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A B S T R A C T   

An electronic nose, comprising nine metal oxide sensors, has been built aiming to classify olive oils according to 
the fruity intensity commercial grade (ripely fruity or light, medium and intense greenly fruity), following the 
European regulated complementary terminology. The lab-made sensor device was capable to differentiate 
standard aqueous solutions (acetic acid, cis-3-hexenyl, cis-3-hexen-1-ol, hexanal, 1-hexenol and nonanal) that 
mimicked positive sensations (e.g., fatty, floral, fruit, grass, green and green leaves attributes) and negative 
attributes (e.g., sour and vinegary defects), as well as to semi-quantitatively classify them according to the 
concentration ranges (0.05–2.25 mg/kg). For that, unsupervised (principal component analysis) and supervised 
(linear discriminant analysis: sensitivity of 92% for leave-one-out cross validation) classification multivariate 
models were established based on nine or six gas sensors, respectively. It was also showed that the built E-nose 
allowed differentiating/discriminating (sensitivity of 81% for leave-one-out cross validation) extra virgin olive 
oils according to the perceived intensity of fruitiness as ripely fruity, light, medium or intense greenly fruity. In 
conclusion, the gas sensor device could be used as a practical preliminary non-destructive tool for guaranteeing 
the correctness of olive oil fruitiness intensity labelling.   

1. Introduction 

Olive oil is a seasoning edible food product that, contrary to vege
table oils, has typical colour and a variety of different flavours arising 
from the traditional mechanical oil extraction from olives, without the 
use of organic solvents and not requiring any de-acidification, bleaching 
and deodorization process [1,2]. Olive oil richness in bioactive com
pounds (e.g., phenolic compounds and tocopherols), which are related 
to several nutritional and health positive effects, together with the 
worldwide appreciated flavour [1–3], positively contributes to enhance 
the consumers’ preference when buying a vegetable oil. According to the 
European Union (EC) regulations and the International Olive Council 
(IOC) recommendations, olive oils trade grade (i.e., extra virgin, virgin 
and lampante olive oils; EVOO, VOO and LOO, respectively) depends on 
the physicochemical levels (free acidity, peroxide value, extinction 

coefficients at 232 and 268 nm) and sensory attributes (fruity positive 
intensity, off-flavour perception and intensity) [4,5]. According to the 
EC regulations, EVOO and VOO can be further labelled using a com
plementary terminology: ripely fruity (oil with a set of olfactory sensa
tions characteristic of ripe olives) or greenly fruity (oil possessing a set of 
olfactory sensations characteristic of green olives) [4]. Greenly fruity 
olive oils can be further labelled according to the perceived intensity of 
positive attributes (in a scale from 0 to 10, corresponding to absence of 
attribute or maximum level perceived) as intense (median intensity > 6) 
medium (3 ≤ median intensity ≤ 6) and light/mild (median intensity <
3). This optional terminology for labelling purposes is in-line with the 
increasing demands of olive oil consumers regarding information and 
guarantees on oil characteristics [2]. In this context, since besides the 
objective physicochemical analysis, the olive oil classification also de
pends on the sensory analysis, which although performed by trained 
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panellists, comprises an intrinsic human subjectivity degree, being an 
expensive and time-consuming task [6–8]. To partially overcome some 
limitations related to the olive oil sensory analysis, different analytical 
strategies have been proposed. Recently, Veloso et al. [9] showed that a 
potentiometric electronic tongue, with lipid polymeric membranes, 
could be satisfactorily used as a taste sensor device to classify EVOO 
according to the intensity perception of fruitiness, bitterness and pun
gency attributes, as intense, medium or light oils. Although the proposed 
approach was user-friendly, fast, portable sensor device, with the pos
sibility of in-situ use, the procedure was invasive requiring a destructive 
sample pre-treatment step (i.e., a hydro-ethanolic extraction) due to the 
difficulty of carrying out electrochemical assays in non-conductive 
viscous liquids like olive oil [10]. Non-invasive/non-destructive 
analytical techniques that do not require any oil pre-treatment, were 
proposed aiming to classify olive oils based on the fruity intensity. Near 
and mid infrared spectroscopy were successfully used by Sinelli et al. [7] 
as rapid tools to classify EVOO according to the fruity attribute intensity, 
without requiring any sample pre-treatment. On the other hand, proton 
transfer reaction-time of flight-mass spectrometry was used by Taiti and 
Marone [1] as a non-invasive analytical tool, based on the fast detection 
of volatile compounds, for olive oil analysis, allowing a rather well 
discrimination of EVOO with different fruity intensity levels. Alterna
tively, electronic noses (E-nose), comprising for example metal oxide 
sensors (MOS) or surface acoustic waves (SAW) sensors, have been 
applied for non-invasive olive oil analysis. The use of E-noses has been 
reported for monitoring the oxidation stage and quality decay of olive 
oils during storage; discriminating olive oils according to quality grade, 
olive cultivar or geographical origin; assessing sensory defects in oils; 
detecting olive oil adulterations; identifying olive oil blended with 
hazelnut, peanut, corn or sunflower oil; detecting the undeclared 
blending of EVOO with soft-refined oils; and, monitoring olive oil pro
cessing [11–27]. To the authors’ best knowledge, no E-nose has been 
specifically applied to classify EVOO according to the fruity intensity 
perception. Thus, in this study, a lab-made E-nose-MOS portable device 
was designed and built for that purpose and its performance evaluated 
based on unsupervised and supervised pattern recognition multivariate 
statistical tools. The capability of the lab-made device to differentiate 
standard solutions of chemical compounds that mimic sensory sensa
tions usually perceived during the olive oil evaluation by panellists was 
also evaluated. 

