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ABSTRACT 

Currently, there is still a significant rate of implant failures in clinical practice. Current solutions 

would consist of the development of robust, biocompatible, biodegradable coatings with enhanced 

adhesive and bioactive properties. So, in this work the development of multifunctional coatings inspired 

by adhesive properties of mussels and the robust nacre structure were proposed. Based on the 

configuration of the 3,4-dihydroxy-L-phenylalanine (DOPA) amino-acid of the mussel’s adhesive proteins, 

catechol groups were conjugated to chitosan (CHT) and hyaluronic acid (HA). Layer-by-layer (LbL) 

assembly was used to mimic the nacre structure, where the organic phase consisted of both polymers 

and the inorganic phase of bioactive glass nanoparticles (BGNPs). In parallel, polymeric LbL coatings 

were constructed for the sake of comparison. 

The modified polymers were characterized by ultraviolet-visible (UV-Vis) spectroscopy. The 

construction of various LbL configurations was monitored by quartz crystal microbalance and the adhesive 

properties were evaluated by lap shear adhesive tests. The bioactivity and the in-vitro cell behaviour were 

analysed for the coatings with and without BGNPs. In-vitro tests were conducted using the cell line L929. 

Hydroxyapatite deposition was evaluated by scanning electron microscopy (SEM) coupled with energy 

dispersive X-ray spectroscopy (EDS) and X-ray powder diffraction (XRD). Since the structure and 

topography play an important role in the functional performance of the films, two LbL assembly methods, 

dip- and spin-coating, were compared using three different substrates: glass, stainless steel, and titanium. 

The coatings were characterized by SEM, Fourier transform infrared spectroscopy (FT-IR), atomic force 

microscopy (AFM) and water contact angle (WCA).  

Given the enhanced adhesion and bioactivity of the developed films, they could be used as coatings 

of a variety of implants. In addition, spin-coating was found to be a particularly suitable method for the 

build-up, since films with smoother and more uniform surfaces were produced. 
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RESUMO 

Atualmente, ainda há uma percentagem significativa de falhas dos implantes na prática clínica. 

Soluções atuais envolveriam o desenvolvimento de revestimentos robustos, biocompatíveis, 

biodegradáveis, com propriedades adesivas e bioativas melhoradas. Assim, neste trabalho foi proposto 

o desenvolvimento de revestimentos multifuncionais inspirados nas propriedades adesivas dos mexilhões 

e na estrutura robusta do nácar. Baseado na configuração do aminoácido 3,4-dihidroxi-L-fenilalanina 

(DOPA) das proteínas adesivas dos mexilhões, foram conjugados grupos catecóis ao quitosano (CHT) e 

ao ácido hialurónico (HA). A montagem camada-a-camada (LbL) foi utilizada para mimetizar a estrutura 

do nácar, onde a fase orgânica consistiu em ambos os polímeros e a fase inorgânica nas nanopartículas 

de vidro bioativas (BGNPs). Paralelamente, foram construídos revestimentos LbL poliméricos para fins 

de comparação.  

Os polímeros modificados foram caracterizados por espectroscopia ultravioleta-visível (UV-Vis). A 

construção das várias configurações LbL foi monitorizada através da microbalança de cristal de quartzo 

e as suas propriedades adesivas avaliadas através de testes adesivos sob tensão de corte. A bioatividade 

e o comportamento celular in-vitro foram analisados para os revestimentos com e sem BGNPs. Os testes 

in-vitro foram realizados usando a linha celular L929. A deposição de hidroxiapatita foi avaliada por 

microscopia eletrónica de varrimento (SEM) acoplada com espectroscopia de energia dispersiva de raios-

X (EDS) e por difração de raios-X (XRD). Uma vez que a estrutura e topografia apresentam um papel 

importante no desempenho funcional dos filmes, dois métodos de montagem LbL, revestimento por 

imersão e por rotação, foram comparados usando três substratos diferentes: vidro, aço inoxidável e 

titânio. Os revestimentos foram caracterizados por SEM, espectroscopia de infravermelho por 

transformada de Fourier (FT-IR), microscopia de força atómica (AFM) e ângulo de contacto da água 

(WCA).  

Dado à adesão e bioatividade melhoradas dos filmes desenvolvidos, estes poderiam ser utilizados 

como revestimentos para uma variedade de implantes. Além disso, verificou-se que o revestimento por 

rotação foi um método particularmente adequado para a construção, uma vez que foram produzidos 

filmes com superfícies mais lisas e uniformes. 
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1. CHAPTER 1 - GENERAL INTRODUCTION 

1.1 Motivation 

Although biomedical metals have been widely used in orthopaedic applications, few of these have 

reported good biocompatibility and successfully used in clinic [1,2]. In many cases, after their 

implantation in the host bone, fibrous encapsulation occurs on the implant surface [3,4]. Since supporting 

and fixation are the most common basic functions of the biomedical metals, other functions such as 

bioadhesiveness, bioactivity, biocompatibility are required [2]. Current trends in surface modifications on 

orthopaedic implants still have significant limitations and drawbacks. They generally exhibit poor 

robustness, low bioabsortion and metabolic rates, low adherence to substrate surface, poor tissue-

bonding properties, poor biomolecules loading efficiency, poor mechanical stability after implantation into 

bone defects, and most often present some cytotoxicity and trigger inflammatory reactions due to the 

release of degradation products or to the presence of proteins in their composition, among others [5–8]. 

 Currently, biomedical coatings research is focused on designing multifunctional nanostructured 

approaches to act as an interface between the material and the host tissue, being able to trigger several 

biologic processes, from the inflammatory reaction to the tissue remodelling [9,10]. Layer-by-layer (LbL) 

deposition approach has been proven to be an ideal method for the construction of such coatings, due 

to its simplicity and versatility in merging different functionalities from different materials into a single 

composite and its ability to produce films with nanoscale-controlled thickness [11–13]. 

Therefore, inspired by this new focus of biomedical coatings for orthopaedic applications, 

multifunctional LbL coatings containing natural polymers and nanoparticles were produced in the present 

work. In parallel, polymeric coatings were produced for the sake of comparison. Biopolymers such as 

chitosan (CHT) and hyaluronic acid (HA) have received much attention from researchers, due their 

numerous interesting properties as example biocompatibility, biodegradability, availability, processing, 

modification flexibilities, among others [14–16]. Its assembly in polyelectrolyte multilayer (PEM) systems 

onto a huge diversity of substrates has already been reported in literature [17–19]. Based on previous 

studies [20–23], both polysaccharides were used in this work with their further modification with catechol 

groups to improve the adhesive properties of LbL coatings [20–23]. Conjugation with catechol groups 

was inspired by the underwater adhesive properties of marine mussels, which are attributed to the ortho-

dihydroxyphenyl (catechol) moiety of amino-acid 3,4-dihydroxyphenyl-L-alanine (DOPA) present in the 
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mussel’s adhesive proteins (MAPs) [24–26]. Their strong adhesive properties to different substrates in 

wet environments make them potential bioadhesives for diverse applications [27,28]. So far, the previous 

works of our group [18,29], has only studied the modification of HA with catechol groups. They used it 

in combination with CHT to build multilayer coatings demonstrating a positive effect on their adhesive 

properties. Thus, we hypothesize that modification of both polysaccharides could further improve the 

adhesive ability of previously developed LbL coatings. Furthermore, based on the interesting 

osteoconductive properties of the bioactive glass nanoparticles (BGNPs) in the orthopaedic field [30–32], 

they were used in this work as an inorganic phase of the coatings. Due to their bioactive properties, they 

can bind to bone stimulating new tissue growth by the precipitation of a calcium phosphate (CaP) layer 

on their surface while dissolving over time [33,34]. The BGNPs inorganic phase was added to the organic 

phase of polysaccharides to develop multifunctional LbL coatings. Such strategy was inspired by the 

layered structure of nacre, which is present in the shell of some molluscs. This structure combines 

resistance to fracture provided by inorganic matrix of aragonite nanoplatelets and toughness conferred 

by organic matrix surrounding the inorganic materials [35,36]. However, it is important to highlight that 

unlike the nacre structure, in this study the content of inorganic phase was lower than the organic phase 

to develop flexible coatings. Previous studies have also been inspired by this strategy using the BGNPs in 

combination with CHT and HA biopolymers to develop biomimetic and coatings [29,37,38]. They already 

evidenced that, when BGNPs were in contact with simulated body fluid (SBF) solution, they induce the 

deposition of a CaP layer that would be identical to that produced when in contact with bone. 

Therefore, the present work will be focused on the production of nature-inspired multilayered 

coatings with enhanced biocompatibility and tissue adhesion properties, and with and without bioactivity 

properties. We hypothesized that the presence of catechol groups on both modified natural polymers 

could improve the implant-tissue adhesion, as well as the cellular response of distinct coated materials, 

which is extremely important for orthopaedic purposes [20]. In addition, it is also expected that the 

BGNPs-containing coatings will provide bioactive properties. So far, it will the first time that both CHT and 

HA modified polymers will be combined with BGNPs for LbL constructions. Thus, two multilayered 

strategies will be developed to cover a wide range of applications: the BGNPs-containing coatings 

(multifunctional coatings, Figure 1.1-a) could be used to promote bone-implant interaction, as an 

alternative option of bone cements; on the other hand, polymeric coatings (control coatings, Figure 1.1-

b) which could be used to improve the adhesion between distinct implants and other tissues where the 

bioactivity is not a requirement, as an alternative for synthetic tissue adhesives.  
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Figure 1.1 – a) BGNPs-containing coatings and b) Polymeric coatings for orthopaedic implants. Adapted from [39,40]. 

1.2 Implantable Orthopaedic Devices: Biocompatibility Issues 

Worldwide, orthopaedic implants are used routinely for fixation of long bone fractures and non-

unions, for correction and stabilization of spinal fractures and deformities, for replacement of arthritic 

joints, and for other orthopaedic and maxillofacial applications [7]. 

Around 70–80% of orthopaedic implants are made of metallic biomaterials. Metallic biomaterials 

are remarkably important for the reconstruction of failed tissue, specially failed hard tissue. The main 

purpose of these implants is to provide mechanical stabilization so that optimal alignment and function 

of bone can be maintained during physiologic loading of bones and joints, thus promoting healing and 

return of bone function [7,41]. 

Commercial metallic biomaterials used for orthopaedic implant manufacture are titanium (Ti) and 

its alloys, stainless steel 316L (SS) and cobalt-chromium (CoCr) alloys. Among these, Ti and its alloys are 

generally preferred owing to their high mechanical strength, low density, corrosion resistance, and 

superior biocompatibility [42,43]. On the other hand, SS has properties such as ductility and cyclic twist 

strength that are higher in comparison to Co–Cr and Ti alloys [42].  
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However, since the mechanical and biological aspects of bone healing are closely interrelated, it is 

not enough to focus solely on the mechanical properties and function of the implant [7]. For example, 

cementless joint replacements do not always osseointegrate with the surrounding bone, which may result 

in implant migration and loosening [44]. In fact, in the USA, there are approximately 600,000 cases of 

late union fractures and 100,000 non-union fractures each year [45]. Besides that, infections of 

orthopaedic fractures and reconstructive devices occur in approximately 5% of cases and total about 

100,000 cases per year in the USA alone, which is a substantial cause of morbidity and even mortality 

[46,47]. 

Therefore, despite the advantages of metallic biomaterials in the orthopaedic field, other 

biofunctionalities such as biological and mechanical biocompatibility must be achieved to improve the 

implant function and to mitigate potentially serious systemic side effects [7,42]. Through surface 

modifications, it is possible to enhance the osseointegration, osteoconductivity and bioactivity of 

orthopaedic devices as well as mitigate adverse events associated with the foreign body response or 

infection [7,42]. 

1.2.1 Inflammatory Response to Orthopaedic Implants 

Often, implantation of an orthopaedic device lead to host reactions including acute and chronic 

inflammation, granulation tissue development, foreign body reaction, and fibrosis/fibrous capsule 

development [3,4]. 

When an orthopaedic implant is used, wear and corrosion debris are generated, which are usually 

attributed to local inflammatory responses leading to aseptic failure and osteolysis [48,49]. Common 

types of corrosion debris formation have been found in metallic implants, such are pitting corrosion, 

crevice corrosion, fretting corrosion, fatigue and fatigue corrosion [41]. Moreover, bearing surfaces of 

joint replacements, and non-articulating implant surfaces that impinge or fret, for example screws in a 

plate for fracture fixation or spinal stabilization, have been identified as the main causes of formation of 

wear debris and other by-products [7]. 

Implant infections are potential dreaded complications that may necessitate further surgery and 

are considered a substantial cause of morbidity and even mortality [47]. The acute and chronic 

inflammation to orthopaedic implants has been characterized and occurs sequentially [7]. Acute 

inflammatory response is characterized by the release of cytokines, chemokines and pro-inflammatory 

molecules at the implant interface by polymorphonuclear leukocytes, macrophages, activated fibroblasts 

and other cells, disturbing normal homeostatic mechanisms [50–52]. Thus, if this process continues 
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without resolution, it results in chronic inflammation and osteolysis, compromising the long-term stability 

of the implant [7]. Chronic inflammation is characterized by the presence of mononuclear cells, i.e. 

monocytes and lymphocytes, at the implant site [53].  

Following the recovery of acute and chronic inflammatory responses, a formation of a granulation 

tissue at the implant interface occurs, composed by macrophages, fibroblasts and neovascularization of 

the new healing tissue [53]. This granulation tissue is the precursor to the fibrous capsule formation 

which is separated from the implant by one- to two-layer of cellular components belonging to the foreign 

body reaction, namely monocytes, macrophages, and foreign body giant cells [53]. 

Therefore, the research has focused on methods to stimulate the migration of osteoprogenitor cells 

to the implant site and to mitigate the systemic reaction of the foreign body [7,42]. 

1.3 Coatings for Orthopaedic Implants: Current Trends 

Supporting and fixation are the most common basic functions of the biomedical devices, being 

need other functions such as bioadhesiveness, bioactivity, biocompatibility and other like anticorrosion 

properties, anti-inflammation, anti-microbial and anti-tumour properties [2]. Thus, development of new 

functions on biomedical metals to enhance bone bonding between the metal implants and the host bone, 

besides stimulating the immature cells to differentiate into preosteoblasts, has a promising future [2]. 

The induction of the bone-like apatite layer in-vivo might be the key to increase bioactivity [2]. The 

hydroxyapatite layer formation on biomedical metal surfaces is a typical heterogeneous nucleation 

process that is influenced by the morphology and chemical composition of the surface [2]. For example, 

implant surfaces that provide active sites for bonding of Ca2+ ions can, in turn, provide binding sites for 

the PO4
3- ions, resulting in the formation of hydroxyapatite [54]. On the other hand, the higher surface 

roughness of the implant surfaces provides large specific surface area which offers more nucleation sites 

to the hydroxyapatite crystal formation [2]. 

The physiological environment of the human body has also an important role in the bioactivity of 

the biomedical metals, since that when they are implanted in-vivo, the adsorption of biomolecules like 

proteins and collagen occurs. Cells can respond to those biomolecules and modulate the 

microenvironment, i.e. the extracellular matrix (ECM), which serves as the bridge between materials and 

the cells. Thus, if the material influence the proliferation and the activity of the osteogenic cells, those 

cells might change the microenvironment around implants and modulate the formation of hydroxyapatite 

[2]. 
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1.3.1 Calcium Phosphate-like and Bioactive Glass Coatings 

Calcium phosphate-like coatings such as hydroxyapatite have been demonstrated to enhance 

osseointegration of metallic prothesis within bone [55,56]. Recently, hydroxyapatite coatings have been 

used not only for their osteoconductive properties, but as a method for delivery of growth factors, such 

as bone morphogenetic proteins (BMPs), bioactive molecules, DNA and small peptides as RGD peptides 

for improve mesenchymal stem cells (MSCs) adhesion [57–59].  

Although, hydroxyapatite coatings can form tight bonds with living bone, its suboptimal fatigue 

properties, and low robustness to withstand physiological loads without fragmentation and problems 

related to third body wear by hydroxyapatite particles limit its more widespread use [7,60]. 

Bioactive glasses (BGs) are highly attractive ceramic materials for use as coatings onto orthopaedic 

implants, since they can bind to hard and soft tissues stimulating new tissue growth while dissolving over 

time [33,34]. Bone binding is evidenced by the precipitation of a layer of calcium–deficient carbonated 

apatite on the BG surface when in-vivo applications or in contact with physiological fluid [61,62]. 

The commercial product 45S5 Bioglass®, was reported in 1971 by Larry Hench and colleagues 

[63], and is one of the more widely used surface coatings for the modification of metal implants with 

great potential for bone regeneration. 45S5 Bioglass® is composed by 45% SiO2, 24.5% Na2O, 24.5% CaO, 

5% P2O5 (wt.%) [64]. However, there are other BGs, having variations in the elemental composition to that 

of Bioglass®, that are not only biocompatible but also possess bioactive properties leading to enhanced 

cellular activity on the implant's surface [65,66].  

BG coatings have been applied by several techniques including enamelling, electrophoresis, sol-

gel, and plasma spraying [64]. Recently, nanostructured multilayered coatings have been developed via 

LbL assembly, combining BG nanoparticles with polysaccharides, which can be modified with catechol 

groups to improve coating adhesion on both substrate surface and osteoblastic cells [29,37,38,67]. 

1.3.2 Biomolecules-containing Coatings 

A wide range of biomolecules may be incorporated into coatings of orthopaedic implants to promote 

their osseointegration. Examples of these are large proteins, for instance collagen, and polysaccharides 

such as chondroitin sulphate, CHT and HA, that have demonstrated to provide a biomimetic coating 

promoting the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells 

(hMSCs) [68]. Another type of biomolecules widely used are growth factors due to their ability to modulate 

cellular functions such as reducing inflammation, enhancing stem cell differentiation, inducing blood 

vessel formation, or acting as chemoattractants for osteoprogenitor cells [69–75]. In addition, small 
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peptides derived from protein molecules may also be used to enhance desirable cellular functions of 

coatings such as adhesion or bone formation from local osteoblasts [76,77]. As an alternative, DNA 

molecules have also been incorporated into coatings to be subsequently released and translocated into 

the cell nucleus expressing sequence specific mRNAs [78,79]. 

Some of these biomolecules have been widely incorporated in hydrogel coatings to provide a variety 

of biomolecular cues that can regulate proliferation, differentiation and migration of osteoblasts leading 

to improved adhesion at the bone-implant interface [7,80]. Subramani et al. [80], have reported 

poly(ethylene glycol) (PEG) hydrogel coatings incorporating vascular endothelial growth factors (VEGF). 

The results shown that incorporating VEGF in the hydrogel produced micropatterns that dramatically 

altered rat osteoblast behaviour proving that this system could be applied for guided tissue bone 

regeneration orthopaedic applications. In addition, drug-eluting hydrogel coatings have been used onto 

orthopaedic implants to prevent infections related to orthopaedic surgeries [81–84]. The commercially 

available hydrogel DAC® (Defensive Antibacterial Coating; Novagenit Srl, Mezzolombardo, Italy) is a fast-

resorbable hydrogel coating, composed of covalently linked hyaluronan and poly-D,L-lactide, which is 

spread onto cementless hip prothesis [83,84]. Hydrogel DAC® is loaded intra-operatively with one or 

more antibiotics, for example, vancomycin, gentamicin, or N-acetylcysteine, which are released within 48 

to 72h, providing antibacterial and antibiofilm protection to the implant [83,84]. Moreover, this hydrogel 

coating has been shown to be capable of resisting removal during implant insertion when used as a press-

fit implant coating on uncemented femoral stems [85].  

Although hydrogel coatings are easy to apply, by simply immersing implants into hydrogel solutions, 

and being able to coat implants with complex geometries, there is minimal control of their loading 

efficiency or release kinetics, as well as batch-to-batch variability [7]. Thus, recent studies have 

demonstrated that LbL assembly is quite promising in the orthopaedic area for the effective loading and 

controlled release of multiple types of biomolecules from coatings. For example, Crouzier et al. [70] 

shown that crosslinked poly(L-lysine)/hyaluronan LbL films can serve as a reservoir for rhBMP-2 delivery 

to myoblasts and induce their differentiation into osteoblasts in a dose-dependent manner. La et al. [74] 

have also described a Ti implant coated with graphene oxide by LbL assembly of positively and negatively 

charged graphene oxide sheets and loaded with BMP-2 at the outermost coating layer. They demonstrated 

that the in-vitro osteogenic differentiation of hMSCs, is enhanced and found that after implantation in 

mouse models of calvarial defects robust new bone formation occurred [74]. Also, Lee et al. [75], reported 

a novel surface functionalization approach with Ti-adhesive nanoparticles prepared by LbL assembly of a 

catechol-functionalized poly(amino acid) diblock copolymer, that can load and controllably release BMP-
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2. They demonstrated that the Ti substrate functionalized with BMP-2-incorporated nanoparticles 

significantly promoted attachment, proliferation, spreading and alkaline phosphatase activity of human 

adipose-derived stem cells (hADSC) [75].  

1.4 Tissue Adhesives 

The structural and functional restoration of an injured tissue requires its surgical reconnection. To 

this end, mechanical fasteners such as sutures, staples and wires, have been used for years for joining 

tissues. Despite their common clinic use, these mechanical methods still have some drawbacks [5]. 

Tissue adhesives have emerged as attractive alternatives as they are able to join tissues or tissues 

to non-tissues, such as prostheses, allowing adequate tissue healing, while also interrupting the leakage 

of biological fluids and resisting tensile loads. In addition, they exhibit some advantageous features, such 

as reduction of surgery time, mitigation of surgical complications (e.g. infection), easy application, and 

no removal requirements [86,87]. 

Currently there are several types of commercially available tissue adhesives, which are traditionally 

classified into two main categories: natural and synthetic adhesives [5]. Table 1.1 summarizes the main 

tissue adhesive types commercially available as well as their applications [5,6,88]. Despite natural tissue 

adhesives are effective in some applications, they are quite expensive and have limited availability 

because they are derived from autologous tissue. In addition, they often exhibit relatively poor mechanical 

and tissue-bonding properties, and are potentially pro-inflammatory because most of them are based on 

proteins [5,6]. On the other hand, synthetic tissue adhesives present several disadvantages such as low 

bioabsortion and metabolic rates, cytotoxicity, low adherence to wet surfaces and chronic inflammation 

induced by the release of some degradation products [5,6]. Therefore, it is pertinent to develop improved 

adhesives and methods of tissue adhesion for use in connection with living tissues, since the currently 

available tissue adhesives still have significant limitations and drawbacks [5,88]. Recently, an active area 

of research is related to the development of mimicking adhesive materials found in mussels, due to their 

outstanding adhesion properties presented in wet environments [27,28]. 
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Table 1.1 – Natural and synthetic tissue adhesives commercially available. Adapted from [5,6,88]. 

Adhesive Type Commercial 

Product 

Approved indications Constituents Ref. 

Natural Adhesives 

Polysaccharides-

based 

HemCon® 

Bandage Pro 

• Haemostasis 
• Antibacterial barrier 

CHT [89] 

Actamax • Adhesion prevention 
• Tissue sealing 

Dextran aldehyde, 8-arm PEG 
amine functionalized with tris(2-
aminoethyl)amine 

[90,91] 

Proteins-based Tisseel (Baxter) • Haemostasis during cardio bypass 
surgery 

• Treatment of splenic injuries 
• Adjunct in colonic anastomosis 

Human fibrinogen, human 
fibronectin, human thrombin, 
human Factor XIII, bovine 
aprotinin, calcium chloride 

[92,93] 

Evicel (Ethicon) • General haemostasis in surgery Human fibrinogen, human 
thrombin, human factor XIII, 
calcium chloride 

[92,94]  

CryoSeal 

(Thermogen) 

• Haemostasis in liver resection 
surgery 

Human fibrinogen, human 
thrombin, human fibronectin, 
human Factor XIII, human 
Factor VIII, 
human vWF, human thrombin 
from individual units of plasma 

[95,96] 

Hemaseel 

(Haemacure Corp.) 

• Used in surgical procedures to 
arrest bleeding and as an adjunct 
to wound healing 

Human fibrinogen, human 
fibronectin, human factor XIII, 
bovine thrombin, calcium 
chloride 

[93] 

Crosseal® (Omrix) • Adjunct to haemostasis in liver 
surgery 

Human fibrinogen, human 
thrombin, human fibronectin, 
human factor XIII, calcium 
chloride 

[94,97] 

TachoSil® 

(Pharmaceuticals 

International 

GmbH) 

• Haemostatic agent and tissue 
sealant 

Equine collagen patch, human 
fibrinogen, human thrombin 

[98,99] 

VitagelTM (Stryker) 

replaced CoStasis 

Surgical Haemostat 

• Surgical procedures (other than 
neurological and ophthalmic) as 
adjunct to haemostasis 

Bovine collagen, bovine 
thrombin, patients own plasma 

[100,1

01] 

GRF® Biological 

Glue (Microval) 

• Thoracic aortic dissections and 
haemostasis 

Gelatin, resorcinol, 
formaldehyde, glutaraldehyde 

[102,1

03] 

BioGlue® 

(CryoLife) 

• Adjunct to achieve haemostasis 
and in open surgical repair of large 
vessels 

Albumin, glutaraldehyde [104,1

05] 

ProGel® 

(NeoMend)  

• Sealing air leaks on lung tissue 
after surgery 

Human Serum Albumin, PEG di 
NHS 

[106,1

07] 
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Synthetic Adhesives 

Cyanoacrylates Histoacryl® and 

Histoacryl® Blue 

• Closure of superficial skin wound 
and lacerations 

n-Butyl-2-cyanoacrylate [108] 

Dermabond® • Closure of superficial skin wound 
and lacerations 

• Microbial barrier 

2-Octyl-2-cyanoacrylate [108,1

09] 

Indermil® • Closure of superficial skin wound 
and lacerations 

• Microbial barrier 

n-Butyl-2-cyanoacrylate [108] 

Omnex® • Blocking passage of blood, body 
fluids or air 

n-Octyl-2-cyanoacrylate/butyl 
lactoyl-2-cyano acrylate 

[108] 

Glubran® and 

Glubran2® 

• Surgical glue for internal and 
external use 

• Haemostatic, adhesive, sealer, and 
bacteriostatic properties 

n-Butyl-2- 
cyanoacrylate/methacryloxysul
pholane 

[110] 

IFABond® • Implantable device alternative to 
staples and sutures (mesh) 

N-Hexyl-2-cyanoacrylate [88] 

PEG derivatives FocalSeal-L® 

(Focal Inc.), 

replaced AdvaSeal 

• Sealing lung air leaks Photopolymerizable PEG-co-
poly(lactic 
acid)/poly(trimethylene 
carbonate) 

[111,1

12] 

DuraSealTM 

(Covidien), 

DuraSeal Xact 

• Adjunct to sutures for dural repair 
• Retina reattachment 
• Nerve sciatic anastomosis 
• Vascular closure 

Tetra-NHS-derivatized PEG and 
trilysine 

[113,1

14] 

CoSeal® (Cohesion 

Technologies) 

• Adjunct haemostasis in vascular 
surgery; inhibiting suture line 
bleeding 

Tetra-NHS-derivatized PEG and 
tetra-thiol-derivatized PEG 

[115] 

SprayGel® 

(Covidien) 

• Adhesion barrier in gynaecological 
and colorectal procedures 

Tetra-NHS-derivatized PEG and 
tetra-amine-derivatized PEG 

[116,1

17] 

Polyesters TissuePatchTM 

(TissueMed) 

• Air leakage in thoracic surgery 
• Sealing and reinforcing soft tissues 

adjunct to sutures 
• Dural repair in cranial surgery, 

adjunct to sutures 

poly-((N-vinylpyrrolidone)50-co- 
(acrylic acid)25-co-(acrylic acid N-
hydroxysuccinimide ester)25) 

[118,1

19] 

Dendrimers and 

hyperbranched 

polymers 

OcuSeal 

(Hyperbranch 

Medical 

Technology) 

• Dressing for corneal lacerations 
and bandage for corneal 
transplants 

poly(glycerol succinic acid) and 
PEG-aldehyde 

[120,1

21] 

AdherusTM 

(Hyperbranch) 

• Surgical sealant for dural repair, 
hernia mesh fixation, spinal and 
cardiovascular applications 

Activated PEG and branched 
poly(ethylene imine) 

[122] 

Polyurethanes TissuGlu® • Preventing the seroma formation in 
abdominoplasty 

Lysine di/tri isocyanate-PEG 
prepolymers 

[123] 
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1.5 Bioinspired Underwater Adhesives 

Wet environments created by body fluids are a considerable challenge for tissue adhesives, since 

the intersurface physical adhesive forces may be weakened and the chemical bonds altered in the 

presence of water [124]. Although synthetic reactive glues like cyanoacrylate [125] or bioderived glues 

like fibrin [126] give an effective wet adhesion, they present some disadvantages [124]. Other alternatives 

are the bioinspired underwater adhesives such as glues and cements inspired by marine creatures such 

as mussels, barnacles, tube worms, algae, and starfish, as depicted in Figure 1.2 [24,127,128]. 

 

Figure 1.2 – Underwater adhesion of some marine creatures. Left to right: mussels, barnacles, tube worms and starfish 
[24]. 

Concerning the biomimetic polymers, mussels and barnacles have become the main target for 

marine adhesion studies [5]. However, unlike the barnacle adhesion that still presents pioneering studies 

[119,129], the biochemical knowledge on mussel adhesions has been accumulated during the over past 

30 years [5,130,131]. 

1.5.1 Marine Mussel Adhesive Properties 

Blue mussels (Mytilus edulis) adhere themselves to surfaces through byssal (or "byssus" or 

"beard") adhesive assembly, consisting of a series of small deposited adhesive plaques, each connected 

to the mussel by a long thread as shown in Figure 1.3 [5,24]. 

 

Figure 1.3 – Adhesive plaques of a marine mussel connected by threads to a glass sheet (left) and Teflon 
(polytetrafluoroethylene, right) [24]. 

The main element responsible for the adhesion of mussels has been determined to be the post-

translationally modified amino acid, DOPA, as represented in Figure 1.4 [28,132]. The Mytilus edulis foot 

proteins (Mefp), in the mussel adhesive plaque were largely characterized and six of them were identified 
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to present a DOPA content ranging from 3 mol% (Mefp-2) to 30 mol% (Mefp-5) [133]. The excellent 

underwater adhesive properties of Mefps have recently attracted much attention [134–136]. 

 

Figure 1.4 – Illustration of a DOPA unit. Adapted from [28]. 

It has been confirmed that the ortho-dihydroxyphenyl (catechol) moiety of DOPA present in secreted 

MAPs is responsible for the strong adhesion between adhesive pads of mussels and opposing surfaces 

[26,134,135,137,138]. The adhesion of MAPs, extracted and recombinant, to various solid materials 

[25,139,140] and mammalian cells [140–142] has already been verified. However, the specific adhesion 

mechanism of these small molecules is still not completely understood [143]. Although several proposals 

of interaction modes can be found in the literature, it is well accepted that catechol groups are particularly 

susceptible to oxidation under neutral to alkaline pH conditions, such as in seawater, and this fact is 

thought to provide the water-resistance characteristics of mussel adhesion [135]. Thus, under oxidative 

conditions, DOPA residues are converted to DOPA-quinone, which are capable of many different types of 

chemical interactions, giving rise to a highly cross-linked three-dimensional matrix that quickly solidifies 

[132,144]. In fact, MAPs allow mussels to adhere to and maintain functional adhesion even in harsh 

marine environments over a wide temperature range (-40 °C to 40 °C), fluctuating salinity and humidity 

[24,25]. 

