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Abstract. Wet-spinning is a non-solvent induced phase inversion technique that allows the 

production of continuous polymeric microfibers, with a uniform morphology, based on the 

principle of precipitation. It allows the production of 3D fibrous constructs with an intricated 

architecture that facilitates cell infiltration, something that is very limited in electrospun 

nanofibrous mats, thus increasing its interest in biomedicine. Wet-spun scaffolds are also more 

easily processed and can be loaded with a variety of biomolecules of interest. Antimicrobial 

agents that display a broad spectrum of activity against bacteria, fungi and viruses have been 

combined with such constructs demonstrating great potential to fight infections. In the present 

work, we explore the use of wet-spinning to process both natural and synthetic biodegradable 

polymers in the form of microfibers, and the necessary processes to modify their surface to 

increase their antimicrobial profile. The synergistic potential of specialized biomolecules within 

wet-spun fibrous architectures are also highlighted. 

1.  Introduction 

Advances in polymer processing technologies have allowed for new 2D and 3D fibrous constructs to 

occur and be manipulated as required. With these techniques at our disposal, it is now possible to control 

the scaffolds architecture, their interconnected network and overall surface chemistry through the 

incorporation of desirable functional groups. Through those, active biomolecules can be loaded to 

regulate cell behavior or fight microorganisms’ colonization [1].  

Several techniques have been used in the development of such constructs, with a variety of macro-

shapes and micro- and nanostructures, including drawing, melt blown, template synthesis, phase 

separation, self-assembly and spinning methods. The drawing method can produce individual, long 

nanofibers. However, its application is limited to viscoelastic materials capable of tolerating significant 

deformations. Melt blown also requires thermoplastic polymers and adequate air pressure. Using 

template synthesis, solid/hollow, individual nanofibers can be produced. Yet, this too presents 

disadvantages, namely the discontinue nature of the obtained fibers. Phase separation is a time-

consuming technique that comprises stages of dissolution, gelation, solvent extraction, freezing and 

drying, leading to the formation of non-porous foams. Self-assembly is as well a time-consuming 

approach, in which units are arranged in specific configurations to attain particular functions in the final 

product [2, 3]. Polymeric fiber meshes formed of micro and nanofibers produced from spinning 

techniques display high surface area and increased interconnected open pore structure that facilitates 

cell migration and infiltration, nutrients and mass transport, and the controlled release of loaded 
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bioactive agents [1, 4]. Even though the electrospinning technique has been widely pursued in 

biomedicine in current years, the small porosity and high fiber density that characterizes the produced 

mats has been highlighted as a negative aspect by limiting cell infiltration within the innermost regions 

of the scaffolds and/or by being unable to generate dynamic micro-environments that closely resemble 

the natural interstitial fluid conditions in vivo [5]. These features, however, can be achieved using the 

wet-spinning technique (Figure 1) [4, 6]. With wet-spinning it is possible to generate hybrid structures 

with different levels of organization and particular arrays of chemical and physical properties, avoiding 

the problems associated with thermal degradation (melt-spinning) or inability to establish optimal 

processing parameters [2, 7-9]. In this technique continuous micrometric polymeric fibers can be 

extruded towards a non-solvent coagulation bath for filament solidification. Wet-spun fibrous constructs 

can be manufactured with a variety of configurations. The most common are the continuous fiber 

constructs. However, core-shell or hollow fibers are also very common in drug delivery systems. These 

are commonly produced via an air-gap wet-spinning system which uses a two-coaxial-nozzle extrusion 

apparatus in which air flows through the inner nozzle [10]. Wet-spinning has been mostly used in the 

processing of natural origin polymers, including chitosan, starch, collagen and silk fibroin. However, 

their potentialities as drug-loading therapeutic delivery systems or tissue engineering scaffolds have 

extended their uses to other synthetic, biodegradable polymers, namely polycaprolactone (PCL) or poly-

L-lactic acid (PLLA) [11].  

The employment of antimicrobial agents, like antibiotics, proteins, nanoparticles, or even natural 

extracts, in biomedical applications is not new. Indeed, many formulations have been proposed with 

exceptional results. Yet, the contributions of such molecules within the overall properties of wet-spun 

microfibers or 3D constructs for biomedicine are not entirely clear. In the present work, we explore this 

further and provide examples of the most successful applications of these modified systems. Special 

attention will be given to the types of antimicrobial molecules employed in biodegradable constructs 

and their mechanisms of action.   

