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Abstract Functional programs often combine separate parts using intermediate data struc-
tures for communicating results. Programs so defined are modular, easier to understand and
maintain, but suffer from inefficiencies due to the generation of those gluing data structures.
To eliminate such redundant data structures, some program transformation techniques have
been proposed. One such technique is shortcut fusion, and has been studied in the context
of both pure and monadic functional programs.

In this paper, we study several shortcut fusion extensions, so that, alternatively, circular
or higher-order programs are derived. These extensions are also provided for effect-free
programs and monadic ones. Our work results in a set of generic calculation rules, that are
widely applicable, and whose correctness is formally established.
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1 Introduction

In a purely functional setting, programs are often constructed as a set of simple and clear
components, which are glued together by using intermediate data structures. Compilers are
a typical example of programs designed in this way: a function, the parser, constructs a
syntax tree that is later decorated by another function.

There are many advantages in structuring our programs in this way. Considered in iso-
lation, each function, or traversal, may be relatively simple. Consequently, programs so de-
fined are easier to write, to understand and are potentially more reusable. By separating dis-
tinct phases, it becomes possible to focus on a single task, rather than attempting to do many
things at the same time. Furthermore, there are algorithms that rely on a multiple traversal
strategy because context information must first be collected before it can be used. In other
words, information needs to flow from one traversal to the next one. This type of informa-
tion is usually conveyed using intermediate data structures. The construction, traversal and
destruction of a (potentially) large number of such data structures, however, may degrade
the efficiency of the complete program.

An alternative way to write multiple traversal programs in a lazy functional setting, avoid-
ing the definition of intermediate data structures, is to use circular programming. Circular
programs were first proposed by Bird [3] as an elegant technique to eliminate multiple
traversals of data structures. As the name suggests, these programs hold what appears to
be a circular definition of the form (. . . , x, . . .) = f . . . x . . . , where the argument x in the call
to f is also a result of that same call.

In order to motivate the use of circular programs, Bird introduces the following problem,
widely known as repmin: consider that we want to transform a binary leaf tree into a second
tree, identical in shape to the original one, but with all the leaf values replaced by the minimal
one. In order to implement repmin, we start by defining a representation for binary leaf trees;
we use the following HASKELL data-type definition:

data Tree = Leaf Int | Fork Tree Tree

We may now consider different implementations for solving repmin. In a strict, purely func-
tional setting, for example, solving this problem requires a two traversal strategy. First, we
need to traverse the input tree in order to compute its minimum value:

tmin :: Tree → Int
tmin (Leaf n) = n
tmin (Fork l r) = min (tmin l) (tmin r)

Having traversed the input tree to compute its minimum value, we need to traverse that tree
again. We need to replace all its leaf values by the minimum value:

replace :: (Tree, Int) → Tree
replace (Leaf ,m) = Leaf m
replace (Fork l r,m) = Fork (replace (l,m)) (replace (r,m))

Having implemented functions replace and tmin, we now only need, in order to solve
repmin, to combine them appropriately:

transform :: Tree → Tree
transform t = replace (t, tmin t)

As we have noticed, this solution to repmin traverses any input tree twice. The original tree
serves as the intermediate data structure that glues the two traversals together. However,
a two traversal strategy is not essential to solve the repmin problem. An alternative solution
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can, on a single traversal, compute the minimum leaf value and, at the same time, replace all
values by that minimum value. Bird [3] showed how the single traversal program, presented
next, may be obtained by transforming the original program, using well known techniques
such as tupling, fold-unfold and local recursion.

repmin (Leaf n,m) = (Leaf m, n)

repmin (Fork l r,m) = (Fork t1 t2, min m1 m2)

where (t1,m1) = repmin (l,m)

(t2,m2) = repmin (r,m)

transform t = nt
where (nt, m ) = repmin (t, m )

Notice the circularity in this program: m is both an argument and a result of the repmin call
in the transform function.1 Although this definition seems to induce both a cycle and non-
termination of this program, the fact is that, in a lazy setting, the lazy evaluation machinery
is able to determine, at runtime, the right order to evaluate it.

Bird’s work showed the power of circular programming, not only as an optimization
technique to eliminate multiple traversals of data, but also as a powerful, elegant and con-
cise technique to express multiple traversal algorithms. Indeed, using this style of pro-
gramming, it is not necessary to define and schedule the different functions, since a sin-
gle function has to be defined. Neither it is necessary to define intermediate gluing struc-
tures to convey values between traversals because there is a single traversal function
only.

Due to their nice properties, circular programs have been used in varied contexts: in
the construction of HASKELL compilers [19, 28], aspect-oriented compilers [9], to express
pretty printing algorithms [37] and type systems [10], to implement breadth-first traversal
strategies [23, 30] and as an optimization technique in the deforestation of accumulating
parameters [40]. They have also been studied in the context of partial evaluation [26] and
continuations [8]. Circular programs are also strongly related to attribute grammars [32].
Indeed, as [22] and [25] originally showed, circular programs are the natural representation
of attribute grammars in a lazy setting.

Deriving circular programs, however, is not the only way to eliminate multiple traver-
sals of data structures. In particular, the original non-circular repmin solution may be trans-
formed, by the application of a well-known technique called lambda-abstraction [35], into a
higher-order program. As a result, we obtain2:

repmin (Leaf n) = (λm → Leaf m, n)

repmin (Fork l r) = (λm → Fork (t1 m) (t2 m), min m1 m2)

where (t1,m1) = repmin l
(t2,m2) = repmin r

transform t = f m
where (f ,m) = repmin t

Regarding this new version of repmin, we may notice that it is a higher-order program,
since f , the first component of the result produced by the call repmin t, is a function. Later,

1In order to make it easier for the reader to identify circular definitions, we frame the occurrences of variables
that induce them (m in this case).
2In the program, we use two anonymous functions that are defined using the symbol λ. Defining λm →
Leaf m, for example, is equivalent to defining g m = Leaf m.
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f is applied to m, the second component of the result produced by that same call, therefore
producing the desired tree result. Thus, this version does not perform multiple traversals.
Furthermore, it does not use any intermediate data structure: instead it constructs an inter-
mediate tree of function calls. This higher-order repmin solution is extensionally equivalent
to both the repmin solutions presented so far: the original solution and the circular solution
derived from it.

This paper presents calculational techniques to eliminate intermediate data structures that
occur in program compositions. In particular, we introduce new program calculation tech-
niques to transform strict multiple traversal programs into circular ones. Our methods are
presented in the style of shortcut fusion, under generic calculation rules, that can be instan-
tiated for a wide class of programs. Furthermore, the rules that we present are studied both
in the context of pure and monadic/effectful programming. Post-calculation optimizations,
that trade circularities for higher-order definitions, are also exploited and presented.

The main contributions of the paper are:

• the definition of generic program calculation rules, in the style of shortcut deforestation,
to obtain circular (Sect. 2.3) and higher-order programs (Sect. 5.1);

• the extension of these calculation rules to monadic programming (Sect. 3.3 for circular
programs and Sect. 5.2.3 for higher-order ones);

• the formal proof that all the rules are correct (in the corresponding sections);
• a brief study on how we can increase the sharing of computations in the programs we

manipulate and, as a consequence, in the programs we calculate from them (Sect. 2.3).

2 Calculation of circular programs

Circular programs provide a very appropriate formalism to model multiple traversal algo-
rithms in the form of elegant and concise single traversal solutions.

However, circular programs are also known to be difficult to write and to understand.
Besides, even for advanced functional programmers, it is sometimes difficult to write a cir-
cular program that terminates. Bird proposes to derive such programs from their correct and
natural strict solution. His approach is an elegant application of the fold-unfold transfor-
mation method coupled with tupling and local recursion. Bird’s approach, however, has a
severe drawback since it preserves partial correctness only. The derived circular programs
are not guaranteed to terminate. Furthermore, as an optimization technique, Bird’s method
focuses on eliminating multiple traversals over the same data structure. Nevertheless, one
often encounters, instead of programs that traverse the same data structure twice, programs
that construct an intermediate data structure different from the input one. Indeed, programs
are often defined as the composition of two functions: the first traverses the input data and
produces an intermediate data structure whose type (possibly) differs from the type of the
input data, which is traversed by the second function to produce the final results.

Several attempts have successfully been made to combine such compositions of two func-
tions into a single one, eliminating the use of intermediate data structures, usually called de-
forestation [18, 29, 31, 42]. In those situations, circular programs have also been advocated
suitable for deforesting intermediate data structures in compositions of two functions with
accumulating parameters [40].

On the other hand, when the second traversal requires some additional information com-
puted from the input in order to produce its outcome, none of the methods discussed in the
previous paragraph produce satisfactory results. In fact, as a side-effect of eliminating the
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intermediate structure, these methods maintain residual traversals of the input structure. This
is due to the fact that deforestation methods focus on eliminating the intermediate data struc-
ture, without taking into account the computation of the additional information necessary for
the second traversal.

Our motivation for the work presented in this section is then to transform programs such
as prog = cons◦prod, where prod ::a → (t, z) and cons :: (t, z) → b, into programs that con-
struct no intermediate data-structure of type t and that traverse the input structure of type a
only once. In other words, we want to perform deforestation on those programs and, sub-
sequently, to eliminate the multiple traversals that deforestation introduces. These goals are
achieved by transforming prog into a circular program. We allow the first traversal, prod, to
produce completely general intermediate data structures of type t and context informations
of type z. The second traversal, cons then uses the context information so that, by consuming
the data structure of type t, it is able to compute the desired results.

The method we propose is based on a variant of the well-known fold/build rule [17, 18].
The standard fold/build rule does not apply to the kind of programs we wish to calculate
as they need to convey context information computed in one traversal into the following
one. The new rule we introduce, called pfold/buildp, was designed to support contextual
information to be passed between the first and the second traversals and also the use of com-
pletely general intermediate data structures. Like fold/build, our rule is cheap and practical
to implement in a compiler.