2. Materials and methods 

2.1. Standard solutions of volatile chemical compounds that mimic 
olfactory attributes perceived in olive oils 

Aqueous standard solutions (concentrations ranging from 0.5 to 2.0 
mg/kg) of volatile chemical compounds that mimic sensory positive and 
negative attributes, which can be perceived by trained panellists during 
the olive oils evaluation were used to evaluate the E-nose performance. 
Deionized water was used for preparing the solutions. Table 1 lists the 
chemical compounds analysed (chemical formula, chemical family and 
concentration range studied), which included nonanal (purity of 95%, 
from Acros Organics), hexanal (purity ≥ 98%, from Sigma-Aldrich), cis- 
3-hexenyl acetate (purity ≥ 98%, from Sigma-Aldrich), cis- 3-hexen-1-ol 
(purity ≥ 98%, from Sigma-Aldrich), acetic acid (purity of 96%, from 
Panreac) and 1-hexenol (purity of 98%, from Acros Organics). The 
sensory sensations listed in Table 1, related to each of the above
mentioned compounds, as well as the tested concentration ranges, were 
selected based on literature data [6,11,16,28–32]. 

2.2. Olive oils samples 

Olive oils from 8 different commercial brands (2 independent sam
ples/bottles from each brand) were evaluated. All oils were industrially 
extracted in two-phase olive mills from olives harvested in olive groves 

located in Trás-os-Montes region (northeast of Portugal). According to 
the label, all oils had a high quality grade, being all of them classified as 
EVOO, following the international regulations [4,5]. Moreover, the 
referred olive oils were also commercially labelled according to the ol
factory perceived sensations, two brands as EVOO ripely fruity (oil with 
a set of olfactory sensations characteristic of ripe olives) and the other 
six brands as EVOO greenly fruity (oil possessing a set of olfactory 
sensations characteristic of green olives) [4]. This latter oils group was 
further split into 3 levels (2 brands per level) according to the perceived 
intensity of the fruity sensation as EVOO greenly fruity intense (median 
intensity > 6), EVOO greenly fruity medium (3 ≤ median intensity ≤ 6) 
and EVOO greenly fruity light/mild (median intensity < 3). The com
mercial complementary grade terminology indicated in the oils’ labels 
was based on sensory analysis data and was confirmed by the sensory 
panel of the School of Agriculture of the Polytechnic Institute of Bra
gança, Portugal [33]. 