 

 

Figure 1. Schematic representation of a wet-spinning apparatus. 

2.  Antimicrobial agents: types and properties  

Incorporation of biological cues or biomolecules within the surface or structure of wet-spun fibers has 

been one of the most resorted strategies to broaden the use of biodegradable polymeric fibrous constructs 

in biomedical engineering [1, 6, 12]. Between the available options (antibiotics, proteins, peptides, 

growth factors, natural extracts, etc.), the antibiotics can be highlighted as the most frequently used. 

These chemical compounds have been around since the 20’s with the discovery of penicillin [13]. 

Antibiotics can be obtained from microbial fermentation or be chemically synthesized. They target 
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bacteria via their membrane structure or cell wall organization, or by disrupting the functions of specific 

intracellular components, namely proteins, DNA and RNA, etc [12]. In general, antibiotics represent a 

primary source of treatment for infections. However, the unchecked and misuse of antibiotics has 

increased tolerance and led to the emerging of antibiotic-resistant microorganisms [14]. For that reason, 

alternative biomolecules are now being examined and their synergistic effect with polymeric scaffolds 

are researched. Natural extracts are an important source of drugs in traditional medicine and are growing 

in importance each day due to their reduced impact in the environment and extended therapeutic 

potential. Via their biochemical pathways or secondary metabolites, natural extracts can generate 

specific chemical responses when facing environmental threats. This way being capable of protecting 

the plant by acting as antioxidants, free radical-scavengers, UV-light absorbents and antiproliferative 

agents, which attack microorganisms. The antimicrobial action of natural extracts includes enzyme 

inhibition, non-specific interactions with proteins, intercalation of pathogenic DNA, and interference 

with the cell membrane by forming ion channels or inhibiting the adhesion of microbial proteins. 

Essential oils (EOs), for instance, are volatile compounds that present a strong odor. They exhibit 

antibacterial, antiviral and antifungal properties associated with analgesic, antiseptic, anxiolytic, anti-

inflammatory and antioxidant effects [12, 15, 16]. Proteins, peptides, and growth factors have long been 

proposed as bioactive molecules to induce specific cell functions due to their biocompatible nature, 

presence in the human body, and versatile structure from which self-assembly of biomaterials with 

hierarchical 3D architectures is possible. These are most frequent in tissue engineering to promote an 

implantable biomaterial recognition and to accelerate integration. Presently, in this category, 

antimicrobial peptides (AMPs) are the ones with the most potential to fight infections. AMPs act by 

targeting the lipopolysaccharide layer of pathogens, which is exclusive to them. They exibit a broad 

spectrum of activity, with their mechanisms of action being mostly directed towards the cell membrane 

and/or the intracellular components after membrane penetration [1, 6, 12, 15]. 

3.  Biofunctionalized, biodegradable wet-spun fibers  

Many biodegradable polymers and hybrid structures have been processed by wet-spinning with 

exceptional capacities for drug-delivery systems. Most of those resort to the direct processing of the 

polymer solutions in a coagulation bath containing the bioactive agent or drug to be loaded. Denkbaş et 

al. proposed the production of chitosan microfibers extruded at 0.1 mL/h within a bath containing 

different concentrations of the hydrophilic anticancer drug 5-fluorouracil. The formed chitosan 

filaments were entangled with each other originating scaffolds. Glutaraldehyde was used as cross-

linking to maintain the fibers structure and, this way, guarantee the incorporation of the drug. The facile 

modification method allowed the fibers to release high amounts of the drug in the initial stages of 

interaction (first 90 min) and, then, to guarantee a continuous but slower release rate for prolonged 

periods of time. Depending on the cross-linker density applied to the chitosan fibers, much slower 

release profiles were attained [17]. Yet, there are alternatives in which the biomolecule is incorporated 

within the polymeric matrix before or after extrusion or is encapsulated in a core-shell structure. For 

instance, Gao et al. suggested the addition of 5-fluorouracil to PLLA wet-spun fibers by homogenous 

dispersion within the polymeric blend. The drug was initially crushed by fluid jet mill and then dispersed 

in a chloroform solution containing 1% Span 80 to form a stable suspension. PLLA was then combined 

and the solution continuously stirred until the fibers were extruded at a fixed flow rate and 25 cm 

distance from the spinneret. Drug release kinetics was controlled by optimizing the drug content, 

polymer concentration, non-solvent bath, and extrusion flow rate. Since most of the 5-fluorouracil was 

incorporated within the PLLA fibers, the initial release burst was not toxic to cells, allowing the drug to 

be delivered at smaller doses for longer periods, desired for cancer treatments [18]. In a different study, 

collagen was allowed to self-assemble within a pre-formed chitosan-tripolyphosphate microfiber mesh. 