The pfold/buildp rule states that program compositions such as the one defined in prog
naturally induce circular programs. These circular programs compute the same results as the
original programs, but they do this by performing a single traversal over their input structure.
Furthermore, and since a single traversal is performed, the intermediate data structures lose
their purpose. In fact, they are deforested by our rule.

In this section, we also present the formal proof that the pfold/buildp rule is correct, and
that it introduces no real circularity, i.e., that the circular programs it derives preserve the
same termination properties as the original programs. Recall that Bird’s approach preserves
partial correctness only: the circular programs it derives are not guaranteed to terminate,
even when the original programs do.

We start by showing the intuition of our method to the specific case of repmin.

2.1 Calculating the circular repmin

Recall the straightforward solution to repmin that we presented in the previous section:

transform :: Tree → Tree
transform t = replace (t, tmin t)

tmin :: Tree → Int
tmin (Leaf n) = n
tmin (Fork l r) = min (tmin l) (tmin r)

replace :: (Tree, Int) → Tree
replace (Leaf ,m) = Leaf m
replace (Fork l r,m) = Fork (replace (l,m)) (replace (r,m))

The calculational method that we propose in this section is, in particular, suitable for cal-
culating a circular program equivalent to transform. Our calculational method, however, is
used to calculate circular programs from programs that consist of the composition f ◦ g of
a producer g and a consumer f , where g :: a → (t, z) and f :: (t, z) → b. So, in order to be
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able to apply our method to transform, we need to slightly change its form. In transform, the
consumer (function replace) fits the desired structure; however, no explicit producer occurs,
since the input tree is copied as an argument to function replace. We then define3:

transform :: Tree → Tree
transform t = replace (tmint t)

tmint :: Tree → (Tree, Int)
tmint (Leaf n) = (Leaf n,n)

tmint (Fork l r) = (Fork l′ r′,min n1 n2)

where (l′, n1) = tmint l
(r′, n2) = tmint r

A leaf tree (that is equal to the input one) is now the intermediate data structure that acts
with the purpose of gluing the two functions.

Although the original transform solution needs to be slightly modified, so that it is possi-
ble to apply our method to it, we still use it as a motivational example since it is very intuitive
and since repmin is, by far, the most well-known example for circular programming. Later in
this paper we will present a realistic example (in Sect. 3.2) which shows that, in general, we
need intermediate data to hold new information that is computed in one traversal and used
in the following one. This fact forces the definition of new data structures in order to glue
the different traversals together. Therefore, our method directly applies to such examples.

Now we want to obtain a new version of transform that avoids the generation of the
intermediate tree produced in the composition of replace and tmint. The method we propose
proceeds in two steps.

First we observe that we can rewrite the definition of transform as follows4:

transform t = replace (tmint t)
= replace (π1 (tmint t),π2 (tmint t))
= replace′ ◦ π1 ◦ tmint $ t

where replace′ x = replace (x,m)

m = π2 (tmint t)
= π1 ◦ (replace′ × id) ◦ tmint $ t

where replace′ x = replace (x,m)

m = π2 (tmint t)

where π1 and π2 are the projections π1 (x, y) = x and π2 (x, y) = y, (f ×g) (x, y) = (f x,g y),
and id the identity function. Therefore, we can redefine transform as:

transform t = nt
where (nt, ) = repmin t

repmin t = (replace′ × id) ◦ tmint $ t
replace′ x = replace (x,m)

m = π2 (tmint t)

We can now synthesize a recursive definition for repmin using, for example, the fold-unfold
method, obtaining:

3In function tmint, we could just copy the input tree in the output. However, our method relies in the explicit
construction of an intermediate data structure, and so in this case we need to define a deep copy of the input
tree.
4We use the right associative application, f $ x = f x, to avoid the use of parenthesis.
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transform t = nt
where (nt, ) = repmin t

m = π2 (tmint t)
repmin (Leaf n) = (Leaf m,n)

repmin (Fork l r) = let (l′, n1) = repmin l
(r′, n2) = repmin r

in (Fork l′ r′,min n1 n2)

In our method this synthesis will be obtained by the application of a particular shortcut fu-
sion law. The resulting program avoids the generation of the intermediate tree, but maintains
the residual computation of the minimum of the input tree, as that value is strictly neces-
sary for computing the final tree. Therefore, this step did eliminate the intermediate tree but
introduced multiple traversals over t.

The second step of our method is then the elimination of the multiple traversals. Similar
to Bird, we will try to obtain a single traversal function by introducing a circular definition.
In order to do so, we first observe that the computation of the minimum is the same in tmint
and repmin, in other words,

π2 ◦ tmint = π2 ◦ repmin (1)

This may seem a particular observation for this specific case but it is a property that holds
in general for all transformed programs of this kind. In fact, later on we will see that tmint
and repmin are both instances of a single polymorphic function and actually this equality
is a consequence of a free theorem [41] about that function. Using this equality we may
substitute tmint by repmin in the new version of transform, finally obtaining:

transform t = nt
where (nt, m ) = repmin t

repmin (Leaf n) = (Leaf m ,n)

repmin (Fork l r) = let (l′, n1) = repmin l
(r′, n2) = repmin r

in (Fork l′ r′,min n1 n2)

This new definition not only unifies the computation of the final tree and the minimum in
repmin, but it also introduces a circularity on m. The introduction of the circularity is a
direct consequence of this unification. As expected, the resulting circular program traverses
the input tree only once. Furthermore, it does not construct the intermediate leaf-tree, which
has been eliminated during the transformation process.

The introduction of the circularity is safe in our context. Unlike Bird, our introduction
of the circularity is always made in such a way that it is possible to safely schedule the
computations. For instance, in our example, the essential property that makes this possible
is the equality (1), which is a consequence of the fact that in both tmint and repmin the
computation of the minimum does not depend on the computation of the corresponding
tree. The fact that this property is not specific to this particular example, but is an instance
of a general one, is what makes it possible to generalize the application of our method to a
wide class of programs.

In this section, we have shown an instance of our method for obtaining a circular lazy
program from an initial solution that makes no essential use of laziness. In the next sections
we formalize our method using a calculational approach. Furthermore, we present the formal
proof that guarantees its correctness.
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2.2 Data type theory

Our method for the derivation of circular programs can be actually applied to a wide class
of compositions that are expressed in terms of certain program schemes. This allows us to
give a generic formulation of the transformation rule in the sense that it is parametric in the
structure of the intermediate data type involved in the composition to be transformed.

Throughout this paper we shall assume we are working in the context of a lazy functional
language with a cpo semantics, in which types are interpreted as pointed cpos (complete
partial orders with a least element ⊥) and functions are interpreted as continuous functions
between pointed cpos. However, our semantics differs from that of HASKELL in that we do
not consider lifted products and function spaces. In Sect. 4, we analyze the implications that
the semantics of HASKELL has on our rule for calculating circular programs. As usual, a
function f is said to be strict if it preserves the least element, i.e. f ⊥ = ⊥.

The structure of datatypes can be captured using the concept of a functor. A functor
consists of two components: a type constructor F, and a function mapF ::(a → b) → (F a →
F b), which preserves identities and compositions:

mapF id = id (2)

mapF (f ◦ g) = mapF f ◦ mapF g (3)

A standard example of a functor is that formed by the list type constructor and the well-
known map function.

In the assumed semantics pairs are interpreted as the Cartesian product of the correspond-
ing cpos. Associated with the product we can define a split function:

(�) :: (c → a) → (c → b) → c → (a,b)

f � g c = (f c,g c)

Among other properties, product operations satisfy the following ones:

f ◦ π1 = π1 ◦ (f × g) (4)

g ◦ π2 = π2 ◦ (f × g) (5)

f = (π1 ◦ f ) � (π2 ◦ f ) (6)

Product can be generalized to an arbitrary number of components in the obvious way.
Semantically, recursive datatypes are understood as least fixed points of functors: given

the declaration of a datatype τ it is possible to derive a functor F such that the semantic
interpretation of the datatype corresponds to the least solution to the equation x ∼= Fx. We
write μF to denote the type corresponding to the least solution; we will use μF and τ

interchangeably. The isomorphism between μF and F μF is provided by two strict func-
tions inF :: F μF → μF and outF :: μF → F μF , inverses of each other. Function inF

packs the constructors of the datatype while outF the destructors; see, e.g., [1, 16] for more
details.

For example, for the type of leaf trees we can derive a functor T given by:

data T a = FLeaf Int | FFork a a

mapT :: (a → b) → (T a → T b)

mapT f (FLeaf n) = FLeaf n
mapT f (FFork a a′) = FFork (f a) (f a′)

Then,
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inT :: T Tree → Tree outT :: Tree → T Tree
inT (FLeaf n) = Leaf n outT (Leaf n) = FLeaf n
inT (FFork l r) = Fork l r outT (Fork l r) = FFork l r

In the case of polymorphic lists, the structure is captured by a bifunctor (a functor on two
variables) as it is necessary to reflect the presence of the type parameter:

data L a b = FNil | FCons a b

mapL :: (a → c) → (b → d) → L a b → L c d
mapL f g FNil = FNil
mapL f g (FCons a b) = FCons (f a) (g b)

The interpretation of [a] then corresponds to mu (L a). Thus,

inLa
:: L a [a] → [a] outLa

:: [a] → L a [a]
inLa

FNil = [ ] outLa
Nil = FNil

inLa
(FCons a as) = a : as outLa

(a : as) = FCons a as

2.2.1 Fold

Fold [4, 16] is a pattern of recursion that captures function definitions by structural recursion.
The best known example of fold is its definition for lists, which corresponds to the foldr
operator.