As such, water-resistant adhesives based on marine mussels are the most exploited biomimetic 

approaches in recent years, due to their many fascinating features [134–136]. Mussel-based adhesives 

can potentially be used as surgical adhesives or as orthopaedic cements, since they are flexible, elastic, 

and much stronger than other polymer-based adhesives such as epoxy and phenolic resins [5,25]. In 

addition, they have proved to be environmentally friendly, as they are biodegradable [145] and apparently 

harmless to the human body because do not impose immunogenicity, which indicates their potential use 

for in-vivo applications [146,147]. 
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1.6 Catechols as Versatile Platforms for Bioinspired Polymer Adhesives 

As said before, catechol groups are responsible for the versatile adhesion of mussels under very 

harsh and wet conditions. In fact, they had an extremely strong affinity to various organic/inorganic 

surfaces such as metal, metal oxide, polymer surfaces, and even biomacromolecules [26,148]. Thus, 

researchers have used catechol chemistry to modify several types of substrates [20,149], particles 

[150,151] and to improve the mechanical properties of polymer composites [28,152]. 

Chemical incorporation of DOPA and analogous reactive groups, such as catechol groups into a 

variety of polymer backbones, Figure 1.5, is being pursued to enhance their adhesive strength 

[28,153,154]. Such unique and robust chemistry of catechol provides scientists a tool to design various 

bioadhesive materials for a wide range of biomedical applications [143]. 

 

Figure 1.5 – Illustration of a polymer-catechol system mimicking MAPs. Adapted from [154]. 

Bio-inspired synthetic polymers containing catechol groups are being generated from 

poly(peptides) [25,155,156], poly(amides) [157], poly(N-isopropylacrylamides) [158,159], 

poly(allylamines) [160], poly(acrylates) [161–163], poly(acrylic acids) [40,136], poly(ethylene glycols) 

[164–166], poly(styrenes) [28,167,168], poly(vinyl alcohols) [169,170], poly(ethylenimines) 

[20,40,171], and poly(urethanes) [172]. 

Natural polymers have also been conjugated to catechol groups. Examples of these systems are 

HA [18,29,20,38,173,137,174–185], dextran [186,187], alginate [188–191], CHT [21,22,153,192–

206], gelatin [207–209] and heparin [210–214].  

These catechol-functionalized polymers are enabling the development of nanoparticle shells 

[171,199,200], elastomers [162,168], resins [167], hydrogels 

[22,137,159,160,172,175,178,180,183,188,191,192,197,198,205], surface treatments 

[18,29,20,38,156,169,181,182,185,190,196,203], antibacterial coverings [215], drug delivery 

systems [22,40,179,184], membranes [136,176,189], and antifouling coatings 

[163,165,186,187,214].  

Indeed, the field of catechol-containing polymers, owing to their fascinating intrinsic chemical 

properties and their practical applications, has greatly expanded over the past decade [143]. 
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1.6.1 Catechol-Conjugated Chitosan 

Since there is an amount very limited of polycationic polysaccharides, CHT has received much 

attention from researchers [181]. 

This polysaccharide is the de-acetylated form of chitin and is by far the most widespread biopolymer 

used in PEM films for many biomedical applications [181,216]. This is due to its ability to bind to anionic 

polymers, via LbL self-assembly, giving rise to multilayered structures [217,218], and to its numerous 

interesting properties, [216] as biodegradability, biocompatibility, bioadhesivity, and haemostatic and 

antibacterial properties [14,89,217]. For example, CHT has received attention as a potential coating 

material for orthopaedic and dental/craniofacial implants due to its osteogenic and biodegradable/drug 

delivery properties, ability to accelerate wound healing, and processing and modification flexibilities 

[14,15,29,37,38]. 

However, CHT has poor mechanical properties [219,220] and is soluble only under acidic 

conditions, which may limit its performance during the LbL assembly process [220]. Thus, many 

researchers have described new approaches to overcome them, either by chemical modification or by 

covalent and ionic cross-linking of CHT [220]. 

CHT can be functionalized with hydrocaffeic acid to obtain water-soluble catechol-conjugated CHT 

(CHT-C). Table 1.2 summarizes several biomedical applications reported in the literature using CHT-C.  

Table 1.2 – Summary of the intended applications of catechol-functionalized CHT adhesive polymer. 

Catechol-functionalized Polymer Intended Applications Ref. 

Chitosan–Catechol • LbL Coatings for Tissue Adhesion [196]  

• Haemostatic Coatings with Adhesive 

Properties and Prevent Bleeding 

[195,203] 

• Nanocomposites for Biosensor 

Applications 

[194] 

• Nanoparticle Shells for Drug Delivery [199]  

• Nanoparticle Shells for Antibacterial 

Applications 

[200,206] 

• Adhesive Gel Patches for Drug Delivery [202] 

• Adhesive Platform for Bio-

macromolecules Immobilization  

[204] 

• Hydrogels for Tissue Adhesion [192,197,205] 

• Haemostatic Hydrogels for Antibleeding 

Applications 

[192] 

• Hydrogels for Drug Delivery [22,198] 
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Functionalization of CHT with catechol groups was first proposed by Ryu and co-workers [192]. 

They reported an injectable and thermosensitive composite hydrogel composed of CHT-C cross-linked 

with terminally thiolated Pluronic F-127 triblock copolymer, for tissue adhesives and haemostatic 

materials [192]. The composite hydrogels showed strong adhesiveness to soft tissues and mucous layers, 

and superior haemostatic properties, demonstrating that they could be potentially used for injectable drug 

delivery depots, tissue engineering hydrogels, tissue adhesives, and antibleeding materials [192]. 

Kim et al. [193], described that chemical modification of CHT with catechol groups dramatically 

increased their solubility in water (to 60 mg.mL-1 at pH 7.0) and its adhesive properties compared to 

unmodified CHT. The fact of CHT-C being soluble in water, in neutral buffer solutions, allowed them to 

directly form a CHT hydrogel [193].  

Stabilization of silver-core nanoparticle shells with the assistance of CHT-C was reported by Cu and 

co-workers [206]. They confirmed that even at a very low concentration of silver nanoparticles, the 

nanoparticle shells exhibited a strong antibacterial activity against E. coli and S. aureus, offering this 

system a novel method for antibacterial applications [206]. 

Lee et al. [202], reported a water-resistant CHT-C adhesive gel patch for cartilage repair model. 

The adhesive barrier exhibited directional release of platelet-derived growth factor-AA (PDGF-AA) only 

toward the marrow cavity defect areas, leading to effective recruitment of hMSCs [202]. A significant 

improvement of cartilage tissue was demonstrated by in-vivo imaging and macroscopic histological 

assessments, suggesting that the directional controlled release trough this concept could be a strategy 

for the improvement of tissue regeneration in general [202]. 

Xu and co-workers [22], developed a buccal drug delivery system using a novel CHT-C hydrogel 

crosslinked with genipin. They showed that the novel hydrogels systems significantly increased 

mucoadhesion to the porcine mucosal membrane in-vitro, and sustained the release of lidocaine for about 

3 h, in-vivo, using the rabbit buccal mucosa as test model. The results indicated that the proposed CHT-

C hydrogel is a promising mucoadhesive and biocompatible system for mucosal drug delivery. In another 

study, Xu and co-workers [198], used the same hydrogel system for the efficient rectal administration of 

sulfasalazine (SSZ) to treat ulcerative colitis in a mouse model. Results have shown that SSZ/CHT-C rectal 

hydrogels are more effective and safer formulations for ulcerative colitis treatment than oral SSZ, 

exhibiting their potential as drug delivery systems for treating a generalized disease [198]. 

Recently, Chen et al. [196], proposed a surface functionalization of Ti implants with CHT-C for 

suppression of the oxidative stress induced by reactive oxygen species (ROS), which would hinder the 

bone healing process. Surface functionalization consisted of the construction of a multilayered structure 
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composed of CHT-C, gelatin, and hydroxyapatite nanofibers on Ti substrates [196]. The results showed 

that this multilayer effectively protected osteoblasts from ROS damage, besides promoting osteoblasts 

differentiation, collagen secretion, ECM mineralization and osteogenesis-related genes expression in-vitro 

[196]. 

1.6.2 Catechol-Conjugated Hyaluronic Acid 

HA polysaccharide is an integral component of ECM that promotes tissue hydration, making ECM 

an ideal environment for cellular activity such as proliferation, differentiation, and tissue repair [221]. 

Therefore, its wide availability, ease processing, low toxicity, viscoelastic and rheological properties make 

HA a polymer attractive for the construction of new biocompatible and biodegradable materials for tissue 

engineering and drug delivery applications [16,222]. 

HA has been used in several biomedical applications such as wound healing, tissue regeneration, 

drug delivery and post-surgical anti-adhesion [137]. Among the polysaccharides, HA is the most studied 

as biofilm repelling coating [223,224].  

Beyond that, it has proved to be an effective polyanion capable of complexing with cationic 

polymers such as CHT [17,18,29,38,173,225–227], providing opportunities to generate LbL systems. 

CHI/HA multilayers have been built up onto a huge diversity of substrates such as glass [228], Ti 

[173,229–232] or poly(propylene) [233].  

HA can react with dopamine to obtain catechol-conjugate HA (HA-DN) [29,38], Table 1.3 

summarizes several biomedical applications reported in the literature using HA-DN. 

Table 1.3 – Summary of the intended applications of catechol-functionalized HA adhesive polymer. 

 

Catechol-functionalized Polymer Intended Applications Ref. 

Hyaluronic Acid–Catechol • LbL Coatings for Tissue adhesion [18,29,20,38,173,181] 

• Coatings for improve Hemocompatibility 
and Re-endothelization of Endovascular 
Stents 

[182,185] 

• Coatings to support cell cultures [175] 

• Hydrogels for Tissue Adhesion [137,175,178,180,183] 

• Nanogels for Drug Delivery [184] 

• LbL Membranes for Tissue Adhesion [176] 

• Hollow Particles for Drug Delivery [179] 
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Functionalization of HA with catechol groups was first proposed by Lee and co-workers [174]. They 

reported an immobilization of a homogeneous and robust coating of HA-DN on monodisperse magnetite 

nanocrystals, for their stabilization in aqueous solution and to be applied in-vivo targeted-cancer imaging 

[174]. Lee and co-workers [137] also developed lightly cross-linked hydrogels containing HA-DN and thiol 

end-capped Pluronic F127 copolymer. They demonstrated that in-situ formed hydrogels exhibited 

excellent tissue adhesion properties with superior in-vivo gel stability [137].  

Both adhesive and cohesive properties of HA-DN were first confirmed by Hong et al. [175]. They 

have shown that these properties are mainly pH-dependent, in which alkaline solutions (pH 8 to 9) favour 

the cohesive state of HA-DN polymer [175]. In this way, HA-DN can exhibit either adhesiveness, 

functionalizing the surface of materials, or cohesiveness, building 3D hydrogels [175]. They also proved 

that HA-DN hydrogels are highly cell compatible, showing better viability (greater than 80%) compared to 

other HA-based hydrogels (less than 50%) [175].  

Zhang and co-workers [173], constructed a multilayer coating of HA-DN/CHT through LbL self-

assembly on Ti alloy. They have proved that the fabricated coating can serve as potential modification in 

orthopaedic applications, demonstrating that the proposed technique improves the biocompatibility of the 

Ti alloy with a significant increase of the proliferation of osteoblasts compared to uncoated Ti alloy [173]. 

Neto et al. [18], have also developed CHT/HA-DN multilayer coatings through LbL methodology, but using 

glass as substrate. They showed that the adhesion strength of multilayer coatings containing HA-DN was 

significantly higher than multilayer coatings containing unmodified HA [18]. In addition, they reported 

enhanced in-vitro cell adhesion, proliferation, and viability for biomimetic films with catechol groups, 

demonstrating their potential to be used in various biomedical applications [18]. Rego and co-workers 

[29], constructed for the first time organic-inorganic multilayered films, with a nacre-like architecture 

based on BGNPs, CHT and HA-DN. They found that the multifunctional LbL films exhibited both improved 

adhesion and bioactivity, promoting the formation of bone-like apatite in-vitro, and thus could be used as 

coatings on implants for orthopaedic applications [29].Carvalho et al. [38], produced LbL films combining 

the adhesive properties of HA-DN and the bioactivity and bactericidal properties of silver doped BGNPs. 

They also found that the LbL films displayed improved adhesion, promoting cell adhesion, proliferation, 

and viability in-vitro, and bioactivity, contributing for the formation of a bone-like apatite layer in-vitro [38]. 

Besides that, they confirmed the remarkable antibacterial effect against Staphylococcus aureus and 

Escherichia coli cultures, provided by silver doped nanoparticles [38]. In this way, they evidenced the 

great potential of the antibacterial bioadhesive films to be used as coatings for orthopaedic implants [38].  
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1.7 Nanoparticles for Biomedical Applications 

In recent years, significant interest has arisen in the research of nanoparticles (NPs), in particular 

for biomedical applications [234]. The integration of nanotechnology into the field of medical science has 

opened new possibilities, among them, the potential of providing novel methods for the treatment of 

diseases that present size restrictions [234]. 

Due to their unique properties, synthesis, and applications, several biomedical fields have studied 

sub 100 nm materials like NPs [235]. The possibility of creating new strategies that can act in situ at a 

sub-cellular level, have led NPs to be applied in a wide range of applications, such as imaging agents, 

drug delivery systems, diagnostic tools, bioactivity enablers/improvers, biofunctionalization agents, 

among others [235,236]. Furthermore, its high surface-to-volume ratio provides a high surface area 

allowing it to be suitable modified to improve characteristics that are essential for biomedical applications, 

such as its pharmacokinetic properties, vascular circulation life-time and bioavailability [235]. NPs also 

have other advantages, such as their extremely high surface energy, and optical, magnetic and electronic 

properties that can be exploited in areas like biosensors and medic imaging [235,236]. 

1.7.1 Bioactive Glass Nanoparticles 

Since their discovery in 1971, BGs have been used to improve the bond between bone and 

orthopaedic implants [33,237,31]. In particular, BGNPs obtained from sol-gel routes have been used in 

several studies not only to confer bioactivity to various composite systems, but also to improve their 

mechanical properties [238–243]. For instance, Luz and Mano [238], developed biomimetic 

osteoconductive membranes by combining BGNPs with a polymeric matrix of CHT. The BGNPs size 

around 50 nm allowed their uniform dispersion in the CHT membrane [238]. These membranes also 

demonstrated bioactivity potential by forming a dense apatite layer on the surface of the composite, after 

being immersed for seven days in a SBF solution [238]. Misra et al. [240], compared the effects of 

introducing micro-sized BGs and BGNPs on various properties (thermal, mechanical and microstructural) 

of poly(3-hydroxybutyrate). When compared with micro-sized BGs, the composite films containing BGNPs 

exhibited increased stiffness, wettability, protein adsorption and a great level of bioactivity [240].Couto 

and co-workers [241], proposed a novel injectable thermo-responsive hydrogel, combining CHT–-

glycerophosphate salt and BGNPs for orthopaedic applications. After immersing the hydrogel formulations 

in SBF, they observed a bone-like apatite formation indicating that the proposed hydrogels are bioactive 

[241]. Also, the rheological characterization of the developed hydrogels revealed that they have adequate 
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characteristics for intracorporal injection [241]. These results confirmed that the stimuli-responsive 

hydrogels could be potentially used as temporary injectable scaffolds in bone tissue engineering 

applications [241]. Mota et al. [243], produced a novel membrane composed by CHT and BGNPs for 

periodontal and bone regeneration. They showed that the composite membranes were bioactive, inducing 

the precipitation of bone-like apatite in SBF [243]. In addition, biological tests using human periodontal 

ligament cells and human bone marrow stromal cells demonstrated that the composite membranes 

promoted cell metabolic activity and mineralization [243]. Thus, this strategy could be potentially used 

as a temporary guided tissue regeneration membrane in periodontal regeneration, with the possibility to 

induce bone regeneration [243].  

Recently, nanostructured multilayers coatings inspired by the adhesive properties of mussels, 

combining an inorganic matrix of BGNPs with an organic matrix of CHT and HA-DN were developed for 

the first time [29]. This study showed that the bioinspired coatings not only exhibited ability to induce the 

apatite formation, after immersion in a SBF solution for 7 days, but also present an improved adhesive 

strength conferred by catechol groups of HA-DN [29]. Thus, these mussels inspired coatings could be 

potentially used as coatings of a variety of implants for orthopaedic applications [29]. Both CHT and HA-

DN polysaccharides and BGNPs have been also used to produce composite membranes for guided tissue 

regeneration [176]. These biomimetic membranes showed a bioactive behaviour necessary for the 

formation of new bone, tunable properties and enhanced adhesion [176]. 

1.8 Layer-by-Layer Assembly Method 

Since its inception in 1990s [244], the LbL assembly approach has been proven to be an ideal 

method for construction of multifunctional nanostructured materials. Through this approach, almost any 

types of charged species such as polysaccharides, polypeptides, enzymes, nucleic acids, viruses, colloids, 

nanoparticles, clays, dyes, and metal oxides, can be used into multilayer films with promising applications 

in emerging areas such as medicine, sensing, biosensing, bioelectronics, separation, tissue engineering, 

drug delivery, catalysis, energy storage and conversion, electronics, and optics [12,13,40,245–250]. 

Contrary to other preparation techniques, the LbL approach is a relatively simple and highly 

versatile way for merging different functionalities into a single composite, while maintaining bulk 

properties [11,251]. It relies on the sequential adsorption of solutions of oppositely charged polymers, 

polyelectrolytes, mainly via electrostatic interactions, onto bulk surfaces generally negatively charged due 

to surface oxidation and hydrolysis, Figure 1.6. The cyclic process of immersing the charge substrate into 
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oppositely charged polyelectrolyte solutions, can be repeated as many times as intended, giving rise to 

complex multilayered films [11,20,252,244]. From this method, it is possible to have an extensive control 

over the properties, composition, structure, and thickness of the multilayer films, varying both the 

properties of the adsorbed species (charge density, concentration, molecular weight) and the liquid 

medium (salt/buffer composition, solvent quality, ionic strength, pH), as well as external parameters 

(temperature, exposure to light, mechanical stress, electrical field, adsorption time, number of layers) 

during the LbL assembly process [12,13,36]. Therefore, the multilayered structure can be simply 

functionalized by the incorporation of active compounds and their properties adjusted by the deposition 

conditions and the choice of the outermost layer (anionic or cationic) [225]. In addition, the film thickness 

can generally be well-controlled at the molecular level, increasing with the decrease in charge density and 

with the increase in ionic strength, temperature, and number of layers deposited [12]. 

 

Figure 1.6  – Schematics illustration of the LbL deposition process: A - Steps 1 and 3 represent the immersion of the 
substrate in a polyanionic and polycationic solution, respectively. Steps 2 and 4 represent the washing steps. This cyclic 
process represents the formation of one bilayer, and can be repeated as many times as intended; B - Representation of the 
LbL deposition process at a molecular level. Adapted from [244]. 

 During the growth of the multilayers, there are two possible steps, which may dominate, the 

adsorption and the interlayer diffusion of the polyelectrolytes, as shown in Figure 1.7. Adsorption is 

characterized by the movement of the polyelectrolyte molecules from the solution to the film surface. On 

the other hand, interlayer diffusion occurs when the polyelectrolyte molecules move from the surface into 

the film [253]. Based on these two steps, two types of multilayer growth behaviours have been reported 

so far, linear and exponential growth. Linear growth, is characterized by an adsorption controlled of the 

polyelectrolytes in the solution, interacting only with the oppositely charged polyelectrolytes on the film 

surface. Usually, it is observed in films comprising strong polyelectrolyte pairs and is due to the charge 

overcompensation that is required for the build-up of the multilayers. It is associated with a linear increase 
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in the thickness or mass of the film with the number of bilayers [12,254,255]. Exponential growth, is 

based on the interlayer diffusion within the film, which always occurs in weak polyelectrolyte systems 

consisting of at least one polypeptide or polysaccharide, such as CHT/HA. Thus, it is related to the 

exponential increase in film thickness with the number of bilayers [12,256,257]. Generally, linear regimes 

lead to thinner films compared to exponential regimes [12]. 

 

Figure 1.7 – Schematics illustration of the adsorption and interlayer diffusion during the LbL deposition process. Adapted 
from [253]. 

Multilayer films may also undergo a transition between these growth types, depending on the 

strength of the polyelectrolyte intermolecular interactions, the molecular weight of polyelectrolytes and 

the experimental deposition conditions [12]. Recent studies have demonstrated that the tendency of the 

polyelectrolytes to diffuse throughout films during the LbL process is believed to be due to a mismatch of 

the charge density between oppositely charged polyelectrolytes [258,259], and/or the enhanced mobility 

of polymers with low molecular weight, or low charge densities [256,260]. The deposition time is another 

parameter related to interlayer diffusion [12,13,254]. Typically, increasing the deposition time leads to 

the construction of thicker films, i.e., with exponential growth, since during short deposition times, 

interlayer diffusion is limited translating into linear growth behaviour [12]. 

Often the interlayer diffusion phenomenon represents a problem for certain systems that should 

provide delivery functions of bioactive molecules and polyelectrolyte components in the presence of 

external stimuli, such as changes in pH or ionic strength [40]. Therefore, to enhance the stability of LbL 

films, thermal [261], chemical [262,263] and photoreactive [264] routes have been employed. However, 

the use of such routes can be detrimental when fragile and sensitive biomolecules are incorporated into 

the LbL films [40]. As such, there is a growing demand for the development of alternative non-destructive 

strategies to improve the stability of LbL films and, eventually, to achieve a long-term biomolecules 

delivery [40]. Min and co-workers [40] developed chemically and mechanically stable LbL films inspired 
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by the adhesive properties of catechol groups, largely present in MAPs. They used the carbodiimide 

strategy to conjugate catechol groups onto branched poly(ethyleneimine) and poly(acrylic acid). They 

demonstrated that the incorporation of catechol groups led to a doubling of the average film thickness 

and a linear film growth, which contributed to improve both film stability and mechanical properties. In 

addition, they showed that the LbL films with catechol modifications can been used for the controlled 

release of biomolecules [40]. 

The LbL processing method is not only limited to electrostatics interactions, but can also be 

performed trough hydrogen-bonding, charge transfer, covalent bonding, biological recognition and 

hydrophobic interactions [12]. As result of all potentialities of the LbL technique, several different types 

of films and structures with different functional properties have been produced for various biomedical 

applications [13,265]. These applications include fabrication of scaffolds, medical adhesives, stents, 

wound healing systems and coatings for implants with complex geometries [13,265]. 

1.9 Nacre: Definition and Structure 

Nacre can be found in the inner layer of hard shells of most molluscs of the bivalve and gastropods 

classes. It is composed of 95% (wt.) of aragonite, which is a crystallographic form of CaCO3, and 5% (wt.) 

of organic materials, such as proteins and polysaccharides [35]. This organic matrix plays an important 

role in spatial and chemical control of the crystal nucleation and growth, microstructure, and toughness 

enhancement [35,266]. 

Nacre structure, called brick-and-mortar like structure, is composed by hard aragonite platelets 

connected through organic materials, as shown in Figure 1.8 [36]. Although the nacre is composed of a 

hierarchy of structures ranging from the nano to the macro-scale, similarly to bone structure, it is possible 

to distinguish two different nacre types structures, columnar and sheet nacre [35,36]. In the columnar 

nacre (Figure 1.8 A), found in gastropods, platelets are stacked in columns with clear core and overlap 

regions, while the sheet nacre (Figure 1.8 B), found in bivalves, exhibits a more random staggered 

arrangement without well-defined cores and overlap regions [36]. In both nacres, the arrangement and 

size of the platelets are highly uniform and compact, as well as showing an obvious waviness [36]. 
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Figure 1.8 – Schematic illustration of the brick-and-mortar microstructure for (A) columnar nacre and (B) sheet nacre [36]. 

At nanoscale, the polygonal aragonite nanograins of the building blocks of nacre are connected by 

mineral bridges, which are embedded in biopolymer layers, forming nanoplatelets (first level) [36,267]. 

These mineral bridges allow continuous mineralization in the organic layers, and play an important role 

in improving mechanical properties and in preventing crack extension on nacre [35] The nanoplatelets 

are staggered into a brick-and-mortar structure, also, enveloped by biopolymer (second level) [36,267]. 

Under mechanical deformation, the nanograins of the nanoplatelets suffer rotation and 

deformation, owing to its capability for undergoing large inelastic deformations. This fact allows to 

dissipate the mechanical energy, providing a ductile nature to aragonite nanoplatelet, which, in turn, is 

relevant for nacre’s high fracture toughness [35]. 

According to the findings of Jackson et al. [268], nacre from the shell of a bivalve mollusc, Pinctada 

imbricate, have shown a value of elastic modulus (E) of approximately 70 GPa (dry) and 60 GPa (wet), 

and tensile strength of approximately 170 MPa (dry) and 130 MPa (wet). These findings have shown that 

the hydration effect is particularly important for the toughness of nacre [266]. Barthelat et al. [269] 

reported that the E value of a single nanoplatelet was 79 GPa, which is close to the monolithic aragonite 

(81 GPa). Moreover, organic phase of nacre has displayed E values between 2.84 and 15 GPa [35]. 

These results suggest that both the softer organic matrix and the structure of aragonite nanoplatelets 

influence the overall properties of nacre [35]. 

These outstanding mechanical and structural properties of nacre have inspired many researchers 

to fabricate novel materials and structures [35,266], such as biomimetic coatings [29,37,38,67,270], 

free standing films [176,271–273], and composite materials [274–282]. Among the different processing 

techniques that have been proposed to develop nacre-like composites, LbL deposition appears as one of 

the most attractive methods. This technique allows the development of nanostructured layered structures 

with thickness controlled at the nanoscale level, using a wide range of different materials [13,36,252]. In 

particular, LbL deposition enables the combination of organic and inorganic materials to obtain nacre-like 

structures [13,36]. 
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1.9.1 Bioinspired Nacre-like Coatings for Biomedical Implants and Scaffolds 

Biomedical coatings have been designed to act as an interface between the material and the host 

tissue to trigger several biologic processes from the inflammatory reaction to ultimate tissue remodelling 

[9,10]. Their main applications have been based on improving the in-vivo integration of various implants 

[173,231,232,283–285], and for enhancing cell adhesion in scaffolds for tissue engineering [286], 

among others [287]. 

Currently, researchers have relied on the composition and structure of the nacre for the 

construction of LbL coatings for the same applications believing that they offer other structural and 

functional advantages [29,37]. Recent studies have demonstrated that LbL coatings, inspired by the 

layered structure of nacre [29,37], containing an organic matrix of polysaccharides and an inorganic 

matrix of BGNPs can be potentially used onto orthopaedic implants and scaffolds due to their mechanical 

performance, toughness, and bioactivity [35,36]. Their bioactive properties were confirmed by the 

presence of a bone-like apatite layer onto the coatings, after immersion in SBF. In fact, for the proper 

integration of orthopaedic implants in-vivo and for the formation of new bone, the development of this 

bone-like apatite layer is vital [287]. In addition, both studies showed that the LbL coatings produced had 

viscoelastic properties similar to nacre [29,37]. Thus, such multilayers coatings could avoid the typical 

use of bone cements and thus could be used on a variety of implants for orthopaedic applications [39,40]. 
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2. CHAPTER 2 – MATERIALS AND METHODS 

This chapter describes all the materials and methods carried out to achieve the experimental 

results presented in this dissertation. In addition, all the characterization techniques that were used 

are also described. 

2.1 Materials 

2.1.1 Chitosan 

Medium molecular weight chitosan (CHT) was purchased from Sigma-Aldrich (ref. 448877, 

Brookshield viscosity 200–800 cP, molecular weight 190–310 kDa) and purified by a series of filtering 

steps and precipitation in water and ethanol, followed by the freeze-drying process. 

CHT (1-4, 2-amino-2-deoxy--D-glucan) is a natural linear polysaccharide obtained by 

deacetylation of chitin (1-4, 2-acetoamino-2-deoxy--D-glucan) composed by N-acetyl-D-glucosamine 

and D-glucosamine units, as represented in Figure 2.1 [1–3]. It is a copolymer present in the 

exoskeletons of arthropods (crustaceans and insects), being the second most abundant 

polysaccharide found in nature after cellulose [1]. Unlike chitin which is generally insoluble in aqueous 

solutions, CHT is soluble in dilute acids at pH<6 due to protonation of amino groups [2]. In fact, when 

the acetylation degree (expressed as molar percentage), which differentiates chitin from CHT, is lower 

than 50 mol%, the product is named CHT and it becomes soluble in acidic aqueous solutions [3]. 

 

Figure 2.1 – Chemical structures of N-acetyl-D-glucosamine residues (chitin) and D-glucosamine residues (chitosan) 
during deacetylation process. Adapted from [3]. 

During the deacetylation process, acetyl groups are removed and the depolymerization 

reaction takes place leading to changes in molecular weight (MW), crystallinity, solubility, mechanical 
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strength and biological properties of CHT [3,4]. Within the body, the enzymatic degradation of CHT 

leads to the release of amino sugars, including saccharides and glucosamines, which can be easily 

processed and released through the metabolic system [2,5]. 

CHT offers excellent biocompatibility, biodegradability, bioadhesivity, non-toxicity and 

processability properties, allowing a wide range of applications in the biomedical area [6–9]. Also, 

CHT demonstrates attractive biological activities such as antimicrobial, antioxidant, antitumor actions 

[3] and lower toxicity towards mammalian cells [10]. Due to its similarity to hyaluronic acid HA and 

glycosaminoglycan extracellular matrix (ECM) molecules, it’s considered biocompatible [11] and, 

thanks to its polycationic nature, it also displays antimicrobial properties [1,12–14]. Recent studies 

explain the extensive use of this polysaccharide and its derivatives in antimicrobial coatings for implant 

materials due to its antibiofilm effects [15–17]. In addition, the positive charge of CHT allows it to 

have establish electrostatic interactions with negatively charged molecules such as cytokines, growth 

factors which are correlated with enhanced cell attachment, growth and proliferation [5]. Also, CHT 

has received attention as a potential coating material for orthopaedic and dental/craniofacial implants 

due to its osteogenic and biodegradable/drug delivery properties, ability to accelerate wound healing, 

and flexibility in its processing and modification [6,18–22]. Likewise, as a cationic polyelectrolyte, it 

has been combined with anionic polymers via layer-by-layer (LbL) self-assembly [23,24], giving rise to 

multilayered structures. Beyond that, owing to its well-known properties, CHT is probably the most 

widely used polysaccharide in LbL films [7]. However, CHT has weak mechanical properties [4,25], 

solubility only under acidic conditions and low surface area, which may limit its performance during 

the adsorption process [25] in the LbL assembly of multilayer films. Thus, many researchers have 

described new approaches to overcome these drawbacks, either by chemical modification or by 

covalent and ionic cross-linking of CHT [25].  

CHT is also used in various types of biomedical applications such as drug and gene delivery, 

wound healing, tissue engineering, and stem cell technology [26]. It can be easily processed into 

various products, including hydrogels [27–29], membranes [30], fibers [30], films [31,32], coatings 

[31,33], nanofibers [34–36], beads [37], micro/nanoparticles [38–41], scaffolds [42,43], and 

sponges [44–46]. 

