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Abstract—If we want robots to engage effectively with humans
in service applications or in collaborative work scenarios they
have be endowed with the capacity to perceive the passage of time
and control the timing of their actions. Here we report result of
a robotics experiment in which we test a computational model of
action timing based on processing principles of neurodynamics.
A key assumption is that elapsed time is encoded in the consistent
buildup of persistent population activity representing the memory
of sensory or motor events. The stored information can be
recalled using a ramp-to-threshold dynamics to guide actions in
time. For the experiment we adopt an assembly paradigm from
our previous work on natural human-robot interactions. The
robot first watches a human executing a sequence of assembly
steps. Subsequently, it has to execute the steps from memory
in the correct order and in synchrony with an external timing
signal. We show that the robot is able to efficiently adapt its
motor timing and to store this information in memory using the
temporal mismatch between the neural processing of the sensory
feedback about executed actions and the external cue.

I. INTRODUCTION

Adequate behavior in a dynamic environment requires the

ability to detect and exploit its temporal regularities. In almost

all of our daily activities, we make use of these regularities

to determine when relevant events will occur and how to time

our actions towards them. Consider for instance a joint action

task like setting the dinner table in which we coordinate our

actions with those of another person. Sensing the flow of time

is important to monitor and predict the behavior of our partner

and to select a complementary action at an appropriate time.

Based on previous experiences with the collaborative task, we

are reasonably accurate in predicting how long our partner

takes to pick up a plate and set it on the table. This in turn

allows us to time the placing of a napkin on top of the plate

in order to achieve a tight temporal coordination in service of

fluent task execution. Moreover, we are able to rapidly adjust

our temporal prediction about the partner’s action and the

timing of our own action if unexpected delays are explained

by environmental cues, e.g., the plates have to be picked up

from a different location than usual.

In current robotics research, the question how to endow

autonomous robots with the capacity to learn and exploit

temporal regularities of the environment is to a large extent

unexplored ([17], for example studies [3], [5], [11]). This

is perhaps not surprising giving that in highly controlled

industrial settings the precise timing of robot motion can be

pre-specified by the designer and controlled by a computer

clock. As robots move into human populated environments

it will become increasingly important for them to achieve

a human-like temporal prediction and adaptation capacity.

Indeed, a recent user study of human-robot interaction in an

object transfer task reveals that the temporal precision of the

robot action has a greater weight for the subjective experience

rating than the spatial precision [14].

A promising design approach towards robots with a tempo-

ral cognition capacity is to take inspiration how the brain

represents temporal information [15]. One hypothesis is that

time is inherent in the neural dynamics of cell assemblies

that are engaged in other cognitive computations [10]. For

instance, the short-term memory (STM) of a briefly presented

cue is thought to be stored in the persistent activity of neural

populations in higher brain areas. Elapsed time since cue

onset can be robustly encoded in the consistent increase of

population activity during a delay period [13], [16]. We have

recently implemented the notion of shared neural resources

for STM and time measurement in a dynamic neural field

(DNF) model of sequence learning [9], [22]. The information

about the order and relative timing of successive stimulus

events is stored in an activation gradient of persistent activity

over stimulus-specific subpopulations. The information can

be recalled in a decision field by integrating this pattern as

subthreshold input and applying a ramp-to-threshold dynamics

to all subpopulations.

The present study set out to investigate in a real-world robotics

experiment the plausibility of an extension of our neurody-

namics model that addresses the challenge of adaptive motor

timing in relation to perceived temporal features of the envi-

ronment. Concretely, we adopt the assembly paradigm used in

our previous research on natural human-robot interaction [2],

[19]. The robot first watches a human realizing a sequence

of assembly steps. Subsequently, the robot has to recall the

sequence from memory while planning its action timing in

order to synchronize the realization of each assembly step with

the occurrence of an external cue.

The rest of the paper is structured as follows: we start with

a brief presentation of basic neural processing principles

implemented in DNF models, followed by a description of the

model architecture and its functionalities (section 2). We then

present the experimental paradigm and specify assumption we

made (section 3). In Section 4, we describe the results of

the robotics experiment. The paper finishes with a general
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discussion of concepts and results (section 5).

II. DYNAMIC FIELD MODEL

A. Model description

Dynamic Neural Fields (DNFs) represent a theoretical

framework for developing cognitive robot control architectures

that is consistent with fundamental principles of cortical infor-

mation processing in distributed networks of connected neural

populations [7]. Task-relevant information is represented by

supra-threshold activity patterns (or bumps) of local popu-

lations. These patterns are self-sustained in the absence of

any external drive due to recurrent excitatory and inhibitory

interactions within the populations. To implement a memory

function, a stable bump state must coexist with a homogeneous

resting state such that the memory can be switched on and

off by sufficiently strong transient input from sensors and/or

connected populations. Weaker inputs lead to a subthreshold

preshaping of neural populations which nevertheless may have

important consequences for the computations in a distributed

network (see below, [7]). Since no changes in synaptic weights

are involved, the processing mechanisms explained by DNF

theory support a fast, activation-based type of learning [19].