Given a functor F and a function k :: F a → a, fold (also called catamorphism), denoted
by foldF k :: μF → a, is defined as the least function f that satisfies the equation f ◦ inF =
k ◦ mapF f . Because outF is the inverse of inF , this is the same as:

foldF :: (F a → a) → μF → a
foldF k = k ◦ mapF (foldF k) ◦ outF

A function k :: F a → a is called an F-algebra. The functor F plays the role of the signature
of the algebra, as it encodes the information about the operations of the algebra. The type a is
called the carrier of the algebra. An F-homomorphism between two algebras k ::F a → a and
k′ :: F b → b is a function f :: a → b between the carriers that commutes with the operations.
This is specified by the condition f ◦ k = k′ ◦ mapF f . Notice that foldF k is nothing more
than a homomorphism between the algebras inF and k.

When a functor F is given by n constructors,

data F a = FC1 t1,1 · · · t1,r1 | · · · | FCn tn,1 · · · tn,rn

then an algebra k :: F a → a has n components (k1, . . . , kn), each with type ki :: ti,1 → ·· · →
ti,ri → a, such that k (FCi vi,1 · · ·vi,ri ) = ki vi,1 · · ·vi,ri . For example, an algebra for the
functor T is a function k :: T a → a of the form

k (FLeaf n) = leaf n
k (FFork a a′) = fork a a′

with components leaf :: Int → a and fork :: a → a → a.
When showing specific instances of fold for concrete datatypes, we will denote the alge-

bras involved by simply writing their tuple of components. For example, fold for leaf trees
is given by:

foldTree :: (Int → a,a → a → a) → Tree → a
foldTree (leaf , fork) = fT

where fT (Leaf n) = leaf n
fT (Fork l r) = fork (fT l) (fT r)
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We can then express, for example, function tmin in terms of a fold as follows:

tmin = foldTree (id,min)

Fold enjoys many algebraic laws that are useful for program transformation [16]. A well-
known example is shortcut fusion [17, 18, 38] (also known as the fold/build rule), which
is an instance of a free theorem [41]. The idea of shortcut fusion is that the producer must
generate the intermediate data structure using uniquely the constructors of the data-type and
not whatever values that are passed to it as arguments. To meet this condition, the producer
is required to be expressible in terms of a so-called build function, which is a function that
carries a template that exhibits the occurrences of the constructors of the intermediate data-
type.

Law 1 (Fold/build rule) For k strict,
foldF k ◦ buildF g = g k

where

buildF :: (∀ a . (F a → a) → c → a) → c → μF

buildF g = g inF

This definition of buildF is slightly different from the standard one [18], in the sense that it
has an additional parameter of type c. This is because we want to formulate our laws at the
functional level. The instance of Law 1 for leaf trees is the following:

foldTree (leaf , fork) ◦ buildTree g = g (leaf , fork) (7)

where

buildTree :: (∀ a . (Int → a,a → a → a) → c → a) → c → Tree
buildTree g = g (Leaf ,Fork)

Observe that in the instance of the law the strictness condition on the algebra of the fold
disappears. The reason is that a function defined by pattern matching is strict; in fact, recall
that in the instances of fold (and build) we show only the components of the algebras, but
they are actually defined by case analysis on the functor constructors. The same will happen
in the instances for other concrete datatypes.

To illustrate the use of this law, consider the following program that computes the min-
imum value of a tree obtained by selecting internal nodes of the input tree according to the
value of a boolean argument.

tmp = tmin ◦ pick

pick :: (Tree,Bool) → Tree
pick (Leaf n,b) = Leaf n
pick (Fork l r,b) = if b then Fork (pick (l,False)) (pick (r,False)) else pick (l,True)

To apply the law we first need to express pick in terms of buildTree:

pick = buildTree g
where g (leaf , fork) (Leaf n,b) = leaf n

g (leaf , fork) (Fork l r,b)

= if b then fork (g (leaf , fork) (l,False)) (g (leaf , fork) (r,False))
else g (leaf , fork) (l,True)
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Then, by (7) we have that tmp = g (id,min). Inlining,

tmp (Leaf n,b) = n
tmp (Fork l r,b) = if b then min (tmp (l,False)) (tmp (r,False)) else tmp (l,True)

As expected, the resulting function does not construct the intermediate tree.
Due to space limitation we focus in this paper on the laws that dictate the transformations

and we leave out pragmatical aspects, such as the mechanisms of how the laws are actually
applied in a real compiler, performance analysis, or the methods that make it possible to
automatically rewrite the involved functions in terms of fold and build. For further details
on these issues, the interested reader may consult [12].

In the same line of reasoning, we can state another fusion law for a slightly different
producer function.

Law 2 (Fold/buildp rule) For k strict,

(foldF k × id) ◦ buildpF g = g k

where

buildpF :: (∀ a . (F a → a) → c → (a, z)) → c → (μF, z)
buildpF g = g inF

Proof From the polymorphic type of g we can deduce the following free theorem: for f
strict,

f ◦ φ = ψ ◦ mapF f ⇒ (f × id) ◦ g φ = g ψ

By taking f = foldF k, φ = inF , ψ = k we obtain that (foldF k × id) ◦ g inF = g k, since the
equation on the left-hand side of the implication becomes true by definition of fold. The
requirement that f is strict is satisfied by the fact that every fold with a strict algebra is strict,
and by hypothesis k is strict. Finally, by definition of buildpF the desired result follows. �

Finally, the following property is an immediate consequence of Law 2.

Law 3 For any strict k and g :: ∀ a . (F a → a) → c → (a, z),

π2 ◦ g inF = π2 ◦ g k

Proof
π2 ◦ g inF = { (5) } = π2 ◦ (foldF k × id) ◦ g inF = { Law 2 } = π2 ◦ g k �

This property states that the construction of the second component of the pair returned
by g is independent of the particular algebra that g carries; it only depends on the input
value of type c. This is a consequence of the polymorphic type of g and the fact that the
second component of its result is of a fixed type z.

2.2.2 Fold with parameters

Some recursive functions use context information in the form of constant parameters for
their computation. The aim of this section is to present a program scheme for the definition
of structurally recursive functions of the form f :: (μF, z) → a, where the type z represents
the context information. Our interest in these functions is based on the fact that our method
will assume that consumers are functions of this kind.
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Functions of this form can be defined in different ways. One alternative consists of fixing
the value of the parameter and performing recursion on the other, which permits to write the
function as a fold, f (t, z) = foldF k t, such that the context information contained in z may
eventually be used in the algebra k. This is the case of, for example, the function replace:

replace (t,m) = foldTree (λn → Leaf m,Fork) t

Another alternative is the use of currying, defining a function of type μF → (z → a) as a
higher-order fold. For instance, in the case of replace it holds that:

curry replace = foldTree (λn → Leaf , λf f ′ → λz → Fork (f z) (f ′ z))

This is an alternative we will study in detail in Sect. 5.1.
A third alternative is to define the function f ::(μF, z) → a in terms of a program scheme,

called pfold [33, 34], which, unlike fold, is able to manipulate constant and recursive argu-
ments simultaneously. The definition of pfold relies on the concept of strength of a functor
F , which is a polymorphic function stF :: (F a, z) → F (a, z) that satisfies certain coher-
ence axioms (see [6, 33] for further details). The strength distributes the value of type z

to the variable positions (positions of type a) of the functor. For instance, the strength
stT :: (T a, z) → T (a, z) corresponding to functor T is given by:

stT (FLeaf n, z) = FLeaf n stT (FFork a a′, z) = FFork (a, z) (a′, z)

In the definition of pfold the strength of the underlying functor plays an important role as it
represents the distribution of the context information contained in the constant parameters
to the recursive calls.

Given a functor F and a function h :: (F a, z) → a, pfold, denoted by
pfoldF h ::(μF, z) → a, is defined as the least function f that satisfies the following equation:

f ◦ (inF × id) = h ◦ ((mapF f ◦ stF) � π2)

A function h is something similar to an algebra, but it also accepts the value of the parame-
ters. In fact, when functor F is given by n constructors,

data F a = FC1 t1,1 · · · t1,r1 | · · · | FCn tn,1 · · · tn,rn

then h :: (F a, z) → a has also n components (h1, . . . ,hn), where now each has type hi ::
ti,1 → ·· · → ti,ri → z → a. For example, for functor T , h :: (T a, z) → a is of the form:
h (FLeaf n, z) = hleaf n z and h (FFork a a′, z) = hfork a a′ z where hleaf :: z → a and
hfork :: a → a → z → a are the component functions. As with algebras, in the specific
instances of pfold we will write the tuple of components instead of h.

For example, in the case of leaf trees the definition of pfold is as follows:

pfoldTree :: (Int → z → a,a → a → z → a) → (Tree, z) → a
pfoldTree (hleaf ,hfork) = pT

where pT (Leaf n, z) = hleaf n z
pT (Fork l r, z) = hfork (pT (l, z)) (pT (r, z)) z

We can then write replace in terms of a pfold:

replace = pfoldTree (λn m → Leaf m, λl r m → Fork l r)

The following equation shows one of the possible relationships between pfold and fold. For
h with components (h1, . . . ,hn),

pfoldF h (t, z) = foldF k t where ki x̄ = hi x̄ z (8)

By x̄ we denote a sequence of values x1 · · ·xri . Observe that k is an algebra with components
(k1, . . . , kn).



Higher-Order Symb Comput (2011) 24:115–149 127

Like fold, pfold satisfies a set of algebraic laws. We do not show any of them here as they
are not necessary for the calculational work presented in this paper. The interested reader
may consult [33, 34].

2.3 The pfold/buildp rule

In this section, we present a generic formulation and proof of correctness of a transforma-
tion rule for calculating circular programs. The rule takes a composition cons ◦ prod of a
producer prod :: a → (t, z) followed by a consumer cons :: (t, z) → b, and returns an equiv-
alent deforested circular program that performs a single traversal over the input value. The
reduction of this expression into an equivalent one without intermediate data structures is
performed in two steps. Firstly, we apply standard deforestation techniques in order to elim-
inate the intermediate data structure of type t. The program obtained is deforested, but in
general contains multiple traversals over the input as a consequence of residual computa-
tions of the other intermediate values (e.g. the computation of the minimum in the case of
repmin). Therefore, as a second step, we perform the elimination of the multiple traversals
by the introduction of a circular definition.