2.1.2 Hyaluronic Acid 

Hyaluronic acid sodium salt from Streptococcus equi (HA) was purchased from Sigma (ref. 

53747, molecular weight 1500–1800 kDa). 
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HA is a linear and high-molecular-mass anionic biopolymer composed of repeating 

disaccharide units of 1,4-D-glucuronic acid and 1,3)Nacetyl-D-glucosamine, as shown in 

Figure 2.2 [47–49]. Among the glycosaminoglycans family, it is a mucopolysaccharide like other 

commonly known compounds, such as chondroitin sulfate, keratan sulfate I and II, heparin, heparan 

sulfate, and dermatan sulfate [47]. The individual portions of HA are synthesized by HA synthases, 

located on the inner side of the cell membrane, emerging towards outside the cell [50]. 

 

Figure 2.2 – Chemical structure of hyaluronic acid [49]. 

Its wide availability, ease processing, fully biodegradability in-vivo, biocompatibility, low 

toxicity, hydration of tissues, non-adhesive nature, viscoelastic and rheological properties make it an 

attractive biomaterial for various medical applications [50,51]. It can also influence the cell activity, 

namely proliferation, differentiation, and tissue repair [51]. 

Naturally present in the human body, HA is mostly found on the skin (about 50 % of the total 

HA) [52], synovial fluid [53], the vitreous body [54], and the umbilical cord [55] as well as in friction 

zones (joints, tendons, sheaths, pleura, and pericardium) [50]. In addition, HA is involved in numerous 

processes that occur in the body such as wound healing, ovulation, fertilization, signal transduction 

and tumour physiology [53,56]. HA is also present in the capsules of some bacteria, like the strains 

of Streptococci, but is absent in fungi, plants, and insects [51]. Its structure is identical in both 

vertebrates and bacteria, and can be obtained from bacteria fermentation [47,50,57].  

To overcome problems with HA degradation, chemical modifications by crosslinking, wherein 

different HA chains are linked together by two or more bonds, or conjugations, in which a compound 

is grafted onto an HA chain by a single bond, have been exploited in the preparation of medical grade 

HA-materials [49,58]. 

HA is commonly used in biomedicine for ophthalmology, orthopaedics, aesthetic dermatology, 

wound healing, drug delivery and as a diagnostic marker for many diseases including cancer, 

rheumatoid arthritis and liver pathologies [51]. It is also used for supplementation of impaired synovial 

fluid in arthritic patients through intra-articular injections and reconstruction of soft tissue [51]. 
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Its biocompatibility and therefore negligible side effects make it one of the most used 

compounds in many fields of medicine in the 21st century [51]. Among the polysaccharides, HA is 

the most studied as a biofilm repelling coating [59–61]. It has proven to be an effective polyanion able 

to complex with cationic polymers such as CHT [24,62–68], providing for opportunities to generate 

polyelectrolyte multilayers (PEMs) systems. CHI/HA multilayers have been built up onto a huge 

diversity of substrates like, glass [69], Ti [64,70–73], detachable poly(propylene) [74], poly(ethylene 

terephthalate) [75], among other ones. 

2.1.3 Dopamine 

Dopamine hydrochloride, 3,4-dihydroxyphenethylamine hydrochloride (DN), (ref. H8502, 

molecular weight 189,64 Da) was purchased from Sigma. 

DN is commonly known as a hormone and neurotransmitter, which consists in a 

catecholamine that mimics the 3,4-dihydroxyphenyl-L-alanine (DOPA) responsible for the exceptional 

adhesive characteristics of the mussel’s adhesive proteins (MAPs) [76–78]. It is formed by 

decarboxylation of DOPA, as shown in Figure 2.3 [77]. Similarly to DOPA, DN has a catechol and 

amine group that gives it the ability to interact with organic surfaces and adhesion to a wide spectrum 

of materials [79]. Several authors [65,80,81] demonstrated the enhancement of the cellular behaviour 

with the presence of DN functional group and they have correlated with the fact of DN can act as an 

active anchor between the material surface and the cells, allowing the formation of covalent and non-

covalent bonds. 

 

Figure 2.3 – DOPA decarboxylation into dopamine. Adapted from [77]. 

Under defined conditions, alkaline solutions, DN undergoes to oxidative self-polymerization 

creating a strongly adhesive polydopamine layer on almost all type of material, including metal, 

ceramics, and macromolecular polymers [82–84], regardless of its surface chemistry, with the 

accompanied oxidation of catechol groups to the quinone form [78,80]. Therefore, DN is becoming a 

versatile and attractive polymer to form coatings for surface modification of different materials [82]. 
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By a simple dip-coating method it is possible to modify the surface of a given material by forming 

bonds between thiol- or amine- containing molecules and the DN coating layer [82,85,86]. In addition, 

the use of DN as a coating can improve the hydrophilicity, adhesion or ion exchange performances of 

many surfaces, therefore extending the use of inert and hydrophobic surfaces in further applications 

[82]. Xi et al. [82], used the coating and polymerization of DOPA and DN to perform a surface 

hydrophilic modification of poly(ethylene), poly(vinylidene fluoride) and polytetrafluoroethylene porous 

membranes. They found that the water contact angle of the modified membranes was reduced in 

comparison with to the corresponding original membranes, suggesting that the membrane 

hydrophilicity was significantly improved. They also showed that the polymer layers containing 

carboxyl, hydroxyl and amino groups were substantially attached onto the membranes by the strong 

interaction between poly(DOPA)/poly(DN) and membrane surfaces. Moreover, HA-DN conjugate has 

been used in coatings to modify the surface of biomedical devices and to develop a cell-supporting 

matrix in various fields of biomedical research [87,88]. 

2.1.4 Hydrocaffeic Acid 

Hydrocaffeic acid, 3,4-dihydroxyhydrocinnamic acid (HCA), (98%, ref. 102601, molecular 

weight 182.17 Da) was purchased from Sigma. 

HCA is a nonflavonoid catecholic compound which is present in distinct plants, Figure 2.4 

[89,90]. It has demonstrated low cytotoxicity, non-immunogenicity and high-affinity anchors for 

coordination and nanocomplex stabilization [91,92]. It has also been reported the multiple biological 

and pharmacological properties of HCA, such as anti-inflammatory, antimutagenic, antioxidant, and 

anticarcinogenic activities [89]. In addition, many studies have reported that the conjugation of 

catechol moieties of HCA onto CHT backbone significantly increases its water solubility, adhesiveness 

on tissue surfaces, biocompatibility and mechanical properties [93–97]. 

 

Figure 2.4 – Chemical structures of HCA. Adapted from [90]. 

Catechol groups of the MAPs have been known to be responsible for the strong underwater 

adhesion [98,99]. Therefore, to enhance the adhesion strength, catechol derivatives as DN and HCA 
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have been introduced into the polymers backbone [100]. Zhou et al. [100] reported an in situ forming 

nerve adhesive hydrogel composed of CHT and -polylysine-catechol conjugate, which mimics the 

polysaccharides/protein structure of natural epineurium matrices. Catechol groups conjugated onto 

-polylysine molecules were demonstrated to reinforce both the bulk cohesive force of the hydrogel 

and the interfacial adhesive force between the hydrogel and epineurium. After 8 weeks, the 

morphology of the repaired nerve fiber coated by the hydrogel was very close to the morphology of 

normal nerve. Qiao et al. [91] designed a kidney-specific nanocomplex by forming coordination-driven 

assembly from catechol-derived CHT, metal ions and active drug molecules. The nanocomplex 

demonstrated satisfactory stability under normal physiological conditions and pH-responsive drug 

release in acidic environments. Lee et al. [101] tested a water-resistant catechol-conjugated CHT 

adhesive gel patch in a cartilage repair model which plays a role in releasing the encapsulated platelet-

derived growth factor-AA (PDGF-AA) to maximize the mesenchymal stem cell (MSC) migration from 

the bone marrow. The results showed a directional PDGF-AA release which promoted effective 

recruitment of human mesenchymal stem cell (hMSCs) and prevention of its further migration and 

dispersion. Ryu et al. [95] synthesized an injectable and thermosensitive CHT/Pluronic composite 

hydrogel for tissue adhesives and haemostatic materials. CHT was conjugated with catechol groups 

in the backbone and cross-linked with terminally thiolated Pluronic F-127 triblock copolymer. The 

injectable hydrogels showed superior haemostatic properties and strong adhesiveness to soft tissues 

and mucous layers. Soliman et tal. [102] studied HCA–CHT nanoparticles prepared by ionic gelation 

with sodium tripolyphosphate to enhance CHT mucoadhesion and stabilize it in nanoparticulate form. 

Nanoparticles showed stability without aggregation or precipitation, maintained their size and 

mucoadhesion to rabbit intestine. Xu et al. [103], proposed an injectable mucoadhesive hydrogel 

based on catechol modified-CHT crosslinked by genipin to improve the efficacy of rectal sulfasalazine 

administration for colitis in mice. Rectal treatment showed better therapeutic effects than the oral 

treatment and reduced the risk of side effects. 

2.1.5 Bioactive Glass Nanoparticles 

Ternary bioactive glass nanoparticles (BGNPs) were produced by a sol-gel methodology in which 

precursors of various chemicals elements that constitutes the bioactive glass (BG). Tetraethyl 

orthosilicate (TEOS, 99.90%) was purchased by Merck Chemicals. Ammonium phosphate dibasic 

(≥98%), citric acid monohydrate (99%), calcium nitrate tetrahydrate (99%), ethanol absolute, and 

ammonium hydroxide solution (30-33% of NH3) were purchased from Sigma-Aldrich. 
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The first bioactive material was reported by Larry Hench and colleagues, in 1971, having 

developed what is nowadays termed 45S5 Bioglass® with great potential for bone regeneration [104]. 

BGs are highly attractive materials for healthcare and regenerative medicine, since they can bind to 

hard and soft tissues stimulating new tissue growth while dissolving over time [105,106]. Bone binding 

is evidenced by the precipitation of a layer of calcium–deficient carbonated apatite on the BG surface 

when in-vivo applications or in contact with physiological fluid [107,108]. 

BGNPs consists of a silicate network incorporating sodium, calcium and phosphorus in different 

relative proportions and have recently gained attention due to their size, easy dispersability, 

mechanical properties, bioactivity, ability to work as nanocarriers, osteoconductivity and 

cytocompatibility [109–111]. Moreover, its high specific surface area allows a faster release of ions 

and greater protein adsorption [112]. BGNPs have been used in combination with polymeric matrixes 

to obtain nanofiber composites, LbL coatings, scaffolds, and injectable materials with enhanced 

mechanical properties [113]. Its smaller particle size, when compared to the microparticles, makes 

them ideal candidates for injectable carriers, as well as accelerate their interaction with tissue and 

improve mechanical properties of composites [110]. Among the various techniques for its synthesis, 

sol-gel method stands out due to its low processing temperatures, easy control of the final product 

form as well as high purity, high specific area, high osteoconductivity properties and high degradability 

[114,115]. 

To improve the BGNPs properties, some works have shown that doping BGs with different ions 

can improve their biological performance. For example, by adding magnesium, one of the main 

substitutes of calcium in biological apatite, to the BGs formulation, osteoblastic adhesion can be 

enhanced [116]. Other elements have also been used to dope BG, such as strontium (Sr) which 

promotes osteoblastic differentiation [116,117] and silver (Ag) that confers bacteriostatic and 

bactericidal properties [66,118,119]. 

Very recently, adhesive and bioactive coatings inspired by the structure of nacre using BGNPs 

have been developed [66,67]. Carvalho et al. [66] reported antibacterial and bioactive coatings with a 

nacre-like architecture using Ag doped BGNPs, CHT and HA modified with catechol groups through 

layer-by-layer deposition. Rego et al. [67] also performed bioactive coatings inspired by the structure 

of nacre using BGNPs, CHT and HA modified with catechol groups through layer-by-layer deposition. 

These coatings have shown excellent adhesive properties and good bioactivity, and they could thus be 

used as a coating of a variety of implants for orthopaedic applications [66,67]. 
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2.1.6 Substrates 

Glass, titanium (Ti) and 316L stainless steel (SS) substrates were used for the deposition of LbL 

coatings by dip- and spin-coating methods. Borosilicate glass was used as plates of 3 mm thickness, 

and round coverglasses with 18 mm diameter. 99.6 % purity Ti (Goodfellow Metals Ltd, Cambridge, 

UK) was used as disks of 3 mm thickness and 18 mm diameter. Also, 316L SS (Goodfellow Metals 

Ltd, Cambridge, UK) was used as disks of 3 mm thickness and 18 mm diameter. Prior to use, Ti disks 

were manually polished with abrasive discs of P180, P320, P600 and P800 (Struers, France). In 

addition, prior to coating deposition, all the substrates were cleaned in sequential ultrasonic baths to 

remove surface impurities: 1º - 15 minutes with acetone; 2º - 15 minutes with ethanol; 3º - 15 minutes 

in osmotized water; and finally, they were dried with a nitrogen flow. 

Glass 

Borosilicate glass was used in this work, since in previous works [65–67] was also used for LbL 

deposition of multilayer films based on CHT, HA, catechol-conjugated HA, and BGNPs through the dip-

coating technique. 

In addition, borosilicate glass is the most similar substrate, in terms of contact angle, to gold-

coated quartz crystals used for quartz crystal microbalance measurements. 

Titanium 

Most procedures for restoring bone and joint function in orthopaedics and to replace missing 

bones and teeth in dental/craniofacial applications involve the use of Ti and Ti-based alloy implants 

[2,120]. Due to their excellent biocompatibility, good mechanical properties, low density, and 

anticorrosion properties, Ti and its alloys have been recommended as the ultimate choice for hard 

tissue replacement [121]. Ti owes its good biocompatibility to a dense surface oxide layer which forms 

spontaneously in the presence of oxygen [122]. 

The success of these implant therapies is related to the ability of Ti and its alloys to the 

osseointegration, i.e., becoming well integrated into the surrounding bone [2]. However, as the Ti and 

its alloys are bioinert materials, after their implantation, a fibrous encapsulation occurs on surface of 

these materials [120]. Some studies have demonstrated that these implants have expectable long-

term clinical success of 72-92% at 10 years for total joint devices, and 81-91% for dental implants at 

up to 15 years [123–128]. However, given the younger patient population and increased life 

expectancies, the demand for longer functional lifetime service of these implant devices is increasing. 
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So, implant designers and engineers have been focused on improving osseointegration of implants 

through new approaches, such as, surface modifications and coatings [64,70,129–136]. 

Covering Ti surfaces by one or more layers of polymers creates new perspectives for Ti-biological 

environment interfaces. Several authors have studied the use of polyelectrolytes films for covering 

strategy based on electrostatic interactions. However, the strength of these interactions against the 

stress applied to the biomaterial may be insufficient [137,138]. 

Different types of grafting methods are available to anchor onto the Ti surface a film of synthetic 

or natural polyelectrolytes. One way to perform grafting on a Ti surface is to use catechols groups. 

Dalsin et al. [139] were inspired by MAPs to anchor poly(ethylene glycol) (PEG), using catechol groups, 

onto Ti and gold surfaces for antifouling purposes. They demonstrated that the use of a natural 

adhesive protein conjugated to PEG readily adsorbs onto gold and Ti surfaces, rendering these 

surfaces resistant to cell attachment for up to 2 weeks. In addition, Hu and co-workers [140] reported 

Ti surfaces functionalized by covalently grafting either with DN followed by carboxymethyl CHT or HA-

catechol. They showed that the polysaccharide-modified substrates significantly decrease bacterial 

adhesion. 

316L Stainless Steel 

316L biomedical SS has been widely applied in biomedical applications, such as bone implants 

and vascular stents, owing to its favourable mechanical properties, corrosion resistance and low 

manufacturing cost [141,142]. Despite its corrosion resistance conferred by the thin protective 

chromium-enriched oxide layer on its surface, several kinds of corrosion mechanisms have been 

observed in biological environments [143]. The localized attack through chloride-containing 

environments that occurs on the SS surface leads to the release of metal ions such as iron, chromium 

and nickel from the alloy resulting in a decreased biocompatibility [143]. Thus, many researchers have 

focused on different ways to improve its corrosion resistance, through surface modification and 

coatings approaches [144].  

Polymeric coatings have shown to have an effective protection role against the corrosion of 

metallic implants. Different polymers have been used as coatings for load-bearing bone implants and 

cardiovascular stents consisting of poly(L-lactic acid), poly(caprolactone) (PCL) and poly(glycolic 

acid) [145–147]. Currently, nanocomposite coatings of polymers, such as PCL, poly(D,L-lactic-co-

glycolic), poly(methylmethacrylate), poly(D,L)lactide) and bioactive ceramics, such as hydroxyapatite 

and bioglass, have been established with the aim of improving bone-tissue interaction and 
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osseointegration as well as corrosion resistance [142,146,148].In addition, polymeric coatings have 

been used on SS substrates to improve their biocompatibility and to provide an antimicrobial role 

[149,150].  

Feng et al. [149] prepared coatings based on HA and DN onto 316L SS via chemical conjugation 

to enhance biocompatibility of cardiovascular implanted devices. It was shown that HA/DN coatings 

presented better hemocompatibility compared with the bare 316L SS. Also, Charlot et al. [150] 

developed robust antimicrobial films on SS based on the LbL deposition of polyelectrolytes containing 

DOPA. A polycationic copolymer bearing DOPA units was synthesized and co-deposited with 

precursors of Ag nanoparticles as the first layer. Multilayer films were obtained by alternating the 

nanoparticle-loaded polycationic copolymer with polystyrene sulfonate, a commercial polyanion, 

resulting in SS with high antibacterial activity against E. coli bacteria [150]. 

2.1.7 Chitosan Purification 

The procedure to obtain a pure CHT from a CHT commercial product was based on the one 

already optimized by 3B’s group. Thus, by dissolving CHT in acetic acid solution followed by 

precipitation, many impurities resulting from the chitin deacetylation process can be removed. To this 

end, CHT medium molecular weight was added to acetic acid solution (2wt%, v/v) to obtain (1wt%, 

w/v) CHT solution followed by stirring at room temperature overnight. After that, the final solution was 

filtered thrice using a nylon filter to remove the sludges. The purification of CHT in the neutralized 

form was attained by carefully adding of 2M NaOH to the filtered solution until the pH reached 8, 

promoting the precipitation of the polymer. After this step, the polysaccharide’s precipitate, was filtered 

and exhaustively washed with osmotized water until its neutrality. Then, ethanol-water solutions 

(80/20, 50/50, 90/10) were added to the CHT precipitate to gradually be forced to dehydrate the 

sample, followed by filtration. The final product was frozen at -80 ºC overnight and then, freeze-dried 

(at least 4 days). The purified CHT powder is soluble in diluted acetic and hydrochloric acids. 

2.1.8 Synthesis of the Catechol-Conjugated Hyaluronic Acid 

The synthesis results of catechol-conjugated hyaluronic acid (HA-DN) was shown in Appendix I. 

HA-DN polymers with the highest degree of substitution (DS, %) of catechol groups were chosen. 

Therefore, HA-DN was synthesized from the procedure proposed by Lee and co-workers [151], 

with some modifications. HA modification with catechol groups was performed by the carbodiimide 

chemistry using N-(3-(dimethylamino)propyl)-N’-ethylcarbodiimide hydrochloride (EDC) as an 
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activation agent of the carboxyl groups on HA chains. This activation allowed the coupling between the 

carboxyl groups of HA to primary amines of DN as shown in Figure 2.5 [152]. 

 

Figure 2.5 – Scheme of HA-DN synthesis. Adapted from [152]. 

Briefly, a HA solution (10 mg.mL-1) was prepared in phosphate buffered saline (PBS) solution 

and the pH was adjusted to 5.5 using 0.5M hydrochloric acid (HCl) or 0.5M sodium hydroxide (NaOH) 

aqueous solution under magnetic stirring. To limit the oxygen interaction with the solution, it was 

purged with nitrogen for 30 min. Then, 338 mg of EDC and 474 mg of DN were added to the previous 

solution and the pH was maintained at 5.5 at 4 ºC. The resulting solution was divided in two different 

solution with different reaction times i.e. HA-DN*4h and HA-DN*36h. Unreacted chemicals and urea 

byproducts were removed by dialysis against a pH 5.0 HCl solution for 4 days and osmotized water 

for 1 day, using a dialysis membrane tube, at 4ºC. Finally, the HA-DN conjugates were freeze-dried 

for 4 days and stored at -20ºC. The entire procedure and storage of the produced HA-DN was 

performed at 4ºC and protected from light to prevent the DN oxidation. 

2.1.9 Synthesis of the Catechol-Conjugated Chitosan 

The catechol-conjugated chitosan (CHT-C) synthesis was based on the results presented in 

Appendix II, in which it was noticed that the first approach proposed by Xu and co-workers [153], 

although having a DS (%) of catechol group slightly superior to the second one, did not show a total 

dissolution in aqueous solutions as expected. Therefore, the CHT-C synthesis was based on procedure 

proposed by Kim et al. [154], Xu et al. [153] and Ghadban et al. [155].  

As in the HA-DN synthesis, the CHT modification with catechol groups was accomplished by 

the carbodiimide chemistry using EDC as an activation agent. Thus, the coupling between the amine 

groups of the CHT and the carboxyl groups of the HCA was achieved, as shown in Figure 2.6. 
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Figure 2.6 – Scheme of CHT-C synthesis. Adapted from [153]. 

So, 1% (w/v) medium molecular weight CHT solution was prepared in HCl solution at pH 2.5. 

Then, a HCA solution (59 mg.mL-1) was prepared in osmotized water and an EDC solution (119 mg.mL-

1) was prepared in a mixture of osmotized water and ethanol. These two previous solutions were mixed 

and added to CHT solution, under stirring at 4º C, followed by the addition of 1M NaOH solution to 

obtain a final pH of 4.8. The reaction was allowed to continue for 18 h, CHT-C*18h, under nitrogen 

atmosphere for 30 min. After that, the product was purified by dialysis against an acidic osmotized 

water solution (pH 5.0, HCL solution) for 3 days and osmotized water for 4 hours, using a dialysis 

membrane tube, at 4ºC and protected from the light. The resulting product was freeze-dried and stored 

at -20ºC. 

2.1.10 Bioactive Glass Nanoparticles Production 

The procedure to obtain the ternary system of BGNPs with the composition SiO2:CaO:P2O5 

(mol.%) = 50:45:5 was based on the sol-gel method already optimized by two previous works 

[156,157]. 

First, a “solution A” was prepared through a mixture of precursor´s solutions. So, 6% (w/v) 

of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O), calcium precursor, was dissolved in osmotized water 

at room temperature. Then, 9.8353 mL of tetraethyl orthosilicate (TEOS), silica precursor, together 

with 60 mL of ethanol absolute was added to the previous solution. The pH of solution A was adjusted 

to 2 with citric acid solution (10 % (w/v)), under stirring for 3 hours. After that, a “solution B” was also 

prepared by adding 0.07% (w/v) of diammonium hydrogenophosphate (ammonium phosphate 

dibasic, (NH4)2HPO4), phosphorus precursor, to osmotized water. The pH of solution B was adjusted 

to 11.5 with ammonia hydroxide solution. Under stirring, the solution A was slowly added, drop-by-

drop, to solution B and the pH was maintained at 11.5 by continuous supplement of ammonia 

hydroxide solution. This reaction mixture was left under stirring during 48 h and then, under resting 
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for 24 h to occur the gel particle precipitation. Afterwards, the gel precipitate was washed tree times 

with osmotized water and stored during 24 h at -80ºC to be subsequently freeze-dried for 7 days. The 

obtained white gel powder was calcinated at 700ºC for 3 h to get the BGNPs with improved bioactivity. 

The procedure described above is shown in Figure 2.7. 

 

Figure 2.7 – Scheme of BGNPs production. 

2.1.11 LbL Assembly – Production of Multifunctional LbL Coatings 

Among the several techniques to for the thin film deposition, LbL assembly is an extremely 

versatile technique for the production of nanostructured polymeric multilayer thin films with well-

tailored thickness, composition, structure, properties, and functions over different types of substrate. 

As previously described, LbL assembly is based on sequential adsorption of complementary 

multivalent molecules on a substrate surface, occurring either via electrostatic or nonelectrostatic 

interactions. Through this approach, it is possible to build an effective and reproducible film by the 

deposition of alternate layers with oppositely charged materials [158]. A multilayer assembly is 

reached by repeating the deposition cycles that produce the desired number of layers. A variety of 

deposition methods for the LbL build-up of multilayer assembly have been already reported in the 

literature, including dip-coating, spin-coating, spraying and perfusion. Among these, dip-coating has 

been definitely the LbL deposition technique most widely used [158,159]. 

Dip-coating is a LbL assembly method based on electrostatic interactions, which consists in the 

vertical alternate dipping of a charged substrate into diluted solutions of oppositely charged molecules. 

In this process, a washing step between the deposition of each polyelectrolyte (PE) is required to 
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remove the unbounded materials and stabilizes weakly adsorbed layers [160]. The process is repeated 

the times intended until achieving the desired layers number, as depicted in Figure 2.8 [159]. Crucial 

parameters for the control of the properties and thickness of the film are the concentration, pH, ionic 

strength, viscosity of the PE solutions, and the deposition time (immersion time). Dip-coating method 

presents advantages compared to other deposition techniques, such as the simplicity and low-cost of 

the LbL process and equipment, as well as its suitability to coating substrates with complex 

geometries. However, the need of a relatively large amount of materials for each deposition step and 

the time-consuming leads to choose alternative methods, such as the spin-coating [159,161]. 

Therefore, the spin-coating method appears as a good alternative to produce low-cost, rapid, and 

uniform LbL films using the same materials of the dip-coating and allowing the electrostatic self-

assembly [159]. 

 
Figure 2.8 – Schematic representation of LbL assembly by the dip-coating method. Adapted from [159]. 

In the spin-coating method, a spin coater is required to perform the LbL assembly, which 

comprises four main steps, as shown in Figure 2.9. The first step, the deposition, consists in depositing 

an excess amount of a charged solution onto a substrate to ensure full coverage of the substrate 

during the high-speed spinning step. The second stage, spin-up, occurs when the substrate is 

accelerated up to the desired spinning speed, usually around 3000 rpm. This stage is generally 

characterised by aggressive fluid expulsion (radial flow) from the substrate surface by the rotational 

motion. The fast spinning generates centrifugal forces that enable the spread of the solution and the 

quickly development, in seconds, of the first molecular layer on the full substrate area. The 

combination of spinning speed and time selected for this stage greatly contribute to tune the film 

thickness. The third step, spin-off, is characterised by gradual fluid thinning at a constant rate. In this 

stage, the rotation is continued until the desired thickness of the film is achieved. The uniformity of 
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the coating is mainly improved at this stage, due to the centrifugal forces from the rotational motion 

and the air shear forces from the air flow surrounding the sample. Finally, the fourth stage, 

evaporation, is represented by the loss of volatile species, while the substrate spins at constant rate. 

In fact, at this point, the solvent evaporation dominates the coating thinning behaviour, causing an 

increase of the solution concentration, which in turn leads to the fluid thickness reaching a point where 

the viscosity effects increase effectively freezing the coating in place. Subsequently, these cascade 

effects results in the formation of a dry thin film on the substrate [159,162–164]. The process above 

described is repeated until the desired number of layers was achieved. Similarly with the dip-coating 

procedure, between each PE deposition, it is performed a rising cycle to remove the surplus coating 

solution [159]. 

 

Figure 2.9 – Schematic representation of LbL assembly by the spin-coating method. 

The third and fourth stages describe two processes that have the most impact on the final 

coating thickness, respectively viscous flow, and evaporation. Although these occur simultaneously 

through all times, at an engineering level, the viscous flow effects are considered to dominate first, 

while the evaporation processes dominate later [163,164]. 

The parameters chosen for the spin process, such as spinning speed, spinning time and 

acceleration, as well as other parameters, greatly depends on the nature of the PE solutions 

(concentration, viscosity, surface tension, and drying rate). Specifically, for higher polymer viscosity or 

the substrate area, a higher polymer volume will be needed to be dispensed. Also, higher spin speeds 

and longer spin times could generate thinner films. In addition, higher acceleration rate values may 

reduce coating coverage, as well as high drying rate values may reduce thickness uniformity [180], 

[181]. 
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The spin-coating method has remarkable advantages comparatively to the dip-coating one. It 

can reduce both the polymer required for the deposition of each layer and the cost of LbL production, 

promoting also the increase of the film quality. Spin-assisted LbL films have demonstrated a more 

highly ordered coating structure and therefore, more uniform smooth surfaces, and higher biaxial 

strength and toughness [165,166]. Additionally, films produced by this method have shown less PE 

interpenetration between the layers yielding a linear growth of the thickness, rather than the 

exponential growth which is common in the LbL assembly by dip-coating [166]. 

Although spin-coating is a very promising method, it can only use flat planar substrates with 

nonporous or complex geometries. In addition, it is not applicable to construct LbL coatings onto very 

large surfaces, specially due to the difficulty of producing uniform films using aqueous solutions 

[166,167]. 

The LbL assembly of different multifunctional LbL coatings was carried out using the two 

previously described methods, dip-coating, and spin-coating. 

Seven different PE solutions, containing CHT, HA, CHT-C*18h, HA-DN*4h, HA-DN*36h, BGNPs and 

poly(ethylenimine) (PEI), were prepared. The concentration and function of each PE is shown in Table 

2.1. All PE solutions were prepared in a 0.15 M sodium chloride (NaCl) solution. For the CHT solution, 

2% (v/v) of acetic acid was added to the NaCl solution, since CHT is soluble only under acidic 

conditions. The PE solutions were prepared under stirring and allowed to dissolve overnight. Except 

for PEI, the pH of the PE solutions was adjusted to 5.5 using 0.5 M NaOH or 0.5 M HCl aqueous 

solutions under magnetic stirring. To avoid BGNPs agglomeration, the solutions containing the 

nanoparticles were kept under magnetic stirring and, periodically, subjected to an ultrasonic treatment 

during 10 – 15 minutes. 

Table 2.1 – PE and respective concentration and function for the LbL assembly. 

 

As described in Table 2.1, HA, HA-DN*4h, HA-DN*36h and BGNPs were used as polyanion, while 

CHT and CHT-C*18h were used as polycation. PEI was used as an initial layer precursor, by immersing 
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each substrate for 20 min, prior to multilayer deposition. Therefore, after immersion in PEI, a 

polycation was used to initiate alternating deposition between oppositely charged PE. All substrates 

used in the experiments were rinsed with acetone, ethanol and osmotized water and, then, dried with 

a nitrogen flow before each use. 

So, for the dip-coating technique, glass plates (3 mm thickness), round coverglasses (18 mm 

diameter) and SS and Ti disks (18 mm diameter and 3 mm thickness) were used as substrates. The 

substrates were alternately dipped in the oppositely-charged PE solutions with the pH adjusted to 5.5, 

to produce LbL coatings with 11 bilayers, i.e. 22 layers, and to be able to compare the results with 

those obtained in previous works [65,67]. The dipping time for CHT, HA and their respective 

conjugates (CHT-C and HA-DN) was 10 minutes, whereas for the BGNPs suspension it was 20 

minutes. These dipping times were established after an optimization process in the two previously 

mentioned works [65,67], where it was verified by a quartz crystal microbalance (QCM) study that 

these corresponded to the moment when the PE adsorption reached equilibrium. In addition, a rinsing 

step was included for 5 min with 0.15 M NaCl solution, between the adsorptions of each PE.  