After microfiber production, a collagen solution was left to self-assemble into nano and microfibers, 

subsequently freeze-dried, in order to generate a multi-size architecture. The engineered biodegradable 

polymeric scaffold revealed exceptional cell activity and cytocompatibility towards fibroblasts and 

osteoblasts, owing the observed attachment and proliferation rates to the presence of the bioactive 
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collagen [19]. Hollow microfibers are mostly attractive for tissue engineering of small caliber blood 

vessels. PCL and PCL/poly(lactide-co-glycolic acid) (PLGA) hollow fibers have been produced via wet-

spinning with excellent mechanical resistance and enhanced capacity to transport substances. Here, a 

spinneret with an outer and inner needle was employed, extruding the polymer solution at a flow rate of 

1 mL/min. Distilled water was used as the bore liquid, which was extruded at 2.4 mL/min, and ethanol 

was used in the coagulation bath. Existing traces of the polymer solvents were then eliminated by placing 

the fibers in a water bath and exchanging the media periodically. Even though the hollow fibers purpose 

was the transport of blood components, the incorporation of bioactive or antimicrobial agents at their 

core was determined possible [20, 21].  

Accounts on antibiotic loading onto wet-spun fibers are very frequent. Puppi et al. reported on the 

functionalization of 3D PCL meshes with the fluoroquinolone antibiotics enrofloxacin, active against 

osteomyelitis pathogens, and levofloxacin, a broad-spectrum antimicrobial biomolecule proven 

effective against infections of the respiratory and genitourinary tract, skin and skin structures, and 

osteomyelitis. Here, the antibiotics were loaded within the polymeric matrix and blended continuously 

until a homogeneous dispersion was attained. Fibers were wet-spun at a control flow rate set at 2.25 

mL/h, through a 0.4 mm inner diameter needle into an ethanol coagulation bath (24 h immersion). 

Loading efficiency was not evidenced as only 18-27% of the drugs were found on the fibers. Regardless, 

the loaded fibers demonstrated a fast-initial burst release, followed by a sustained liberation of the 

antibiotics up to five weeks. Cytocompatibility experiments revealed the formation of a cellular layer 

within the scaffolds after 14 days of culture [5]. To overcome the loading limitations, they proposed a 

computer-aided wet-spinning approach using a three-arm branched PCL that did not require fiber post-

processing. Levofloxacin loading was efficiently controlled to guarantee a prolonged, sustained-release 

without interference in the microfiber’s morphology. The drug was blended with the polymer for 2 h. 

By using a programmable syringe pump, the blend was then injected at a controlled feeding rate directly 

into a coagulation bath of ethanol. Even though encapsulation efficiency remained within equal ranges, 

≈ 16%, near 90% of the total drug release was reached in vitro over a 5-week period without aggressive 

initial bursts [22]. In another strategy, Aksoy et al. resorted to the encapsulation of the antibiotic 

vancomycin within microspheres of gelatin, which were prepared by coacervation technique. Briefly, 

the microspheres were produced by dropwise addition of gelatin containing the vancomycin into corn 

oil and cross-linked with glutaraldehyde. Then, they were added to PCL and mixed for homogeneous 

dispersion before being extruded through a 0.5 mm diameter needle into a 4ºC ethanol coagulation bath 

under continuous stirring. They established that the presence of PCL retarded the released of 

vancomycin from the microspheres, providing a long-term sustained liberation of the drug, with strong 

antimicrobial action against both Staphylococcus aureus and Staphylococcus epidermidis bacteria [23].  