The rule makes some natural assumptions about cons and prod: t is a recursive data
type μF , the consumer cons is defined by structural recursion on t, i.e. as a pfold, and
the intermediate value of type z is taken as a constant parameter by cons. In addition, it
is required that prod is a “good producer”, in the sense that it is possible to express it in
terms of the buildp function corresponding to the intermediate type t. In summary, the rule
is applied to compositions of the form: pfold h ◦ buildp g.

Law 4 (Pfold/buildp rule) For h with components (h1, . . . ,hn),

pfoldF h (buildpF g c) = v
where (v, z ) = g k c

ki x̄ = hi x̄ z

Proof The proof will show in detail the two steps of our method. The first step corresponds
to the application of deforestation, which is represented by Law 2. For that we need first to
express the pfold as a fold.

pfoldF h (buildpF g c)

= { definition of buildp and (6) }

pfoldF h ◦ ((π1 ◦ g inF ) � (π2 ◦ g inF )) $ c

= { (8) }

foldF k ◦ π1 ◦ g inF $ c
where z = π2 ◦ g inF $ c

ki x̄ = hi x̄ z

= { (4) }

π1 ◦ (foldF k × id) ◦ g inF $ c
where z = π2 ◦ g inF $ c

ki x̄ = hi x̄ z

= { Law 2 }

π1 ◦ g k $ c
where z = π2 ◦ g inF $ c

ki x̄ = hi x̄ z
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Law 2 was applicable because by construction the algebra k is strict.
Once we have reached this point we observe that the resulting program is deforested, but

it contains two traversals on c. The elimination of the multiple traversals is then performed
by introducing a circular definition. The essential property that guarantees the safe introduc-
tion of the circularity is Law 3, which states that the computation of the second component
of type z is independent of the particular algebra that is passed to g. This is a consequence
of the polymorphic type of g. Therefore, we can replace inF by another algebra and we will
continue producing the same value z. In particular, we can take k as this other algebra, and in
that way we are introducing the circularity. It is this property that ensures that no terminating
program is turned into a nonterminating one.

π1 ◦ g k $ c
where z = π2 ◦ g inF $ c

ki x̄ = hi x̄ z

= { Law 3 }

π1 ◦ g k $ c
where z = π2 ◦ g k $ c

ki x̄ = hi x̄ z

= { (6) }

v where (v, z ) = g k c

ki x̄ = hi x̄ z �
Now, let us see the application of the pfold/buildp rule in the case of the repmin problem.

Recall the definition, presented on p. 120, that we want to transform:

transform :: Tree → Tree
transform t = replace (tmint t)

To apply the rule, we have to express replace and tmint in terms of pfold and buildp, respec-
tively:

replace = pfoldTree (λn m → Leaf m, λl r m → Fork l r)

buildpTree :: (∀ a . (Int → a,a → a → a) → c → (a, z)) → c → (Tree, z)
buildpTree g = g (Leaf ,Fork)

tmint = buildpTree gtm
where gtm (leaf , fork) (Leaf n) = (leaf n,n)

gtm (leaf , fork) (Fork l r) = let (l′, n1) = gtm (leaf , fork) l
(r′, n2) = gtm (leaf , fork) r

in (fork l′ r′,min n1 n2)

By applying Law 4 we get:

transform t = nt where (nt, m ) = gtm (kleaf , kfork) t

kleaf = Leaf m

kfork l r = Fork l r

Inlining the above definition, we obtain the one we showed previously in Sect. 2.1:

transform t = nt
where (nt, m ) = repmin t

repmin (Leaf n) = (Leaf m ,n)
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repmin (Fork l r) = let (l′, n1) = repmin l
(r′, n2) = repmin r

in (Fork l′ r′,min n1 n2)

The context parameter of type z produced in compositions pfold h ◦ buildp g is worth a
final remark. Indeed, depending on where the computations on that parameter are located,
as part of the pfold function or in the buildp, the performance of these functions may be
affected. This also occurs in the circular and in the higher-order programs that we derive
from such compositions. If computations on the context parameter are placed in the pfold,
then the parameter may need to be recomputed several times as a result of a loss of sharing.
A similar observation was made by Voigtländer [39].

In order to help us in restoring the sharing of computations, we will introduce calcula-
tional rules for pfold and buildp that assist us in moving computations on the context param-
eter. We show the propagation of the inefficiency in the case of a circular program derivation,
but the same analysis can be done both for the corresponding higher-order programs that can
be derived from the same compositions (Sect. 5.1), and for the case of monadic programs.

As an example, let us consider a slightly different formulation of repmin.

transform′ = mapMin ◦ copyAndLeaves

mapMin :: (Tree, [Int]) → Tree
mapMin (Leaf ,ns) = Leaf (minimum ns)
mapMin (Fork l r,ns) = Fork (mapMin (l,ns)) (mapMin (r,ns))

copyAndLeaves :: Tree → (Tree, [Int])
copyAndLeaves (Leaf n) = (Leaf n, [n])
copyAndLeaves (Fork l r) = (Fork l′ r′, ns1 ++ ns2)

where (l′, ns1) = copyAndLeaves l
(r′, ns2) = copyAndLeaves r

This definition differs from the one shown earlier in that the minimum is now computed as
part of the pfold (and not within the buildp as before) and this is done each time it is going
to be placed in a leaf. This means that the minimum is recomputed as many times as the
number of leaves in the tree. Another difference is that now a list with the values contained
in the leaves of the input tree is generated as a context parameter of the composition.

As before, we can derive a circular program from transform′. For that we need to express
mapMin and copyAndLeaves in terms of pfold and buildp, respectively:

mapMin = pfoldTree (hleafmm,hforkmm)

where hleafmm ns = Leaf (minimum ns)
hforkmm l r ns = Fork l r

copyAndLeaves = buildpTree gcal
where gcal (leaf , fork) (Leaf n) = (leaf n, [n])

gcal (leaf , fork) (Fork l r) = let (l′, ns1) = gcal (leaf , fork) l
(r′, ns2) = gcal (leaf , fork) r

in (fork l′ r′, ns1 ++ ns2)

By applying Law 4, we get:

tranform′ t = nt
where (nt, ns ) = repmin′ t

repmin′ (Leaf n) = (Leaf (minimum ns ), [n])
repmin′ (Fork l r) = let (l′, ns1) = repmin′ l
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(r′, ns2) = repmin′ r
in (Fork l′ r′, ns1 ++ ns2)

Now the circular argument is the list of leaves ns. Observe that the recomputation of the
minimum is maintained in the circular program; it could be isolated by introducing a local
argument ms = minimum ns, but this would not prevent the generation of the intermediate
list ns.

It is possible to transform the definition of transform′ to the original definition of
transform where the computation of the minimum is performed as part of the producer
tmint and therefore is shared by all leaves of the output tree. The transformation is based on
the following properties, which show how to move computations on the context parameter:
Let f :: z → z′,

pfoldF h ◦ (id × f ) = pfoldF (h ◦ (id × f )) (9)

(id × f ) ◦ buildpF g = buildpF ((id × f ) • g) (10)

where (f • g) x = f ◦ g x. Read from right to left, (9) [33] states that computations on the
context parameter can be moved outside a pfold. On the contrary, (10) states how to move
computations on the context parameter inside a buildp.

Returning to our example, we can calculate the following:

mapMin ◦ copyAndLeaves

= { (9) }

replace ◦ (id × minimum) ◦ copyAndLeaves

= { (10) }

replace ◦ buildpTree ((id × minimum) • gcal)

= { fusion }

replace ◦ tmint

which proves the equivalence between our two definitions of repmin (and, by transitivity,
the equivalence of the circular programs). The last step of the calculation means to fuse
(id × minimum) with gcal obtaining as result the definition of gtm; for this we can apply
standard fold fusion [4] as in fact gcal is a fold on trees. To apply fusion this property is
required: minimum (xs ++ ys) = min (minimum xs) (minimum ys).

In the next section we study the calculation of circular programs, as with Law 4, but in
the context of monadic programs.

3 Calculation of monadic circular programs

In the previous section, we have shown how circular programs can be used to achieve in-
termediate data structure deforestation in compositions cons ◦ prod, where prod :: a → (t, z)
and cons :: (t, z) → b. The rule we introduced to this end is generic in the sense that it can be
applied to a wide range of programs and datatypes. However, it does not handle programs
with effects, that is, programs that, for example, rely on a global state or perform I/O opera-
tions. Thus, the rule has a limited applicability scope since several programs, like compilers,
pretty-printers or parsers do rely on global effects.

Our motivation for the work presented in this section is to extend the derivation of cir-
cular programs to the context of monadic programming. Our approach follows the studies
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by Ghani and Johann [15], Manzino and Pardo [27] that propose monadic extensions to
standard shortcut fusion. Our goal is to achieve fusion of monadic programs, maintaining
the global effects. We study two cases: the case where the producer function is monadic and
the consumer is given by a pure function, and the case where both functions are monadic.
For both cases, fusion is achieved by transforming the original program into a circular one.
We do not consider the case where the producer is given by a pure function (and the con-
sumer is given by a monadic one) since it can already be fused using the pfold/buildp rule
presented before.

3.1 Bit string transformation

To illustrate our technique to derive monadic circular programs we first consider an example
based on a simple bit string conversion that has applications in cryptography [2]. Suppose
we want to transform a sequence of bits into a new one, of the same length, by applying
the exclusive or between each bit and the binary sum (sum modulo 2) of the sequence. We
consider that the input sequence is given as a string of bits, which will be parsed into a list
and then transformed. It is in the parsing phase that computational effects come into play, as
we use a monadic parser.