Figure 1 presents an overview of the model architecture with

several interconnected dynamic neural fields. The Perceptual

Memory field uSM stores a sequence of stimulus events as

a multi-bump pattern. The strength of each memory repre-

sentation reflects the time elapsed since stimulus presentation

resulting in an activation gradient from the first to the last

event (for details see [9]). The two bottom layers show the

model extension for adaptive motor timing in sequence recall.

The neural computations in the Action Onset Memory field

uAMEM implement a motor-related memory pattern of the

sequence. The strength of individual bumps controls the timing

of action onset during recall in order to finish the individual

actions in synchrony with an external cue. Starting with

the perceptual memory pattern which uAMEM receives as

excitatory input, the bump amplitudes are adjusted according

to a detected temporal mismatch between the time courses of

suprathreshold activity in the Cue field uS and the Feedback

field uF , representing the external synchronization signal and

the sensory feedback about executed actions, respectively [22].

Both fields receive in addition to the sensory input also the pat-

tern of uAMEM as subthreshold excitation. The action onset

field uACT is also preshaped by the motor memory meaning

that the first event in the motor sequence has the highest and

the last event the lowest preactivation. Sequence recall starts

with a continuous increase of the baseline activation level due

to the release of proactive inhibition [21]. This causes a ramp-

like buildup of activity of all subpopulations until a threshold

associated with action onset is reached. To monitor progress

and avoid repetition errors, bumps in the Past Events field

uPE , which evolve in response to excitatory input from uF ,

cause through inhibitory connections a suppression of existing

excitations at corresponding sites of the three fields in the

recall layer.

B. Model equations
The population dynamics in each field is governed by the

one-dimensional model proposed by Amari [1]:

τ u̇(x, t) = −u(x, t)+S(x, t)+

∫
w(x− y)f(u(y, t))dy−h(x, t),

(1)

where u(x, t) represents the activity at time t of the neuron

at location x, τ defines the time scale of the field dynamics

which is adapted to the scale of the robotics experiments, and

S(x, t) represents the time dependent, localized input at site x
from connected populations and/or the sensory system (vision,

proprioception). The resting state, which may depend on time

and space, is defined by h(x, t) < 0. The nonlinear transfer

function f(u) is taken as the Heaviside step function with

threshold 0. The intra-field couplings w(x, y) = w|x − y|
between neurons are assumed to depend on distance only.

To ensure the stability of multiple bumps in the fields with

a memory function, we use an oscillatory coupling function

with multiple zero crossings (for details see [8]):

w(x) = A−b|x|(bsin|αx|+ cos(αx)), (2)

with A > 0, b > 0 and b < α < 1. In the fields of the recall

layer, in which only a single bump should exist at any time,

we adopt a kernel for which inhibition dominates at larger

distances:

w(x− y) = wexce
((x−y)2/2σ2

exc) − winhib, (3)

with wexc > 0, σexc > 0 and winhib > 0.

The strength of individual memory representations in uSM is

controlled by a state-dependent dynamics of the resting activity

hSM (x, t) [6]:

ḣSM (x, t) =(1− f(uSM (x, t)))(−hSM (x, t) + hSM0
)

+
1

τhSM

f(uSM (x, t)),
(4)

where f(u) represents again the Heaviside step function,

hSM0 < 0 defines the level to which hSM converges without

suprathreshold activity at position x, and τhSM
> 0 measures

the growth rate when it is present. This dynamics implements

a linear increase of supra-threshold activity with time. To

retrieve the order and timing information stored in the

activation gradient of uACT , we apply a linear dynamics for

the inhibitory input hACT < 0 defining the resting state:

τhACT
ḣACT (t) = 1, hACT (t0) = hACT0 < 0. (5)

Note that by changing the value of τhACT
the sequence can

be recalled with different speed, while preserving the relative

timing of motor events.

The adaptation of bump amplitudes in uAMEM to represent

action timing is performed by applying the following h-

dynamics:

ḣAMEM (x, t) =β(1− f(uS(x, t))f(uF (x, t)))

(f(uF (x, t))− f(uS(x, t))),
(6)
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Fig. 1: Schematic view of the DNF architecture with several

interconnected fields implementing perceptual sequence mem-

ory, motor sequence memory and sequence recall.

where f(u) is again the Heaviside step function and β > 0
is the adaptation rate parameter. Typically, the evolution of

activity in uF will be initially delayed compared to uS . The

adaptation dynamics will thus cause an increase of bump

amplitude to initiate action onset earlier in the next trial.