 For the spin-coating technique, round coverglasses (18 mm diameter) and SS and Ti disks 

(18 mm diameter and 3 mm thickness) were used as substrates. Spin-assisted LbL films were 

prepared using a spin-coater (WS-650Hzb-23NPPB-UD-3, LAURELL, USA), Figure 2.10, and following 

an optimization procedure described in appendix III. A 300 µL PE solution was dropped for the first 

bilayer, 200 µL for the second bilayer and 100 µL for the remaining bilayers, so that the entire surface 

area of substrate was covered. PE solutions were alternatively spin-coated at 3000 rpm spinning 

speed, 10 sec spinning time and 1300 rmp2 acceleration, onto the substrates. Additional rising steps 

between the layer depositions were excluded, since the concentration of PE solutions used was low 

and the SEM analysis results showed no significant difference in the uniformity of the LbL coatings, 

using or not rising steps for these specific conditions. 
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Figure 2.10 – Spin coater instrument. 

All experiments were performed at 25ºC and distinct films were developed, as shown in Figure 

2.11: the multifunctional LbL coatings containing [CHT/HA/CHT/BGNPs]5 + [CHT/HA], [CHT-

C*18h/HA/CHT-C*18h/BGNPs]5 + [CHT-C*18h/HA], [CHT/HA-DN*4h/CHT/BGNPs]5 + [CHT/HA-DN*4h], 

[CHT/HA-DN*36h/CHT/BGNPs]5 + [CHT/HA-DN*36h], [CHT-C*18h/ HA-DN*4h /CHT-C*18h/BGNPs]5 + [CHT-

C*18h/ HA-DN*4h], [CHT-C*18h/ HA-DN*36h /CHT-C*18h/BGNPs]5 + [CHT-C*18h/ HA-DN*36h], and respective 

controls containing [CHT/HA]11, [CHT-C*18h/HA]11, [CHT/HA-DN*4h]11, [CHT/HA-DN*36h]11, [CHT-C*18h/HA-

DN*4h]11, [CHT-C*18h/HA-DN*36h]11. These configurations were used to study the effect of the presence of 

BGNPs on multilayer films compared to polymeric films, both with or without conjugates (CHT-C or 

HA-DN), on the adhesive properties and bioactivity. 

 

Figure 2.11 – Schematic illustration of the different multifunctional (MF) and control (CTR) LbL coatings. 
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Multifunctional films ending with an adhesive layer were chosen since in a previous work [67], 

they were shown to have higher adhesive strength when, compared to the multifunctional films ending 

in BGNPs. 

At the end of each procedure, the LbL coatings were subjected to 3 rising steps in ultrapure 

water to remove any salt deposition derived from the LbL deposition process. The LbL were then 

allowed to dry at room temperature, overnight. 

2.2 Characterization Techniques 

2.2.1 Ultraviolet-Visible Spectroscopy 

The DS (%) of catechol groups in the conjugates were determined by ultraviolet-visible (UV-Vis) 

Spectroscopy, in a quartz microplate with 96 wells, using a Synergy HT Multi-Mode Microplate Reader 

(BioTek Instruments, U.S.A.) for measuring the absorbance (Abs) between 200 and 350 nm. Solutions 

of HA-DN and CHT-C with different concentrations, 0.5, 1, 2, 3, 4, 5 mg.mL-1 in 0.15 M NaCl, were 

prepared for the UV-Vis analysis. 100 l of test solution was used in each well and NaCl was used as 

blank. 

The Synergy HT Multi-detection reader is a robotic-compatible microplate reader that can 

measure Abs, fluorescence, and luminescence. Microplate-based assays make determinations on 

large numbers of samples, any plate format up to 384-well, and provides temperature control up to 

50° C and shaking as standard features. The Abs measurements are given in a single-channel system 

that measures Abs from the UV to the near IR range. The monochromator-based Abs optics, 

illuminated by a xenon-flash lamp, has a wavelength range of 200-999 nm and can perform spectral 

scans in increments of 1 nm. The monochromatic light is split into an experimental and a reference 

channel. The experimental channel is focused onto the microplate well sample and the reference 

channel is directed to the reference detector. The unabsorbed light is then focused onto a detector, 

located opposite the light source, on the other side of the microplate well [168]. 

The light detector measures the intensity of the transmitted light through the wells, aiming to 

quantify the Abs, A, given by equation (2.1) [169]. 

(2.1) 
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Where I0 is the intensity of the incident light and I is the intensity of light transmitted through 

the wells containing the sample [169]. 

Unlike UV/VIS spectrophotometers, where samples are read through cuvettes or tubes with a 

horizontal (cross-sectional) light path, the microplate readers use a vertical light beam that results in 

a pathlength dependent on the volume of fluid in each well [168], Figure 2.12. 

 

Figure 2.12 – (Left) Variable pathlength in a microplate well. (Right) Fix pathlength in a cuvette (1cm). 

2.2.2 Rheological measurements 

The Kinexus Rheometer is a rotational rheometer system that applies controlled shear 

deformation to a sample under test, to enable measurement of various rheological characteristics. 

Here, rheology represents an ideal tool for discerning structural and compositional changes of 

materials, as well as enabling to engineer its rheological properties to achieve the desired performance 

responses. Common test modes are rotational (or flow) to measure shear viscosity, and oscillation to 

measure dynamic material properties such as viscoelastic modulus and phase angle. It also allows 

the evaluation of other rheological properties, including yield stress, thixotropy, creep and recovery 

and stress relaxation [170,171]. 

The sample is placed into a gap between two geometries, interchangeable by concentric 

cylinder, cone-plate, and parallel plate, specially designed to impose simple shear flow when rotated. 

The choice of the appropriate geometries is made considering the material properties and the ideal 

conditions of a process or in situ application [170–172]. 

In the cone-plate geometry, torque is measured as a consequence of the drag of fluid on the 

cone. This system allows a constant shear rate across the entire measuring gap, the use of small 

sample quantities, and the study of a wide viscosity range with high shear rates. The cone angle is 

chosen such that for each point on the cone surface, the ratio of angular speed and distance to the 



 
 

 Multifunctional Mussel Inspired Coatings for Orthopaedic Applications 
 

 

71 

plate is constant. For low viscous samples, a cone with an angle between 0.5 º and 1.0 º and diameter 

between 50 mm and 60 mm is generally used [170–172].  

In the cone-plate measuring system, viscosity (𝜂, Pa.s-1) is given by equation (2.2), where shear 

stress (𝜏, Pa) and shear rate (𝛾, s-1) values are obtained through the torque (𝑇, N.m-1) and rotor speed 

(𝑛, min-1) measurements [171]. 

(2.2) 

 

In addition, 𝜏 and 𝛾 are given by equations (2.3) and (2.4), respectively [171]: 

(2.3) 

 

(2.4) 

 

Where 𝑟𝑐 (m) is the cone radius, 𝜃 (rad) is the cone angle and Ω (rad.s-1) is the angular velocity. 

In turn, Ω is given by equation (2.5) [171]. 

(2.5) 
 

The rheological properties of the different polymers used were characterized on a Kinexus Pro 

Rheometer (Malvern Instruments Ltd, UK) fitted with cone-plate geometry, Figure 2.13. This geometry 

was chosen due to the possibility of studying polymers with wide viscosity range. Other geometries 

can be used on a Kinexus Pro Rheometer, such as plate-plate, which is normally used in oscillatory 

tests or tests at low shear rates, and concentric cylinder, which is ideal for dispersed systems and low 

viscous samples [170–172]. A cone with 40 mm diameter and 4º angle (CP4/40: SR 1772SS) and 

a plate with 65 mm diameter (PL65: S1425SS) were used.  
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Figure 2.13 – (Left) Kinexus Pro Rheometer. (Right) Cone-plate geometry. 

Rotational measurements of CHT, HA, CHT-C*18h, HA-DN*4h and HA-DN*36h solutions at different 

concentrations of 0.5, 1, 2, 3 mg.mL-1, in 0.15 M NaCl, were made. The steady-state flow 

measurements were performed under controlled-stress conditions where the torque amplitude was 

imposed by using a logarithmic ramp of shear rate ranging from 10 to 100 s-1. All experiments were 

performed at a controlled temperature of 25 °C, and results represent the average of three 

measurements. Measured data were registered with rSpace for Kinexus Pro 1.7 software. 

2.2.3 Zeta Potential Measurements 

When particles are in contact with aqueous solutions an interfacial charge is formed, which 

leads to the rearrangement of the free ions in the solution. The existence of an electric charge on the 

particles surfaces attracts oppositely charged ions giving rise to an ionic atmosphere called electrical 

double layer. Thus, the electrical double layer comprises two regions of charge. The first one refers to 

an immobile layer of ions, compact layer or Stern layer, which adhere to the particle surface, and the 

second one to a mobile layer of oppositely charged ions, diffuse layer, which are attracted by the 

immobile layer [173,174]. 

Within the diffuse layer there is a point called as shear level or slip plane, where the electrical 

potential difference between the dispersion medium and the Stern layer is called the zeta potential, ζ. 

Figure 2.14 represents the zeta potential of a negatively charged particle [175]. Zeta potential in the 

diffuse layer decreases exponentially approaching zero with increasing of the distance from the particle 
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surface. As this potential approaches to zero, the particles tend to aggregate giving an indication of 

system stability [175]. 

 

Figure 2.14 – Schematic representation of the zeta potential of a negatively charged particle. Adapted from [175]. 

A value of 25 mV (positive or negative) can be taken as the arbitrary value to indicate whether 

a surface has low or high charge. Thus, if the zeta potential (negative or positive) is higher than 25 

mV, the particles tend to repel and the dispersion will be stable. On the other hand, if the zeta potential 

(negative or positive) is lower than 25 mV, the attraction forces are stronger than the repulsion ones, 

leading to the particle aggregation [176]. 

The zeta potential of natural polymers and nanoparticles were measured to confirm the success 

of multilayer films construction. For this, it is expected that polyelectrolytes such as CHT and its 

derivates (CHT-C*18h) have a positive charge, and HA and its derivates (HA-DN*4h and HA-DN*36h), as well 

as BGNPs have a negative charge, in the same order of magnitude. These measurements were 

performed by a Zetasizer equipment (Nano ZS, Malvern, UK), at 25ºC, and the results were given as 

an average of 3 measurements for each 0.5 mg.mL-1 solution in 0.15M NaCl solution. Immediately 

prior to measurement, the BGNPs solution was dispersed for 15 minutes in the ultrasonic equipment 

to prevent nanoparticle agglomeration. 

2.2.4 Quartz Crystal Microbalance with Dissipation Monitoring: Multilayer Films Modelling 

Quartz crystal microbalance with dissipation monitoring (QCM-D), Figure 2.15, is an accurate 

technique which make use of piezoelectric quartz crystals to detect adsorption of molecules, at 

nanoscale, by measuring frequency changes [177]. Each side of the quartz crystals is coated by gold 

electrodes which are excited at multiple overtones, 1, 3, 5, 7, 9, 11, and 13, corresponding 

respectively, to 5, 15, 25, 35, 45, 55, and 65 MHz fundamental resonant f [178]. According to 

Sauerbrey equation, in vacuum, when a thin and rigid mass is deposited onto the crystal surface, 

there is a decrease in resonant frequency change [179]. However, in the case of viscoelastic materials, 

the adsorbed mass does not fully couple the crystal’s oscillation and dampens the oscillation. Thus, 
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from the decay monitoring of the crystal’s oscillation is quantified the dissipation which represents the 

viscoelastic properties of the adsorbed mass [178]. 

 

Figure 2.15 – a) and b) QCM-D system. c) Schematic representation of the mounting and the physical parts of the 
QCM-D system: flow modules, sensor crystals and flow chamber system. 

So, through the QCM-D monitoring, it is possible to simultaneously measure the adsorbed 

amount, given by the normalized resonance frequency (∆f/)of each overtone to the fundamental 

resonant, and the variation of the viscoelastic properties, given by energy dissipation (∆D), of the 

multilayer film in real time [178]. 

The build-up of multilayered films with different materials was monitored in situ by QCM-D (Q-

sense, E4 system, Sweden) onto gold-coated quartz crystals. The quartz crystals were previously 

cleaned in an ultrasound bath with sequential sonication for 5-10 min in: 2% (v/v) acetic acid solution, 

mixture of osmotized water, ammonia hydroxide and hydrogen peroxide at 75º C, acetone, 

isopropanol, ethanol, and ultrapure water. The crystals were then dried with flowing nitrogen gas and 

treated with UV/Ozone cleaner (Bioforce Nanoscience, ProCleaner 220) for 10 min. 

To ensure that the crystals are perfectly clean (null frequency), all experiments started with a 

0.15M NaCl baseline. Adsorption took place at 25 °C, pH 5.5 and at a constant flow rate of 50 µL.min-

1 using a peristaltic pump. LbL coatings were produced using fresh solutions prepared in 0.15 M NaCl 

and starting with injection of CHT (1 mg.mL-1 with 2% (v/v) of acetic acid) or CHT-C*18h (1 mg.mL-1) 

used as polycations, while HA (0.5 mg.mL-1), HA-DN4h* (0.5 mg.mL-1), HA-DN36h* (0.5 mg.mL-1), and 

BGNPs (2.5 mg.mL-1) acted as polyanions and were used as ended-polymer layer. Before the QCM 
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experiments, the BGNPs suspension was dispersed in an ultrasonic water bath (25ºC) for 15 to 20 

minutes to avoid agglomeration and the precipitation of nanoparticles. 

The injection of the polymers was standing for 10 min and the nanoparticles for 20 min to allow 

the adsorption until the equilibrium was achieved in QCM-D monitoring. A rising step of 5 min, with 

0.15M NaCL solution, between the polyelectrolyte adsorptions was include. These steps were repeated 

to form a total of 20 layers. The thickness of the multilayer films was estimated using the Voigt model 

in the Q-Tools software (Q-Sense). According to this model, the ∆f and ∆D are given by equations 

(2.6) and (2.7), respectively [180]: 

 

(2.6) 

 

(2.7) 

 

Where  is the angular frequency of the oscillation, ρ0 and h0 are the density and thickness of 

the crystal, respectively, B the solution viscosity, B (=(2B /B)1/2) the viscous penetration depth of 

the shear wave in the solution, B the solution density, and hL, L, L and µL the thickness, density, 

viscosity and elastic shear modulus of the adsorbed layer, respectively [178,180]. 

From the modelled results obtained by the previous presented equations, the QTools software 

compared them with ∆f and ∆D experimental values and it found the best fitting using a Simplex 

algorithm (Total ChiSqr) through the minimum in the sum of the squares of the scaled errors. For this, 

B, B and L should be changed to get the lower error possible [178]. In this study, a fluid density of 

1000 kg.m-3, a fluid viscosity of 1 mPa.s and a layer density of 1200 kg.m-3 was assumed. In addition, 

Δ f and Δ D were fitted for three overtones, in which the 1st and 13th overtones were disregarded since 

the first one is very sensible to the piezoelectric effect and the second one departs from the 

fundamental frequency having more associated error. 

2.2.5 Fourier Transform Infrared Spectroscopic Imaging Analysis 

Fourier transform infrared (FT-IR) spectroscopy is a quick and easy technique for analysing 

materials that provides qualitative information about the atom vibration in a compound. The vibrational 

mode is a characteristic of each molecular group and is caused by the transitions between vibrational 

energy levels of the molecules, by stretching or bending of bonds. These transitions cause the 
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appearance of bands at a specific frequency ranging from 4000-400 cm-1 in the infrared (IR) spectrum, 

which depends on the relative masses of the atoms, bond strength, atom geometry and dipole moment 

of the molecule [169]. 

In the FT-IR equipment a single pulse of IR radiation is transmitted by a source to an 

interferometer, which interacts with the sample and reaches a detector that measures the energy 

absorbed by the molecules at each frequency. The interferometer is an optical device that has a semi-

transparent moving mirror (beam splitter) which separates a single light beam into two light beams, 

one directed to the sample and another to the system, where it is then recombined in a single beam 

leaving the interferometer. The obtained attenuation beam is converted into frequency domain using 

the Fourier transform algorithm, causing corresponding peaks to appear in a specific position of the 

absorption spectrum [181,182]. 

Since a single beam is used in modern IR spectrometers, the analysis begins by collecting a 

background spectrum which is then subtracted to the sample spectrum to remove, for example, the 

contribution of carbon dioxide and atmospheric water [169]. 

FTIR analysis can be performed by three different modes, namely transmittance, reflectance 

and attenuated total reflectance (ATR). In the transmittance mode, a transparent matrix to the IR 

beam, usually KBr, is used to attenuate the transmitted beam after passing the sample. The obtained 

spectrum is an absorption pattern for the entire volume of the sample. The reflectance mode is useful 

for in situ analysis of materials that strongly absorb IR radiation and when the surface of the sample 

needs to be analysed. On the other hand, ATR uses the total reflection angle to further investigate the 

chemical composition of smooth surfaces [181,182]. 

The main disadvantage of this type of spectroscopy is the water content of samples, which is 

revealed by wide and intense peaks, that could hide peaks of dissolved solutes. Also, the presence of 

mixtures may cause difficulty in analysis due to overlapping of specific bands resulting in a complex 

spectrum [181]. 

FT-IR imaging analysis was performed using a Perkin-Elmer Spectrum Spotlight 300 FT-IR 

Microscope System, Figure 2.16, in the reflectance mode for surface analysis of distinct LbL coatings 

onto different substrates. 
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Figure 2.16 – Perkin-Elmer Spectrum Spotlight 300 FT-IR Microscope System. 

FT-IR maps were constructed by a spectrum collected in the continuous scan mode for a 

spectral range 4000–720 cm-1 and sample areas of 500×500 µm2. Each spectrum was collected with 

an average of 15 repetitive scans with a spectral resolution of 16 cm -1. Spectra were integrated by 

taking the areas under the curve between the limits of the peaks of interest. The chosen region for 

CHT identification corresponds to C=O stretching of amide I centred at approximately 1650 cm -1 and 

the C=O stretching of carboxylic acid at about 1730 cm–1 was chosen for HA [183,184]. The 

characteristic peak of CHT corresponding to the amine deformation vibration, N–H bending vibration, 

centred at 1590 cm–1 could not be used due to overlapping with a peak of the amide II present in both 

polysaccharides [185]. On the other hand, the chosen region for catechol group identification 

corresponds to out-of-plane C–H bending vibration centred at 740 cm-1 and C–H stretching vibration 

centred at 3052 cm-1, both belonging to the aromatic C–H group. The C=C vibrations peaks of the 

aromatic ring, approximately between 1466 and 1515 cm-1, were not chosen due to overlapping with 

characteristic peaks of the polysaccharides. Furthermore, for the BGNPs identification the chosen 

region was the silicate absorption bands, Si–O–Si, assigned to the peaks 1085 and 800 cm−1 

corresponding to asymmetric stretching and symmetric stretching vibration, respectively [157]. 

2.2.6 X-Ray Diffraction Analysis 

X-ray diffraction (XRD) is a microstructural characterization technique based on the observation 

of the scattered intensity of an X-ray beam on a sample providing detailed information about the 

chemical composition and crystallographic structure of the materials. It is primarily used for 

identification of phases, amorphous or crystalline, identification of polymorphic forms (“fingerprints”), 

determination of the lattice parameter, determination of the orientation, shape, size, and internal 

stress of crystals, as well as for quantification of crystallinity percentage of a sample [186]. 

X-rays are electromagnetic waves with high energy, ranging from 100 eV to 100 keV, and very 

short wavelength, which are found in the electromagnetic spectrum between -rays and ultraviolet 
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radiation. They are formed when an interaction between an electrons external beam and electrons 

belonging to shells of an atom occurs [186,187]. 

An X-ray diffractometer generates X-rays when an electron beam, produced by a voltage 

difference between two electrodes, is accelerated towards the metallic target (anode) from a heated 

tungsten filament (cathode) inside a vacuum tube. So, as the electrons collide with the atoms of the 

metal, a deceleration occurs that leads to the beam diffraction generating consequently the X-rays 

[186,187].  

Once the X-rays are scattered, the propagation of the electromagnetic wave, reemitted by the 

electron, in different directions depends on the crystalline structure and the radiation wavelength. 

Bragg’s law describes this condition, Figure 2.17. 

 
Figure 2.17 – Illustration of Bragg’s Law [186]. 

Bragg’s law is represented by equation (2.8) relating the X-rays wavelength, 𝜆, and the 

diffraction order, 𝑛, to the diffraction angle, 𝜃, and the spacing between atomic planes of a unit cell 

(lattice spacing, 𝑑ℎ𝑘𝑙) in a crystalline sample. The Miller indices, hkl, characterize the orientation of 

the atomic planes and are associated with the unit cell dimension [187]. 

(2.8) 
 

The XRD analysis provides a plot with a series of peaks representing a diffracted X-ray from a 

set of planes, with different intensities. When properly interpreted, by comparison with standard 

reference patterns and measurements, the peaks positions allow the identification of the crystalline 

form [187]. 

The crystalline structure of the LbL coatings was determined by XRD experiments on a Bruker 

AXS D8 Discover operated at 40 kV and 40 mA using Cu Kα radiation (λ = 1.54060 Å). The detector 
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was scanned over a range of 2 angles from 15° to 60° at a speed of 0.04°/1s. The identification 

of crystalline phases was achieved using an analytical software EVA and they were indexed using the 

ICDD database (International Centre for Diffraction Data). 

2.2.7 Water Contact Angle Measurements 

Coatings must provide a suitable surface for the apposition and growth of bone tissue. Thus, 

coating topography has an important effect on cellular response and depends both on physical and 

chemical characteristics of the surface. Surface chemical characteristics such as wettability have been 

linked to changes in protein adsorption and cell growth in-vitro [188,189]. One of the most widely 

used techniques for assessing the wettability of a material is by measuring the water contact angle 

(WCA). This analysis is given by Young’s equation, which assuming a perfectly flat surface, calculates 

the angle between the material surface and the line tangent to the radius of a dispensed water drop 

[188,190]. Depending on the WCA, the surfaces are characterized by their hydrophilicity (WCA<90º) 

and hydrophobicity (WCA>90º), Figure 2.18. 

 

Figure 2.18 – Schematic representation of WCA measurements on a solid surface: (a) hydrophobic surface; (b) and (c) 
hydrophilic surfaces [192]. 

Some studies have shown that more hydrophilic coatings have better ability to support the 

formation of an apatite-like layer upon its surface [188]. However, it is now been well accepted in 

biomaterial community that very hydrophilic or hydrophobic surfaces are not good for cell attachment, 

rather, surfaces with moderate wettability are able to adsorb a proper amount of proteins while 

preserving their natural conformation, resulting in higher cell responses [189,191]. 

The wettability of the coatings was assessed by the sessile drop method using an OCA15plus 

Goniometer equipment (DataPhysics, Germany). For each coating surface, 3 measurements were 

made, using 3 µL droplets of osmotized water dispensed by a motor-driven syringe. The 

measurements were performed at room temperature and the pictures were taken immediately after 

the drop contacted the surface. The results were treated using the SCA20 software. 
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2.2.8 Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy 

The scanning electron microscopy (SEM) is a non-destructive equipment that can be used to 

analyse several materials on a nanometer-to-micrometer scale. The fact that it has a large depth of 

field makes the SEM a high resolution electronic microscope, which is essential for obtaining 

topographic images with a 3D aspect and with a large magnification range [193]. Besides the 

topography, SEM allows to obtain information about the morphology, composition and crystallographic 

nature of the analysed specimens [194]. Although several materials can be studied using this 

microscopy technique, polymers and biological samples have low conductivity and may degrade 

chemically due to electron-induced reactions. Thus, in these cases, a thin conducting layer of carbon, 

gold, or platinum is required [193]. 

SEM have two main components, the electron column and the control console or electronics 

console. The first one contains an electron gun and electron lens working in a vacuum, while the 

control console has the electron beam control and other electronic elements [193]. In SEM, Figure 

2.19, a highly energetic electron beam, created by the electron gun, is focused by a series of 

condenser lenses and an objective lens to scan the sample and form a high-resolution image by the 

interaction between the electron beam and the electrons in the sample. The three-dimensional 

interaction volume, resulting from the interaction of the electron beam with the specimen atoms, is 

influenced by the electron beam energy, specimen nature, composition, and sample preparation. The 

imaging process is performed using the electrons emitted from the sample, where different signals 

can be collected by different types of detectors giving rise to different information. Among them, the 

secondary electrons provide information about the topography of the sample, and backscattered 

electrons give information about the atomic number [193,194]. Also analytical X-rays, provided by 

SEM, can be analysed by energy dispersive X-ray spectroscopy (EDS) providing qualitative and 

quantitative information on specimen composition [194]. In this analysis, each element has its own 

characteristic X-ray peaks (qualitative analysis), which in turn are more intense the higher its 

concentration (quantitative analysis) [193,195]. 
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Figure 2.19 – Scheme showing the optical system of SEM. Adapted from [194]. 

SEM (JSM-6010 LV, JEOL, Japan) equipment was used to evaluate the surface topography of 

the LbL coatings. Before analysis, the samples were sputtered with a thin platinum layer, using a 

sputter coater EM ACE600 (Leica Microsystems, Germany). SEM is equipped with EDS (INCAx-Act, 

PentaFET Precision, Oxford Instruments), which was used to detect the chemical elements present on 

the surface of coatings, during in-vitro bioactivity tests. 

2.2.9 Adhesion Tests 

The adhesive strength of LbL coatings using glass plates as the substrate was evaluated 

following the ASTM D1002 standard, “Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded 

Metal Specimens by Tension Loading”. ASTM D1002 is a standard test method widely used to 

determine the apparent shear strengths of adhesives for bonding metals when tested on a standard 

single­lap­joint specimen [196]. 

According to ASTM D1002 standard, the dimensions and form of the specimens should follow 

specific conditions of preparation and test as shown in Figure 2.20 [196,197]. The recommended 

thickness of the substrates is 1.62 ± 0.125 mm with a corresponding overlap length of 12.7 ± 0.25 

mm. In some cases, the overlap length values can be changed according to the thickness and type of 

substrate [196]. 
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Figure 2.20 – Schematic representation of a single­lap­joint (dimensions in mm). Adapted from [196,197]. 

To measure the adhesive strength of the LbL coatings on glass substrates, adhesion tests were 

performed using a universal mechanical testing machine (Instron 5543, USA) with a 1 kN load cell. 

Lap shear tests were accomplished following an adaptation of the procedure described in the ASTM 

D1002 standard.  

Immediately after the LbL deposition by dip coating method, pairs of glass plates were put in 

contact with an overlapping area of 15 × 20 𝑚𝑚2. The specimens were tightly clamped using metal 

binder clips, Figure 2.21 (a), and maintained at 37ºC overnight. To perform the adhesion experiments, 

each end of the specimens was placed in the grips of the mechanical testing machine, as shown in 

Figure 2.21 (b). At the upper specimen edge an axial tensile load was applied, at a constant cross-

head speed of 5 mm.min-1 to be pulled until the detachment of the specimens. Five specimens of each 

condition were tested to calculate the mean and standard deviation (SD) values of the adhesion 

strength. 
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Figure 2.21 – a) Frontal and b) lateral view of a single­lap­joint used in this study. c) Schematic representation of 
single­lap­joint using a mechanical testing machine. Adapted from [198]. 

The testing software used was the Bluehill2 (INSTRON Corporation), and stress-strain curves 

was obtained for each testing condition from the maximum tensile stress (𝜎𝑇𝑚𝑎𝑥) and the maximum 

tensile strain (𝜀𝑇𝑚𝑎𝑥) calculations. The 𝜎𝑇𝑚𝑎𝑥 is the maximum stress that the film can support 

without detachment, being obtained from the load applied (𝐹) data, acquired during the test, and the 

overlapping area (𝐴0), equation (2.9). The 𝜀𝑇𝑚𝑎𝑥 corresponds to the strain value reached for the 

𝜎𝑇𝑚𝑎𝑥 and is obtained from the length change (∆𝐿) data, acquired during the test, and the initial 

length (𝐿0), equation (2.10) [67]. 

 

(2.9) 

 

(2.10) 

 

2.2.10 Atomic Force Microscopy Analysis 

Atomic Force Microscopy (AFM) a three-dimensional topographic technique used to measure 

local surface properties such as roughness, friction, adhesion, viscoelasticity, and stiffness at 

nanoscale [199]. This topographic analysis is based on the detection of forces acting between a sharp 

tip and the surface of the sample, Figure 2.22 (a). The tip is attached to a flexible cantilever, which 

acts as a spring, and is mounted on a piezoelectric scanner. The piezoelectric scanner can move in 
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all three-dimensions, providing local scanning with good resolution of the sample surface. Topography 

mapping and surface-tip interactions monitoring are acquired by measuring the magnitude of laser-

beam deflection changes. In this way, a laser-beam is focused on the cantilever causing its deflection. 

The resulting reflected laser-beam is detected by position-sensitive detectors (photodiodes) that 

converts these deflections into continuously recorded voltages signals and, then, it can be visualized 

on the computer in real time [199–201]. 

AFM can be divided into two operational modes, static and dynamic. The static mode is 

characterized by quasi-static oscillation of the cantilever and includes contact mode and friction force 

microscopy. On the other hand, the dynamic mode is characterized by the oscillation of the cantilever 

near or at its resonance frequency and is categorized in terms of cantilever deflection and excitation 

mechanism including tapping mode, non-contact, force modulation mode, atomic force acoustic 

microscopy mode, torsional resonance mode, lateral excitation mode and combined normal and 

lateral excitation mode [202].  

The most commonly used AFM imaging modes include contact mode and tapping mode. In 

contact mode, the tip maintains constant contact with the sample surface, during the scan, Figure 

2.22 (b), to generate a topographical image. In contrast, in tapping mode the cantilever oscillates 

continuously, translating into intermittent contact of the tip with the sample surface. Thus, as the 

height of the sample changes, the amplitude of the cantilever oscillations changes, Figure 2.22 (c). In 

addition, of obtaining a topographical image, this method allows the monitoring of the oscillation phase 

to acquire changes in the mechanical properties of the sample, such as friction, adhesion, and 

stiffness. Furthermore, it is more suitable for samples that can be damaged or deformed using the 

contact mode [200,201]. 
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Figure 2.22 – a) Illustration of AFM work principle. Representation of different AFM operating modes: b) contact mode 

and c) tapping mode. Adapted from [200]. 

Amplitude parameters are the main parameters that can be obtained from the AFM analysis to 

characterize the surface topography of a sample. Among these, the average roughness (𝑅𝑎) and the 

root mean square roughness (𝑅𝑞) are the most widely used, being shown in the equations (2.11) and 

(2.12), respectively [203]. 

 

(2.11) 

 

(2.12) 

 

Where 𝑍(𝑥) is the function that describes the surface profile in terms of height (𝑍) and position (𝑥) 

of the sample over the evaluation length (𝐿), Figure 2.23. 𝑅𝑎 represents the arithmetic mean absolute 

values of height of the surface profile 𝑍(𝑥), while 𝑅𝑞 is a function that describes the mean squared 

absolute values of surface profile making it a more sensitive parameter [203]. 