Suppose we are given the string "101110110001". To transform this string of bits,
we start by parsing it, computing as result a list of bits [1,0,1,1,1,0,1,1,0,0,0,1], and
its binary sum (1 in this case). Having the list and the binary sum, the original sequence is
transformed into this one [0,1,0,0,0,1,0,0,1,1,1,0] after applying the exclusive or of
each bit with 1 (the binary sum).

The parser for bit strings will be constructed as a monadic parser, which is a function that
relies on a monad. A monad is usually presented as a triple (M, return,>>=) consisting of a
type constructor M and two polymorphic functions, return :: a → M a and (>>=) :: M a →
(a → M b) → M b, that obey the following laws:

m >>= return = m return x >>= f = f x (m >>= f ) >>= g = m >>= (λx → f x >>= g)

In HASKELL, we can capture the definition of a monad as a type class.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

With the aim at improving readability of monadic programs, HASKELL provides a special
syntax, called do notation, which is defined by the following translation rules:

do {x ← m;m′ } = m >>= λx → do {m′ } do {m} = m

Associated with every monad it is possible to define a map function, which together with the
type constructor m satisfies the conditions to be a functor.

mmap :: Monad m ⇒ (a → b) → (m a → m b)

mmap f m = do {a ← m; return (f a)}
To implement the parser we will adopt the usual definition of parser monad (see [20] for more
details):

newtype Parser a = P (String → [(a,String)])
instance Monad Parser where

return a = P (λcs → [(a, cs)])
p 
= f = P (λcs → concat [ parse (f a) cs′ | (a, cs′) ← parse p cs])

parse :: Parser a → String → [(a,String)]
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parse (P p) = p

(〈|〉) :: Parser a → Parser a → Parser a
(P p) 〈|〉 (P q) = P (λcs → case p cs ++ q cs of [ ] → [ ]

(x : xs) → [x])
pzero :: Parser a
pzero = P (λcs → [ ])
item :: Parser Char
item = P (λcs → case cs of [ ] → [ ]

(c : cs) → [(c, cs)])
Alternatives are represented by a deterministic choice operator (〈|〉), which returns at most one
result. The parser pzero is a parser that always fails. The item parser returns the first character in
the input string.

We can use these simple parser combinators to define parsers for bits and bit strings. The
binary sum is calculated as the exclusive or of the bits of the parsed sequence. We write ⊕ to
denote exclusive or over the type Bit.

data Bit = Zero | One

bit :: Parser Bit
bit = do c ← item

case c of ’0’ → return Zero
’1’ → return One

→ pzero

bitstring :: Parser ([Bit ],Bit)
bitstring = (do b ← bit

(bs, s) ← bitstring
return (b : bs,b ⊕ s)) 〈|〉 return ([ ],Zero)

Now, we implement the transformation function:

transform :: ([Bit ],Bit) → [Bit ]
transform ([ ], ) = [ ]
transform (b : bs, s) = (b ⊕ s) : transform (bs, s)

In summary, our bit string transformer consists of:

shift :: Parser [Bit ]
shift = do {(bs, s) ← bitstring; return (transform (bs, s))}

Regarding the above solution, we notice that function bitstring constructs an intermediate list
of bits, that is later consumed by function transform in order to produce the desired result. The
construction of this list may result in inefficiency of the program and therefore we would like
to eliminate it. Following a similar strategy to the one used for purely functional programs, such
elimination is achieved by applying a shortcut fusion law to shift, with the difference that now the
fusion law deals with monadic functions. Below, we present the specific instance of the fusion
law for lists (the type of the intermediate data structure in the example), and in Sect. 3.3 we show
that it is an instance of a generic law that can be formulated for several datatypes.

Like in standard shortcut fusion, our law assumes that the producer and the consumer
(bitstring and transform in our case) are expressed in terms of certain program schemes. The
consumer must be given by structural recursion in terms of a pfold,

pfoldList :: (z → b,a → b → z → b) → ([a], z) → b
pfoldList (hnil,hcons) = pL
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where pL ([ ], z) = hnil z
pL (a : as, z) = hcons a (pL (as, z)) z

and the producer as a buildp function. The difference with the purely functional case is that now
we consider producers that generate the intermediate values as the result of a monadic computa-
tion. For lists, this is expressed by a function called mbuildpList:

mbuildpList :: Monad m ⇒ (∀ b . (b,a → b → b) → m (b, z)) → m ([a], z)
mbuildpList g = g ([ ], (:))

Having stated the forms required to the producer and the consumer it is now possible to formulate
the law and to use it to calculate a circular program equivalent to shift.

Law 5 (Pfold/mbuildp for lists) Let m be a recursive monad.

do {(xs, z) ← mbuildpList g; return (pfoldList (hnil,hcons) (xs, z))}
=

do rec (v, z ) ← let knil = hnil z

kcons (x, y) = hcons ((x, y), z )

in g (knil, kcons)
return v

This law transforms a monadic composition, where the producer is an effectful function but
the consumer may not necessarily be, into a single monadic function with a circular argument z.
Indeed, z is a value computed by g (knil, kcons) but in turn used by knil and kcons. An interesting
feature of this law is the fact that the introduction of the circularity needs the use of a recursive
binding within a monadic computation, and therefore requires the monad to be recursive [11].
A recursive do is supported by HASKELL for those monads that are declared an instance of the
MonadFix class.

class Monad m ⇒ MonadFix m where
mfix :: (a → m a) → m a

The monadic fixed-point operator mfix needs to obey the following semantic laws5:

f ⊥ = ⊥ ⇔mfix f = ⊥
mfix (return ◦ h) = return (fix h)

mfix (λx → q >>= λy → f x y) =q >>= (λy → mfix (λx → f x y)),

if x does not appear free in q

(11)

The parsing monad presented earlier can be declared an instance of the MonadFix class, for
example, as follows:

instance MonadFix Parser where
mfix f = P (λcs → mfixL (λ̃ (x, y) → parse (f x) cs))

where mfixL f = case fix (f ◦ head) of [ ] → [ ]
(x : ) → x : mfixL (tail ◦ f )

To see Law 5 in action, we write transform and bitstring in terms of pfoldList and mbuildpList ,
respectively:

5fix is the usual fixed-point operator for pure functions fix :: (a → a) → a, fix f = f (fix f ).
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transform = pfoldList (hnil,hcons)
where hnil = [ ]

hcons b r s = (b ⊕ s) : r

bitstring = mbuildpList g
where g (nil, cons) = (do b ← bit

(bs, s) ← g (nil, cons)
return (cons b bs,b ⊕ s)) 〈|〉 return (nil,Zero)

Then, by applying the law we obtain:

shift = do {rec (bs, s ) ← g ([ ], λb r → (b ⊕ s ) : r); return bs}
Inlining, we get the following circular monadic program:

shift = do rec (bs, s ) ← let gk = (do b ← bit

(bs′, s′) ← gk
return ((b ⊕ s ) : bs′,b ⊕ s′)) 〈|〉 return ([ ],Zero)

in gk
return bs

The above program avoids the construction of the intermediate list of bits, by introducing a cir-
cular definition. Indeed, we may notice that s (the modulo 2 sum of the input sequence of bits) is
used (in b ⊕ s) in the function call to gk. However, s is also a result of that same call, hence the
circularity.

In this section, we have calculated a circular program from a composition of an effectful
producer and a consumer given by a pure function. In the next section, we study the fusion of
monadic programs where both the consumer and the producer functions are effectful.

3.2 Algol 68 scope rules

In this section, we consider the application of our calculational methods to a real example: the Al-
gol 68 scope rules that are used, for example, in the Eli system [24] to define a generic component
for the name analysis task of a compiler.

We wish to construct a program to deal with the scope rules of a block structured language, the
Algol 68. In this language a definition of an identifier x is visible in the smallest enclosing block,
with the exception of local blocks that also contain a definition of x. In this case, the definition of
x in the local scope hides the definition in the global one. In a block an identifier may be declared
at most once. We shall analyze these rules via the Block language, which consists of programs of
the following form:

[ use y;decl x;
[decl y;use y;use w; ]

decl x;decl y; ]
In HASKELL we may define the following data-types to represent Block programs.

type Prog = [It] data It = Use Var | Decl Var | Block Prog type Var = String

Such programs describe the basic block-structure found in many languages, with the peculiarity
however that declarations of identifiers may also occur after their first use (but in the same level
or in an outer one).

According to the rules of the language the above program contains two errors: at the outer
level, variable x has been declared twice and the use of w, at the inner level, has no binding
occurrence at all. Our goal is to process this kind of programs and compute a list containing the
identifiers that do not obey the rules of the language. In order to make it easier to detect them, we
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require that the list of errors follows the sequential structure of the input program. Thus, for the
example above we would compute the list [w, x].

We also want to show messages describing the encountered errors. So, for the example sen-
tence provided, the following messages must be displayed:

Duplicate: decl x

Missing: decl w

The error messages must be displayed in a certain order: errors resulting from duplicate dec-
larations first and then errors that result from missing declarations. Furthermore, the errors oc-
curring in nested blocks are displayed only after the errors occurring in the outer ones.

Because we allow a use-before-declare discipline, a conventional implementation of the re-
quired analysis leads to a program which traverses the abstract syntax tree twice: one for accu-
mulating the declarations of identifiers, i.e., the environment, and another one for checking the
uses of identifiers, according to the environment. The uniqueness of names can be detected in the
first traversal, while errors resulting from missing declarations can only be computed in the sec-
ond one. In such an implementation, a “gluing” data structure has to be constructed: to pass the
detected errors from the first to the second traversal in order to compute the list of errors in the de-
sired order; and to pass between the two traversals of a block the names of the variables declared
in it, i.e., its environment type Env = [(Var, Int)], in order to compute the missing declarations.