III. TASK DESCRIPTION

For the experiments we used ARoS, the humanoid robot

developed by our group [2]. It consists of a stationary torus

on which a seven degrees of freedom arm with a three-fingered

hand and a stereo camera system with a pan-tilt unit are

mounted. To test the adaptive motor timing capacity in a

real-world experiment, we adopted a subsequence of a toy

assembly paradigm that we have used in our previous research

on natural human-robot interactions [2], [19]. ARoS has to

grasp three parts from a table and attach them in a specific

order to a base: insert left wheel (ILW), insert left nut (ILN)

and insert column 1 (IC1) (see Fig. 2). While watching a

human performing the sequence, ARoS first memorizes the

order and the relative timing of individual assembly steps.

Fig. 3 (left) shows the camera view of the wheel already

attached and the hand still on the wheel which we define

as the moment in time when the subgoal has been achieved.

The visual recognition of the scene integrates knowledge about

position, shape and color of objects, hand tracking is facilitated

using a color marker [19]. Subsequently, ARoS executes the

sequence from memory with an additional timing constraint

for the achievement of each assembly step defined by a blue

synchronization cue displayed on a screen (Fig. 3, right). This

shall mimic the common situation in joint action that identical

Fig. 2: An overview of the task structure.

Fig. 3: Robot camera views showing the achievement of the

first assembly step (left) and the synchronization cue (right).

actions (e.g., assembly of the two wheels) or complementary

behaviors (e.g., fluent object transfer) should be achieved in

synchrony by the co-workers. Note that since the color cue is

not subtask specific, we apply a constant input to all neurons

in the preshaped Cue field uS at the time of cue presentation.

The start and the end of the sequence are signaled by cues with

different colors, green and red, respectively. The time between

the green cue and the blue cue thus defines the permitted

execution time of each step, and ARoS has to learn to time

its movements in order to meet this constraint. While vision

could be used as well, we use for simplicity proprioceptive

signals at the time when ARoS starts to release the object as

input to uF and to measure the level of synchrony.

IV. RESULTS

In the following we present the results of the robotics

experiments with the focus on the adaptive timing

capacity (for a video of the whole experiment see

http://marl.dei.uminho.pt/public/videos/icdl.html). Fig. 4

shows snapshots of the video sequence (left column)

and the execution phase (right column) together with the

corresponding states of the population activities in the

perceptual memory field uSM and the Action Onset field

uACT , respectively. As can be seen in the bottom row on the

left, ARoS has memorized the achievement of all assembly

steps and their relative timing as shown by the three bumps

with decreasing amplitude. The snapshot of uACT on the right

shows a suppression of the neural populations representing

the first two steps below resting state, meaning that they have

been already executed. The bump at position IC1 indicates

that the robot should have already started the manipulation

of the column which is in line with its behavior as shown by

the video snapshot.

The temporal evolution of bumps in uSM in response to the

localized input from the vision system about the executed

assembly steps is shown in Fig. 5. The bump amplitude

increases linearly with elapsed time meaning that the relative

timing of perceptual events is stored in the amplitude

difference. The increase stops with the presentation of the red
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Action 1 Action 2 Action 3
Recall 1 26 32 45
Recall 2 2 1 1

TABLE I: Delay (in seconds) during task execution before

(top) and after (bottom) adaptation of movement onset time.

cue indicating the end of the sequence (not shown).

At the beginning of the first execution trial, the Action Onset

Memory uAMEM equals the pattern in uSM memorized

during the demonstration. Consequently, also the level of

pre-activation of each subpopulation in uACT already reflects

serial order of task execution. When the h-dynamics in uACT

is triggered by the green cue, all sub-populations will reach

sequentially the threshold for movement initiation. However,

since movement duration is not yet reflected in the memory

representation, ARoS will finish each assembly step with a

significant delay compared to the synchronization cue. This

can be seen by comparing the time courses of activation in

the three fields of the recall layer Fig. 7(a). Moreover, the

delays are different for each assembly step reflecting different

movement and manipulation durations. Fig. 6 compares

the stored activation gradient in uSM (solid line) with the

pattern in uAMEM (dashed line) after the application of the

adaptation rule which compares the time courses of activation

in the Cue field uS and the Feedback field uF individually

for all subpopulations. The adaptation results in an increase

of activation which brings the neural populations in uACT

closer to threshold and thus reduces the time to action onset.

This can be seen when comparing again the time courses

of activation in a new recall trial, 7(b). Table I compares

the delays before and after the application of the adaptation

dynamics. It shows that the delay can be drastically reduced

in a single trial (for a discussion of the adaptation rate

parameter β see [22]).