2.3. E-nose analysis 

2.3.1. Lab-made device 
The E-nose used in this study was designed and built (Fig. 1) by the 

research team, as an all-in-one olfactory multi-sensor device. The device 
integrated multiple systems, namely a heated sampling unit and a 
heated multi-sensor detection array. To ensure a constant temperature 
at the sampling system (~28 ◦C) and at the detection unit (~35 ◦C), two 
commercial silicone rubber heating blankets (100 × 120 mm with a 
Ni–Cr/FeCrAl heating elements, from Vinson, China) were used. To 
provide an efficient, fast and complete delivering of the homogenous 
headspace gas phase of the sampling unit, which contained the repre
sentative volatile fraction of a specific sample, to the detection chamber, 
a diaphragm vacuum air pump (model SC3502PM, from SKOOCOM, 
China) was included in the device. The vacuum pump also allowed 
performing the all-in-one system cleaning, between samples analysis. 
The detection system includes nine MOS (Table 2), which electrical 
properties change according to the adsorption phenomena that occurs 
on the sensors surface when in contact with volatile compounds. The 
same or similar MOS have been previously used due to their capability to 
detect different aroma compounds of olive fruits [34] and vegetable oils 
[17,22,35,36]. The MOS sensors are porous layers heated by a filament 
that undergoes a redox reaction when it comes in contact with a 
reducing or oxidizing volatile compound, changing the electrical resis
tance across the circuit proportionally to the compound concentration. 
The specific sensor responses (electrical resistance in ohms) are then 
recorded using an Agilent data acquisition unit (model 34970A), 

Table 1 
Volatile chemical compounds (standard aqueous solutions: 0.05–2.25 mg/kg, 
depending on the compound) related to olfactory sensations (positive and 
negative attributes) usually perceived in olive oils: name, chemical structure, 
chemical family and main olfactory mimicked attributes.  

Chemical 
compound 

Chemical 
formula 

Chemical 
family 

Concentration 
range (mg/kg) 

Descriptor 
related to 
olfactory 
attributes 

Acetic acid C2H4O2 Carboxylic 
acid 

0.15–0.60 Sour/vinegar 
off-flavours 

cis-3-hexen- 
1-ol 

C6H12O Alcohol 0.5 to 2.0 Banana/green 

cis-3- 
hexenyl 
acetate 

C8H14O2 Acetate 
ester 

0.5 to 2.0 Fruity/green 
leaves 

Hexanal C6H12O Alkyl 
aldehyde 

0.125 to 2.25 Apple/grass/ 
green 

1-Hexenol C6H12O Alcohol 0.5 to 2.0 Fruity/banana 
off-flavour 

Nonanal C9H18O Aldehyde 0.05 to 0.14 Fatty/floral/ 
grass  
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controlled by an Agilent BenchLink Data Logger software, allowing 
transforming the signal into a digital value, which is computed gener
ating unique resistance volatile fingerprint corresponding to each sam
ple being evaluated. The MOS are connected to the data logger by a 
RS-232 plug serial communication. 

2.3.2. Sample conditioning and analysis 
At the first use, the sensitive materials comprised on the TGS.MOS, 

which operating temperature is above 200 ◦C, were activated during 48 
h. In all subsequent uses, the activation was not required, being needed 
to pre-heated the sampling’s and sensors’ units (~30 min). Samples (0.5 
mL) were then put into a glass vial (25 mL) and placed in the sampling 
chamber during 13 min (to allow obtaining a headspace with a volatile 
fraction representative of the sample) at 28 ◦C (temperature recom
mended by the International Olive Council for olive oils sensory anal
ysis) [5]. Although several gas sample pre-concentration procedures 
exist, the static headspace technique was chosen due to its simplicity and 
rapid acquisition of a representative sample of the oil’s volatile fraction, 
allowing an easy on-line and in-situ implementation, being widely 
implemented with both lab-made and commercial E-noses [30,35,36]. 
At the same time, the E-nose system was cleaned during 13 min using air 
flow (pumped under vacuum) or nitrogen flow (UN 1066, Linde 089 cyl 
02/15) for the standard solutions or olive oils analysis, respectively, 
enabling reaching a stable signal baseline, indicative of a cleaned 
environment. The sample’s gas headspace was delivered, through suc
tion, to the sensors unit (closed chamber) with the help of the vacuum 
pump, being allowed to interact with the MOS array during 2.5 min. 