Observe that the environment computed for a block is the global environment for its nested
blocks. Thus, only during the second traversal of a block (i.e., after collecting all its declarations)
the program actually begins the traversals of its nested blocks; as a consequence the computations
related to the first and second traversals are intermingled. Furthermore, the information on the
nested blocks (the instructions they define and the blocks’ level) has to be explicitly passed from
the first to the second traversal. This is also achieved constructing an intermediate structure. In
order to pass the necessary information around, we define:

type Prog2 = [It2 ] data It2 = Block2 Int Prog | Dupl2 Var | Use2 Var

Errors resulting from duplicate declarations are passed from the first to the second traversal using
constructor Dupl2. The level of a nested block and the instructions defined in it are passed to the
second traversal using constructor Block2.

According to the defined strategy, our semantic analysis consists of:

semantics :: Prog → IO [Var ]
semantics p = do {(p′, env) ← duplicate 0 [ ] p;missing (p′, env)}

The function duplicate detects duplicate variable declarations by collecting all the declarations
occurring in a block. It is a monadic function since it needs to output error messages6:

duplicate :: Int → Env → Prog → IO (Prog2,Env)
duplicate lev ds [ ] = return ([ ],ds)

duplicate lev ds (Use var : its) = do (its2,ds′) ← duplicate lev ds its
return (Use2 var : its2,ds′)

duplicate lev ds (Decl var : its)
= if ((var, lev) ∈ ds) then do put ("Duplicate: decl "++ var)

(its2,ds′) ← duplicate lev ((var, lev) : ds) its
return (Dupl2 var : its2,ds′)

else duplicate lev ((var, lev) : ds) its

duplicate lev ds (Block nested : its) = do (its2,ds′) ← duplicate lev ds its
return ((Block2 (lev + 1) nested) : its2,ds′)

6We abbreviate putStrLn as put.
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Function duplicate computes a data structure that is later traversed in order to detect variables
that are used without being declared. This detection is performed by function missing, which is
monadic as it also outputs error messages:

missing :: (Prog2,Env) → IO [Var ]
missing ([ ], ) = return [ ]
missing (Use2 var : its2, env)

= if (var ∈ map π1 env) then missing (its2, env)
else do put ("Missing: decl "++ var)

errs ← missing (its2, env)
return (var : errs)

missing (Dupl2 var : its2, env) = do errs ← missing (its2, env)
return (var : errs)

missing ((Block2 lev its) : its2, env) = do errs2 ← missing (its2, env)
errs1 ← do (p2, env2) ← duplicate lev env its

missing (p2, env2)

return (errs1 ++ errs2)

Now, we want to eliminate the intermediate data structure that glues duplicate and missing. Since
the consumer is also monadic, Law 5 does not directly apply: the result of the law is a function
that returns a monadic computation which in turn yields a monadic computation (and not a value)
as result, that is, something of type m (m a), for some a. To obtain a value as final result, it is
simply necessary to run the computation. This gives the following shortcut fusion law, which is
able to fuse two effectful functions.

Law 6 (Effectful pfold/mbuildp for lists) Let m be a recursive monad.

do {(xs, z) ← mbuildpList g c;pfoldList (hnil,hcons) (xs, z)}
=

do {rec (m, z ) ← let knil = hnil z

kcons x y = hcons x y z

in g (knil, kcons) c;m}
Observe that, in this case, hnil ::z → m b and hcons ::a → m b → z → m b, for some monad m,

and therefore, pfoldList (hnil,hcons) :: ([a], z) → m b. Also, notice that,

mbuildpList :: Monad m ⇒ (∀ b . (b,a → b → b) → c → m (b, z)) → c → m ([a], z)
mbuildpList g = g ([ ], (:))

that is, mbuildpList g is now a function of type c → m ([a], z). It is in this way that mbuildpList g
will be considered in Sect. 3.3 when we will define the generic formulation of the laws. However,
in Sect. 3.1 it was defined as a value of type m ([a], z) because that form is more appropriate for
writing monadic parsers.

For this example we do not need to provide the instance of the MonadFix class for the IO
monad as it is automatically provided by GHC, the compiler we are using. Now, if we write
missing and duplicate in terms of pfoldList and mbuildpList , respectively, we can apply Law 6 to
semantics. We obtain:

semantics p
= do {rec (merrs, env )

← let gk lev ds env [ ] = return (return [ ],ds)

gk lev ds env (Use var : its)
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= do (its2,ds′) ← gk lev ds env its
return (if (var ∈ map π1 env)

then its2
else do put ("Missing: decl "++ var)

errs ← its2
return (var : errs),ds′)

gk lev ds env (Decl var : its)
= if ((var, lev) ∈ ds)

then do put ("Duplicate: decl "++ var)
(its2,ds′) ← gk lev ((var, lev) : ds) env its
return (do {errs ← its2; return (var : errs)},ds′)

else gk lev ((var, lev) : ds) env its

gk lev ds env (Block nested : its)
= do (its2,ds′) ← gk lev ds env its

return
(do errs2 ← its2

errs1 ← do rec (merrs1 , env2 ) ← gk lev ds

env2 nested merrs1

return (errs1 ++ errs2),ds′)
in gk 0 [ ] env p;merrs }

The calculated program does not construct any intermediate data, while maintaining the original
computations and side-effects.

3.3 The generic construction

In this section, we show that Laws 5 and 6, presented in the previous sections, are instances of
generic definitions valid for a wide class of data types and monads.

3.3.1 Extended shortcut fusion

Shortcut fusion laws for monadic programs can be obtained as a special case of an extended form
of shortcut fusion that captures the case when the intermediate data structure is generated as part
of another structure given by a functor [15, 27]. This extension is based on an extended form
of build: Given a functor F (signature of a datatype) and another functor N (representing the
container structure), we can define

buildF,N :: (∀ a . (F a → a) → c → N a) → c → N μF

buildF,N g = g inF

This is a natural extension of the standard build. In fact, buildF can be obtained from buildF,N
by considering the identity functor N a = a. Moreover, buildpF is also a particular case obtained
by considering the functor N a = (a, z) and mapN f = f × id.

Law 7 (Extended fold/build) For strict k and strictness preserving N,7

mapN (foldF k) ◦ buildF,N g = g k

7The strictness-preserving assumption on the functor means that mapN preserves strict functions, i.e., if f is
strict, then so is mapN f .
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See [15, 27] for a proof.
Similarly, we can also consider an extension for buildp:

buildpF,N :: (∀ a . (F a → a) → c → N (a, z)) → c → N (μF, z)
buildpF,N g = g inF

with the following shortcut fusion law:

Law 8 (Extended fold/buildp) For strict k and strictness-preserving N,

mapN (foldF k × id) ◦ buildpF,N g = g k

Proof By considering N′ a = N (a, z), we have that buildF,N′ g = buildpF,N g and mapN′ f =
mapN (f × id). Then, the left-hand side of the equation can be rewritten as: mapN′ (foldF k) ◦
buildF,N′ g. Finally, we apply Law 7. �

3.3.2 Monadic shortcut fusion

We are interested in studying Law 8 for the case when the functor N is the composition of a
monad m with a product: For some type z,

N a = m (a, z) and mapN f = mmap (f × id)

where recall that mmap is the map function for the monad m. The producer then corresponds to
a monadic version of buildp:

mbuildpF :: Monad m ⇒ (∀ a . (F a → a) → c → m (a, z)) → c → m (μF, z)
mbuildpF g = g inF

A monadic shortcut fusion law can be directly obtained as an instance of Law 8. We unfold the
definition of mmap so that we get a formulation in terms of do-notation:

Law 9 (Fold/mbuildp) For strict k and strictness preserving mmap,

do {(t, z) ← mbuildpF g c; return (foldF k t, z)} = g k c

Using this law we can state a first monadic extension of the pfold/buildp rule (Law 4). Law 5,
that was used to calculate a circular version of the bit string transformer, is the instance for lists
of such monadic extension. For the introduction of a circular definition we need the assumption
that the monad is recursive [11] as we require the use of a circular binding within a monadic
computation. In HASKELL terms, this can be expressed using the recursive do-notation provided
that the monad is an instance of the MonadFix class. We will use the following relationship:

do {rec x ← e; e′ } = do {x ← mfix (λx → e); e′ } (12)

Law 10 (Pfold/mbuildp) Let m be a recursive monad with strictness-preserving mmap. For h
with components (h1, . . . ,hn) and strict,

do { (t, z) ← mbuildpF g c; return (pfoldF h (t, z))}
=

do {rec (v, z ) ← let ki x̄ = hi x̄ z in g k c; return v}
Proof

do {(t, z) ← mbuildpF g c; return (pfoldF h (t, z))}
= { (8) }
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do {(t, z) ← mbuildpF g c; let ki x̄ = hi x̄ z in return (foldF k t)}
= { definition of π1 }

do {(t, z) ← mbuildpF g c; let ki x̄ = hi x̄ z in return (π1 (foldF k t, z))}
=

do (t, z) ← mbuildpF g c
(v, z′) ← let ki x̄ = hi x̄ z in return (foldF k t, z)
return v

= { Lemma 11 }

do rec (t, z) ← mbuildpF g c

(v, z′ ) ← let ki x̄ = hi x̄ z′ in return (foldF k t, z)

return v

= { Law 9 }

do {rec (v, z ) ← let ki x̄ = hi x̄ z in g k c; return v} �

The circularity introduced in Law 10 is safe and therefore computations can be ordered under
lazy evaluation. In order to prove this, we first need to prove the following property.

∀ z f . fix (λ(v, z′) → (f z′, z)) = (f z, z) (13)

Proof We prove this property by fixed-point induction with admissible predicate: P (x, y) ≡
(x, y) �= ⊥ ⇒ (x, y) = (f z, z).

Let us define φ (x, y) = (f y, z). The proof needs to consider two cases:

Base case: P (⊥) is trivially true since the antecedent of P fails.
Inductive step: Assume that P (x, y) holds. The inductive hypothesis is, therefore, that (x, y) =

(f z, z). We will prove that P (φ (x, y)) holds.