Wet-spun scaffolds of chitosan have been examined for the liberation of both the antibiotic 

gentamicin and the protein bovine serum albumin (BSA). The goal was to engineer a scaffold with a 

double function of support material for defect sites and delivery platform of bioactive molecules. Porous, 

microfibrous scaffolds were produced from chitosan solutions and used as bare or coated with alginate 

to serve as contributing layer to facilitate the loading and release regulation of the protein and the 

antibiotic. Chitosan blend was injected at a speed of 5 mL/h into a bath of Na2SO4 (0.5 M) and left 

immersed overnight for complete fiber formation. Alginate was then coated onto the fibrous scaffolds 

via vacuum-pressure cycling. The biomolecules were loaded via a series of vacuum-pressure cycles or 

blended with the polymers prior to wet-spinning and alginate coating. Data demonstrated the release 

from the scaffold was facilitate by the absence of the alginate layer; however, in the cases where the 

alginate coating was present, a decreased initial burst release of BSA and retarding effect of gentamicin 

was detected. Moreover, release of the agents was controlled via diffusion mechanism, with the size of 

the biomolecules determining their release rate from the scaffold (BSA was slower than gentamicin due 

to its larger molecular weight, Mw) [24]. BSA release kinetics has also been examined on PLLA and 

PLGA wet spun microfibers. Indeed, Lavin et al. using a cryogenic emulsion approach encapsulated 

insulin, lysozyme and BSA within wet-spun fibers of ≈ 100 µm in diameter. Again, protein loading 

influenced the fibers mechanical strength and conditioned the biomolecules release kinetics in a Mw-
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dependent manner. For instance, BSA was found to increase the tensile strength and the elongation at 

break of the PLGA fibers twofold and fourfold above those of BSA-loaded PLLA, respectively. Still, in 

both cases, prolonged protein release, up to 63 days, was observed [25]. These studies emphasized the 

critical role of the molecular weight and chemical structure of the loaded biomolecules within the overall 

performance of the scaffold. Further, they demonstrated their synergistic effect and the ability to produce 

sequential delivery systems based on such combinations. 3D constructs loaded with a sequential growth 

factor release profile have been generated. Fiber meshes were produced from chitosan and from 

chitosan-polyethylene glycol (PEO) by wet-spinning using Na2SO4 (0.5 M), NaOH (1 M) and distilled 

water (3:1:6 v/v) as coagulation bath, in which they were kept overnight, and then combined with 

nanocapsules of PLGA containing the bone morphogenetic protein 2 (BMP-2) and with nanocapsules 

of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) containing BMP-7. Nanocapsules were 

prepared by double emulsion-solvent evaporation technique and were incorporated during production 

by blending with the polymer solutions or after production via surface-modification with a series of 

vacuum-pressure cycles. This combination of polymers allowed the premature release of the BMP-2 and 

the retarded released of the BMP-7. The effect of the delivery agents was more important on the surface-

modified fibers, with the BMP sequential delivery raising the levels of the alkaline phosphatase activity 

per cell. Data reported on the potential of the combinatory effect of polymers and bioactive agents for 

bone tissue engineering [26].  

More recently, as antibiotic-resistant bacteria are becoming a global concern, alternatives for the 

delivery of antimicrobial agents are being engineered. Natural extracts are becoming more attractive for 

their reduced impact in the environment and diverse potential as antimicrobial, antiseptic, analgesic, 

and/or anti-inflammatory agents. In light of this phenomenon, Felgueiras et al. proposed the 

modification of wet-spun microfibers made of cellulose acetate (CA) and PCL with ampicillin (control) 

and three EOs, cinnamon leaf oil, clove oil and cajeput oil. Microfibers were wet-spun towards an 

ethanol-based coagulation bath at a constant speed of 0.5 mL/h. EOs were incorporated within the fibers 

by physical adsorption during a 72 h immersion period at room temperature and constant stirring at 200 

rpm. Acquired data reported the ability of the modified fibers to effect on the viability of Staphylococcus 

aureus and Escherichia coli bacteria, even at small, immobilized concentrations. Further, the EOs-

modified fibers were seen to kill bacteria more quickly and to disrupt the bacteria cytoplasmic membrane 

more easily than the antibiotic, attesting to their potential to replace antibiotics and to be incorporated 

within scaffolding materials for applications in which bacterial infections are a target [27]. Overall, the 

contribution of biodegradable, micro-structured, wet-spun platforms for the delivery of biomolecules of 

interest was confirmed and their potential for biomedical applications demonstrated.   

4.  Conclusions 

The resourcefulness of the wet-spinning technique, in polymer selection, loading methodology and 

biomolecule, and fiber morphology (porosity, shape and size), has led to an increase amount of reports 

on the abilities of biodegradable microfibrous constructs, originated from natural and synthetic resources, 

for biomedical applications. 3D wet-spun architectures with a pre-established external shape and 

macropores internal structure can now be tailored to fit a desirable need. Further, biofunctionalization 

via biomolecule loading has increased their effectiveness in various areas of biomedical research, 

turning these systems very promising, and opening new opportunities to integrate such microfibers and 

scaffolds to currently unexplored areas of tissue engineering.   