During this analysis time-period, the resistance signals of each of the 9 
MOS were recorded at each 4 s. 

2.3.3. Data acquisition, feature extraction and signal treatment 
As previously mentioned, data signals (resistance in ohm) from each 

of the 9 MOS were acquired by a data logger (Agilent 34970A) and then 
recorded by the Agilent BenchLink Data Logger software, installed in a 
PC. The signal recorded is generated at the sensors’ surfaces being 
plotted versus the analysis time using the abovementioned software. So, 
for each analysis and sensor, a total of 37–38 resistance values are 
recorded (signals acquired during 2.5 min at a 4 s time-interval). 
Therefore, different feature extraction methods were considered aim
ing to establish a representative E-nose fingerprint of each standard 
solution or olive oil sample’s volatile fraction. Different feature extrac
tion parameters were used in this study, as proposed by Gila et al. [34]:  

(i) Last response point (LP): more stable resistance signal value 
within the analysis time-interval;  

(ii) Integral of the response curve (INT): area below the signals’ 
curve, numerically calculated using the Simpson’s integration 
rule;  

(iii) Maximum response point (MAX): maximum resistance value 
recorded within the analysis time-interval;  

(iv) Minimum response point (MIN): minimum resistance value 
recorded within the analysis time-interval;  

(v) Sum of the response curve (SUM): sum of all the resistance signal 
values recorded within the analysis time-interval;  

(vi) Average of the response curve (MEAN): sum of the values of all 
the resistance signals recorded divided by the number of points 
gathered; and,  

(vii) Standard deviation (SD) of the response curve. 

2.4. Statistical analysis 

Single linear regression was applied to verify the existence of a linear 
correlation between the sensors resistance signals and the concentration 
of the aqueous standard solutions of volatile chemical compounds that 
mimic different positive and negative sensory attributes usually 
perceived in olive oils. The Pearson correlation coefficient (R-Pearson) 
was determined to evaluate the linearity level. Unsupervised and su
pervised pattern recognition multivariate techniques were used to 

Fig. 1. E-nose-MOS lab-made device comprising: sample heated unit, gas sensor heated unit and data logger interface.  

Table 2 
Metal oxide gas sensors (MOS) included on the lab-made E-nose device.  

Sensor 
code 

Commercial sensor 
code 

Target gases 

S1 TGS 2600 B00 General air contaminants 
S2 TGS 2602 General air contaminants 
S3 TGS 2610 C00 Butane, liquid petroleum gases 
S4 TGS 2611 C00 Methane, natural gas 
S5 TGS 2610 D00 Butane, liquid petroleum gases (carbon 

filter) 
S6 TGS 2611 E00 Methane, natural gas (carbon filter) 
S7 TGS 2612 Methane, propane, iso-butane 
S8 TGS 826 A00 Ammonia 
S9 TGS 823 C12 N Organic solvent vapours  
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evaluate the classification performance of the lab-made E-nose-MOS 
device for both standard solutions and olive oil samples. Thus, principal 
component analysis (PCA) and linear discriminant analysis (LDA) were 
applied. For the latter the simulated annealing (SA) algorithm, which is 
a meta-heuristic variable selection algorithm, was implemented to 
identify the best subsets of non-redundant sensors that allowed 
achieving the best classification performance. For internal validation 
purposes, the leave-one-out cross-validation (LOO-CV) procedure was 
used and the quality of the results were evaluated taking into account 
the sensitivity (i.e., the percentage of corrected classified samples) as 
well as through 2D and 3D plots. The statistical analysis was performed 
using the Sub-select [37] and MASS [38] packages of the open-source 
statistical program R (RStudio version 1.2.5033), at a 5% significance 
level. 