φ (x, y) = { def. φ } = (f y, z) = { inductive hyp. } = (f z, z) �

Now, we can state and prove the following law, that guarantees the safe introduction of circular
definitions in Law 10.

Lemma 11 (Monadic Local Recursion) Let m be a recursive monad with strictness-preserving
mmap. For h with components (h1, . . . ,hn) and strict,

do (v, z′) ← let ki x̄ = hi x̄ z in return (foldF k t, z)
return v

=
do rec (v, z′ ) ← let ki x̄ = hi x̄ z′ in return (foldF k t, z)

return v

Proof

do rec (v, z′ ) ← let ki x̄ = hi x̄ z′ in return (foldF k t, z)

return v

= { (12) }
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do (v, z′) ← mfix (λ(v, z′) → let ki x̄ = hi x̄ z′ in return (foldF k t, z))
return v

= { (11) }

do (v, z′) ← return (fix (λ(v, z′) → let ki x̄ = hi x̄ z′ in (foldF k t, z)))
return v

= { (13) }

do (v, z′) ← return (let ki x̄ = hi x̄ z in (foldF k t, z))
return v

=
do (v, z′) ← let ki x̄ = hi x̄ z in return (foldF k t, z)

return v �

Laws 9 and 10 handle monadic producers and purely functional consumers. When the con-
sumer is also an effectful function, it is possible to state two other fusion laws. The formulation
of these laws follows the approach presented by Chitil [5] and Ghani and Johann [15].

Law 12 (Effectful fold/mbuildp) For strict k :: F (m a) → m a and strictness preserving mmap,

do {(t, z) ← mbuildpF g c; v ← foldF k t; return (v, z)}
=

do {(m, z) ← g k c; v ← m; return (v, z)}
Proof

do {(t, z) ← mbuildpF g c; v ← foldF k t; return (v, z)}
= do (t, z) ← mbuildpF g c

(m, ) ← return (foldF k t, z)
v ← m
return (v, z)

= do (m, z) ← do {(t, z) ← mbuildpF g c; return (foldF k t, z)}
v ← m
return (v, z)

= do {(m, z) ← g k c; v ← m; return (v, z)} �

Using this law we can now state a shortcut fusion law for the derivation of monadic circular
programs in those cases where both the producer and consumer are effectful functions. Again,
like in Law 10, the monad is required to be recursive because of the introduction of a recursive
binding within the monadic computation.

Law 13 (Effectful pfold/mbuildp) Let m be a recursive monad with strictness-preserving mmap.
For h :: (F (m a), z) → m a with components (h1, . . . ,hn) and strict,

do {(t, z) ← mbuildpF g c; pfoldF h (t, z)}
=

do {rec (m, z ) ← let ki x̄ = hi x̄ z in g k c;m}
Proof

do {(t, z) ← mbuildpF g c;pfoldF h (t, z)}
=
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do {(t, z) ← mbuildpF g c;m ← return (pfoldF h (t, z));m}
= { Law 10 }

do {rec (m, z ) ← let ki x̄ = hi x̄ z in g k c;m} �

Law 6 is the specific instance of Law 13 for the case where the intermediate data structure is
a list.

4 Termination analysis and semantic considerations

In this section, we address the termination properties of the circular programs calculated
with Laws 4, 10 and 13. We also analyze in detail the implications that the semantics of HASKELL

has on Law 4. The same type of analysis is not needed for the calculation of higher-order
programs, since the corresponding rules (to be presented in Sect. 5) are already valid under
HASKELL’s semantics and no termination issues arise in that context.

An important feature of our transformations is that both in the case of pure and monadic
programs the circular programs we derive hold the same termination properties of the original
ones. In both cases the safe introduction of the circularity is based on the fact that the components
of a pair are obtained by independent computations, which enables us to tie the knot and make
the computation of one of the components depend on the value computed in the other one.

In the case of pure programs it is Law 3, which comes as a consequence of the polymorphic
type of g ::∀ a . (F a → a) → c → (a, z), that ensures the safe introduction of a circular definition.
This law states that the computed value of type z is always the same whatever the particular
algebra that is applied to g. As a consequence of that in Law 4 we can safely tie the knot by
substituting the algebra inF by an algebra k whose operations depend on the value of type z that
is computed by g itself. In this case the introduction of the circularity was on the producer side in
combination with the operations of the consumer.

In the monadic case (Laws 10 and 13), however, we must proceed a bit differently as it is
not possible to reproduce the same reasoning on the producer side due to the presence of effects.
The introduction of the circularity is then performed on the consumer side as part of Lemma
11 with (13) as the essential property that ensures that it is safe to tie the knot. In fact, given an
expression of the form let (v, z′) = (f z, z) in v, for some z, (13) states that it is correct to introduce

a circularity and turn this expression into this other one let (v, z′ ) = (f z′ , z) in v. We could
have applied this same property on the consumer side for the derivation of pure programs, but in
that case we preferred to rely on the nice property given by g’s polymorphic type.

In the terminology of Danielsson et al. [7], Law 4 is “morally correct” only in HASKELL. In
fact, the proof of the rule required two applications of surjective pairing (6) involving function
g. However, (6) is not valid in HASKELL: though it holds for defined values, it fails when the
result of function g is undefined, because ⊥ is different from (⊥,⊥) as a consequence of lifted
products. Therefore, (6) is morally correct only and, in the same sense, so is our rule. In [14], we
pointed out that due to the presence of seq additional pre-conditions should be defined in our rule
in order to guarantee its correctness in HASKELL [21].

Following our work, Voigtländer [39] performed a rigorous study of various shortcut fusion
rules for languages like HASKELL. In particular, Voigtländer presents semantic and pragmatic
considerations about Law 4. As a first result, it is possible to prove its total correctness by adding
the pre-condition: for every 1 � i � n,

hi ⊥ · · · ⊥ ⊥
︸ ︷︷ ︸

ri+1

�= ⊥
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The law that results from the addition of this pre-condition is, however, pessimistic. By this
we mean that, even if the newly added pre-condition is violated, it does not necessarily imply that
the law gets broken. In fact, Voigtländer [39] presents an (admittedly artificial) example where
the pre-condition is violated, causing no harm in the calculated equivalent program. However,
this version of the law is the most general one can present for calculating circular programs in
terms of total correctness.

In the line of the semantic analysis presented for Law 4 we intend in the future to perform a rig-
orous study of the laws we developed for monadic circular programs in the context of HASKELL

semantics.

5 Calculation of higher-order programs

In the previous sections we have studied calculational techniques for the derivation of circular
programs from compositions prog = cons ◦ prod, where prod :: a → (t, z) and cons :: (t, z) → b,
in the context of both pure and monadic programs.

An alternative solution is to transform programs such as prog into higher-order programs
using a well-known program transformation technique called lambda-abstraction [35]. In our
particular context, the idea of the transformation is to derive a new function prog′ :: a → (z →
b, z), which returns a function and the same value of type z that would be generated by prod,
such that prog a = f z where (f , z) = prog′ a. Based on this idea, Voigtländer [39] introduced a
shortcut fusion rule for the derivation of pure, higher-order programs from compositions like prog
when lists are the intermediate structure. In this paper, we extend this result in two ways. First, we
present a generic formulation of the shortcut fusion rule for the derivation of pure, higher-order
programs that can be applied to a wide range of datatypes as intermediate data structures. Second,
we extend the generic rule to the context of monadic programming, obtaining shortcut fusion
rules for the derivation of monadic higher-order programs. The rules we present in this section
consider three cases: the case where the producer and the consumer are both pure functions, the
case where the producer function is monadic and the consumer is given by a pure function, and
the case where both functions are monadic.

Obtaining higher-order programs is interesting since their execution is not restricted to a lazy
evaluation setting as it happens with the execution of the circular ones. Furthermore, experimental
benchmarks presented in [12] suggest that the performance of the higher-order programs derived
from programs like prog is significantly better than the performance of their circular or original
equivalents, both in terms of run time and memory consumption. Even by considering that the
programs in such experiments are not covered by our transformations, the fact that they are of
the same kind as ours (circular, higher-order and programs in compositional style) induces us to
expect similar results here.

5.1 The higher-order pfold/buildp rule

Starting from a composition of a pfold and a buildp, we present an alternative transformation
which exploits the fact that every pfold can be expressed in terms of a higher-order fold: For
h :: (F a, z) → a,

pfoldF h = apply ◦ (foldF ϕh × id) (14)

where foldF ϕh :: μF → (z → a), the curried version of pfoldF h, has algebra ϕh :: F (z → a) →
(z → a) given by

ϕh = curry (h ◦ ((mapF apply ◦ stF) � π2))
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and apply :: (a → b,a) → b is defined by apply (f , x) = f x.
With this relationship at hand we can state the following shortcut fusion law, which is the

instance to our context of a more general program transformation technique called lambda ab-
straction [35]. The specific case of this law when lists are the intermediate data structure was
recently introduced by Voigtländer [39].

