016). 

Sensitization testing, also presented in ISO 10993-10:2010, is based on in vivo tests to assess 

the ability of leachable compounds to prompt skin hazards. To help to investigate whether a 

material contains chemicals that cause antagonistic effects after repeated or prolonged exposure 

four methods are commonly used, namely: murine local lymph node assay (LLNA), Guinea pig 

assay, Guinea pig maximization test (GPMT) and closed-patch test (Buehler test) (ISO, 2010). 

The LLNA was the first alternative method to experience formal validation for skin 

sensitization hazard tests. It is a useful tool to measure the relative potency of skin sensitizing 

chemicals and presented extreme utility in terms of driving improvements in risk assessment, 

risk management and protection of human health (Basketter et al., 2017). The other models 

(Guinea pig assay, GPMT and Buehler test) are animal models with invaluable relevance to the 

study of allergic and toxicological reactivity. Guinea pig models are among the most frequently 

used methods. The GPMT is usually considered the most sensitive procedure to detect the 

capacity of a substance to induce contact hypersensitivity, and is among the best methods to 

extrapolate the results to humans and may also be used to elucidate dose-response relationships. 

However, due to the ethical issues and concerns about animal well-being, a multi-phase 

program is required to develop a non-animal method with regulatory acceptance to predict skin 

sensitization (Hoffmann et al., 2018; Modjtahedi et al., 2011). 

 



2.4 Durability test  

 

Durability of antimicrobial textiles refers to the desired physical durability and chemical 

stability over a specific time of use. It is especially important for reusable textiles, such as 

uniforms, bedlinen, privacy curtains, towels, etc. that still maintain sufficient antimicrobial 

efficacy after laundry (exposure to detergent and high temperature). Physical durability, namely 

resistance to tear, abrasion etc. is identical comparable requirements to other textile products. 

Giving as an example, CEN/TC 248 Working Group 16 Textiles in healthcare system issued 

the technical specification for textile products used for healthcare and social services facilities 

(Ref. No. CEN/TS 14237:2015) indicating characteristics, test method and minimum 

performance properties of textile products intended to be used after industrial laundering (CEN, 

2015). However, in this chapter, the durability of the antimicrobial textiles will focus on the 

antimicrobial efficacy performance.  

Many studies started paying attention to the durability of antimicrobial efficacy in the 

development of new antimicrobial textiles (Fu et al., 2011; Gao et al., 2019; Shahid-Ul-Islam 

and Butola, 2019). The durability study of antimicrobial textiles normally combines the 

simulation of the laundering process with an antimicrobial test. Existing standards/methods 

simulating home or industrial laundry process for textile products were implemented for 

reproducibility and consistency of the research work. 

AATCC has established monography of Standardization of hand laundering for fabrics and 

apparel and standardization of home laundry test conditions for test methods utilizing laundry 

procedures (such as AATCC TM 124, 135, 143, 150) in the technical manual. The guideline 

listed detailed parameter settings of type of machine, temperature, water level etc. of laundering, 

drying, and restoring. Also, “1993 AATCC Standard reference detergent and laundry detergents 

in general” and “2003 AATCC Standard reference liquid laundry detergent” were developed, 

listing the comparable reference detergent to powder and liquid laundry detergent in the market. 

However, the specimen size required in the monography is relatively large, which is not 

favourable for the testing of antimicrobial textiles which generally comprise small specimens. 

Therefore, accelerated washing procedure developed in AATCC test methods can be an 

alternative, AATCC TM 61 Colorfastness to laundering: accelerated, where five typical home 

laundering processes are recommended. This test method is similar to EN ISO 105-C06, 

Textiles - tests for colour fastness - Part C06: Colour fastness to domestic and commercial 

laundering (accredited from ISO 105-C06). Unfortunately, industrial laundering procedure is 



not covered in AATCC since TM 87-1965 Colorfastness to washing, industrial laundering: 

accelerated is discontinued. 
 ISO/TC 38/SC 2 Cleansing, finishing and water resistance tests cover the standards providing 

exacting laboratory settings of textile domestic and industrial laundry procedures under 

standardized conditions. ISO 6330, Textiles - domestic washing and drying procedures for 

textile testing and ISO 15797:2017 Textiles - industrial washing and finishing procedures for 

testing of workwear (labelling workwear to be industrially laundered) are the given examples. 

CEN has also adopted the ISO standards previously mentioned for domestic and industrial 

washing testing in the laboratory setting. Other national standards, such as CSA Z314. 10-03 

(selection use, maintenance and laundering or reusable textile wrappers, surgical gowns, and 

drapes for heal care facilities) and JIS L 1930 Textiles - domestic washing and drying 

procedures for textile testing can also be used as a reference laundry procedure.  

There is also a new developed protocol from ASTM E3162-18, Standard practice measuring 

the durability of antibacterial agents applied to textiles under simulated home laundering 

conditions, which can determine the durability of standard antimicrobial treatment on textiles 

undergoing multiple home laundering cycles (ASTM, 2018). Table 5 exhibits the durability 

tests of antimicrobial textiles performed in the literature. Notably, many studies developed their 

simulation of washing process in the study and some are even poorly described (Xing et al., 

2007). It is suggested using standard washing procedure while evaluating the durability of 

antimicrobial textiles in research, to ensure consistent and comparable result with the others. 