3. Results and discussion 

3.1. E-nose-MOS response towards aqueous standard solutions of volatile 
chemical compounds that mimic olfactory attributes perceived in olive oils 

The E-nose-MOS responses towards standard solutions of six selected 
volatile chemical compounds (cis-3-hexenyl acetate - fruity/green 
leaves; cis-3-hexen-1-ol - banana/green sensations; 1-hexenol - fruity/ 
banana; hexanal - apple/grass/green; nonanal - fatty/floral/grass; and, 
acetic acid - sour/vinegar) were acquired. As aforementioned, seven 
feature extraction parameters were considered (LP, INT, MAX, MIN, 
SUM, MEAN and SD). The preliminary unsupervised pattern recognition 
analysis (data not shown) pointed out that the LP, MIN and MEAN feature 
approaches were those that allowed a better classification performance 
of the E-nose-MOS device, being the results achieved with the LP slightly 
better. Thus, LP response signals were use in this study. Different 
resistance ranges (LP data varying from 176 to 66460 Ω) were recorded 
by the nine MOS, which signal greatly depended on the chemical com
pound under study and respective concentration. In general, the resis
tance signal decreased when the concentration increased (higher 

Table 3 
E-nose-MOS signal responses (LP feature parameter) towards aqueous standard solutions of volatile chemical compounds related to different positive/negative ol
factory sensations (R-Pearson correlation coefficient and slope of the linear regression between the resistance signals versus the concentration, as well as the minimum- 
maximum signal interval range).  

Sensor Linear 
regression 

Aqueous standard solutions of selected volatile chemical compounds (related sensory sensations) 

Acetic acid (sour/ 
vinegar) 

cis-3-hexen-1-ol 
(banana/green) 

cis-3-hexenyl acetate 
(fruity/green leaves) 

Hexanal (apple/ 
grass/green) 

1-hexenol (fruity/ 
banana) 

Nonanal (fatty/ 
floral/grass) 

S1 (TGS 2600 
B00) 

R-Pearson − 0.8650 – − 0.9976 − 0.9673 − 0.9861 − 0.9550 
Slope (Ω kg/ 
mg) 

− 4060 – − 585 − 2020 − 839 − 34084 

[min, max] 
(Ω) 

[7958, 13174] [6423, 8832] [5064, 7222] [2633, 7756] [5666,7608] [6852, 11553] 

S2 (TGS 
2602) 

R-Pearson − 0.9220 − 0.9848 − 0.9907 − 0.9551 − 0.9823 − 0.9158 
Slope (Ω kg/ 
mg) 

− 3763 − 231 − 253 − 246 − 243 − 13805 

[min, max] 
(Ω) 

[730, 3032] [713, 1172] [496, 798] [176, 722] [755, 1168] [565, 2334] 

S3 (TGS 2610 
C00) 

R-Pearson − 0.8074 – − 0.9866 − 0.9676 − 0.9990 − 0.9708 
Slope (Ω kg/ 
mg) 

− 3174 – − 1809 − 2448 − 681 − 22514 

[min, max] 
(Ω) 

[13658, 16813] [10980, 13353] [9520, 12214] [7560, 13319] [10476, 12930] [13206, 16104] 

S4 (TGS 2611 
C00) 

R-Pearson – − 0.9532 − 0.9984 − 0.9527 − 0.8605 − 0.9413 
Slope (Ω kg/ 
mg) 

– − 171 − 3254 − 3929 − 834 − 18923 

[min, max] 
(Ω) 

[23705, 28052] [18656, 22628] [15477, 20291] [12102, 21017] [17413, 21779] [22948, 26606] 

S5 (TGS 2610 
D00) 

R-Pearson – – – − 0.9988 – – 
Slope (Ω kg/ 
mg) 

– – – − 5384 – – 

[min, max] 
(Ω) 

[34998, 49575] [28812, 36866] [26726, 35987] [27870, 46859] [28170, 36140] [34797, 48487] 

S6 (TGS 2611 
E00) 