Law 14 (Higher-order pfold/buildp) For left-strict h,8

pfoldF h ◦ buildpF g = apply ◦ g ϕh

Proof

pfoldF h ◦ buildpF g

= { (14) }

apply ◦ (foldF ϕh × id) ◦ buildpF g

= { Law 2 }

apply ◦ g ϕh �

Like in the derivation of circular programs, g ϕh returns a pair, but now composed of a function
of type z → a and an object of type z. The final result then corresponds to the application of the
function to the object:

pfoldF h (buildpF g c) = let (f , z) = g ϕh c in f z

To see an example of the application of Law 14, consider again the straightforward solution
to the repmin problem:

transform t = replace (tmint t)

The expression of replace and tmint in terms of pfold and buildp, respectively, was given at the
end of Sect. 2.3. In order to apply the law, we need the expression of the higher-order fold that
corresponds to the curried version of replace:

replaceho :: Tree → (Int → Tree)
replaceho = foldTree (ϕhleaf , ϕhfork)

where ϕhleaf = λz → Leaf z

ϕhfork l r = λz → Fork (l z) (r z)

Then, by direct application of Law 14 to transform, we obtain:

transform = apply ◦ gtm (ϕhleaf , ϕhfork)

Inlining the above definition, we obtain the higher-order solution to repmin that we had already
presented in p. 117:

transform t = nt m
where (nt,m) = repmin t

repmin (Leaf n) = (λz → Leaf z,n)

repmin (Fork l r) = let (l′, n1) = repmin l
(r′, n2) = repmin r

in (λz → Fork (l′ z) (r′ z),min n1 n2)

8By left-strict we mean strict on the first argument, that is, h (⊥, z) = ⊥.
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5.2 Calculation of monadic higher-order programs

In the same way we did for circular program derivation, we now wish to extend the derivation of
higher-order programs to monadic programs. We start by reviewing the two monadic examples
we presented in Sect. 3: the bit string transformer (Sect. 3.1) and the semantic analyzer for Algol
(Sect. 3.2). Finally, we present the formal definition of the constructions that give rise to the
specific laws we present in those examples.

5.2.1 Bit string transformation

Recall that in this example we wanted to transform a sequence of bits into a new one, of the same
length, by applying the exclusive or between each bit and the binary sum (sum modulo 2) of the
sequence. We considered that the input sequence was given as a string of bits, which was parsed
into a list and then transformed. Recall also that, for the parsing phase, we used a monadic parser.
In Sect. 3.1, we defined the following solution to this problem:

shift = do {(bs, s) ← bitstring; return (transform (bs, s))}
This solution constructs an intermediate list of bits, which can be eliminated by using a specific
fusion rule that transform this (monadic) composition into a higher-order program. The transfor-
mation closely follows the ideas introduced in Sect. 5.1, except that, now, we deal with monadic
functions. The fusion rule we present below is specific for lists and uses the version of mbuildpList
presented on p. 133.

Law 15 (Higher-order pfold/mbuildp for lists)

do { (t, z) ← mbuildpList g; return (pfoldList (hnil,hcons) (t, z))}
=

do { (f , z) ← g (ϕhnil, ϕhcons); return (f z)}
The pair (ϕhnil, ϕhcons) are the components of the algebra of the higher-order fold that corre-

sponds to the curried version of pfoldList (hnil,hcons).
To apply the law to shift, we need to express transform as a higher-order fold:

transformho :: [Bit ] → (Bit → [Bit ])
transformho = foldL (ϕhnil, ϕhcons)

where ϕhnil = λ → [ ]
ϕhcons b r = λs → (b ⊕ s) : r s

Then, by Law 15 we obtain the following higher-order monadic program:

shift = do {(f , s) ← g (ϕhnil, ϕhcons); return (f s)}
Inlining the above definition, we obtain

shift = do {(f , s) ← gϕ; return (f s)}
where gϕ = (do b ← bit

(f , s) ← gϕ

return (λs′ → (b ⊕ s′) : f s′,b ⊕ s)) 〈|〉 return (λ → [ ],Zero)

The shift program that we have just derived is a higher-order program in the sense that f , one of
the results produced by function gϕ , is itself a function. Once applied to s, function f produces
the desired transformed list of bits.

5.2.2 Algol 68 scope rules

In this section, we calculate a higher-order monadic program equivalent to the semantic analyzer
for the Algol 68 scope rules that we presented in Sect. 3.2. There, we defined:
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semantics p = do {(p′, env) ← duplicate 0 [ ] p;missing (p′, env)}
In our calculation, we use a rule that is an instance for lists of a more general law to be introduced
in Sect. 5.2.3. The rule is very similar to Law 15, used to calculate a higher-order version of shift,
but with the difference that now, in semantics, both the consumer and the producer are monadic
functions. For this new rule we use the version of mbuildpList presented on p. 136.

Law 16 (Effectful higher-order pfold/mbuildp for lists)

do { (t, z) ← mbuildpList g c; pfoldList (hnil,hcons) (t, z)}
=

do { (f , z) ← g (ϕhnil, ϕhcons) c; f z}
Again, the pair (ϕhnil, ϕhcons) is the algebra of the higher-order fold corresponding to

pfoldList (hnil,hcons).
In order to apply Law 16 to semantics, we need to express missing in terms of a higher-order

fold, since its algebra (ϕhnil, ϕhcons) is necessary to apply the law.

missingho = foldL (ϕhnil, ϕhcons)

where ϕhnil = λ → return [ ]
ϕhcons (Use2 var) ferrs

= λenv → if (var ∈ map π1 env) then ferrs env
else do put ("Missing: decl "++ var)

errs ← ferrs env
return (var : errs)

ϕhcons (Dupl2 var) ferrs
= λenv → do errs ← ferrs env

return (var : errs)

ϕhcons (Block2 lev its) ferrs
= λenv → do errs2 ← ferrs env

errs1 ← do (p2, env2) ← duplicate′ lev env its
missing′ (p2, env2)

return (errs1 ++ errs2)

Then, by Law 16, we obtain:

semantics p = do {(ferrs, env) ← gϕ 0 [ ] p; ferrs env}
where

gϕ lev ds [ ] = return (λ → return [ ],ds)

gϕ lev ds (Use var : its)
= do (ferrs,ds′) ← gϕ lev ds its

return (λenv → if (var ∈ map π1 env)
then ferrs env
else do put ("Missing: decl "++ var)

errs ← ferrs env
return (var : errs),ds′)

gϕ lev ds (Decl var : its)
= if ((var, lev) ∈ ds) then do put ("Duplicate: decl "++ var)

(ferrs,ds′) ← gϕ lev ((var, lev) : ds) its
return (λenv → do errs ← ferrs env

return (var : errs),ds′)
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else gϕ lev ((var, lev) : ds) its
gϕ lev ds (Block nested : its)

= do (ferrs2,ds′) ← gϕ lev ds its
return (λenv → do errs2 ← ferrs2 env

errs1 ← do (ferrs1, env1) ← gϕ (lev + 1) env nested
ferrs1 env1

return (errs1 ++ errs2),ds′)

5.2.3 Calculating monadic higher-order programs, generically

Now, we present a generic formulation of the laws showed in the examples just presented. Those
generic laws may be considered as an extension to monadic programs of the law presented in
Sect. 5.1.

First, we show the generalization of Law 14 in the sense of extended shortcut fusion, that is,
for an arbitrary functor N.

Law 17 For left-strict h and strictness-preserving N,
mapN (pfoldF h) ◦ buildpF,N g = mapN apply ◦ g ϕh

where ϕh = curry (h ◦ ((mapF apply ◦ stF) � π2)).

Proof

mapN (pfold h) ◦ buildpF,N g

= { (14), (3) }

mapN apply ◦ mapN (fold ϕh × id) ◦ buildpF,N g

= { Law 8 }

mapN apply ◦ g ϕh �

Let us consider the particular case when N is the functor of a monad. Unlike the transformation
to circular programs, now we do not need to require the monad to be recursive. In the first place
we state the case when the pfold is a pure function. This is the case of the bitstring transformer
presented in Sect. 5.2.1.

Law 18 (Higher-order pfold/mbuildp) For left-strict h and strictness-preserving mmap,

do { (t, z) ← mbuildpF g c; return (pfold h (t, z))}
=

do {(f , z) ← g ϕh c; return (f z)}
Notice that mbuildpF g is a function of type mbuildpF g :: c → m (μF, z), whereas in

Sect. 5.2.1 it was defined as a value of type m (μF, z), for μF the type of lists, because the
latter form was more appropriate for writing monadic parsers.

Finally, we present a generic fusion rule that is able to deal with programs where the consumer
is also an effectful function. One example of such a program is the analyzer of the Algol 68 scope
rules that was presented in Sect. 5.2.2.

Law 19 (Effectful higher-order pfold/mbuildp) For left-strict h :: (F (m a), z) → m a and
strictness-preserving mmap,

do { (t, z) ← mbuildpF g c; pfold h (t, z)}
=

do {(f , z) ← g ϕh c; f z}
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Proof

do { (t, z) ← mbuildpF g c; pfold h (t, z)}
=

do (t, z) ← mbuildpF g c
m ← return (pfold h (t, z))
m

= { Law 18 }

do m ← do {(f , z) ← g ϕh c; return (f z)}
m

=
do {(f , z) ← g ϕh c; f z} �

6 Conclusions

In this paper we have presented shortcut fusion rules for the derivation of circular and higher-
order programs. The rules apply to compositions between a producer and a consumer, such that
the producer computes some context information and constructs an intermediate data structure
that is later traversed by the consumer. As a result of applying our method, such programs are
transformed into equivalent ones that construct no intermediate data structures.

The rules were first introduced in the context of pure programs and were later studied for
monadic programs as well; they have been given a generic formulation so that they can be instan-
tiated for a wide class of algebraic data types and monads. We have formally proved that all the
rules are correct and we have shown that they can be widely applicable through several examples
of practical interest.

The emphasis of the paper is on the laws that dictate the transformations. For more pragmatical
aspects, we refer the reader to [12].

Various aspects of the ideas presented in this paper deserve further elaboration. The exam-
ples we presented here consist of compositions of a single producer and consumer functions. We
would like, however, to be able to achieve the same fusion goals for programs consisting in an
arbitrary number of function compositions. Indeed, we are now studying how to generalize our
work in order to optimize programs of the form fn ◦ · · · ◦ f1 such that in each composition a data
structure ti and a value zi are produced. Circular programs and attribute grammars (AGs) are
closely related [36]. We would like to express in a calculational form the AG-based circular pro-
gram transformations presented in [13], so that their correctness can be proved. Indeed, although
these techniques are largely used by the AG community, their correctness remains to be formally
proved!
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