Acknowledgements  

Authors acknowledge the Foundation for Science and Technology (FCT) of Portugal for funding the 

projects PTDC/CTM-TEX/28074/2017 (POCI-01-0145-FEDER-028074) and UID/CTM/00264/2020 

from 2C2T. 

References 

[1] Felgueiras H P and Amorim M T P 2017 Colloids Surf. B Biointerfaces 156 133 



2nd International Conference on Graphene and Novel Nanomaterials (GNN) 2020
Journal of Physics: Conference Series 1765 (2021) 012007

IOP Publishing
doi:10.1088/1742-6596/1765/1/012007

6

 

 

 

 

 

 

[2] Polat Y, Pampal E S, Stojanovska E, Simsek R, Hassanin A, Kilic A, Demir A and Yilmaz S 2016 

J. Appl. Polym. Sci. 133 1 

[3] Homaeigohar S and Boccaccini A R 2020 Acta Biomater. 107 25 

[4] Felgueiras H P, Tavares T and Amorim M 2019 IOP Conf. Ser. Mater. Sci. Eng. 634 012033 

[5] Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F and Chiellini F 

2011 J. Bioact. Compat. Polym. 26 478 

[6] Miranda C S, Ribeiro A R, Homem N C and Felgueiras H P 2020 Antibiotics 9 174 

[7] East GC and Qin Y, 1993 J. Appl. Polym. Sci. 50 1773. 

[8] Cong H P, Ren X C, Wang P and Yu S H 2012 Sci. Rep. 2 613  

[9] He Y, Zhang N, Gong Q, Qiu H, Wang W, Liu Y and Gao J 2012 Carbohydr. Polym. 88 1100  

[10] Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y and Li B 2018 ACS Appl. Mater. Interfaces 10 

6624  

[11] Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, Ambrosio L and Chiellini 

F 2012 Biomed. Microdevices 14 1115  

[12] Tavares T D, Antunes J C, Ferreira F and Felgueiras H P 2020 Biomolecules 10 148  

[13] Davies J 2006 Can. J. Infect. Dis. Med. 17 287 

[14] Pezzi L, Pane A, Annesi F, Losso M A, Guglielmelli A, Umeton C and De Sio L 2019 Materials 

12 1078 

[15] Tavares T D, Antunes J C, Padrão J, Ribeiro A I, Zille A, Amorim M T P, Ferreira F and 

Felgueiras H P 2020 Antibiotics 9 314 

[16] Sofi H S, Akram T, Tamboli A H, Majeed A, Shabir N and Sheikh F A 2019 Int. J. Pharm. 569 

118590 

[17] Denkbaş E B, Seyyal M and Pişkin E 2000 J. Membr. Sci. 172 33 

[18] Gao H, Gu Y and Ping Q 2007 J. Control. Release 118 325 

[19] Pati F, Adhikari B and Dhara S 2012 J. Biomater. Sci. Polym. Ed. 23 1923 

[20] Diban N, Haimi S, Bolhuis-Versteeg L, Teixeira S, Miettinen S, Poot A, Grijpma D and 

Stamatialis D 2013 Acta Biomater. 9 6450 

[21] Diban N, Haimi S, Bolhuis-Versteeg L, Teixeira S, Miettinen S, Poot A, Grijpma D and 

Stamatialis D 2013 J. Membr. Sci. 438 29 

[22] Puppi D, Piras AM, Pirosa A, Sandreschi S and Chiellini F 2016 J. Mater. Sci.: Mater. Med. 27 

44 

[23] Aksoy E A, Yagci B S, Manap G, Eroglu I, Ozturk S, Ekizoglu M and Ulubayram K 2019 Fiber. 

Polym. 20 2236 

[24] Ucar S, Yilgor P, Hasirci V and Hasirci N 2013 J. Appl. Polym. Sci. 130 3759 

[25] Lavin D M, Zhang L, Furtado S, Hopkins R A and Mathiowitz E 2013 Acta Biomater. 9 4569 

[26] Yilgor P, Tuzlakoglu K, Reis R L, Hasirci N and Hasirci V 2009 Biomaterials 30 3551 

[27] Felgueiras H P, Homem N C, Teixeira M A, Ribeiro A R M, Antunes J C and Amorim M T P 

2020 Biomolecules 10 1129 