R-Pearson – – +0.8381 – +0.9072 – 
Slope (Ω kg/ 
mg) 

– – +2107 – +1899 – 

[min, max] 
(Ω) 

[16042,21662] [11970, 18288] [11789, 18075] [14549, 20243] [12377, 18048] [15840, 21241] 

S7 (TGS 
2612) 

R-Pearson – – – − 0.9260 – – 
Slope (Ω kg/ 
mg) 

– – – − 6033 – – 

[min, max] 
(Ω) 

[38562, 66460] [30610, 44884] [30107, 46536] [34771, 65153] [30188, 46926] [38252, 65891] 

S8 (TGS 826 
A00) 

R-Pearson − 0.9517 − 0.9862 − 0.9202 − 0.9545 − 0.9854 − 0.9832 
Slope (Ω kg/ 
mg) 

− 15765 − 1309 − 1052 − 1674 − 1310 − 80135 

[min, max] 
(Ω) 

[4976, 14754] [4588, 6998] [3113, 4998] [1157, 4838] [4251, 6380] [3920, 12767] 

S9 (TGS 823 
C12 N) 

R-Pearson − 0.9360 − 0.9327 − 0.8853 − 0.9518 − 0.9644 − 0.9518 
Slope (Ω kg/ 
mg) 

− 22794 − 2474 − 2128 − 2774 − 2568 − 137234 

[min, max] 
(Ω) 

[10625, 26903] [8508, 13866] [4861, 9345] [1800, 8136] [6298, 11059] [8011, 22201]  
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concentrations were related to higher reactivity leading to a lower 
resistance value), as can be inferred by the negative sign of the corre
lation coefficient and slope values (Table 3). The nine MOS showed a 
resistance response in the presence of the six volatile compounds under 
study and, for one or more of the volatiles it was possible to establish a 
linear decreasing regression (− 0.9990≤ R-Pearson≤− 0.8074) between 
the recorded resistance (LP) signals and each compound concentration 
(Table 3), with the exception of sensor S6, for which a linear positive 
trend was observed for some of the standard compounds (+0.8381≤ R- 
Pearson≤+0.9072). These findings allowed foreseeing a possible (semi) 
quantitative application of the E-nose-MOS device towards the detection 
of olive oils’ positive/negative olfactory-related sensations. Globally, 
sensor S2 showed the highest reactivity towards the six compounds 
evaluated (lower resistance signal values), followed by S8, S1 and S9. 
Lastly, the intra-day and inter-day signal (LP) repeatability was evalu
ated for all sensors, by analysing three times in one day and three times 
in three consecutive days, the same standard solution of each volatile 
compound (being chosen the solution with the 2nd highest concentra
tion for each standard: acetic acid, 0.15 mg/kg; cis-3-hexen-1-ol, 1.0 
mg/kg; cis-3-hexenyl acetate, 1.0 mg/kg; 1-hexanal, 0.75 mg/kg; 1-hex
enol, 1.0 mg/kg; and, nonanal, 0.08 mg/kg). The relative standard de
viations varied between 0.4 and 6.0% for the intra-day assays and from 
2.3 to 15.1% for the inter-day assays, showing a satisfactory resistance 
signal repeatability. 

The capability of the lab-made E-nose-MOS device to differentiate 
the six standard solutions of volatile compounds, which included alco
hols, esters, aldehydes and carboxylic acids (Table 1), and are related to 
known olfactory sensations of olive oils, was further evaluated. The 
resistance signal profiles recorded by the nine MOS allowed the unsu
pervised differentiation of the standard solutions studied, although a 
slight data overplotting was observed, namely for the two volatile al
cohols, as can be visualized from Fig. 2a. The 3D plot showed the overall 
performance of the established E-nose-MOS-PCA model, which first 3 
principal components (PC) explained 98% of the data variance. To 
further check the E-nose-MOS performance a supervised LDA was 
applied. The E-nose-MOS-LDA-SA model (three discriminant functions, 