 
Figure 2.23 – Representation of a surface profile (𝒁(𝒙)) showing the 𝑹𝒂 and 𝑹𝒒 parameters based on the mean line 

[203]. 
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The surface roughness of the LbL coatings in dried state was examined using a bio-AFM. All 

AFM images were acquired with a JPK NanoWizard III AFM system (JPK Instruments AG, Berlin, 

Germany), in tapping mode (AC mode) AFM operated in air. A commercial silicon (Si) probe (Acta 

probe) with aluminium (Al) coating on the cantilever backside, and with a spring constant of 40 N/m 

was used. The topography of the LbL coatings was analysed with a resolution of 512 x 512 pixels, at 

line rates of 0.5 to 1 Hz, and resonance frequency around 300 kHz. AFM images with 20 x 20 µm2 

were obtained and at least three measurements of the surface roughness were performed, followed 

by 𝑅𝑞 and 𝑅𝑎 calculations. 

2.2.11 In-Vitro Bioactivity Studies 

Bioactivity is defined as the ability of an implanted material to create a bond with living tissues. 

BGs, as already mentioned, are materials with great potential for bone regeneration due to their ability 

to naturally bond to living bone, without the development of fibrous tissue, and to induce the 

precipitation of a bone-like apatite layer on their surface. This precipitation can be observed when BGs 

are used in in-vivo applications or when in contact with physiological fluid [104,107,108,113]. In fact, 

the presence of this apatite layer is crucial for any implanted material to form a bond with the living 

bone [105,113]. 

The bone-bonding ability of a material can be asserted in-vitro by evaluating the formation of 

apatite on its surface, when immersed in simulated body fluid (SBF). In 2003, conventional SBF with 

the refined recipe was proposed to the Technical Committee ISO/TC150 of International Organization 

for Standardization as a solution for in-vitro measurement of apatite-forming ability of implant 

materials. This solution contains ionic concentrations nearly equal to those of human blood plasma, 

as shown in Table 2.2 [204]. 
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Table 2.2 – Ion concentrations of SBF and human blood plasma. Adapted from [204] 

 

This method can be used for screening bioactivity of materials prior to animal testing. Thus, the 

number of animals used and the duration of animal experiments can be remarkably reduced by using 

this method [204]. 

Standard in-vitro bioactivity studies were performed by immersing the LbL coatings in a pH 

adjusted SBF solution to 7.4, which was prepared by following the Kokubo and Takadama procedure 

[204], in order to simulate the concentration of ionic species and pH present in human blood plasma. 

Each dip-coated coverglass (18 mm diameter) was immersed for 7 days in 13 mL of SBF solution at 

37°C. Likewise, dip-coated coverglass pieces, with the same LbL coatings, were immersed for 14 

days in 13 mL of SBF solution at 37ºC. The LbL conditions used for these bioactivity studies were the 

formulations containing both conjugates (CHT-C and HA-DN) and BGNPs and their respective controls, 

namely MF5, MF6, CTR5, CTR6. After removing from SBF, these coverglass were cleaned three times 

with ultrapure water and, then, dried at room temperature. The bone-like apatite layer formation was 

characterized by a surface analysis using the SEM/EDS and XRD technologies. 

2.2.12 In-vitro Biological Studies 

Studies of cells morphology, and activity were performed with the aim of evaluating the in-vitro 

biological performance of the developed dip-coated LbL conditions. Dip-coated coverglasses with the 

formulations containing both conjugates (CHT-C and HA-DN) and BGNPs and their respective controls, 

namely MF5, MF6, CTR5, CTR6, were used. 
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The mouse fibroblast cell line L929, from European Collection of cell cultures (ECACC, UK), 

was chosen to perform direct contact tests with the developed LbL coatings. Before cell seeding, the 

samples were sterilized by ethylene oxide sterilization (EO) which takes approximately 12h, with 3h of 

EO exposure at 42ºC and, then, they were washed twice with sterile PBS. Cells were cultured with 

Dulbecco’s modified minimum essential medium (D-MEM) supplemented with 10% fetal bovine serum 

(FBS) and 1% antibiotic. The cultures were then incubated at 37°C, in humidified air atmosphere of 

5% CO2, and placed to grow until confluence. The culture medium was replaced every 2 days. When 

90% of confluence was reached, the cells were seeded onto the LbL coatings, using 3 replicates (n=3), 

at a density of 1 × 104 cells per sample and then incubated at 37°C for one, three and seven days. 

After 4 hours, supplemented D-MEM was added to each well to nourish the adhered cells. 

MTS Assays 

MTS assays were performed to evaluate the cytotoxicity of the dip-coated LbL conditions, and 

to determine their relative cellular viability (%). 

MTS (3-(4,5-dimethylthiazol-2-yl)-5­(3-carboxymethoxyphenyl)­2­(4-sulfophenyl)-2H-tetrazolium) 

assay is a colorimetric method based on the quantification of a coloured formazan product obtained 

by the reduction of tetrazolium products. This reduction reaction is performed by mitochondrial activity 

of viable cells at 37ºC, and therefore can be directly correlated with the number of viable cells in 

culture and quantified by measuring the Abs at 490 nm [205]. 

The MTS test (Promega) was done after immersing LbL coatings in a MTS solution and after 

each time point of 1, 3 and 7 days of culture. The MTS solution was prepared using 1:5 ratio of MTS 

reagent and D-MEM culture medium without phenol red or FBS, and then incubated for 3 hours at 

37°C. Relative cellular viability (%) of each condition was obtained and compared with tissue culture 

polystyrene (TCPS), used as positive control of cell viability. All cytotoxicity tests were conducted using 

three replicates (n=3), and optical density (OD) was read at 490 nm on a multiwell microplate reader 

(Synergy HT, BioTek Instruments, U.S.A.). 

Phalloidin/DAPI Analysis 

Phalloidin/DAPI fluorescent assays were performed at each time culture period, 1, 3 and 7 

days, to obtain fluorescence images. 

Briefly, for each time point, the culture medium was removed and 10% formalin was added to 

each well in three replicates (n=3) for 30 minutes. Then, formalin was removed and the wells of the 

plate were washed with PBS. The samples were labelled with fluorescent stains: Phalloidin (phalloidin-
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tetramethylrhodamine B isothiocyanate), which binds to actin filaments staining the cytoskeleton of 

the cells in red, and DAPI (4',6-diamidino­2­phenylindole), which binds to DNA regions staining cell 

nuclei in blue. For this, first, phalloidin was incubated with samples at 1:200 in PBS for 30 min and 

then, DAPI was added at 1:1000 in PBS for 5 min. This procedure was done at room temperature 

and protected from light. Finally, the samples were washed twice with PBS, left overnight and then 

visualized in the dark using a fluorescence microscope (Transmitted and Reflected Light Microscope 

with Apotome 2, Zeiss, Germany). The images were acquired and processed using AxioVision software 

version: Zeiss 2012 (Zeiss, Germany). 

2.2.13 Statistical Analysis 

The results of all experiments were carried out at least in three replicates (n=3) and were 

presented as mean ± standard deviation (SD). 

Statistical significance between groups was determined by One-way ANOVA with Turkey’s 

Multiple comparison test, using Graph Pad Prism version 6.0 (GraphPad software, San Diego, CA). 

Statistical differences were represented and set to p<0.05(+/*), p<0.01(++/**), p<0.001(+++/***), 

and p<0.0001(++++/****). 
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Abstract 
Inspired by the marine mussel’s adhesive proteins (MAPs) and the tough nacre-like structure, 

different configurations of nanostructured films were developed by layer-by-layer (LbL) assembly, using 

the dip-coating method. Multifunctional (MF) films were constructed using bioactive glass nanoparticles 

(BGNPs) as the inorganic phase and hyaluronic acid (HA) and chitosan (CHT) based polymers as the 

organic phase. Polymeric (CTR) films were also constructed using the same above mentioned 

polysaccharides. In addition, since the catechol groups are the main responsible for the outstanding 

adhesion in MAPs, their conjugation with both CHT and HA was carried out. The combined effect of the 

presence of catechol groups on both polymers is expected to result in coatings with enhanced adhesive 

properties, while the inclusion of BGNPs is expected to provide bioactivity. It was the first time that 

multilayered coatings containing both HA and CHT modified with catechol groups with or without BGNPs 

were developed. The substitution degrees of catechol-conjugated chitosan (CHT-C) and catechol-

conjugated hyaluronic acid (HA-DN) were determined by ultraviolet-visible (UV-Vis) spectroscopy, showing 

that both modifications were successful. Prior to the LbL build-up, viscosity and zeta potential 

measurements of the polyelectrolytes (PE) were conducted. In-situ LbL growth of the films was monitored 

by quartz crystal microbalance with dissipation monitoring (QCM-D). It was found that the combination of 

CHT-C and HA-DN in a LbL assembly leads to the formation of a more compact structure than when this 

system has the presence of BGNPs. It was also shown that the developed coatings presented an improved 

adhesion. Bioactivity results evidenced the formation of a bone-like apatite layer onto the MF films after 

immersion in a simulated body fluid solution. Finally, in-vitro cellular tests confirmed an enhanced cell 

adhesion, proliferation, and viability for the developed biomimetic LbL films, demonstrating their potential 

to be used as coatings of a variety of implants. 
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3.1 Introduction 

Mimicking structures and functions from natural organisms, as the marine mussels, to produce 

high-performing and environmentally friendly materials, has recently been a hot research topic due to 

their superior mechanical and biological properties compared to synthetic materials [1–6]. Systems 

inspired on the surface chemistry and the rough nacre structure of molluscs have attracted much 

attention, since they can provide a solution for creating robust layer-by-layer (LbL) films with improved 

adhesive properties [7–9]. Nacre is a natural composite of hard shells of molluscs with outstanding 

mechanical properties thanks to its hierarchical layered structure containing an inorganic matrix, 95 wt% 

aragonite (crystallographic form of CaCO3), and an organic matrix, 5 wt% proteins and polysaccharides 

[6–8]. The combination of the layered organic and inorganic components provides structure with high 

mechanical resistance and toughness [7,8]. Toughness is essentially provided by the organic matrix that 

plays an important role in dissipating the mechanical energy, owing to its capability for undergoing 

inelastic deformations [8]. The strong underwater adhesion of marine mussels to almost all types of 

surfaces, have recently attracted much attention [1,9,10]. It has been confirmed that the ortho-

dihydroxyphenyl (catechol) moiety of amino acid 3,4-dihydroxy-phenylalanine (DOPA) present in secreted 

mussel’s adhesive proteins (MAPs), is responsible for this strong adhesion between adhesive pads of 

mussels and opposing surfaces [1,10–12]. The catechol group had an extremely strong affinity to various 

organic/inorganic surfaces such as metals, metal oxides, polymer surfaces, and even 

biomacromolecules, such as pig gastric mucin glycoprotein [13,14]. In addition, researchers have utilized 

catechol chemistry to modify several types of flat substrates [2,15], particles [16,17] and to improve the 

mechanical properties of polymer composites [6]. 

So, inspired by the inorganic−organic composites nacre-like and by MAPs, we propose new robust 

multifunctional (MF) LbL films developed by the alternate combination of inorganic nanoparticles with 

biopolymeric layers bearing catechol groups. In parallel, biopolymeric films containing catechol groups 

were also proposed for the sake of comparison. Dip-coating was the LbL deposition technique chosen for 

film build-up, since is relatively simple and suitable for coating substrates with complex geometries 

[18,19]. In this study, we select natural polyelectrolytes such as chitosan (CHT) and hyaluronic acid (HA) 

with catechol functionalities as the organic phase in the LbL assembly, with the aim of enhancing film 

stability and improving adhesion strength. By conjugating catechol groups to both CHT and HA, through 
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carbodiimide chemistry, we not only preserve the cationic and anionic characteristics of the polymers, 

but also the electrostatic interactions. For the inorganic phase of the MF LbL coatings, we used bioactive 

glass nanoparticles (BGNPs) produced by a sol-gel method, since it expected that its inclusion will not 

only improve the mechanical performance of the produced coatings, but will also confer a bioactive 

character. Bioactivity provides bone-bonding ability to the coatings, hence, improving osteoconductivity 

[20–24]. 

Previous works of our group [25–27], have already used dip-coating to prepare LbL coatings based 

on catechol-modified HA (HA-DN), CHT and BGNPs. It was found that the combination of these materials 

resulted in nanostructured films with enhanced adhesion properties, bioactivity and mechanical 

performance. In the current work, we hypothesized that the modification of both polymers, HA and CHT, 

with catechol groups can produce multilayer films with superior adhesive strength than the ones 

developed in these previous studies, as the content of catechol groups will be higher. We have optimized 

the modification of CHT with catechol groups, based on other works [28–30] to produce the catechol-

modified CHT (CHT-C). We have also optimized HA-DN synthesis to achieve higher DS (%). Therefore, we 

believe that these biocompatible LbL films could be used as coatings on a variety of orthopaedic devices 

and scaffolds, to create an environment compatible with osteogenesis and promote a bone-friendly 

interface with improved adhesion properties. Thus, using MF films, a natural bonding junction between 

the implant and host’s bone could be established in a simple and versatile way, avoiding the typical use 

of cements. On the other hand, an improved bonding between orthopaedic implants and other tissues 

could be achieved by using highly adhesive biopolymeric films, as an alternative to synthetic tissue 

adhesives. 

3.2 Materials and Methods 

3.2.1 Materials 

Medium molecular weight chitosan (ref. 448877, Brookshield viscosity 200–800 cP, Mw = 190–

310 kDa, 75–85% N-deacetylation degree), hyaluronic acid sodium salt from Streptococcus equi (ref. 

53747, Mw = 1500–1800 kDa), dopamine hydrochloride (DN, ref. H8502, Mw = 189,64 Da), 

hydrocaffeic acid (ref. 102601, 98%, Mw = 182.17 Da), N-(3-(dimethylamino)propyl)-N′-ethylcarbodiimide 

hydrochloride (EDC, ref. 03450, purum, ≥98.0% (AT), Mw = 191.70 Da), dialysis tubing cellulose 

membrane (avg. flat width 33 mm), calcium nitrate tetrahydrate (Ca(NO3)2·4H2O C2H6O, 99 %), citric acid 
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monohydrate (99%), ammonium phosphate dibasic ((NH4)2HPO4, ≥98%), ethanol absolute, ammonium 

hydroxide solution (maximum of 33 % NH3), sodium chloride (NaCl), magnesium chloride hexahydrate 

(MgCl2·6H2O, ≥99.0%), sodium sulfate (Na2SO4 ≥99.0%), tris(hydroxymethyl)aminomethane (Tris buffer, 

(CH2OH)3CNH2, 99%), hydrochloric acid (HCl), and polyethylenimine (PEI) were purchased from Sigma-

Aldrich (St. Louis, Mo, USA). Tetraethyl orthosilicate (TEOS, 99.90%) was purchased from Merck KGaA 

(Darmstadt, Germany). Potassium chloride (KCl), acetone and 2-propanol were obtained from VWR 

International (UK). Sodium hydroxide (NaOH) was purchased from Fisher Chemical (Fisher Scientific UK, 

Leics, UK) and hydrogen peroxide 30% (w/v) was obtained from Panreac AppliChem (Darmstadt, 

Deutschland). Sodium of hydrogen carbonate (NaHCO3), di-potassium hydrogen phosphate trihydrate 

(K2HPO4·3H2O) and calcium chloride (CaCl2) were purchased from Merck (Merck Sharp & Dohme Corp., 

Kenilworth, NJ, USA). Standard gold QCM-D sensor crystals (QSX 301 Gold, Au 100 nm, 14 mm 

diameter) were purchased from Q-Sense (BiolinScientific, Stockholm, Sweden). For the cellular behaviour 

assays, the mouse fibroblast cell line L929 was obtained from European Collection of cell cultures 

(ECACC, UK). Dulbecco’s modified minimum essential medium (D-MEM), fetal bovine serum (FBS), 

phalloidin–tetramethylrhodamine B isothiocyanate and DAPI (4',6-diamidino­2­phenylindole) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) was obtained from VWR International (UK). CHT 

was the only reagent that was previously purified by recrystallization. Borosilicate glass plates (3 mm 

thickness), and circular coverglasses (Ø 18 mm, Agar Scientific, Stansted, UK), were used as substrates 

for deposition of LbL coatings by dip-coating method. Prior to coating deposition, all the substrates were 

cleaned in sequential ultrasonic baths to remove surface impurities: 1º - 15 minutes with acetone; 2º - 

15 minutes with ethanol; 3º - 15 minutes in osmotized water; and finally, they were dried with a nitrogen 

flow. 

3.2.2 HA-DN Synthesis 

HA-DN was synthesized using the procedure proposed by Lee and co-workers [2], with some 

modifications. HA modification with catechol groups was performed by the carbodiimide chemistry using 

EDC as an activation agent of the carboxyl groups on HA chains. HA solution (10 mg.mL-1) was prepared 

in phosphate buffered saline (PBS) solution and the pH was adjusted to 5.5 using 0.5 M HCl or 0.5 M 

NaOH aqueous solution under magnetic stirring. To limit the oxygen interaction with the solution, HA 

solution was purged with nitrogen for 30 min. Then, 338 mg of EDC and 474 mg of DN were added to 

the previous solution, and the pH was maintained at 5.5 at 4 ºC. The resulting solution was divided in 
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two different solutions with different reaction times, i.e., HA-DN*4h and HA-DN*36h. Unreacted chemicals 

and urea byproducts were removed by dialysis against an acidic osmotized water solution (pH 5.0, HCL 

solution) for 4 days and osmotized water for 1 day, using a dialysis membrane tube, at 4ºC. Finally, the 

HA-DN conjugates were freeze-dried for 4 days and stored at -20ºC. The entire procedure and storage of 

the produced HA-DN was performed at 4ºC and protected from light to prevent oxidation of catechol 

groups. 

3.2.3 CHT-C Synthesis 

CHT-C synthesis was based on the procedure proposed by Kim et al. [28], Xu et al. [29] and 

Ghadban et al. [30]. As in HA-DN synthesis, CHT modification with catechol groups was accomplished 

by the carbodiimide chemistry using EDC as an activation agent. 1% (w/v) CHT solution was prepared in 

HCl solution at pH 2.5. Then, a HCA solution (59 mg.mL-1) was prepared in osmotized water and an EDC 

solution (119 mg.mL-1) was prepared in a mixture of osmotized water and ethanol. These two previous 

solutions were mixed and added to CHT solution, under stirring at 4º C, followed by the addition of 1M 

NaOH solution to obtain a final pH of 4.8. The reaction was allowed to continue for 18 h, under nitrogen 

atmosphere for 30 min. After that, the product, CHT-C*18h, was purified by dialysis against an acidic 

osmotized water solution (pH 5.0, HCL solution) for 3 days and osmotized water for 4 hours, using a 

dialysis membrane tube, at 4ºC. The resulting product was freeze-dried and stored at -20ºC. Also, as in 

the HA-DN synthesis, the entire procedure and storage of the produced CHT-C was performed at 4ºC and 

protected from light to prevent oxidation of catechol groups. 

3.2.4 BGNPs Production 

The procedure to obtain the ternary system of BGNPs with the composition SiO2:CaO:P2O5 (mol.%) 

= 50:45:5, was based on the sol-gel method already optimized by two previous works [20,31]. First, a 

“solution A” was prepared through a mixture of precursor´s solutions. So, 6% (w/v) of calcium nitrate 

tetrahydrate, calcium precursor, was dissolved in osmotized water at room temperature. Then, 9.8353 

mL of TEOS, silica precursor, together with 60 mL of ethanol absolute was added to the previous solution. 

The pH of solution A was adjusted to 2 with citric acid solution (10 % (w/v)), under stirring for 3 hours. 

After that, a “solution B” was also prepared by adding 0.07% (w/v) of ammonium phosphate dibasic, 

phosphorus precursor, to osmotized water. The pH of solution B was adjusted to 11.5 with ammonia 

hydroxide solution. Under stirring, the solution A was slowly added, drop-by-drop, to solution B and the 
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pH was maintained at 11.5 by continuous supplement of ammonia hydroxide solution. This reaction 

mixture was left under stirring during 48 h and then, under resting for 24 h to occur the gel particle 

precipitation. Afterwards, the gel precipitate was washed tree times with osmotized water and stored 

during 24 h at -80ºC to be subsequently freeze-dried for 7 days. The obtained white gel powder was 

calcinated at 700ºC for 3 h to get the BGNPs with improved bioactivity. 

3.2.5 UV-Vis Spectroscopy Characterization 

DS (%) of catechol groups in the conjugates were determined using a Synergy HT Multi-Mode 

Microplate Reader (BioTek Instruments, U.S.A.) with an absorbance measurement range of 200 to 350 

nm, and a quartz microplate with 96 wells. Solutions of HA-DN*4h, HA-DN*36h and CHT-C*18h with different 

concentrations, 0.5, 1, 2, 3, 4, 5 mg.mL-1 in 0.15 M NaCl, were prepared for the UV analysis. 100 µl of 

test solution was used in each well, and 0.15 M NaCl solution was used as blank. 

3.2.6 Rheological Characterization 

The viscosity of the different polyelectrolytes (PEs) used was determined on a Kinexus Pro 

Rheometer (Malvern Instruments Ltd, UK) fitted with cone-plate geometry. A cone with 40 mm diameter 

and 4º angle (CP4/40: SR 1772SS) and a plate with 65 mm diameter (PL65: S1425SS) were used. 

Rotational measurements of CHT, HA, CHT-C*18h, HA-DN*4h and HA-DN*36h solutions at different 

concentrations of 0.5, 1, 2, 3 mg.mL-1, in 0.15 M NaCl, were made. The steady-state flow measurements 

were performed under controlled-stress conditions, where the torque amplitude was imposed using a 

logarithmic ramp of shear rate ranging from 10 to 100 s-1. All experiments were performed at a controlled 

temperature of 25 °C, and results represent the average of 3 measurements. Measured data were 

registered with rSpace for Kinexus Pro 1.7 software. 

3.2.7 Zeta Potential (ζ) Characterization 

The zeta potential of the different PEs was measured with a Zetasizer equipment (Nano ZS, 

Malvern, UK), at 25ºC, and the results were given as an average of 3 measurements for each 0.5 mg.mL-

1 solution in 0.15 M NaCl solution. Immediately prior to measurement, the BGNPs solution was dispersed 

for 15 minutes in an ultrasonic water bath (DT100H SONOREX, Bandelin electronic GmbH & Co. KG, 

Berlin, Deutschland) to prevent nanoparticle agglomeration and precipitation. 
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3.2.8 Quartz Crystal Microbalance with dissipation (QCM-D) Monitoring: Multilayer Films Modelling 

The build-up of LbL coatings with different materials was monitored in situ by QCM-D (Q-sense, 

E4 system, Sweden) onto gold-coated quartz crystals (14 mm diameter, QSX301 Gold, Q-Sense). QCM-

D is an accurate technique which make use of piezoelectric quartz crystals to detect adsorption of 

molecules, at nanoscale, by measuring frequency changes [32]. In addition, from the decay monitoring 

of the crystal’s oscillation is quantified the dissipation which represents the viscoelastic properties of the 

adsorbed mass [33]. So, through the QCM-D monitoring it is possible to simultaneously measure the 

adsorbed amount, given by the normalized resonance frequency (∆f/of each overtone to the 

fundamental resonant, and the variation of the viscoelastic properties, given by energy dissipation (∆D), 

of the multilayer film in real time [33]. 

Previously to QCM-D monitoring, the quartz crystals were cleaned in an ultrasonic water bath 

(DT100H SONOREX, Bandelin electronic GmbH & Co. KG, Berlin, Deutschland) with sequential sonication 

for 5-10 min in: 2% (v/v) acetic acid solution, mixture of osmotized water, ammonia hydroxide and 

hydrogen peroxide 30 % (w/v) at 75º C, acetone, isopropanol, ethanol, and ultrapure water. The crystals 

were then dried with flowing nitrogen gas and treated with UV/Ozone cleaner (Bioforce Nanoscience, 

ProCleaner 220) for 10 min. 

To ensure that the crystals are perfectly clean (null frequency), all experiments started with a 

0.15M NaCl baseline. The crystals were excited at multiple overtones, 3, 5, 7, 9, and 11, corresponding 

respectively, to 15, 25, 35, 45, and 55 MHz fundamental resonant f. Adsorption took place at 25 °C, 

and at a constant flow rate of 50 µL.min-1 using a peristaltic pump. LbL coatings were produced using 

fresh solutions prepared in 0.15 M NaCl and with the pH adjusted to 5.5 using 0.5 M HCl or 0.5 M NaOH 

aqueous solutions. LbL construction started with injection of CHT (1 mg.mL-1 with 2% (v/v) of acetic acid) 

or CHT-C*18h (1 mg.mL-1) used as polycations, while HA (0.5 mg.mL-1), HA-DN4h* (0.5 mg.mL-1), HA-DN36h* 

(0.5 mg.mL-1), and BGNPs (2.5 mg.mL-1) acted as polyanions and were used as ended-polymer layer. 

Before the QCM experiments, the BGNPs suspension was dispersed in an ultrasonic water bath for 15 to 

20 minutes to avoid agglomeration and precipitation of nanoparticles. The injection of the polymers was 

standing for 10 min and the nanoparticles for 20 min to allow the adsorption until the equilibrium was 

achieved in QCM-D monitoring. A rising step of 5 min, between the PE adsorptions, using 0.15M NaCl 

solution with the pH adjusted to 5.5 was included. 

Distinct configurations, each with 22 layers, were developed, as shown in Figure 3.1: the MF LbL 

coatings containing [CHT/HA/CHT/BGNPs]5 + [CHT/HA] (MF1), [CHT-C*18h/HA/CHT-C*18h/BGNPs]5 + 

[CHT-C*18h/HA] (MF2), [CHT/HA-DN*4h/CHT/BGNPs]5 + [CHT/HA-DN*4h] (MF3), [CHT/HA-
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DN*36h/CHT/BGNPs]5 + [CHT/HA-DN*36h] (MF4), [CHT-C*18h/HA-DN*4h/CHT-C*18h/BGNPs]5 + [CHT-

C*18h/HA-DN*4h] (MF5), [CHT-C*18h/HA-DN*36h/CHT-C*18h/BGNPs]5 + [CHT-C*18h/HA-DN*36h] (MF6), and 

respective controls (CTR) containing [CHT/HA]11 (CTR1), [CHT-C*18h/HA]11 (CTR2), [CHT/HA-DN*4h]11 

(CTR3), [CHT/HA-DN*36h]11 (CTR4), [CHT-C*18h/HA-DN*4h]11 (CTR5), [CHT-C*18h/HA-DN*36h]11 (CTR6). 

 

Figure 3.1 – Schematic illustration of the different multifunctional (MF) and control (CTR) LbL coatings. 

During the entire monitoring, Δf/ and ΔD shifts were continuously recorded as a function of 

time. The thickness of the multilayer films was estimated using the Voigt model in the Q-Tools software 

(Q-Sense). According to this model, the Δf and ΔD are given by equations (3.1) and (3.2), respectively 

[34]: 

 

(3.1) 

 

(3.2) 

 

Where  is the angular frequency of the oscillation, ρ0 and h0 are the density and thickness of the 

crystal, respectively, B the solution viscosity, B (=(2B/B)1/2) the viscous penetration depth of the shear 

wave in the solution, B the solution density, and hL, L, L and µL the thickness, density, viscosity and 

elastic shear modulus of the adsorbed layer, respectively [33,34]. 

From the modelled results obtained by these equations, the QTools software from Q-Sense was 

used to compare them with Δf and ΔD experimental values and finds a best fit using a Simplex algorithm 

(Total ChiSqr) to find the minimum in the sum of the squares of the scaled errors. For this, B, B and L 

should be changed to get the lower error possible [33]. In this study, a fluid density of 1000 kg.m-3, a fluid 
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viscosity of 1 mPa.s and a layer density of 1200 kg.m-3 was assumed. In addition, the Δf/and ΔD shifts 

were fitted to the 7th overtone. 

3.2.9 Adhesion Tests 

The adhesive strength of LbL coatings using glass plates with 3 mm thickness as the substrate 

was evaluated following an adaptation of the procedure described in the ASTM D1002 standard. Lap 

shear tests were performed using a universal mechanical testing machine (Instron 5543, USA) with a 1 

kN load cell. 

The LbL assembly of different LbL coatings was performed by dip-coating using fresh PE solutions 

prepared with 0.15 M NaCl solution, at room temperature. Seven different PE solutions, containing 1 

mg.mL-1 CHT with 2% (v/v) of acetic acid, 0.5 mg.mL-1 HA, 1 mg.mL-1 CHT-C*18h, 0.5 mg.mL-1 HA-DN*4h, 

0.5 mg.mL-1 HA-DN*36h, 2.5 mg.mL-1 BGNPs and 5 mg.mL-1 PEI, were prepared. Except for PEI, the pH of 

the PE solutions was adjusted to 5.5 using 0.5 M NaOH or 0.5 M HCl aqueous solutions under magnetic 

stirring. To avoid BGNPs agglomeration, the solutions containing the nanoparticles were kept under 

stirring and periodically subjected to an ultrasonic treatment during 10 – 15 minutes. In this study, the 

HA, HA-DN*4h, HA-DN*36h and BGNPs were used as polyanion, while CHT and CHT-C*18h were used as 

polycation. PEI was used as an initial layer precursor, by immersing each substrate for 20 min, prior to 

multilayer deposition. After immersion in PEI, the substrates were alternately dipped in the oppositely-

charged PE solutions, to produce LbL coatings with 11 bilayers, i.e. 22 layers (see Figure 3.1), and to be 

able to compare the results with those obtained in previous works [81], [83]. A polycation was used to 

initiate alternating deposition between oppositely charged PE. All substrates used in the experiments were 

rinsed with acetone, ethanol and osmotized water and then dried with a nitrogen flow before each use. 

The dipping time for the CHT, HA and their respective conjugates (CHT-C and HA-DN) was 10 minutes, 

whereas for the BGNPs suspension it was 20 minutes. These dipping times were established after an 

optimization process in the two previously mentioned works [81], [83], where it was verified by a QCM-D 

study that these corresponded to the moment when the PE adsorption reached equilibrium. In addition, 

a rinsing step was included for 5 min with 0.15 M NaCl solution, between the adsorptions of each PE.  

Immediately after the LbL deposition, pairs of glass plates were put in contact with an overlapping 

area of 15 × 20 𝑚𝑚2. The specimens were tightly clamped using metal binder clips, and maintained at 

37ºC overnight. To perform the adhesion experiments, each end of the specimens was placed in the 

grips of the mechanical testing machine. At the upper specimen edge an axial tensile load was applied, 

at a constant cross-head speed of 5 mm.min-1 to be pulled until the detachment of the specimens. Five 
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specimens of each condition were tested, at room temperature, to calculate the mean and standard 

deviation values of the ultimate adhesion strength. 

The testing software used was the Bluehill2 (INSTRON Corporation), and stress-strain curves was 

obtained for each testing condition from the maximum tensile stress (𝜎𝑇𝑚𝑎𝑥) and the maximum tensile 

strain (𝜀𝑇𝑚𝑎𝑥) calculations. The 𝜎𝑇𝑚𝑎𝑥 is the maximum stress that the film can support without 

detachment and is obtained from the load applied (𝐹) data, acquired during the test, and the overlapping 

area (𝐴0), equation (3.3). The 𝜀𝑇𝑚𝑎𝑥 corresponds to the strain value reached for the 𝜎𝑇𝑚𝑎𝑥 and is 

obtained from the length change (∆𝐿) data, acquired during the test, and the initial length (𝐿0), equation 

(3.4) [27]. 