The standard washing process developed by AATCC, ISO etc. can in a large extent simulate 

the laundry process in reality (either domestic or industrial) with laboratory settings, which is 

supportive in understanding or predicting the performance of antimicrobial textiles in 

field/practice. 

 



Table 5 Durability tests of antimicrobial textiles in literature, summary of TS, AMS, CD, wash protocols and wash cycles. 

Antimicrobial 

test 

Textile 

substrate 

Antimicrobial 

substances 

Coating 

methods 

Wash protocol Wash cycles Application 

areas 

Ref. 

AATCC TM 100 

Cotton 

Woven 

Fabric  

Penicillium 

amestolkiae elv609 

extract 

Dyeing process  AATCC TM 147 30/50 
Wound 

dressing 

(Rozman et 

al., 2018) 

ISO 22196 (JIS 

2801) 

13 textile 

products in 

German 

market 

One AEGIS* coated, 

10 silver coated, and 

two untreated 

/ DIN EN ISO 6330 30/70/100/150/200 

Atopic 

dermatitis 

treatment 

(Srour et al., 

2019) 

ASTME2149-01 

Bleached 

woven 100% 

cotton fabric 

Hybrid ZnO NPs/ 

Chitosan 

Ultrasound-

assisted coating 

Simulation of 

hospital laundering 

regimes  

10 
Hospital 

textiles 

(Petkova et 

al., 2014) 

AATCC TM 100 
Viscose 

fabric 

Micro-needles of 

Cu2O 
In situ synthesis 

AATCC Technical 

Manuel for home 

laundry 

5 N.S. 
(Emam et 

al., 2017) 

MIC 

AATCC TM 147 

Cotton 

fabric 

Biogenic silver 

nanoparticles  

Immersion, 

padding 

Home developed 

wash cycle 
10 

In medical 

environment 

and agriculture 

clothing 

(Ballottin et 

al., 2017) 



GB/T 20944.3-

2008 (Shaking 

Flask Method) 

Woven, 

bleached, 

and scoured 

cotton fabric 

AgNPs  

Ag NPs grafted 

oxidized cotton 

fabric (Ag-

GOCF) by 

immersion 

AATCC TM 61-

1996 
10/30/50 N.S. 

(Zhang et 

al., 2013) 

Shaking Flask 

Method 

Cotton 

fabric  

Nanocrystalline 

TiO2 hydrosol 
Sol-gel synthesis GOST 9733.4-83 5 Biomedical  

(Galkina et 

al., 2014) 

Shaking Flask 

Method 

Desized and 

bleached 

polyester 

fabric 

TiO2 NPs 

Pre-treated with 

alginate and 

immersion 

Home developed 

wash cycle 
5 Garments 

(Mihailović 

et al., 2010) 

AATCC TM 100 
Cotton 

fabric  
AgNO3 

Sol-gel method 

aided by water 

glass with 

padding method 

Home developed 

wash cycle (Not 

well described) 

1/5/10/20/50 N.S. 
(Xing et al., 

2007) 

*AEGIS: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. 

N.S.: not specified 



3. Regulations for antimicrobial textiles 
 

This section of the chapter will mainly introduce the regulatory issue regarding antimicrobial 

textiles market, distribution, and applications in the EU and USA. It is worth mentioning that 

antimicrobial textiles have to  follow the regulation compliance as a basic requirement in their 

development. Requirements change depending on the claim of the products documented in the 

regulatory body. 

Antimicrobial textiles based on their final application purposes differs in the claim and labelling. 

In EU, antimicrobial textiles with the aim of protecting textiles or odour prevention are 

categorized as treated articles. While antimicrobial textiles with a primary biocidal function, 

especially with a public healthcare relevance are considered as biocidal products (i.e. 

antimicrobial textiles applied in hospitals for infection prevention and control) (ECHA, 2018). 

Both treated articles and biocidal products are covered by the rules and obligations issued by 

the Biocidal Product Regulation (BPR). However, a biocide product requires an extra step 

“authorisation” than treated articles before they can be placed in the EU market. The assessment 

of antimicrobial textiles whether as treated articles or biocidal products should be consulted by 

treated articles guideline “CA-Sept13-Doc.5.1.e (Rev.1)” (European Commission, 2014). 

When the antimicrobial textiles contain nanoparticles, specific requirements for nanomaterials 

are demanded. Those provision defined by BPR apply for active and non-active substances with 

the following characteristics (ECHA, 2020): 

 

• 50 % or more of the particles have a size between 1-100 nanometres in at least one 

dimension 

• Particles are in an unbound state or as an aggregate or agglomerate 

 

The active substances incorporated in antimicrobial textiles are considered as biocides. In the 

EU market, biocidal active substances can only be placed in the market with approval or under 

review since March, 1st 2017. The list of approved active substances supplier is enclosed in 

Article 95. Further biocidal products legislations can be consulted according to biocidal 

products directive (Directive 98/8/EC) or Regulation (EU) No 528/2012 of the European 

Parliament and of the Council (Council of the European Union, 2012).  