LD, explaining 100% of the data variability) was based on the resistance 
signal data (LP) of six non-redundant sensors (S2, S4, S5, S6, S8 and S9) 
selected using the SA algorithm. The classification linear multivariate 
model correctly classified all the original data samples (sensitivity of 
100% for the original data groups, Fig. 2b) and showed a satisfactory 
predictive performance with a sensitivity of 92% (one hexanal and one 
nonanal standard solutions misclassified), for the LOO-CV. The unsu
pervised and supervised satisfactory performances clearly pointed out 
the potential use of the lab-made E-nose-MOS as a practical and 
powerful olfactory sensor tool for olive oils evaluation, which could be 
used by sensory panel as a complementary analytical tool. Finally, to 
strengthen this hypothesis, it was also evaluated the capability of the E- 
nose-MOS to differentiate different concentration ranges of the studied 
standard solutions. Fig. 3 shows that the E-nose-MOS could be used as a 
semi-quantitative tool to assess the concentration level of the standard 
solutions studied, based on the PCA unsupervised classification, con
firming the prospective use of the device as an olfactory analytical tool. 

3.2. Classification of olive oils according to the sensory intensity 
perception based on the E-nose-MOS signal profiles 

As previously mentioned, EVOO can be labelled using a comple
mentary terminology that takes into account the sensory intensity 
perception of ripe and green sensations based on the evaluation per
formed by trained panellists. In this sense, EVOO are commercially 
available as EVOO ripely fruity, EVOO greenly fruity light, medium or 
intense, aiming to fulfil the increasing complex demands of the world
wide olive oil consumer, who seeks new sensory experiences, emotions 
and feeling (Clodoveo et al., 2020). However, the scarcity of official 
sensory panels, the limited number of samples that can be evaluated in a 
daily basis and the human subjectivity intrinsically linked to the sensory 
analysis, makes urgent the development of complementary non-invasive 
sensory analytical tools, which turns out to be a challenging task. 
Therefore, the lab-made E-nose-MOS device was applied to verify its 
capability in classifying EVOO according to the abovementioned com
plementary labelling terminology. An E-nose-MOS-PCA model, based on 