 

(3.3) 

 

(3.4) 

 

3.2.10 In-Vitro Bioactivity Studies 

The bone-bonding ability of a material can be asserted in-vitro by evaluating the formation of apatite 

on its surface, when immersed in simulated body fluid (SBF). This solution contains ionic concentrations 

nearly equal to those of human blood plasma [35]. 

Thus, standard in-vitro bioactivity studies were performed by immersing the dip-coated LbL coatings 

in a pH adjusted SBF solution to 7.4, which was prepared by following the Kokubo and Takadama 

procedure [35], in order to simulate the concentration of ionic species and pH present in human blood 

plasma. Each dip-coated coverglass was immersed for 7 days in 13 mL of SBF solution at 37°C. Likewise, 

dip-coated coverglass pieces, with the same LbL coatings, were immersed for 14 days in 13 mL of SBF 

solution at 37ºC. After removing from SBF solution, these coverglasses were cleaned three times with 

ultrapure water and dried at room temperature. The bone-like apatite layer formation was characterized 

by a surface analysis using the scanning electron microscopy (SEM, JSM-6010 LV, JEOL, Japan) coupled 

with energy dipersive X­ray spectroscopy (EDS, INCAx-Act, PentaFET Precision, Oxford Instruments) and 

X-ray diffraction (XRD, Bruker AXS D8, Discover, USA) technologies. Before SEM analysis the samples 

were sputtered with a thin platinum layer, using a sputter coater EM ACE600 (Leica Microsystems, 

Germany). The XRD experiments were performed at 40 kV and 40 mA using Cu Kα radiation (λ = 1.54060 

Å). The XRD detector was scanned over a range of 2θ angles from 15° to 60° at a speed of 0.04°/1s. 
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The crystalline phases identification was achieved using an analytical software EVA and were indexed 

using the ICDD database (International Centre for Diffraction Data). 

3.2.11 In-Vitro Biological Studies 

Studies of morphology and cellular activity were performed with the aim of evaluating the in-vitro 

biological performance of the dip-coated LbL conditions build-up onto coverglasses. 

The mouse fibroblast cell line L929, from European Collection of cell cultures (ECACC, UK), was 

chosen to perform direct contact tests with the developed LbL coatings. Before cell seeding, the samples 

were sterilized by ethylene oxide sterilization (EO) which takes approximately 12h, with 3h of EO exposure 

at 42ºC and, then, they were washed twice with sterile PBS. Cells were cultured with Dulbecco’s modified 

minimum essential medium (D-MEM) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic. 

The cultures were then incubated at 37°C, in humidified air atmosphere of 5% CO2, and placed to grow 

until confluence. The culture medium was replaced every 2 days. When 90% of confluence was reached, 

the cells were seeded onto the LbL coatings, using 3 replicates (n=3), at a density of 1 × 104 cells per 

sample and then incubated at 37°C for one, three and seven days. After 4 hours, supplemented D-MEM 

was added to each well to nourish the adhered cells. 

MTS Assays 

After specific time points (1, 3 and 7 days) a MTS (3-(4,5-dimethylthiazol-2-yl)-5­(3-

carboxymethoxyphenyl)­2­(4-sulfophenyl)-2H-tetrazolium) assay was performed to evaluate the 

cytotoxicity of the dip-coated LbL conditions, and to compare the relative cellular viability (%) between 

each condition and a positive control, the tissue culture polystyrene (TCPS).  

The LbL coatings were immersed with a solution composed by a 1:5 ratio of MTS reagent and D-

MEM culture medium without phenol red or FBS, and then incubated for period of 3 hours at 37 °C. All 

cytotoxicity tests were conducted by using three replicates (n=3). Finally, the optical density (OD) was 

read at 490 nm on a multiwell microplate reader (Synergy HT, BioTek Instruments, USA). 

Phalloidin/DAPI Analysis 

Phalloidin/DAPI fluorescent assays were performed at each time culture period, 1, 3 and 7 days, 

to obtain fluorescence images. Briefly, for each time point, the culture medium was removed, and 10% 

formalin was added to each well in three replicates (n=3) for 30 minutes. Then, formalin was removed, 

and the wells of the plate were washed with PBS. The samples were labelled with fluorescent stains: 
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Phalloidin (phalloidin-tetramethylrhodamine B isothiocyanate), which binds to actin filaments staining the 

cytoskeleton of the cells in red, and DAPI (4',6-diamidino­2­phenylindole), which binds to DNA regions 

staining cell nuclei in blue. For this, first, phalloidin was incubated with samples at 1:200 in PBS for 30 

min and then, DAPI was added at 1:1000 in PBS for 5 min. This procedure was done at room temperature 

and protected from light. Finally, the samples were washed twice with PBS, left overnight, and then 

visualized in the dark using a fluorescence microscope (Transmitted and Reflected Light Microscope with 

Apotome 2, Zeiss, Germany). The images were acquired and processed using AxioVision software version: 

Zeiss 2012 (Zeiss, Germany). 

3.2.12 Statistical Analysis 

The results of all experiments were carried out at least in three replicates (n=3) and were presented 

as mean ± standard deviation (SD). 

Statistical significance between groups was determined by One-way ANOVA with Turkey’s Multiple 

comparison test, using Graph Pad Prism version 6.0 (GraphPad software, San Diego, CA). Statistical 

differences were represented and set to p<0.05(*), p<0.01(**), p<0.001(***), and p<0.0001(****). 

3.3 Results and Discussion 

3.3.1 Synthesis and Characterization of HA-DN and CHT-C conjugates 

HA and CHT were modified with catechol groups as described at the experimental section. To 

confirm if the modification of HA and CHT was successful, solutions of HA-DN*4h, HA-DN*36h, and CHT-

C*18h with different concentrations were analysed by UV-Vis spectroscopy.  

The results obtained for both HA-DN conjugates are shown in Figure 3.2. 
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Figure 3.2 – UV-Vis spectra for different concentrations of HA-DN*4h and HA-DN*36h. 

Both spectra of the HA-DN conjugates exhibit a maximum absorbance peak for all concentrations 

at a wavelength of approximately 280 nm, which is more intense as the solution concentration increases. 

These results confirm the presence of the catechol groups in the modified HA, due to the presence of 

their characteristic peak at a wavelength of 280 nm [25,27], as opposed to the HA spectrum. In addition, 

the absence of additional peaks at wavelengths longer than 300 nm demonstrates that the synthesized 

conjugates were not oxidized [25,27,36]. 

Based on the results of Figure 3.2, the DS (%) of the HA-DN conjugates was estimated (see 

Appendix I) and their values were around 27% for HA-DN*4h and 54% for HA-DN*36h. The DS (%) results 

obtained in this work were higher than those found in other works, which were only about 11 % [2,25,27]. 

These results can be explained by some different conditions that were employed in the HA-DN synthesis, 

such as the molecular weight of HA and/or the time of the reaction. Based on the present study, it was 

found that the increase in the reaction time from 4 to 36 hours contributed to an increase in the DS (%) 

from 27% to 54%. 

Similarly, the UV-Vis characterization was performed for CHT-C*18h to confirm its successful 

modification and to obtain the DS (%). The experimental results are presented in Figure 3.3. 

 

Figure 3.3 – UV-Vis spectra for different concentrations of CHT-C*18h. 
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The CHT-C*18h spectrum also exhibits a maximum absorbance peak, which increases its intensity 

with the increase of the solution concentration, at a wavelength around 280 nm, confirming the presence 

of the catechol groups in the modified CHT. Likewise, the absence of additional peaks at wavelengths 

greater than 300 nm shows that the CHT-C*18h was not oxidized [28,29,37]. 

According to the DS (%) results obtained (see Appendix II), the estimated value for CHT-C*18h was 

approximately 9%. This value was lower than that found in other works [28–30]. However, in addition to 

the relative proportions of the reagents, and/or the molecular weight of CHT, and/or the reaction time 

used in the CHT-C*18h synthesis and that differ from those used in these studies, the conjugate was 

dissolved in 0.15 M NaCl. 

3.3.2 Rheological Characterization of the PE used  

To choose the best concentration for each PE used in the build-up of the LbL coatings, the viscosity 

of each one was evaluated by rotational measurements using a rheometer. The viscosity of different 

solutions of HA, HA-DN*4h, HA-DN*36h, CHT and CHT-C*18h at 0.5, 1, 2 and 3 mg.mL-1, in 0.15 M NaCl, was 

measured to obtain a trend line. Figure 3.4 shows this trend line at different concentrations, obtained for 

each PE. 

 

Figure 3.4 – Trend line of HA, HA-DN*4h, HA-DN*36h, CHT and CHT-C*18h solutions at different concentrations. Data are 
presented by means ± standard deviation (n = 3). 

As can be seen in Figure 3.4, HA and HA-DN evidence an exponential trend line, i.e. their viscosities 

increase exponentially with increasing concentrations, while CHT and CHT-C show a near-linear trend 
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line, where viscosity increases almost linearly with concentration. The exponential character of HA has 

been reported in other studies [38,39], and this seems to happen not only with concentration but also 

with molecular weight. So, since the HA used in this study has a high molecular weight, its highly viscous 

properties can be explained. For CHT, the increase of its viscosity with the concentration, as well as with 

the increase of molecular weight, and deacetylation degree has also been reported elsewhere [40,41]. 

Furthermore, the viscosity of all conjugates is lower than the corresponding values of the 

unmodified polymers. This tendency seems to be more pronounced with increasing DS, since the viscosity 

reduction is higher for HA-DN. In the obtained UV-Vis results, it was shown that the HA-DN conjugates 

had a DS higher than CHT-C. In turn, this effect is also evidenced by the higher viscosity reduction in HA-

DN*36h compared to HA-DN*4h, which have a DS of 54 % and 27%, respectively. 

So, the choice of concentration for each PE used was made considering these results. Similar 

viscosities were chosen for the build-up of LbL coatings. So, for HA and HA-DN a concentration value of 

0.5 mg.mL-1 was used whereas for CHT and CHT-C a concentration value of 1 mg.mL-1 was chosen. 

3.3.3 Zeta Potential (ζ) Characterization of PE used 

The zeta potential of each PE used for the build-up of LbL coatings was measured - Table 3.1. 

Table 3.1 – Zeta potential values for each PE solution with 0.5 mg.mL -1 concentration. 

 CHT HA HA-DN*4H HA-DN*36H CHT-C*18H BGNPs 

m
V

 

19.2±1 -15.93±1.18 -19.47±1.70 -21.17±1.50 24.1±2.09 -20.5±0.76 

By measuring the zeta potential, an indication of the degree of repulsion between adjacent 

particles, similarly charged, can be obtained. A value of ±25 mV can be taken as the arbitrary value to 

indicate whether the particles have low or high charge. Thus, for zeta potential values higher than ±25 

mV, the particles tend to repel contributing to the stabilization of the dispersion, while for values below 

±25 mV, the particles tend to aggregate leading to their precipitation [42]. 

As expected, zeta potential values for CHT and its derivates (CHT-C*18h) were positive, whereas for 

HA and its derivates (HA-DN*4h and HA-DN*36h) as well as for the BGNPs were negative, and in the same 

order of magnitude. Positive values for CHT and CHT-C are due to the positively charged amine groups 

present in their structures. On the other hand, negative charge values for HA and HA-DN are due to the 

negatively charged carboxylic groups present in their structures. The negative charge of the zeta potential 

for the BGNPs has already been reported in previous studies [27,43]. This value was ­20.5±0.76 mV, 

which was similar to the value obtained for the same system in a previous work [21]. These results 
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indicated that the produced nanoparticles are stable and could better resist to aggregation and 

precipitation [42]. Lu et al. [44] demonstrated that a negative zeta potential on the BGNPs surface is 

crucial to promote the stable formation of an apatite layer. In addition, it has been suggested that surfaces 

with negative zeta potential values have more important biological effects in-vivo [45], promoting bone 

cell attachment and proliferation than surfaces with no or even positive electric charge [46,47]. 

Also, both HA and CHT polymers presented lower zeta potential values than their derivatives, HA-

DN and CHT-C, respectively. In addition, HA-DN*4h showed a lower zeta potential (-19.47±1.70 mV) than 

HA-DN*36h (-21.17±1.50 mV). These results suggest that the polymer modification with catechol groups 

contributes to the zeta potential increase. Higher zeta potential values of these polymers could provide a 

more stable LbL assembly. 

3.3.4 QCM-D Monitoring of the LbL Films Construction 

The LbL assembly of multilayered films with CHT, CHT-C, HA, HA-DN, and BGNPs was monitored 

in situ using QCM-D. Through this technique it was possible to detect small changes in the mass and 

viscoelastic properties as the LbL films were adsorbed onto the quartz crystal surface. 

The QCM-D results for the build-up of polymeric films (controls) are shown in Figure 3.5, and the 

results for their respective multilayered films with BGNPs are presented in Figure 3.6. These 

configurations were chosen to study the effect of the presence of BGNPs on the multilayer films, with or 

without conjugates on their final thickness, viscoelastic properties and on the success of the construction 

of stable LbL films. 

The normalized frequency, Δf/ whereis the overtone, and the energy dissipation variation, 

ΔD, are shown in Figure 3.5 and Figure 3.6, as a function of the deposited layers for the different films. 

An Δf/decrease over time is observed after each layer deposition for each injection of CHT, HA, HA-

DN*4h, HA-DN*36h, CHT-C*18h and BGNPs, indicating a successful multilayered film construction. However, 

a small increase of Δf/ after each polymer adsorption can be observed, which is related to a desorption 

of a small fraction of free PE due to the rising step. On the other hand, each adsorbed layer is 

accompanied by a ΔD increase, due to the non-rigid layer structure of the film that is forming, typical of 

polymeric systems. Therefore, the multilayered films are expected to have higher damping properties as 

well as softer and more hydrated characteristics, which is also evidenced by the increase in overtones 

separation as the measurement evolves [25,48]. 

As can be seen in Figure 3.5 and Figure 3.6, the presence of the catechol groups appears to 

decrease the viscous component of the multilayered films. This ΔD decrease indicates that multilayered 
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films with catechol groups should probably be thinner, denser, more rigid, less water-rich and probably 

displaying a linear growth [25,48]. This effect was more pronounced in systems having CHT-C*18h (CTR2 

and MF2) than in systems having one of the HA-DN conjugates (CTR3, CTR4, MF3 and MF4). Also, in 

the controls films where there was a combined presence of the two conjugates (CTR5 and CTR6) the ΔD 

decrease was noticeably more marked. On the other hand, when the BGNPs were included in the 

multilayered films having both conjugates present (MF5 and MF6), an opposite effect was observed, when 

compared with the respective controls (CTR5 and CTR6), showing a ΔD increase. Thus, when both 

conjugates are present, the addition of hydrophilic materials such as BGNPs seems to assist both in the 

hydration and in the viscoelastic properties of LbL films. 
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Figure 3.5 – QCM-D results representing the Δf/ and ΔD variations at the 7th overtone as a function of the deposited 

layers in the build-up of polymeric films (CTR). 
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Figure 3.6 – QCM-D results representing the Δf/ and ΔD variations at the 7th overtone as a function of the deposited 

layers in the build-up of the MF LbL coatings containing the BGNPs. 
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By applying a Voigt based model, it was possible to estimate the cumulative thickness evolution for 

all the studied conditions, as a function of the number of deposited layers, Figure 3.7. 

 

Figure 3.7 – Cumulative thickness evolution of the multilayered films constructed, as a function of the number of 
deposited layers. 

As can be seen in Figure 3.7, the cumulative thickness evolution for CTR1 and CTR2 has a similar 

increase. Both demonstrate an exponential growth, which could explain the higher Δf/values for these 

two systems, with a final thickness for both around 500 nm. Other authors reported an exponential growth 

of multilayered films containing CHT and HA [25,49,50], which is in agreement with our results. Films 

with an exponential growth have been considered to occur by one of two general mechanisms: one 

attributed to the progressive increase in the film surface roughness upon successive deposition of each 

new layer, and one based on the ability of at least one PE component to diffuse “into” or “out” of a film 

during assembly [25,51]. Previous reports [51] have shown that this type of film growth can be caused 

by the molecular weight decrease of an anionic polymer, enhancing diffusion during assembly. On the 

other hand, as shown in Figure 3.7, the presence of the catechol groups seems to contribute to a linear 

film growth, revealing thinner and more rigid multilayered films. This linear trend line has already been 

reported for CTR3 and CTR4 films [25,48]. In particular, the DS increase of HA-DN seems to further 

promote the multilayered film compaction (CTR4>CTR3, MF4>MF3, and MF6>MF5). This effect was 

more pronounced in systems with both conjugates, CHT-C*18h and HA-DN*4h or HA-DN*36h, (CTR5 and 

CTR6), having a final thickness of 65 and 66 nm, respectively. Here, the higher DS of CTR6 compared 
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to CTR5 did not show a considerable decrease in thickness, suggesting that multilayered films have 

probably reached their maximum compaction.  

In a previous work [25], [CHT/HA]5 and [CHT/HA-DN]5 films with a final thickness of approximately 

130 nm and 75 nm, respectively, were obtained. Comparing these results with those obtained in this 

work for 10 layers of [CHT/HA]11 (CTR1), [CHT/HA-DN*4h]11 (CTR3) and [CHT/HA-DN*36h]11 (CTR4), it was 

found that these polymeric films had a higher thickness, 207 nm, 206 nm and 182 nm, respectively, 

than those previously obtained [25]. This can be explained by the differences in the concentrations of the 

polymers used, which in the case of ref. [25] was 0.5 mg.mL-1 for all PE solutions, and in our work was 

1 mg.mL-1 for CHT and 0.5 mg.mL-1 for both HA and HA-DN. 

As expected from previous works [26,27], the inclusion of BGNPs in the multilayered films MF1, 

MF2, MF3 and MF4 led to a final thickness lower than their respective controls (CTR1, CTR2, CTR3 and 

CTR4).  

It was previously reported the build-up of [CHT/HA/CHT/BGNPs]6 and [CHT/HA-

DN/CHT/BGNPs]6 films [27], where for 22 layers they both had a final thickness around 190 nm, which 

in turn was slightly higher than the values obtained in this work. Thus, for 22 layers, a final thickness of 

152 nm, 124 nm and 126 nm was obtained for MF1, MF3 and MF4, respectively. As expected from the 

ΔD values, the final thickness decreases with the combined presence of BGNPs and HA-DN as well as 

with the DS increase, (MF3 and MF4), when compared to their respective controls suggesting that these 

combinations should be responsible for obtaining more compact films. These results could also be due 

to the differences in the concentrations of the polymers used in ref. [27], which used concentration values 

of 0.5 mg.mL-1 for all PE, and by the DS value (11 %), which is lower than the values obtained in this 

work, 27% and 54%, for HA-DN*4h and HA-DN*36h, respectively. However, this behaviour was not verified 

for conditions MF5 and MF6, which also had both conjugates and BGNPs present. In these cases, the 

LbL assembly demonstrated a linear film growth and their final thicknesses were 220 nm for MF5 and 

184 nm for MF6, being higher than the thickness values obtained for their respective controls, namely 

65 nm for CTR5 and 66 nm for CTR6. These thicknesses were higher than the multilayered films 

containing only one of the two conjugates, CHT-C or HA-DN conjugates (MF2, MF3, and MF4), or having 

the combination of CHT, HA and BGNPs (MF1). Therefore, when both conjugates are present, it seems 

that the addition of the BGNPs contributes for obtaining a less compact, less rigid and more hydrated 

LbL film. 

Overall, through these results, it was shown that the developed films could be successfully 

assembled by the LbL technique. 
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3.3.5 Adhesion tests 

The adhesive strength results of the LbL films dip-coated on pairs of glass plates are shown in 

Figure 3.8. MF films ending with an adhesive layer were chosen since we found in a previous work [83] 

that they have higher adhesive strength than the MF films ending with BGNPs. These configurations were 

used to study the effect of the presence of BGNPs on the adhesive properties of multilayer films, with or 

without conjugates (CHT-C or/and HA-DN). 

 

Figure 3.8 – Adhesion strength values (MPa) measured for each LbL coating. Data are presented by means ± standard 
deviation (n = 5; **** p<0.0001; *** p<0.001, ** p<0.01; * p<0.05) [One-way ANOVA with Turkey’s Multiple comparison 
test].  

As can be seen in Figure 3.8, polymeric films (controls) containing catechol groups in their 

compositions (CTR2, CTR3, CTR4, CTR5 and CTR6), had higher adhesive strength than the control film 

composed by unmodified polymers (CTR1). In fact, previous works [25,48] have already shown that the 

films containing HA-DN showed an increase in adhesive properties and that multilayers films containing 

higher amounts of catechol groups presented higher adhesive strength. 

Adhesive strength results of [CHT/HA-DN]11 coatings, represented by controls CTR3 and CTR4, 

were slightly higher than those obtained for the same system in a previous work [27]. These results could 

be explained by the DS differences which in the present work were higher, resulting in LbL coatings with 

enhanced adhesion properties. Moreover, when both conjugates were combined (CTR5 and CTR6) a 

statistically significant increase in the adhesion strength was observed compared to the formulations 
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containing only one of the modified polymers (CTR2, CTR3 and CTR4). By comparing CTR4 and CTR6 

with CTR3 and CTR5, a slight increase of the adhesion properties of the controls with the DS increase of 

HA-DN can be seen. 

Figure 3.8 also shows that the inclusion of BGNPs in the LbL assembly decreased the adhesion, 

except for MF1. As for the lamellar structure of nacre, the nanosized inorganic phase, BGNPs, arranged 

in a biopolymer matrix should exhibit inelastic deformations providing the stress redistribution around 

strain concentration sites and the elimination of stress concentration [27,52]. This was true for MF1 

where the rotations and deformations in the BGNPs were helped by the biopolymer spacing composed 

by CHT and HA, resulting in an enhanced adhesion [27,53]. The adhesion increase with the presence of 

BGNPs was also observed in a previous work for CHT/HA based films [27]. However, for the remaining 

formulations containing BGNPs, the adhesive strength presented lower values than their respective 

polymeric films (controls). Probably, when the inorganic phase of BGNPs was included in the LbL coatings 

containing catechol groups, the increased stiffness of the films together with their compaction led to a 

lower interfacial adhesion between the multilayers.  

Despite the already demonstrated adhesive properties of CHT-C in previous studies [28,29,37,54–

57], the decrease in the adhesive strength in the presence of BGNPs appears to be more pronounced 

when CHT-C*18h was present in the multilayer system, for example in MF2, MF5 and MF6. As can be seen, 

in Figure 3.8, all these formulations have an adhesive strength lower than the respective controls. These 

effects could be explained by the lower content of adhesive polymers in the formulations that are replaced 

by BGNPs which, in turn, has been seen in this work to contribute to a lower adhesive strength.  

Thus, through these mechanical tests, it was concluded that CTR5 and CTR6 were the 

configurations that demonstrated the best adhesive strength results. The increased strength of CTR5 and 

CTR6 could be explained by the unique feature of the catechol groups being able to effectively reduce the 

mobility of the polymer chains during LbL assembly [58]. Such decrease in the interdiffusion of PE leads 

to a linear growth behaviour of the LbL films and their consequent compaction. Thus, in addition to the 

intrinsic adhesive nature of the two polymers conjugated to catechol groups, CHT-C and HA-DN, this 

improved compaction probably confers increased stiffness to LbL coatings demonstrating a better 

response than the formulations containing BGNPs. 

3.3.6 In-Vitro Bioactivity Analysis 

In-vitro bioactivity of four LbL coatings configurations, namely CTR5, CTR6, MF5 and MF6 (see 

Figure 3.1), was assessed by analysing the apatite formation onto their surfaces under physiological-like 
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conditions. The choice of these conditions was based on the adhesive strength results, where the CTR5 

and CTR6 formulations were the configurations that demonstrated the best values. MF5 and MF6 were 

chosen in parallel to evaluate their bioactive properties conferred by BGNPs. Figure 3.9 shows the SEM 

images and the respective EDS quantification, before and after immersion in SBF solution at 37 ºC. 

 

Figure 3.9 – In-vitro bioactivity studies. Representative SEM images and respective quantitative EDS analysis of four LbL 
coatings configurations (see Figure 3.1), before and after SBF immersion for 7 and 14 days. The scale bar represents 5 µm. 

As expected from previous works [20,27,59], after immersion in SBF, only the formulations 

containing BGNPs (MF5 and MF6) were able to induce the formation of apatite-like structures with typical 

cauliflower morphology on their surfaces. After 7 days of immersion, nucleation and growth of apatite 

crystals were observed for both formulations. This was confirmed by the EDS analysis revealing changes 

in the elemental compositions related to silicon (Si), phosphorus (P) and calcium (Ca) on the film surface, 

as a result of BGNPs dissolution [20]. Particularly, changes in the elemental composition of MF6 

remarkably greater than for MF5 were observed, demonstrating a decrease in Si concentration and an 

increase in Ca and P concentrations. After 14 days of immersion, both formulations evidenced well 

developed apatite-like structures and their respective EDS quantification showed similar results. On the 

other hand, the controls (CTR5 and CTR6), did not demonstrate significant morphological changes or 

presence of Si, P or Ca, as expected from previous works [20,27,59].  
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These results confirm the bioactive behaviour of the developed LbL configurations containing 

BGNPs, which proved to be potentially able of promoting the formation of a calcium phosphate (CaP) 

layer that would further crystallize in the form of carbonated apatite when interacting with bone tissue 

[21,60]. 

Figure 3.10 shows the XRD characterization of the LbL coatings, before and after immersion in 

SBF. 

 

Figure 3.10 – XRD diffractograms obtained for each LbL coating configuration before and after immersion in SBF for 14 
days. 

Before the immersion in SBF, the XRD spectrum shows a crystalline profile for all LbL coatings. 

According to literature, the broad diffraction peak at around 2θ = 20° can be attributed to the presence 

of CHT, since its XRD pattern exhibited a characteristic peak around this value [61–65]. Meanwhile, the 

semi-crystalline structure of the natural CHT has been reported [65–68]. This characteristic is generally 

attributed to the intermolecular hydrogen bonding due to the presence of free NH2 groups within the 

molecular structure, which results in the packing of the macromolecular polymeric chains [69]. In 

addition, some research works [62,70,71] have reported that the CHT modification with catechol groups 

substantially reduced the magnitude of the diffraction peak at 2θ = 20º, characteristic of CHT XRD 

pattern, indicating a marked decrease in the crystallinity of this compound. This decrease in crystallinity 

resulted from the partial breakage of the hydrogen bonds in the original CHT due to the grafting with 

catechol groups [62,70,71]. 
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According to Nath el al. [64], the sharp diffraction peak around 2θ = 19° may confirm some 

complexation between CHT and HA. They also reported that the presence of this peak as well as others 

such as 2θ: 14.17º, 17.31º, and 22.56º, may be attributed to a change in crystallinity due to the 

interpenetrating polymer network structure as a result of complexation [64]. On the other hand, other 

authors [72,73] reported that diffraction peaks at around 2θ: 28°, 32º, 45º and 56º can be attributed to 

the presence of NaCl. In fact, since all PE solutions were dissolved in NaCl, this could explain the other 

additional peaks evidenced in the graph. 

After 14 days of immersion in SBF, both formulations containing BGNPs exhibited typical crystalline 

peaks of hydroxyapatite, namely around 2θ: 26º and 32º, as previously reported in previous works 

[20,21,27]. As expected, control films without nanoparticles did not demonstrate these characteristic 

peaks of hydroxyapatite [27]. 

Therefore, these results confirmed the bioactivity of the LbL coatings containing BGNPs, supporting 

SEM/EDS results. Thus, such coatings could be potentially used for orthopaedic applications. 

3.3.7 In-Vitro Biological Analysis 

Cellular behaviour was evaluated performing a MTS assay. By the chemical reduction of the MTS 

compound into formazan, the metabolic activity of the cells could be determined. Figure 3.11 (a) shows 

the results obtained from MTS assay for 1, 3 and 7 days, where the highest absorbance value corresponds 

to higher metabolic cellular activity indicating higher number of cells. Four conditions were evaluated: 

CTR5, MF5, CTR6, MF6, and a positive control (TCPS), where cells were supposed to have a great 

proliferation.  
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Figure 3.11– L929 viability results obtained through: a) MTS assay for 1, 3 and 7 days, where absorbance was read at 490 
nm. Statistically significant differences between distinct samples by each time point were marked with ** and ***, which 
represents p<0.01 and p<0.001, respectively. Data are presented by means ± standard deviation (n = 3) [One-way ANOVA 
with Turkey’s Multiple comparison test]; b) Fluorescence images of cells stained with DAPI (blue) and phalloidin (red) at 1, 3 
and 7 days of culture on the different multilayer coatings (CTR5: [CHT*18h/HA-DN*4h]11, MF5: [CHT*18h/HA-
DN*4h/CHT*18h/BGNPs]5+CHT*18h/HA-DN*4h], CTR6: [CHT*18h/HA-DN*36h]11, MF6: [CHT*18h/HA-
DN*36h/CHT*18h/BGNPs]5+CHT*18h/HA-DN*36h]): the nuclei of the cells were stained with blue and their cytoskeleton with red. All 
images are representative for each condition and time point. Scale bar represents 50 μm. 

The MTS assay relatively evaluated cell proliferation, where it was observed that in the first 3 days 

there were no differences between the LbL conditions, as well as their cytotoxicity. Moreover, the results 

suggested that the presence of catechol groups in the last layer, conjugated to both CHT and HA 

polymers, had a great influence on the cellular response contributing for better cell viability and 
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proliferation. Similarly, other works have already reported better cellular responses on substrates modified 

with catechol groups [25–27,74,75]. 

At day 7, comparing with the previous time points, it was clear that the cell viability increased for 

all coatings, and particularly, CTR5 and CTR6 showed higher cell viability. These results evidenced that 

LbL coatings with higher catechol content, didn’t have their cellular viability compromised. In fact, in our 

previous work [25], the cellular behaviour of CHT/HA and CHT/HA-DN multilayers was compared using 

two types of cells: L929 and SaOs-2. We concluded that the catechol groups conjugated to HA had a 

positive effect in terms of cell adhesion, proliferation, and cell viability comparing with the multilayer films 

without such groups. Several authors [1,13,25], have attributed the enhancement of the cellular response 

to the fact that catechol groups can play an active anchor between substrate surface and cells, allowing 

the formation of covalent and non-covalent bonds. On the other hand, the differences statistically 

significant of both MF5 and MF6 in relation to their respective controls should be related with the excess 

of BGNPs. This has already been observed in our previous work [27], being reported that this dissolution 

could increase the pH of the culture medium interfering with cell viability. 

Furthermore, these MTS results were reinforced by the fluorescence images of L929 cells adhered 

on the surface of each LbL coating, at 1, 3 and 7 days, Figure 3.11 (b). Two fluorochromes, namely DAPI 

and phalloidin, were used to fix and stain the cells. Cell’s nuclei were stained with blue (DAPI) and their 

cytoskeletons red (phalloidin). The fluorescence images presented were consistent with previously 

obtained cell behaviour results. As can be seen in Figure 3.11 (b), for both CTR5 and CTR6 conditions, 

after 3 days, the cells had the typical morphology of the L929 cells and, after 7 days, even developed a 

kind of fibroblastic network, where the adhered cells occupied large space of the LbL coatings due to 

their intense proliferative activity. On the other hand, for both MF5 and MF6, the rate of cell proliferation 

was lower. Generally, after 3 days, the cells appeared to stretch and gain the L929 morphology, being 

even more noticeable after 7 days of culture. Moreover, the morphology of the adhered cells was similar 

in both MF5 and MF6, where the presence of BGNPs appeared to lead to cell proliferation in cluster 

formations. This could be related to the typical heterogeneous distribution of BGNPs, already described 

by Couto et al. [21], and that might have been the reason for the presence of a higher number of cells in 

a certain area. 
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3.4 Conclusions 

Nanostructured coatings inspired by MAPs and by the inorganic−organic nacre-like structure were 

successfully developed through the LbL assembly technique. Multifunctional films were constructed by 

alternate combination of inorganic BGNPs with biopolymeric layers of CHT and HA bearing catechol 

groups. Only-polymeric films containing catechol groups were also developed. 