Additionally, manufacturers and importers of chemicals in the EU market are obliged to fulfil 

the regulatory framework from Registration, Evaluation, Authorisation and Restriction of 



Chemicals (REACH) for each substance (including nanomaterials) manufactured or imported 

in quantities of 1 tonne or higher per year per company (legal entity) (EPC, 2007). 

In the USA, Environmental Protection Agency (EPA) is responsible for antimicrobial textiles 

regulatory issues under the statutory authority of the Federal Insecticide, Fungicide, and 

Rodenticide Act (FIFRA). Office of Pesticide Programs (OPP) from EPA categorises 

antimicrobial textiles into two groups, treated articles and antimicrobial pesticides. Treated 

articles claim indicates that the antimicrobial incorporated into textile is intended to protect 

textile from microbial deterioration and thereby can be applied to “treated articles exemption" 

in 40 CFR 152.25(a) (Federal insecticide, fungicide, and rodenticide act, 2000). While the other 

antimicrobial textiles, categorized as antimicrobial pesticide products, follow the registration 

process together with risk assessment. Furthermore, antimicrobial pesticide products can be 

classified as either “public health” or “non-public health” claims. With public health claim, 

efficacy data to support their intended application must be submitted. Typical antimicrobial 

hospital textiles with intension of infection control and prevention are normally claimed for 

“public health”. Antimicrobial textiles with odour control is an example of antimicrobial 

pesticide with “non-public health” claim. However, in the case of microorganism repellent, 

which controls the microorganism by physical or mechanical actions, does not require EPA 

registration.  

Whereas, regulation becomes more stringent when the antimicrobial textiles are classified as 

medical devices, such as wound dressings, surgical masks, surgical drapes. For instance, wound 

dressings combined with drugs (also known as antimicrobial wound dressings) will be regulated 

as combination products and thereby applies to the rules by USA Food and Drug administration 

(FDA). The classification of medical devices (wound dressing in the application of 

antimicrobial textiles) are defined as Class I that are subject only to general controls; Class II 

subject to general and special controls; and Class III subject to premarket approval) based on 

their intended use, safety and risk (21 CFR 878.4015) (FDA, 2019). Wound dressing intended 

to accelerate the wound healing will be considered as Class III; while wound dressing with 

antimicrobial agents minimizing microbial growth are normally encompassed by Class II (FDA, 

2016). To comply with Class II requirements  performance standards test, postmarket 

surveillance, patient registries and/or development of guidelines, and reasonable assurance of 

safety and effectiveness may be required (FDA, 2009). 

It is noticed from the review of the regulation that the legislation of antimicrobial textiles is 

complex and expensive. Regulation can be more stringent when the antimicrobial textiles are 

classified as medical devices, such as wound dressings, surgical masks, surgical drapes. It is 



one of the reasons hampering the translation of advanced research of antimicrobial textiles 

downward to the market. However, thinking of the final products in the market, researchers 

may also take into account the regulation aspect in the development of new antimicrobial 

textiles, in cooperation with the industry and end users (hospital as an example).  

 

4. Conclusion 

 

The development of novel antimicrobial textiles has obtained great interest due to the growing 

need to maintain the longevity of textiles, control the odour, wound management, and infection 

prevention and control. Therefore, the increasing use of antimicrobial textiles is in need of 

further development of regulations and international testing standards for safety and efficacy 

evaluation, including preclinical testing if applicable. Reproducibility and simulation of field 

testing should be the focus of the newly developed testing standards. Tests performed in 

different facilities or with different method display different results. Also, there is a lack of 

consistency between the bench test (in vitro) and field study result. Antimicrobial textile 

performance discrepancy was often observed between the research stage and their application 

in situ. Especially in clinical application, the question of how to ensure the clinical success 

during the application of antimicrobial textiles still remains. Therefore, new in vitro testing 

methods should seek to predict the actual in situ performance of antimicrobial textiles. 

Furthermore, particular attention should be given to the development of durability test standards. 

In addition, relevant safety tests, namely cytotoxicity, irritation potential and sensitization 

should be evaluated during the development of antimicrobial textiles. Depending on the 

envisaged antimicrobial textiles claim, corresponding regulation should be considered and 

consulted to facilitate their final launch in the market. It should be denoted that the main reasons 

hindering the development of novel advanced antimicrobial textile are the lack of sufficient 

testing standards and the complex and expensive regulatory procedures. 

The application of antimicrobial textiles in clinical settings have an unquestionable potential to 

prevent and control nosocomial infections. However, there is still a lack of detailed studies 

describing if their applications may promote the development of multidrug-resistant organisms 

(MDROs). Finally, there is still a grievous insufficient development of novel antimicrobial 

textiles focused on anti-biofilm activity and virus, despite their recognized public health 

menacing nature. Hopefully, this will swiftly change in a near future.  
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