Fig. 2. E-nose-MOS response towards aqueous standard solutions (acetic acid, cis-3-hexen-1-ol, cis-3-hexenyl acetate, 1-hexenol, hexanal and nonanal), with 
different concentrations (0.05–2.25 mg/kg) that mimic positive and negative sensory attributes (sour/vinegar off-flavour, banana/green, fruity/green leaves, fruity/ 
banana off-flavour, apple/grass/green and fatty/floral/grass sensations, respectively) usually perceived in olive oils: (a) PCA unsupervised differentiation based on 
the last response resistance signals acquired by the nine MOS (S1 to S9); and, (b) LDA-SA supervised discrimination (original grouped data) based on the on the last 
response resistance signals acquired by six non-redundant MOS (S2, S4, S5, S6, S8 and S9), selected by the SA algorithm. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. E-nose-MOS semi-quantitative unsupervised PCA classification of standard solutions according to the concentration range studied, based on the last response 
resistance signals acquired by the nine MOS (S1 to S9): (a) cis-3-hexenyl acetate aqueous solutions (0.5–2.0 mg/kg) that mimic fruity/green leaves sensations; (b) cis- 
3-hexen-1-ol aqueous solutions (0.5–2.0 mg/kg) that mimic banana/green sensations; (c) 1-hexenol aqueous solutions (0.5–2.0 mg/kg) that mimic fruity/banana off- 
flavours; (d) hexanal aqueous solutions (0.125–2.25 mg/kg) that mimic apple/grass/green sensations; (e) nonanal aqueous solutions (0.05–0.14 mg/kg) that mimic 
fatty/floral/grass sensations; and, (f) acetic acid aqueous solutions (0.15–0.60 mg/kg) that mimic sour/vinegar off-flavours. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. E-nose-MOS response during the analysis of commercial EVOO labelled using complementary terminology based on the sensory sensations perceived (EVOO 
ripely fruity: oil with a set of olfactory sensations characteristic of ripe olives; EVOO greenly fruity light, medium or intense: oils possessing a set of olfactory 
sensations characteristic of green olives with a light, medium or intense fruity intensity) (Annexes II and IX in Commission Regulation (EEC) Nº 2568/91 from 11th 
July and amendments): (a) PCA unsupervised differentiation based on the last response resistance signals acquired by the nine MOS (S1 to S9); and, (b) LDA-SA 
supervised discrimination (original grouped data) based on the on the last response resistance signals acquired by eight non-redundant MOS (S1, S2, S4, S5, S6, 
S7, S8 and S9), selected by the SA algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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the nine MOS, was first established, showing that the resistance signal 
profiles, recorded during the non-invasive oil analysis of the volatile 
fraction, allowed the unsupervised split of eight commercial EVOO ac
cording to the sensory intensity perception (Fig. 4a). The results showed 
that ripely fruity oils and greenly fruity light oils were the better 
differentiated, being an overplotting observed between greenly fruity 
medium and intense oils. The satisfactory classification performance 
was also confirmed through a supervised approach. So, an E-nose-MOS- 
LDA-SA model (based on the signals recorded by eight sensors, S1, S2 
and S4 to S9) was capable to correctly discriminate 97% (original data 
groups, Fig. 4b) and 81% (LOO-CV procedure) of the studied oils. The 
results showed that all ripely fruity oils were correctly classified, 
occurring the misclassifications among the greenly fruity medium and 
intense oils. It should be remarked, that the E-nose-MOS was used to 
analyse oils from different brands and extracted from different olive 
cultivars, which could contribute to the observed misclassification rate, 
since the olfactory sensor device would also give a signal response to 
other olfactory sensations, specific of each oil. Globally, the predictive 
classification was slightly inferior compared with the performance 
previously reported by Veloso et al. [9] for a lab-made potentiometric 
E-tongue, comprising lipid polymeric sensor membranes. However, this 
latter sensor-based device is an invasive-destructive technique, 
requiring a preliminary ethanolic-aqueous extraction of each olive oil 
under analysis. In this context, and taking into account the non-invasive 
nature of the E-nose-MOS analysis, the proposed strategy could be an 
accurate complementary sensory tool, allowing to minimize the number 
of oils that must be tested by a sensory panel. 

4. Conclusions 

The sensory attributes and methodology to label extra virgin olive 
oils according to the sensations perceived and related intensities (ripely 
fruity or greenly fruity light, medium and intense oils) are fixed by 
European regulations. The use of this complementary sensory grade 
terminology requires the availability of trained sensory panels, which is 
a major concern for olive oil producers. Olive oil official panellists are 
scarce and the analysis is expensive and time-consuming and so, hardly 
meet the commercialization needs. The present study proposed a fast 
and non-invasive approach for extra virgin olive oils sensory grade 
classification, based on a lab-made electronic nose comprising metal 
oxide sensors. The olfactory sensor device was capable to recognize 
different chemical volatile compounds that are responsible for typical 
positive and negative sensory attributes of olive oils as well as to satis
factorily discriminate oils according to the main olfactory sensation 
perceived and its intensity. The olive oil analysis was non-invasive and 
required a small sample volume, being able to provide a result within a 
short time-period (~15 min). Although the successful preliminary re
sults reported, further studies would be needed in the future in order to 
enhance the spectrum of oils studied and to reinforce the validation 
methodologies applied. In conclusion, the future implementation of the 
proposed methodology as a non-invasive routine olfactory device for the 
sensory grade labelling of olive oils could be of utmost commercial in
terest for olive oil producers. 
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Canales, DFT based classification of olive oil type using a sinusoidally heated, low 
cost electronic nose, Comput. Electron. Agric. 155 (2018) 348–358, https://doi. 
org/10.1016/j.compag.2018.10.026. 

[23] Q. Zhou, S. Liu, Y. Liu, H. Song, Comparison of flavour fingerprint, electronic nose 
and multivariate analysis for discrimination of extra virgin olive oils, R. Soc. Open 
Sci. 6 (3) (2019) 190002, https://doi.org/10.1098/rsos.190002. 
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