QCM-D results showed that the developed multilayered films were successfully assembled, 

producing stable LbL films. Polymeric films containing catechol groups showed a decrease in ΔD values, 

indicating that these films should be denser, more rigid, and less water-rich. In addition, it was observed 

that the presence of the catechol groups typically contributed to a linear film growth, revealing thinner 

multilayered films. Except for MF5 and MF6, all other multifunctional films containing catechol groups 

and BGNPs presented lower ΔD and thickness than the respective controls. 

Adhesive strength results proved that the presence of both CHT-C and HA-DN conjugates in CTR5 

and CTR6 conditions significantly improved their adhesion properties compared to the other CTR coatings. 

On the other hand, although the inclusion of BGNPs in these LbL systems, namely in MF5 and MF6, 

decreased the adhesion strength, they demonstrated bioactive potential after immersion in SBF  

Finally, the evaluation of cell behaviour demonstrated that both polymeric and MF films were 

nontoxic, demonstrating enhanced cell adhesion, proliferation, and viability. 

Overall, the LbL coatings produced could be used in a variety of applications as biocompatible 

interfaces between the implant and host tissues. So, MF films could be potentially used as adhesive 

coatings for orthopaedic implants to promote osteogenesis and hydroxyapatite deposition around the 

implant. On the other hand, highly adhesive polymeric coatings could be used to improve the junction 

between distinct implants and a variety of tissues in a simple and versatile way. 
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Abstract 

Layer-by-layer (LbL) films were produced by dip- and spin-coating methods onto different 

substrates: glass, 316L stainless steel (SS) and titanium (Ti). Coatings with two distinct compositions, 

mimicking mussel adhesive properties were developed: Multifunctional (MF) and Polymeric (CTR) 

coatings. The films were composed of an organic phase of chitosan (CHT) and hyaluronic acid (HA) 

modified with catechol groups, similarly to the 3,4-dihydroxyphenyl-L-alanine (DOPA) amino-acid structure 

of the mussel’s adhesive proteins (MAPs). Inspired by the inorganic-organic nacre structure, an inorganic 

phase of bioactive glass nanoparticles (BGNPs) was added to the organic phase of the MF films to impart 

additional improved bioactivity. It was the first time that both catechol-conjugated chitosan (CHT-C) and 

catechol-conjugated hyaluronic acid (HA-DN), combined or not with BGNPs, were used to construct LbL 

coatings onto different substrates and using distinct methods.  

UV-Vis spectroscopy demonstrated that both CHT-C and HA-DN were successfully synthesised and 

their substitution degree was determined. Fourier transform infrared (FT-IR) imaging was used in an 

innovative way to analyse the interdiffusion of layers in the coatings. Further investigations on their 

morphology were conducted by scanning electron microscopy (SEM) and atomic force microscopy (AFM). 

Their wettability was also evaluated by water contact angle (WCA) measurements.  

The results revealed differences in the structure and surface properties of the coatings assembled 

either by dip- or spin-coating. Smoother films with a more homogeneous structure and lower interdiffusion 

of polyelectrolytes layers were well observed in the spin-coated films, using glass as substrate, when 

compared with the dip-coated ones. Furthermore, it was concluded that the intrinsic surface roughness 

of 316L SS and Ti metals had a great influence on the results of both LbL methods.  
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4.1 Introduction 

Biomedical metals such as titanium (Ti) and its alloys, 316L stainless steel (SS) and Cobalt-

Chromium (CoCr) alloys, have been widely used in orthopaedic and maxillofacial applications [1,2]. 

However, there are still few examples where these have been used successfully in clinic or have reported 

good in-vivo biocompatibility [3]. In most cases, after their implantation in the host bone, fibrous 

encapsulation occurs on the implant surface [4]. Therefore, since the mechanical and biological aspects 

of bone healing are closely interrelated, a biomedical metal must not only have adequate mechanical 

properties, but also possess other biological functions such as bioadhesiveness, bioactivity, and 

biocompatibility [2,3]. 

Current trends for improving osseointegration of orthopaedic implants consist on their surface 

modification with calcium phosphate-like coatings such hydroxyapatite [5,6] or other coatings containing 

bioactive glasses, for example 45S5 Bioglass® [7–9], or biomolecules such as proteins [10,11], growth 

factors [12–14], RGD peptides [15–17], and DNA molecules [18]. However, these approaches still have 

significant limitations and drawbacks [19]. 

So, driven by, these features, two new biocompatible layer-by-layer (LbL) coatings for orthopaedic 

applications were developed in this work: Multifunctional and Polymeric coatings. Multifunctional coatings 

combining adhesive properties and bioactivity were designed to promote bone-implant interaction, as an 

alternative option to bone cements. On the other hand, polymeric coatings with enhanced adhesive 

properties were designed to improve the adhesion between orthopaedic implants and other tissues where 

bioactivity is not a requirement, for instance as an alternative to synthetic tissue adhesives. 

Both coatings were composed by two natural polymers, chitosan (CHT) and hyaluronic acid (HA). 

These biopolymers have received much attention due their numerous interesting properties such as 

biocompatibility, biodegradability, availability, processing, modification flexibility, among others [20–22]. 

Its assembly in polyelectrolytes multilayers (PEM) systems onto a huge diversity of substrates has already 

been reported in literature [23–25].  

Based on previous studies [23–26], both polysaccharides were used in this work with their further 

modification with catechol groups to improve the adhesive properties of the coatings. Conjugation with 

catechol groups was inspired by the ortho-dihydroxyphenyl (catechol) moiety of 3,4-dihydroxyphenyl-L-

alanine (DOPA) amino-acid present in the mussel’s adhesive proteins (MAPs) [27–29]. Mussels present 
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strong adhesive properties to different substrates in wet environments [30]. This interesting property 

make them potential bioadhesives for diverse applications [31,32]. So far, previous works of our group 

[33,34] have only studied the adhesive properties of LbL coatings based on CHT and catechol-conjugated 

hyaluronic acid (HA-DN). Since those studies demonstrated that the presence of HA-DN had a positive 

effect on their adhesive properties, we hypothesized that the modification of both polysaccharides could 

further improve the adhesive ability of the previously developed coatings. 

Furthermore, based on the interesting osteoconductive properties of bioactive glass nanoparticles 

(BGNPs) in the orthopaedic field [35–37], they were used in this work as an inorganic phase of the 

multifunctional coatings. BGNPs have already shown their binding potential to bone, stimulating new 

tissue growth by the precipitation of a calcium phosphate (CaP) layer on their surface while dissolving 

over time [8,9].  

The combination of an inorganic phase of BGNPs and an organic phase of polysaccharides to 

develop multifunctional LbL coatings was inspired by the layered structure of nacre, which is present in 

the shell of some molluscs. This structure combines resistance to fracture provided by inorganic matrix 

of aragonite nanoplatelets (95% wt.) and toughness conferred by organic matrix (5% wt.) surrounding the 

inorganic materials [38,39]. However, unlike the nacre structure, in this study the content of inorganic 

phase was lower than the organic phase to develop flexible coatings. 

Among the different processing techniques that have been proposed to develop nanostructured 

coatings, LbL deposition appears as one of the most attractive methods [40,41]. It allows the development 

of multilayer films with tailored thicknesses, compositions, structures, properties, and functions over any 

type of substrate [42]. Several deposition methods for the LbL build-up have been already reported in the 

literature, including dip-coating, spin-coating, spraying, and perfusion [42]. Among these, dip-coating is 

the LbL deposition technique most widely used due to the simplicity of its process and the low-cost of the 

equipment, as well as its suitability to coating substrates with complex geometries [42,43]. However, the 

need of a relatively large amount of materials for each deposition step and the time-consuming leads to 

choose alternative methods such as spin-coating [43,44]. Spin-coating appears as a good alternative to 

produce low-coat, rapid, and uniform thin films using the same materials of the dip-coating and allowing 

electrostatic self-assembly [43]. Additionally, spin-assisted films have demonstrated more highly ordered 

structures with less polyelectrolyte interpenetration between the layers leading a linear growth of film 

thickness, rather than the exponential growth, which is common in the dip-coated films [45–47]. Usually, 

the exponential growth is observed for weakly charged PEM systems and can be attributed to the 

reversible interdiffusion of at least one of the polyelectrolyte species that constitute the film [47].  



 
 

 Multifunctional Mussel Inspired Coatings for Orthopaedic Applications 
 

 

148 

In the present work, both polymeric and multifunctional coatings were produced on glass, 316L 

SS and Ti by two different LbL deposition methods: dip- and spin-coating. It was the first time that both 

CHT and HA modified with catechol groups, combined or not with BGNPs, were used to construct LbL 

coatings onto different substrates and by two different LbL techniques. Previous works of our group 

[33,34,48], have only used the dip-coating method to construct LbL coatings, based on CHT, HA-DN and 

BGNPs, onto glass substrates. The properties of the distinct coatings obtained by the two LbL methods 

on different substrates was analysed, envisaging their future use in orthopaedic applications. In particular, 

as far as we know, the polyelectrolyte interdiffusion of LbL coatings was analysed for the first time by FT-

IR imaging. 

4.2 Materials and Methods 

4.2.1 Materials 

Medium molecular weight chitosan (ref. 448877, Brookshield viscosity 200–800 cP, Mw = 190–

310 kDa, 75–85% N-deacetylation degree), hyaluronic acid sodium salt from Streptococcus equi (ref. 

53747, Mw = 1500–1800 kDa), dopamine hydrochloride (DN, ref. H8502, Mw = 189,64 Da), 

hydrocaffeic acid (HCA, ref. 102601, 98%, Mw = 182.17 Da), N-(3-dimethylamino)propyl)-N′ -

ethylcarbodiimide hydrochloride (EDC, ref. 03450, purum, ≥98.0% (AT), Mw = 191.70 Da), dialysis tubing 

cellulose membrane (avg. flat width 33 mm), calcium nitrate tetrahydrate (Ca(NO3)2·4H2O C2H6O, 99 %), 

citric acid monohydrate (99%), ammonium phosphate dibasic ((NH4)2HPO4, ≥98%), ethanol absolute, 

ammonium hydroxide solution (maximum of 33 % NH3), sodium chloride (NaCl), hydrochloric acid (HCl), 

and polyethylenimine (PEI) were purchased from Sigma-Aldrich (St. Louis, Mo, USA). Tetraethyl 

orthosilicate (TEOS, 99.90%) was purchased from Merck KGaA (Darmstadt, Germany). Acetone and 2-

propanol were obtained from VWR International (UK). Sodium hydroxide (NaOH) was purchased from 

Fisher Chemical (Fisher Scientific UK, Leics, UK) and hydrogen peroxide 30% (w/v) was obtained from 

Panreac AppliChem (Darmstadt, Deutschland). 

CHT was the only reagent that was previously purified by recrystallization. Borosilicate coverglasses 

(Ø 18 mm, Agar Scientific, Stansted, UK), Ti (Ø 18 mm, 99.6 % purity, Goodfellow Metals Ltd, Cambridge, 

UK) and 316L SS (Ø 18 mm, Goodfellow Metals Ltd, Cambridge, UK) substrates were used for the 

deposition of LbL coatings by dip- and spin-coating methods. Ti substrates were manually polished with 

abrasive discs of P180, P320, P600 and P800 (Struers, France). Prior to deposition, all the substrates 
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were cleaned in sequential ultrasonic baths to remove surface impurities: 1º - 15 minutes with acetone; 

2º - 15 minutes with ethanol; 3º - 15 minutes in osmotized water; and finally, they were dried with a 

nitrogen flow. 

4.2.2 HA-DN Synthesis 

HA-DN was synthesized from the procedure proposed by Lee and co-workers [23], with some 

modifications. HA modification with catechol groups was performed by the carbodiimide chemistry using 

EDC as an activation agent of the carboxyl groups on HA chains. HA solution (10 mg.mL-1) was prepared 

in phosphate buffered saline (PBS) solution and the pH was adjusted to 5.5 using 0.5 M HCl or 0.5 M 

NaOH aqueous solution under magnetic stirring. To limit the oxygen interaction with the solution, HA 

solution was purged with nitrogen for 30 min. Then, 338 mg of EDC and 474 mg of DN were added to 

the previous solution. The reaction was allowed to continue for 36 hours, and the pH was maintained at 

5.5 at 4 ºC. Unreacted chemicals and urea byproducts were removed by dialysis against an acidic 

osmotized water solution (pH 5.0, HCL solution) for 4 days and osmotized water for 1 day, using a dialysis 

membrane tube, at 4ºC. Finally, the HA-DN*36h conjugates were freeze-dried for 4 days and stored at -

20ºC. The entire procedure and storage of the produced HA-DN*36h was performed at 4ºC and protected 

from light to prevent oxidation of catechol groups. 

4.2.3 Catechol-conjugated chitosan (CHT-C) Synthesis 

CHT-C synthesis was based on the procedure proposed by Kim et al. [24], Xu et al. [25] and 

Ghadban et al. [26]. As in the HA-DN synthesis, the CHT modification with catechol groups was 

accomplished by the carbodiimide chemistry using EDC as an activation agent. 1% (w/v) CHT solution 

was prepared in HCl solution at pH 2.5. Then, a HCA solution (59 mg.mL-1) was prepared in osmotized 

water and a EDC solution (119 mg.mL-1) was prepared in a mixture of osmotized water and ethanol. These 

two previous solutions were mixed and added to the CHT solution, under stirring at 4º C, followed by the 

addition of 1M NaOH solution to obtain a final pH of 4.8. The reaction was allowed to continue for 18 h, 

under nitrogen atmosphere for 30 min. After that, the product, CHT-C*18h, was purified by dialysis against 

an acidic osmotized water solution (pH 5.0, HCL solution) for 3 days and osmotized water for 4 hours, 

using a dialysis membrane tube, at 4ºC. The resulting product was freeze-dried and stored at -20ºC. Also, 

as in the HA-DN synthesis, the entire procedure and storage of the produced CHT-C was performed at 

4ºC and protected from light to prevent oxidation of catechol groups. 



 
 

 Multifunctional Mussel Inspired Coatings for Orthopaedic Applications 
 

 

150 

4.2.4 BGNPs Production 

The procedure to obtain the ternary system of BGNPs with the composition SiO2:CaO:P2O5 (mol.%) 

= 50:45:5, was based on the sol-gel method already optimized by two previous works [49,50]. First, a 

“solution A” was prepared through a mixture of precursor´s solutions. So, 6% (w/v) of calcium nitrate 

tetrahydrate, calcium precursor, was dissolved in 120 mL of osmotized water at room temperature. Then, 

9.8353 mL of TEOS, silica precursor, together with 60 mL of ethanol absolute was added to the previous 

solution. The pH of solution A was adjusted to 2 with citric acid solution (10 % (w/v)), under stirring for 3 

hours. After that, a “solution B” was also prepared by adding 0.07% (w/v) of ammonium phosphate 

dibasic, phosphorus precursor, to osmotized water. The pH of solution B was adjusted to 11.5 with 

ammonia hydroxide solution. Under stirring, the solution A was slowly added, drop-by-drop, to solution B 

and the pH was maintained at 11.5 by continuous supplement of ammonia hydroxide solution. This 

reaction mixture was left under stirring during 48 h and then, under resting for 24 h to occur the gel 

particle precipitation. Afterwards, the gel precipitate was washed tree times with osmotized water and 

stored during 24 h at -80ºC to be subsequently freeze dried for 7 days. The obtained white gel powder 

was calcinated at 700ºC for 3 h to get the BGNPs with improved bioactivity. 

4.2.5 UV-Vis Characterization of HA-DN and CHT-C 

Before the construction of the LbL films, the polyelectrolytes used were characterized by UV-Vis to 

determine their substitution degree (DS (%)). A Synergy HT Multi-Mode Microplate Reader (BioTek 

Instruments, U.S.A.) with an absorbance measurement range of 200 to 350 nm, and a quartz microplate 

with 96 wells was used. Solutions of 0.5 mg.mL-1 of HA-DN*36h, and 1 mg.mL-1 of CHT-C*18h were prepared 

in 0.15 M NaCl for the UV analysis. 100 µl of test solution was used in each well, and 0.15 M NaCl 

solution was used as blank. All experiments were performed at a controlled temperature of 25 °C, and 

results are represented as a mean of 3 measurements. 

4.2.6 LBL Assembly of the Coatings 

The LbL assembly of different coatings onto glass, 316L SS and Ti substrates was carried out using 

the two previously described methods, dip-coating, and spin-coating, at room temperature. 

For such, four different solutions of CHT-C*18h (1 mg.mL-1), HA-DN*36h (0.5 mg.mL-1), BGNPs (2.5 

mg.mL-1) and PEI (5 mg.mL-1) were prepared with 0.15 M NaCl solution, under magnetic stirring. Except 

for PEI, the pH of the solutions was adjusted to 5.5 using 0.5 M NaOH or 0.5 M HCl aqueous solutions. 
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To avoid BGNPs agglomeration, the solutions containing the nanoparticles were kept under magnetic 

stirring and periodically subjected to an ultrasonic treatment during 10 – 15 minutes. 

HA-DN*36h and BGNPs were used as polyanion, while CHT-C*18h was used as polycation. PEI was 

used as an initial layer precursor, by immersing each substrate for 20 min, prior to multilayer deposition. 

Therefore, after immersion in PEI, the polycation CHT-C*18h was used to initiate alternating deposition 

between oppositely charged polyelectrolyte (PE).  

LbL coatings with 11 bilayers, i.e. 22 layers, were developed, as shown in Figure 4.1: 

Multifunctional films containing [CHT-C*18h/HA-DN*36h/CHT-C*18h/BGNPs]5 + [CHT-C*18h/HA-DN*36h] (MF6); 

and polymeric films (control) containing [CHT-C*18h/HA-DN*36h]11 (CTR6). MF films ending with an adhesive 

layer were chosen since we found in a previous work [83] that they have higher adhesive strength than 

those ending with BGNPs. 

 

Figure 4.1 – Schematic illustration of the multifunctional (MF) and control (CTR) coatings. 

Dip-coated films were build-up by alternating substrate immersion in the oppositely-charged PE 

solutions. The dipping times were established after an optimization process in previous works of our group 

[33,34], where 10 minutes were used for CHT-C*18h and HA-DN*36h and 20 minutes for BGNPs. In addition, 

a rinsing step was included for 5 min with 0.15 M NaCl solution, between the adsorptions of each PE.  

Spin-coated films were prepared using a spin-coater (WS-650Hzb-23NPPB-UD-3, LAURELL, USA). 

A 300 µL PE solution was dropped for the first bilayer, 200 µL for the second bilayer and 100 µL for the 

remaining bilayers, so that the entire surface area of substrate was covered. PE solutions were 

alternatively spin-coated onto the substrates at a spinning speed of 3000 rpm for 10 seconds and at an 

acceleration of 1300 rmp2. Additional rising steps between the layer depositions were excluded, since the 

concentration of PE solutions used was low. 

At the end of each procedure, the coatings were subjected to 3 rising steps in ultrapure water to 

remove any salt deposition derived from the LbL process. Then, LbL coatings were allowed to dry at room 

temperature, overnight. 
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4.2.7 Surface Characterization 

The surface morphology of LbL coatings was analysed by scanning electron microscopy (SEM, 

JSM-6010 LV, JEOL, Japan) and Fourier transform infrared (FT-IR) imaging (Perkin-Elmer Instruments, 

Shelton, CT, USA). Before SEM analysis, LbL coatings were sputtered with a thin platinum layer, using a 

sputter coater EM ACE600 (Leica Microsystems, Germany). SEM microphotographs were taken with a 

resolution of 500 µm and 10 µm. FT-IR imaging analysis was performed using a Perkin-Elmer Spectrum 

Spotlight 300 FT-IR Microscope System in reflectance mode. FT-IR maps were construct by a spectrum 

collected in continuous scan mode for a spectral range 4000–720 cm-1 and sample areas of 500×500 

µm2. Each spectrum was collected with an average of 15 repetitive scans with a spectral resolution of 16 

cm-1. FT-IR spectra were integrated by taking the areas under the curve between the limits of the peaks 

of interest. The peak ranges were chosen based on the characteristic peaks corresponding to specific 

vibrational bonds for all materials constituting the LbL coatings. A false colour was assigned to each 

material analysed. C=O stretching of amide I centred at approximately 1650 cm-1, was the region chosen 

for CHT identification, and the C=O stretching of carboxylic acid at about 1730 cm -1 was chosen for HA, 

both depicted on the chemical maps by red and green, respectively [51,52]. The characteristic peak of 

CHT corresponding to the amine deformation vibration, N–H bending vibration, centred at 1590 cm-1 

could not be used due to overlapping with the amide II peak present in both polysaccharides [53]. On the 

other hand, the region chosen for catechol groups identification corresponds to out-of-plane C–H bending 

vibration centred at 740 cm-1 and C–H stretching vibration centred at 3052 cm-1, both belonging to the 

aromatic C–H group and represented on the chemical maps by blue [54–56]. The C=C vibrations peaks 

of the aromatic ring, approximately between 1466 and 1515 cm-1, were not chosen due to overlapping 

with characteristic peaks of the polysaccharides [55,56]. Furthermore, for the BGNPs identification, the 

chosen region was the silicate absorption bands, Si–O–Si, assigned to the peaks 1085 and 800 cm-1 

corresponding to asymmetric stretching and symmetric stretching vibration, respectively, and represented 

in the chemical maps by cyan [50,57].  

The surface roughness of the LbL coatings was analysed by atomic force microscopy (AFM) using 

a JPK NanoWizard III AFM system (JPK Instruments AG, Berlin, Germany). Bio-AFM imaging was operated 

in air and performed on dried LbL coatings in tapping mode (AC mode) AFM. A commercial silicon probe 

(Acta probe) with Al coating on the cantilever backside, and with a spring constant of 40 N/m was used. 

The topography of the LbL coatings was analysed with a resolution of 512 x 512 pixels2, at line rates of 

0.5 to 1 Hz, and resonance frequency around 300 kHz. AFM images with 20 x 20 µm2 were obtained 
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and at least three measurements of the surface roughness were performed, followed by 𝑅𝑞 and 𝑅𝑎 

calculations. 

The wettability of LbL coatings were also evaluated by the sessile drop method using an OCA15plus 

Goniometer equipment (DataPhysics, Germany). For each coating surface, 3 measurements were made, 

using 3 µL droplets of osmotized water dispensed by a motor-driven syringe. The water contact angle 

(WCA) measurements were performed at room temperature and the pictures taken immediately after the 

drop contacted the surface. The results were treated using the SCA20 software. 

4.2.8 Statistical Analysis 

The results of all experiments were carried out at least in three replicates (n=3) and were presented 

as mean ± standard deviation (SD). 

Statistical significance between groups was determined by One-way ANOVA with Turkey’s Multiple 

comparison test, using Graph Pad Prism version 6.0 (GraphPad software, San Diego, CA). Statistical 

differences were represented and set to p<0.05(+/*), p<0.01(++/**), p<0.001(+++/***), and 

p<0.0001(++++/****). 

4.3 Results and Discussion 

4.3.1 HA-DN and CHT-C Modified Polymers: DS (%) Analysis  

To confirm if the modification of HA and CHT was successful, solutions of HA-DN*36h (0.5 mg.mL-1) 

and CHT-C*18h (1 mg.mL-1) were analysed by UV-Vis spectroscopy, Figure 4.2. 

 

Figure 4.2 – UV-Vis spectra for HA-DN*36h and CHT-C*18h. 
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The spectra of HA-DN*36h and CHT-C*18h  exhibit a maximum absorbance peak at a wavelength 

around 280 nm, confirming the presence of the catechol groups in the modified CHT and HA polymers 

[24,25,33,34]. Moreover, the absence of additional peaks at wavelengths longer than 300 nm proves 

that the synthesized conjugates were not oxidized [24,25,33,34]. 

According to the experimental values (see Appendix I and II), the DS (%) obtained for HA-DN*36h and 

CHT-C*18h were around 54% and 9%, respectively. These DS (%) results obtained were different from those 

found in other works [23–26,33,34]. The DS (%) of HA-DN*36h was higher than the value of 11% obtained 

in our previous studies [33,34]. This feature could be explained by the different molecular weight of HA 

and/or the distinct reaction time. On the other hand, the DS (%) value of CHT-C*18h was lower than the 

one found in other works [24–26]. These results could be explained by different conditions used in this 

study, such as the relative proportions of the reagents, the molecular weight of CHT, the reaction time 

and the fact that the conjugate was dissolved in 0.15 M NaCl.  

4.3.2 SEM and FT-IR Analysis 

The morphology of the dip- and spin-coated LbL coatings was analysed by SEM. Figures 4.3-4.5 

show the images of the produced coatings using glass, 316L SS and Ti as substrates, respectively. 

 

Figure 4.3 – SEM images of the two LbL coatings configurations (Figure 4.1) obtained by dip- and spin-coating methods, 
using glass as substrate. The scale bar of the main images represents 500 µm and the secondary ones 10 µm. 
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Figure 4.4 – SEM images of the two LbL coatings configurations (Figure 4.1) obtained by dip- and spin-coating methods, 
using 316L SS as substrate. The scale bar of the main images represents 500 µm and the secondary ones 10 µm. 

 

Figure 4.5 – SEM images of the two LbL coatings configurations (Figure 4.1) obtained by dip- and spin-coating methods, 
using Ti as substrate. The scale bar of the main images represents 500 µm and the secondary ones 10 µm. 

As can be seen for the three types of substrates, there were differences in the morphology between 

the surfaces of the dip- and spin-coated LbL films. Independently of the substrate, all spin-coated 

formulations appear to be smoother and with a more homogeneous structure than the dip-coated ones. 

Herrera et al. [58] found the same result for nanocellulose coatings on porous cellulose substrates using 
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the dip- and spin-coating methods. They also found that the coating thickness was hundreds of 

nanometers for the spin-coated films whereas for the dip-coated ones was in the micrometers range [58]. 

MF6 films evidenced the presence of some particle agglomeration, when compared to CTR6 films. 

This difference in morphology is related to the presence of BGNPs in these films. Moreover, BGNPs 

distribution at the film surface seems to be more homogeneous in the spin-coated films than in the dip-

coated ones. In addition to these particles, minor ones may be observed in almost all formulations. These 

are believed to be polymeric agglomerations of the coating components that were not completely removed 

in the centrifugation step, in the case of the spin-coating technique, or that resulted from the interlayer 

diffusion of PEs, in case of the dip-coating technique [47]. 

To further study the surface distribution of the various components of the LbL coatings obtained 

by dip- and spin-coating methods, namely CHT, HA, catechol groups and BGNPs, FT-IR imaging 

spectroscopy was performed. 

Figures 4.6-4.8 show the FT-IR mapping for the produced LbL coatings using glass, 316L SS and 

Ti as substrates, respectively. 

 

Figure 4.6 – Chemical maps of the two LbL coatings configurations (Figure 4.1) obtained by dip- and spin-coating methods, 
using glass as substrate. For the chemical map, red indicates the presence of CHT, green the presence of HA, blue the 
presence of catechol groups and cyan corresponds to the BGNPs. Note that the existence of regions with different intensities 
can be an indication of differences in thickness. 
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Figure 4.7 – Chemical maps of the two LbL coatings configurations (Figure 4.1) obtained by dip- and spin-coating methods, 
using 316L SS as substrate. For the chemical map, red indicates the presence of CHT, green the presence of HA, blue the 
presence of catechol groups and cyan corresponds to the BGNPs. Note that the existence of regions with different intensities 
can be an indication of differences in thickness. 
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Figure 4.8 – Chemical maps of the two LbL coatings configurations (Figure 4.1) obtained by dip- and spin-coating methods, 
using Ti as substrate. For the chemical map, red indicates the presence of CHT, green the presence of HA, blue the presence 
of catechol groups and cyan corresponds to the BGNPs. Note that the existence of regions with different intensities can be an 
indication of differences in thickness. 

Figure 4.6, shows that the CTR6 and MF6 spin-coated LbL configurations on the glass substrate 

appeared to have more uniform and ordered coating structures compared to those obtained by dip-

coating. This finding is in agreement with the results of other authors [45,46]. Cho et al. [45], prepared 

spin- and dip-coated poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) films and the AFM 

analysis evidenced highly ordered structures for the spin-coated ones. Lee et al. [46], developed spin- 

and dip-coated linear polyethylenimine/poly(acrylic acid) films and, based on investigations of both the 

surface nanoroughness and the relative composition of constituting polyelectrolytes, concluded that films 

produced by spin-coating showed less PE interpenetration between the layers, producing a linear growth 

of the thickness, rather than the common exponential growth in the LbL assembly by dip-coating. 

This characteristic was most clearly seen for the spin-coated CTR6 condition. In this configuration 

it was possible to identify the main presence of HA (green), which was the end-layer of all LbL coatings, 

indicating a more ordered coating structure. However, spots of a colour mixture were also detected in 

both dip- and spin-coated CTR6 films. As already evidenced in the SEM results, these spots probably 

resulted from the PE interpenetration between the layers or due to coating components that were not 
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completely removed during spinning. In the case of the dip- and spin-coated MF6 configurations, the 

presence of BGNPs (cyan) was easily visualized. Some HA (green) and catechol groups (blue) spots 

related to the end-layer of the LbL coatings were also observed in these formulations. In contrast to the 

dip- and spin-coated CTR6 configurations, the coatings containing BGNPs did not exhibit colour-mixed 

spots. This finding is quite relevant, indicating that the presence of BGNPs may act as barrier to the PE 

diffusion, facilitating the more uniform deposition of the polymer layers. Furthermore, in the both spin-

coated CTR6 and MF6 configurations, a lower intensity difference was observed compared to the dip-

coated ones, which may be an indication of a lower surface roughness.  

For both metals, 316L SS and Ti (Figure 4.7 and Figure 4.8), these differences were not so obvious. 

Although differences in intensity were observed between the two LbL techniques, a similar colour mixture 

for dip- and spin-coated CTR6 conditions was noticed. Such feature may be due to the intrinsic surface 

roughness of these two metals, which can contribute to a higher PE interpenetration between the layers 

of the coatings obtained by the two LbL assembly methods. Nevertheless, it was also observed for the 

metals substrates that the dip- and spin-coated MF6 films did not present the PE colour-mixture, in 

agreement with the results found for the glass substrate. 

4.3.3 AFM Analysis 

The topography of the coatings produced on the three substrates was analysed by AFM. Figures 

4.9-4.11 show the roughness results for each LbL coating produced on glass, 316L SS and Ti, 

respectively, by dip- and spin-coating techniques. 
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Figure 4.9 – a) Ra and Rq roughness values (nm) measured for the two LbL coatings configurations (Figure 4.1) produced 
on glass by dip- and spin-coating. Data are presented by means ± standard deviation (n = 3). Statistical differences were 
represented for Rq roughness values, where rows plus “*” indicate differences between the various conditions, and “+” (at 
the top of each bar) indicate their differences compared to the uncoated glass substrate (glass control) [++++/**** p<0.0001; 
** p<0.01; * p<0.05; One-way ANOVA with Turkey’s Multiple comparison test]. b) Representative AFM images for each LbL 
coating condition, with a scanned surface area of 20×20 µm2. 