V. DISCUSSION

In the present study, we have presented first results of our

ongoing research on endowing autonomous robots with an

adaptive action timing capacity. The neurodynamics approach

takes inspiration from neural processing mechanism that are

believed to support time-dependent cognition in humans and

other animals. The human capacity to learn temporal regulari-

ties in the environment and to continuously adapt to changing

temporal conditions is not well described by a simple clock-

like mechanism [10], [12]. Here we have shown that the robot

can successfully adapt the learned timing pattern of an action

sequence to the occurrence of predictable sensory cues without

relying on a computer clock. Towards our ultimate goal of

natural human-robot interactions, we are currently testing the

timing model as part of a DNF control architecture for joint

action [2] in object transfer tasks [14]. The synchronization

cue is here the hand of the user at the exchange position.

We believe that a human-like temporal cognition capacity for

robots that integrates the impact of stimulus properties, context

and attention on time perception [12] will make the robot more

Fig. 4: Video snapshots of the sequence learning (left column)

and sequence execution (right column).

Fig. 5: Time course of population activity in uSM during

sequence demonstration.
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Fig. 6: Local adaptation of resting level in uAMEM . The

activation patterns in the Perceptual Sequence Memory field

uSM (solid line) and the Action Onset Memory field uAMEM

(dotted line) are compared.

(a) First execution trial

(b) Second execution trial

Fig. 7: Comparison of time courses of population activity in

uACT , uF and uS during the first (a) and second (b) execution

trial.

predictable for the human user. This in turn will increase user

acceptance.

In line with recent neurophysiological findings, the DNF

model builds on the assumption that neural population in-

volved in higher brain functions such as memory, planning and

decision making are themselves time keeper. It is thought that

the firing rate dynamics of persistent activity allows the neu-

rons to measure the passage of time [10]. The neurodynamics

approach differs fundamentally from implementations of robot

time perception based on classical artificial intelligence (AI)

methods (for discussion see [3], [5], [11],[17]). They typically

assume that time is an independent behavioral dimension that

can be directly obtained by a computer clock for labeling

events. For instance, in [11] a Bayesian approach is applied

in a human-robot assembly task to predict the duration of

assembly steps based on explicit time measurements and the

prior that individual assembly step have approximately equal

durations. Changing the temporal order of task execution or

the duration of individual steps would require to coordinate

the separate timing module with other cognitive modules rep-

resenting working memory and decision planning. In the DNF

model, timed behavior emerges from the interaction of neural

representation of sensory and motor events with the constraint

that the slope of the buildup of population activity in the mem-

ory and the recall fields are correlated (not necessarily a linear

dynamics). Very recent neurophysiological findings seem to

support this assumption (for discussion see [10]). Ramping

activity as a neural integrator of time is however not the only

neural mechanism which is believed to support time-dependent

cognition. In a distinct but conceptually related model class

known as population clocks, the evolution of the collective

state space of recurrently connected neurons spanned by the

firing rates is used to represent the passage of time [4]. The

synaptic weights are first learned to elicit a trajectory through

state space in a robust and reproducible manner. Output units

are then trained to recognize a specific pattern which serves

as a readout of time. The neural population trajectory in the

DNF model is shaped by the spatial interactions supporting

persistent activity which we assume to be already in place

[20]. The model thus supports activation-based learning which

is commonly believed to be much faster than weight-based

learning [19]. The DNF framework is not only compatible

with timing models based on ramping activity but also with

accounts based on neural oscillators. A coupled system of two

field equations of Amari-type describing an activator-inhibitor

system can be used to model stable, reproducible oscillations

[18]. Measuring time is linked to counting the number of

oscillatory cycles. Integrating such timing mechanism could

be beneficial in application in which the bump height is used

to represent additional input information like for instance

saliency or probability.

In the present experiment, several aspects have been simplified

to focus on the timing capacity. This explains to some extent

the rapid learning and adaptation of the robot in just two exe-

cution trials. First, we assume that the perceptual memory of

the demonstrated assembly sequence is correct. In [9] we have
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discussed a model extension that allows to iteratively correct

initial encoding errors. Second, the use of a color signal as a

synchronization cue obviously simplifies the synchronization

challenge since its occurrence can be detected easily and with

high temporal precision. In joint action, even the duration of

globally predictable actions of the co-worker will vary from

trial to trial. With the present model implementation, the robot

would adapt to the memorized pattern from the last trial to

timely initiate its complementary behavior in the current joint

action. This is a reasonable strategy if temporal precision of

action execution is relatively high. It also ensures that the robot

may rapidly adapt to other users which may show different

temporal patterns.

Given the fundamental importance that the processing of time

plays for our everyday activities, assistive robots should be

endowed with a temporal cognition capacity to be more easily

accepted by human users [14]. We believe that neurodynamics

offers key processing principles that may guide the develop-

ment of a new generation of cognitive robots.
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