 

Figure 4.10 – a) Ra and Rq roughness values (nm) measured for the two LbL coatings configurations (Figure 4.1) produced 
on 316L SS by dip- and spin-coating methods. Data are presented by means ± standard deviation (n = 3) [One-way ANOVA 
with Turkey’s Multiple comparison test]. b) Representative AFM images for each LbL coating condition, with a scanned surface 
area of 20×20 µm2. 
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Figure 4.11 – a) Ra and Rq roughness values (nm) measured for the two LbL coatings configurations (Figure 4.1) produced 
on Ti by dip- and spin-coating methods. Data are presented by means ± standard deviation (n = 3) [One-way ANOVA with 
Turkey’s Multiple comparison test]. b) Representative AFM images for each LbL coating condition, with a scanned surface 
area of 20×20 µm2. 

Figure 4.9 shows that the LbL coatings (CTR6 and MF6) obtained by spin-coating presented a 

statistically significant lower roughness (**** p<0.0001) than those produced by dip-coating. Marudova 

et al. [47], have also seen similar results. They observed that spin-coated CHT/xanthan multilayer films 

are smoother than the dip-coated ones. The low roughness of spin-coated coatings could be interpreted 

as a lack of PE interpenetration giving rise to more flat and clearly separated layers [47]. On the other 

hand, the rough surface topography of the dipping-assembled coatings could indicate the presence of 

higher loose interpenetrating structures [47].  

Moreover, the surface roughness of the MF films containing BGNPs (MF6) decreases when 

compared to their respective controls (CTR6) - Figure 4.9. This trend was seen for MF films produced by 

both LbL assembly methods. This could be explained by the combined effect of catechol groups from 

CHT-C and HA-DN, which maintain the inorganic phase strongly bonded to the polymeric phase, acting 

as a glue [33,34]. 

As can be seen in Figure 4.10, the SS control exhibited a high surface roughness (Rq value around 

315±58 nm). Indeed, the SS substrates were used without further surface treatment. Thus, despite 

changes in the surface roughness between the LbL conditions and the SS control were noted, due to the 

presence of the coatings, they did not present relevant differences. Except for the spin-coated MF6 

condition, a tendency to decrease the surface roughness of the LbL conditions compared to the SS control 

can be observed, which indicates that the coatings contributed to greater uniformity of the SS substrates. 
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Although this decrease has not been observed for the spin-coated MF6 condition, it should be noted that 

it has a significant standard deviation value (Rq value around 340±147 nm). This may be due to the 

presence of BGNPs and to the thickness of the coating, which should be lower for the spin-coated 

conditions. Indeed, a comparison study between dip- and spin-coating techniques found that immersive-

assembly prepared thicker, rougher films, whereas spinning resulted in thinner, smoother films [59]. As 

in the present study the SS substrate had a high surface roughness, such differences were not relevant. 

However, a slight decrease of the surface roughness of the spin-coated CTR6 condition was seen, when 

compared to the dip-coated one. Furthermore, unlike the AFM results of the glass, the presence of BGNPs 

in both dip- and spin-coated MF film appear to contribute to a greater surface roughness compared to 

their respective controls (CTR6). 

Ti also presented a considerable surface roughness (Rq value around 125±4 nm) (Figure 4.11), 

although it was lower than the SS control. So, the roughness differences between Ti substrates and the 

LbL coatings were not evident. Nevertheless, it seems that CTR6 films present a lower roughness than 

the Ti control, whereas the MF6 films have a higher roughness. Furthermore, no significant differences 

between the two LbL techniques were noted. Also, similar to the 316L SS results, for both dip- and spin-

coated MF films, the presence of BGNPs appears to contribute to a higher surface roughness than the 

one of their respective controls. These topographic results, as well as those obtained for 316L SS, 

appeared to have a significant interference of the intrinsic surface roughness of the metals. Hence, in a 

future work both substrates should be subjected to a more efficient polishing process. 

4.3.4 WCA Analysis 

The wettability of the developed LbL coatings was assessed by WCA analysis. Figures 4.12-4.14 

show the wettability results for each LbL coating produced on glass, 316L SS and Ti, respectively, by dip- 

and spin-coating.  
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Figure 4.12 – a) WCA (º) values measured for the two LbL coatings configurations (Figure 4.1) produced on glass by dip- 
and spin-coating methods. Statistical differences between the various configurations are indicated by the rows plus “*”, while 
their comparisons with the uncoated glass substrate (glass control) are indicated by “+” (at the top of each bar). Data are 
presented by means ± standard deviation (n = 3; ++++/**** p<0.0001; * p<0.05) [One-way ANOVA with Turkey’s Multiple 
comparison test]; b) Representative image of water drops for each multilayered film surface. 

 

Figure 4.13 – a) WCA (º) values measured for the two LbL coatings configurations (Figure 4.1) produced on 316L SS by 
dip- and spin-coating methods. Statistical differences between the various configurations are indicated by the rows plus “*”, 
while their comparisons with the uncoated SS substrate (SS control) are indicated by “+” (at the top of each bar). Data are 
presented by means ± standard deviation (n = 3; ++++/**** p<0.0001; ++ p<0.01; * p<0.05) [One-way ANOVA with Turkey’s 
Multiple comparison test]; b) Representative image of water drops for each multilayered film surface. 
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Figure 4.14 – a) WCA (º) values measured for the two LbL coatings configurations (Figure 4.1) produced on Ti by dip- and 
spin-coating methods. Statistical differences between the various configurations are indicated by the rows plus “*”, while their 
comparisons with the uncoated Ti substrate (Ti control) are indicated by “+” (at the top of each bar). Data are presented by 
means ± standard deviation (n = 3; ++++/**** p<0.0001; ++ p<0.01) [One-way ANOVA with Turkey’s Multiple comparison 
test]; b) Representative image of water drops for each multilayered film surface. 

As expected from the AFM analysis, WCA changes between the various LbL conditions and the 

glass control were noticed in Figure 4.12. These changes were statistically significant for all conditions 

obtained by dip- and spin-coating methods. According to the Wenzel model [60], roughness affects the 

contact angle hysteresis. This model predicts that roughness will decrease the WCA if the angle on the 

smoother surface of the same material is lower than 90º (hydrophilic solid). On the other hand, the WCA 

will increase if the angle is higher than 90º (hydrophobic solid) [60]. Therefore, since the uncoated glass 

surface has a hydrophilic nature (WCA around 74º), the increased roughness of the dip-coated LbL 

conditions compared to the spin-coated ones resulted in a decrease in WCA values. This decrease in WCA 

values for the dip-coated conditions (CTR6 and MF6) showed statically significant differences (**** 

p<0.0001) compared to those spin-coated ones.  

Moreover, it was found that the coatings obtained by the two LbL methods exhibit higher 

hydrophilicity than the glass control. These results could be explained by the presence of catechol groups 

in the modified CHT and HA polymers. In fact, the hydrophilicity increase of glass substrates after 

deposition of multilayer films containing HA modified with catechol groups has been reported [33,61–

63]. For example, we found in a previous work [33] that [CHT/HA-DN]10 dip-coated films showed lower 

WCA values (around 73º) compared to [CHT/HA]10 dip-coated films (around 77º), using glass as 

substrate. These WCA results obtained for [CHT/HA-DN]10 dip-coated films were higher than those 
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obtained in the present study. Such can be explained by the higher content of catechol groups in the LbL 

coatings, as both polymers were modified with catechol groups.  

Furthermore, the inclusion of BGNPs in the dip- and spin-coated films seems to affect their 

wettability. In fact, the presence of BGNPs in the MF6 films were able to render their surfaces more 

hydrophilic, showing lower WCA values compared to those obtained for their respective controls (CTR6). 

These results are in agreement with previous works [64–66], where it was found that the presence of 

bioactive glass particles at the surface of a composite increases its hydrophilicity.  

WCA changes between the various LbL conditions and the SS control were also observed in Figure 

4.13. As with the glass wettability results, an increase of the hydrophilicity of the SS substrates was 

observed with the film deposition by the two LbL methods. In particular, a statistically significant WCA 

decrease was detected for the dip- and spin-coated MF6 conditions, while a less significant decrease was 

observed for the dip-coated CTR6 condition. On the other hand, the spin-coated CTR6 condition showed 

only a slight WCA decrease. Furthermore, a more pronounced WCA decrease was noted for both dip- and 

spin-coated MF6 conditions, when compared to their respective controls (CTR6). This decrease was 

related to the hydrophilic nature of BGNPs and was statistically significant for both dip- and spin-coated 

MF6 conditions. Unlike glass, the uncoated SS substrate showed a hydrophobic nature (107º). According 

to the Wenzel model [60], the increased roughness will increase the WCA if the angle is higher than 90º 

(hydrophobic solid) [60]. From Figure 4.13, higher WCA values were observed for both spin-coated CTR6 

and MF6 conditions, when compared to those dip-coated ones. These differences were statistically 

significant for the MF6 and CTR6 condition. In fact, it was previously noticed through SS AFM analysis 

that the LbL conditions obtained by spin-coating seemed to present surface roughness values equal to or 

greater than those obtained by dip-coating. 

WCA changes between the various LbL conditions and Ti control were also observed (Figure 4.14). 

Unlike the glass and SS wettability results, a WCA decrease was not seen for all conditions, when 

compared to the Ti control. In particular, a statistically significant WCA increase was observed for the dip-

coated CTR6 and the spin-coated MF6. On the other hand, a statistically WCA significant decrease was 

detected for the dip-coated MF6 and insignificant for the spin-coated CTR6. Clearly, the Ti wettability 

results were affected by the intrinsic surface roughness of this metal. 

According to the Wenzel model [67], since the uncoated Ti substrate showed a hydrophilic nature 

(about 61º), its greater roughness will decrease the WCA. As can be seen in Figure 4.14, the dip-coated 

CTR6 condition showed to induce a statistically significant decrease in the hydrophilicity of the Ti 

substrates compared to the spin-coated one. This can be explained by the increased surface roughness 
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in the spin-coated CTR6. Since the spin-coating technique produces thinner films, the intrinsic roughness 

of the metal can more easily affect the wettability results, showing WCA values similar to the Ti control. 

On the other hand, it can be observed that the dip-coated MF6 condition led to a statistically significant 

increase in the hydrophilicity of the Ti substrates, when compared to the spin-coated one. Unlike the spin-

coating method, dip-assembly leads to a less homogeneous distribution of BGNPs. This less ordered 

distribution may contribute to the increase in surface roughness of MF6 films, explaining these differences 

in WCA values. 

Furthermore, as for glass and SS results, a statistically significant WCA decrease was noted for the 

dip-coated MF6, when compared to its respective control.  

4.4 Conclusions  

Dip- and spin-coating techniques were successfully applied for the deposition of catechol-modified 

polysaccharides multilayered films with or without bioglass nanoparticles on glass, 316L SS and Ti 

substrates. SEM images of all substrates indicated that, at the microscale, the spin-coated formulations 

had a smoother and more homogeneous surface morphology than the dip-coated ones. 

Further investigations with FT-IR imaging and AFM analysis proved that both spin-coated films on 

the glass substrate had a more uniform structure with lower surface roughness, when compared to those 

obtained by dip-coating. These results could be interpreted as a lack of PE interpenetration between the 

spin-coated layers, unlike those obtained by dip-assembly.  

For the glass substrate, it was found that the incorporation of BGNPs in both dip- and spin-coated 

films contributed to a smoother cohesive structure with less diffusion of PEs, when compared to their 

respective controls. Such feature may result from the combined effect of catechol groups of both CHT-C 

and HA-DN polymers, acting as a glue between the inorganic and organic phase. Wettability analysis 

revealed that the coatings obtained by the two LbL methods exhibit higher hydrophilicity than the glass 

control. It was also found that the spin-coated films had higher WCA than the dip-coated ones. 

However, for both metals, 316L SS and Ti, such differences were not so obvious. This feature was 

due to the intrinsic surface nanoroughness observed for the two metals by AFM. Nevertheless, from the 

FT-IR analysis we noticed that although the results of MF6 condition on both metals agreed with those 

found for the glass substrate, the CTR6 condition presented a PE colour-mixture for the two LbL methods, 

evidencing PE interpenetration between the layers of the coatings. Furthermore, unlike the AFM results 

of the glass, for both dip- and spin-coated MF6 films the presence of BGNPs appeared to contribute to a 
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higher surface roughness compared to their respective controls (CTR6). In general, for both metals the 

wettability increased when the coatings were deposited by both LbL methods. 
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5. CHAPTER 5 – GENERAL CONCLUSIONS AND FUTURE WORK 

5.1 General Conclusions 

Many attempts have been made to produce multifunctional coatings with enhanced bioactive and 

adhesive properties to avoid the use of cements on the orthopaedic implants. As well, there is a growing 

need to develop biocompatible natural adhesive tissues as an alternative to those currently used in clinical 

practice. 

In this work, different LbL coatings were successfully developed by using the LbL assembly method: 

1) Multifunctional films (MF) containing sequential layers of an organic polysaccharide phase and 

an inorganic phase of BGNPs;  

2) Polymeric films containing the same organic phase.  

The organic phase was based on two natural biocompatible polymers, CHT and HA modified with 

catechol groups to impart adhesive properties. This modification was inspired by mussels and their strong 

adhesion in harsh environments. The addition of an inorganic phase of BGNPs in MF films was inspired 

by the inorganic-organic layered structure of nacre and was used to impart bioactivity properties. 

Through the reaction of HA with dopamine and CHT hydrocaffeic acid was possible to successfully 

modify them. The in-situ build-up of films with these distinct compositions was monitored by QCM-D, 

indicating the successful formation of the MF and polymeric coatings by LbL. It has been shown that the 

presence of the catechol groups contributed to the linear film growth, revealing thinner multilayered films. 

MF and polymeric films were produced by dip-coating and subjected to lap shear tests, which 

proved that the presence of both CHT-C and HA-DN conjugates in CTR5 ([CHT-C*18h/HA-DN*4h]11) and 

CTR6 ([CHT-C*18h/HA-DN*36h]11) polymeric conditions significantly improved their adhesion properties 

compared to the other CTR coatings. Moreover, it was observed that the CTR6 condition showed slightly 

higher adhesion properties than the CTR5 condition due to the higher content of catechol groups. On the 

other hand, although the inclusion of BGNPs in these LbL systems, namely in MF5 ([CHT-C*18h/HA-

DN*4h/CHT-C*18h/BGNPs]5+[CHT-C*18h/HA-DN*4h]) and MF6 ([CHT-C*18h/HA-DN*36h/CHT-

C*18h/BGNPs]5+[CHT-C*18h/HA-DN*36h]), decreased the adhesion strength, they demonstrated bioactive 

potential, developing a calcium phosphate layer after immersion in a SBF solution. Particularly, after 7 

days of immersion in a SBF solution, changes in the elemental composition of MF6 remarkably greater 

than for MF5 were observed, demonstrating a decrease in Si concentration and an increase in Ca and P 

concentrations. 



 
 

 Multifunctional Mussel Inspired Coatings for Orthopaedic Applications 
 

 

176 

Furthermore, both polymeric (CTR5 and CTR6) and MF films (MF5 and MF6) showed good 

biocompatibility. In particular, polymeric films seemed to present an enhanced viability at the different 

time points. 

Considering all these results, it was possible to conclude that the best configurations were the 

CTR6 and MF6 coatings.  

Therefore, since the structure and topography play an important role in the functional performance 

of the CTR6 and MF6 films, two LbL assembly methods, dip- and spin-coating, were compared using 

three different substrates: glass, 316L stainless steel, and titanium. 

Surface analysis by SEM, FT-IR imaging and AFM showed that both CTR6 and MF6 spin-coated 

formulations on glass substrate had a smoother, more homogeneous surface morphology and ordered 

coating structures than those dip-coated ones. Moreover, it was found that the incorporation of BGNPs in 

the dip- and spin-coated MF6 films on glass substrates contributed to a smoother cohesive structure 

compared to their respective controls (CTR6). These results suggested that the combined effect of 

catechol groups of both CHT-C*18h and HA-DN*36h polymers may act as a glue between the inorganic and 

organic phase. 

Also, wettability analysis showed that CTR6 and MF6 obtained by the two LbL methods exhibit 

higher hydrophilicity than the glass control, evidencing the hydrophilic nature of LbL coatings provided by 

both modified polymers and BGNPs. In addition, spin-coated CTR6 and MF6 conditions demonstrated 

lower hydrophilicity than the dip-coated ones, revealing that the surface roughness had an impact in 

wettability results. 

Furthermore, it was concluded that the intrinsic surface roughness of 316L SS and Ti metals had 

a great influence on the above mentioned results of both LbL methods, where no obvious differences 

were observed. 

Attending all these results, MF6 films could be used to coat orthopaedic implants, contributing to 

a more successful implantation by enhancing their bioactive and adhesive properties as well as the 

cellular response. CTR6 film could be used to coat distinct implants, where bioactivity is not an important 

issue, by promoting a highly adhesive and biocompatible connection between the implant and a variety 

of tissues. In addition, spin-coating could be considered in their build-up, since it allows to control the 

inner and surface structure of the LbL films, enabling to manipulate their physical properties or chemical 

activity. In this way, tunable bioadhesiveness and BGNPs ions release properties could be achieved.  
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5.2 Future Work 

Even though the results obtained in this work have been encouraging, further work is required to 

optimize the LbL coatings produced for the intended biomedical applications. Therefore, the following 

topics are suggested as future work: 

1. To investigate the development of MF films with fewer BGNPs deposition steps, to find the optimum 

BGNPs concentration that results in coatings with higher adhesion performance, without compromising 

their bioactivity. As an example, the production of the following MF film system could be studied: [CHT-

C/HA-DN/CHT-C/HA-DN/CHT-C/BGNPs]3 + [CHT-C/HA-DN]2. 

2. To perform cellular studies with other cell types to assess the viability of the LbL coatings for the 

intended biomedical applications. As a suggestion, the viability of Saos-2 cell line could be studied, 

envisaging orthopaedic applications. 

3. To evaluate the structure and topography of the LbL coatings on metal substrates as a function of 

the polishing process. 

4. To investigate the thickness differences obtained by dip- and spin-coating. A spectroscopic 

ellipsometer could be used to characterize the thickness of the LbL coatings produced. 

5. To explore the differences in adhesive strength, bioactivity, and cellular behaviour between dip- and 

spin-coated LbL conditions. As the lap shear test is not suitable for the spin-coated conditions, the AFM 

analysis could be used to measure the adhesive forces between the LbL coating surfaces and the AFM 

probe, thereby maintaining the same conditions between the different samples. 
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APPENDIX I – HA MODIFICATION WITH CATECHOL GROUPS 

Study of HA-DN synthesis 

To optimize the synthesis of HA-DN, the effect of the ratio between the activating agent (EDC) and 

the donor of catechol groups (dopamine), and the reaction time was studied. This modification of HA with 

catechol groups was based on two previous established methodologies by Lee et al. [1,2]. Further, to 

confirm the conjugation degree of catechol groups to polymer backbone was used an UV-Vis 

spectrophotometer. 

Firstly, based on the procedure proposed in 2010 by Lee and co-workers [2], with some 

modifications, a HA solution (10 mg.mL-1) was prepared in PBS solution and the pH was ajusted to 5.5 

using 0.5M HCL or 0.5M NaOH aqueous solutions under magnetic stirring. This solution was purged with 

nitrogen for 30 min to limit the oxygen interaction with the solution. Then, 237 mg of EDC and 194 mg 

of DN were added to the previous solution with an acidic pH (5.5) at 4ºC. This mixture was divided in two 

different solution with different reaction times i.e. HA-DN4h and HA-DN36h. The unreacted chemicals were 

removed by the dialysis against a pH 5.0 HCl solution for 4 days and osmotized water for 1 day, using a 

dialysis membrane tube, at 4ºC and protected from the light. The final products were freeze-dried and 

stored at -20ºC. 

On the other hand, based on procedure proposed in 2008 by Lee and co-workers [1], additional 

HA-DN* were prepared using an experimental protocol similar to that described previously. So, a HA 

solution (10 mg.mL-1) was prepared in PBS solution and the pH was adjusted to 5.5 using 0.5M HCL or 

0.5M NaOH aqueous solutions under magnetic stirring. The solution was purged with nitrogen for 30 min 

and then, 338 mg of EDC and 474 mg of DN were added to the previous solution with an acidic pH (5.5) 

at 4ºC. Likewise, the final solution was divided in two different solution with different reaction times i.e. 

HA-DN*4h and HA-DN*36h. The product was dialyzed against a pH 5.0 HCl solution for 4 days and 

osmotized water for 1 day, using a dialysis membrane tube, at 4ºC and protected from the light. Finally, 

the final products were freeze-dried and stored at -20ºC.  
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HA-DN conjugation degree: UV-Vis results 

To perform HA-DN UV-Vis experiments, different concentrations of DN (1mM, 1.5mM, 2.5mM, 

3mM, 3.3mM and 3.5mM) were firstly analysed using a 96 wells quartz plate. It was put 100 µL per well 

with triplicates and protecting from the light to avoid their oxidation. 

Thus, the Abs spectra of DN solutions, at wavelengths between 200 nm and 350 nm, were 

obtained to get the linear regression line between the Abs and the DN concentration in mM. 

According to the literature, the Abs of catechol group corresponds to λ=280nm by which it was 

quantified, and their respective values are shown in Table I.1. 

 

Table I.1 – UV-Vis characterization of different concentrations of DN. 

[DN] (mM) Abs (λ=280 nm) 

1.0 0.216 

1.5 0.305 

2.5 0.510 

3.0 0.611 

3.3 0.664 

3.5 0.709 

 

The relationship between the Abs at λ=280 nm and the concentration of DN, was given by 

equation (I.1). 

 

(I.1) 

 

 

Then, UV-Vis experiments were performed for different concentrations of HA-DN4h and HA-DN36h 

solutions, and the experimental results are presented in Figure I.1 and Table I.2. 
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Figure I.1 – UV-Vis spectra for different concentrations of HA-DN4h and HA-DN36h. 

 

Table I.2 – UV-Vis characterization of different concentrations of HA-DN4h and HA-DN36h. 

[HA-DN4h] 

[HA-DN36h] 

(mg.mL-1) 

Abs (λ=280 nm) 

HA-DN4h 

Abs (λ=280 nm)  

HA-DN36h  

0.5 0.095 0.100 

1.0 0.176 0.176 

2.0 0.340 0.398 

3.0 0.501 0.568 

4.0 0.666 0.733 

5.0 0.696 0.907 

 

From the results obtained, an Abs peak was observed for all concentrations at 280 nm, 

confirming the presence of the characteristic peak of catechol groups mentioned in the literature. 

Therefore, based on the experimental values, it is possible to estimate the substitution degree of catechol 

groups, DS (%), assuming that it can be given by equation (I.2). 

 

(I.2) 

 

Where, 

𝑚𝐷𝑁 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝐼. 1 × 𝑉𝑤𝑒𝑙𝑙 × 10−3 × 𝑀𝑊(𝐷𝑁) 

mDN: DN mass 

Vwell: Well volume 

Mw: Molecular weight 
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According to these results, the DS (%)of HA-DN4h and HA-DN36h was around 15% and 17%, 

respectively. 

 

Similarly, the UV-Vis characterization was performed for HA-DN* conjugates to confirm their 

synthesis and obtain their DS (%). The experimental results are presented in Figure I.2 and Table I.3. 

 

 

Figure I.2 – UV-Vis spectra for different concentrations of HA-DN*4h and HA-DN*36h. 

 

Table I.3 – UV-Vis characterization of different concentrations of HA-DN*4h and HA-DN*36h. 

[HA-DN*4h] 

[HA-DN*36h] 

(mg.mL-1) 

Abs (λ=280 nm) 

HA-DN*4h 

Abs (λ=280 nm)  

HA-DN*36h  

0.5 0.198 0.343 

1.0 0.303 0.641 

2.0 0.572 1.073 

3.0 0.794 1.770 

4.0 1.024 2.057 

5.0 1.263 2.337 

 

According to these results, the DS (%) of HA-DN*4h and HA-DN*36h was around 27% and 54%, 

respectively. 

  



 
 

 Multifunctional Mussel Inspired Coatings for Orthopaedic Applications 
 

 

182 

APPENDIX II – CHT MODIFICATION WITH CATECHOL GROUPS 

Study of CHT-C synthesis 

Similarly, the synthesis of CHT-C was optimized. This modification of CHT with catechol groups 

was achieved through by activating agent (EDC) and the donor of catechol groups (hydrocaffeic acid). An 

UV-Vis spectrophotometer was also used to confirm the conjugation degree of catechol groups to polymer 

backbone. 

Firstly, based on two previous established methodologies by Ryu et al. [1] and Xu and co-workers 

[2], 100 mL of 1% (w/v) medium molecular weight CHT solution was prepared in 1% HCl solution at pH 

2.5. 

Then, a HCA solution (10 mg.mL-1) was prepared in ethanol and a EDC solution (24 mg.mL-1) was 

prepared in osmotized water. These two previous solutions were mixed and added to CHT solution, under 

stirring at 4º C. After that, the pH of solution was adjusted to 5.5 by adding of 1M NaOH solution. This 

solution was divided in two different solution with different reaction times i.e. CHT-C18h and CHT-C36h. 

After these timepoints, the products were purified by dialysis against an acidic osmotized water 

solution (pH 5.0, HCL solution) for 3 days and osmotized water for 4 hours, using a dialysis membrane 

tube, at 4ºC and protected from the light. The resulting products were freeze-dried and stored at -20ºC. 

On the other hand, based on procedure proposed by Kim et al. [3], Xu et al. [2], Ghadban et al. 

[4], additional CHT-C* was prepared using an experimental protocol similar to that described previously. 

So, 1% (w/v) medium molecular weight CHT solution was prepared in HCl solution at pH 2.5. 

Then, a HCA solution (59 mg.mL-1) was prepared in osmotized water and a EDC solution (119 

mg.mL-1) was prepared in a mixture of osmotized water and ethanol. These two previous solutions were 

mixed and added to CHT solution, under stirring at 4º C, followed by the addition of 1M NaOH solution 

to obtain a final pH of 4.8.  

The reaction was allowed to continue for 18 h, CHT-C*18h, under nitrogen atmosphere for 30 min. 

After that, the product was purified by dialysis against an acidic osmotized water solution (pH 5.0, HCL 

solution) for 3 days and osmotized water for 4 hours, using a dialysis membrane tube, at 4ºC and 

protected from the light. The resulting product was freeze-dried and stored at -20ºC. 
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CHT-Cat conjugation degree: UV-Vis results 

To perform CHT-C UV-Vis experiments, different concentrations of HCA (1mM, 1.5mM, 2.5mM, 

3mM, 3.3mM and 3.5mM) were firstly analysed using a 96 wells quartz plate. It was put 100 µL per well 

with triplicates and protecting from the light to avoid their oxidation. 

Thus, the Abs spectra of HCA solutions, at wavelengths between 200 nm and 350 nm, were 

obtained to get the linear regression line between the Abs and the HCA concentration in mM. 

According to the literature, the Abs of catechol group corresponds to λ=280nm by which it was 

quantified, and their respective values are shown in Table II.1. 

 

Table II.1– UV-Vis characterization of different concentrations of HCA. 

[HCA] (mM) Abs (λ=280 nm) 

1.0 0.341 

1.5 1.429 

2.5 2.053 

3.0 2.445 

3.3 2.711 

3.5 2.969 

 

The relationship between the Abs at λ=280 nm and the concentration of HCA, was given by 

equation (II.1). 

 

(II.1) 

 



 
 

 Multifunctional Mussel Inspired Coatings for Orthopaedic Applications 
 

 

184 

Then, UV-Vis experiments were performed for different concentrations of CHT-C18h and CHT-C36h 

solutions, and the experimental results are presented in Figure II.1 and Table II.2. 

 

Figure II.1 – UV-Vis spectra for different concentrations of CHT-C18h and CHT-C36h. 

 

Table II.2– UV-Vis characterization of different concentrations of CHT-C18h and CHT-C36h. 

[CHT-C18h] 

[CHT-C36h] 

(mg.mL-1) 

Abs (λ=280 nm) 

CHT-C18h 

Abso (λ=280 nm)  

CHT-C36h  

0.5 0.173 0.082 

1.0 0.351 0.275 

2.0 0.655 0.596 

3.0 1.014 0.862 

4.0 1.446 1.125 

5.0 1.460 1.254 

 

Based on the results obtained, an Abs peak was observed for all concentrations at 280 nm, 

confirming the presence of the characteristic peak of catechol groups mentioned in the literature. So, 

based on the experimental values, it is possible to estimate the DS (%) assuming that it can be given by 

equation (II.2).  

(II.2) 

 

Where, 

𝑚𝐻𝐶𝐴 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝐼. 1 × 𝑉𝑤𝑒𝑙𝑙 × 10−3 × 𝑀𝑊(𝐻𝐶𝐴) 

mDN: HCA mass 

Vwell: Well volume 

Mw: Molecular weight 
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Attending these results, the DS (%)of CHT-C18h and CHT-C36h was around 11% and 10%, 

respectively. 

Similarly, the UV-Vis characterization was performed for CHT-C*18h conjugates to confirm their 

synthesis and obtain their DS (%). The experimental results are presented in Figure II.2 and Table II.3. 

 

 

Figure II.2 – UV-Vis spectra for different concentrations of CHT-C*18h. 

 

Table II.3– UV-Vis characterization of different concentrations of CHT-C*18h. 

[CHT-C*18h] 

(mg.mL-1) 

Abs (λ=280 nm) 

CHT-C*18h 

0.5 0.096 

1.0 0.209 

2.0 0.475 

3.0 0.663 

4.0 0.882 

5.0 1.037 

 

According to these results, the DS (%) of CHT-C*18h was around 9%. 
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APPENDIX III – OPTIMIZATION WORK ON SPIN COATER 

 
 

4º 

Parameters: 

Spinning Speed: 3000 (Fixed)  

Spinning Time: 10 sec (Fixed) 

Dispensed Volume: Cover the entire surface 

Acceleration: 1300 rmp2 (Fixed) 

Parameters: 

Spinning Speed: 3000 (Fixed)  

Spinning Time: 10; 15 sec 

Dispensed Volume: Cover the entire surface 

Acceleration: 1300 rmp2 (Fixed) 

Parameters: 

Spinning Speed: 1000 rpm  

Spinning Time: 30 sec 

Dispensed Volume: Cover the entire surface 

Acceleration: 1300 rmp2 (Fixed) 

1º 

Spin-Coater 

Parameters: 

Spinning Speed: 1000-4000 rpm 

Spinning Time: 10-30 sec 

Dispensed Volume: Cover the entire surface 

Acceleration: 1300 rmp2 (Fixed) 

Too Long 

2º 

Parameters: 

Spinning Speed: 2000; 3000; 4000 rpm  

Spinning Time: 15 sec 

Dispensed Volume: Cover the entire surface 

Acceleration: 1300 rmp2 (Fixed) 

Effect of 3 
different 

spinning speed 

3º 

Effect of 2 
different 

spinning time 

Best choice 

Remaining Bilayers: 
100 µL 

2º Bilayer: 200 µL 

1º Bilayer: 300 µL 

Dispensed Volume 


