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RESUMO 

O número de quedas tornou-se uma das principais causas de lesões e mortes na comunidade 

geriátrica. Como resultado, o custo do tratamento das lesões também aumenta. Portanto, é necessário 

o desenvolvimento de estratégias relacionadas com quedas e que exibam capacidade de monitorização 

em tempo real sem colocar restrições ao usuário. Devido às suas vantagens, os acessórios do dia-a-dia 

podem ser uma solução para incorporar sistemas relacionados com quedas, sendo que as bengalas não 

são exceção. Além disso, a avaliação da marcha pode ser capaz de aprimorar a capacidade de uso de 

uma bengala para usuários mais idosos. Desta forma, é crucial o desenvolvimento de estratégias que 

reconheçam estados de queda, do passo anterior a uma queda e dos diferentes eventos da marcha de 

uma bengala. Esta dissertação tem como objetivo desenvolver estratégias capazes de identificar as 

situações anteriormente descritas com base num sistema incorporado numa bengala que coleta 

informações inerciais e de força, a Assistive Smart Cane (ASCane). 

A estratégia referente à deteção de quedas consistiu em testar os dados adquiridos através da 

ASCane com três algoritmos de deteção de quedas (baseados em thresholds fixos), com um algoritmo 

de thresholds dinâmicos e diferentes classificadores de machine learning encontrados na literatura. 

Estes métodos foram testados e modificados para dar conta do uso de informação adquirida através de 

uma bengala. O melhor desempenho alcançado em termos de sensibilidade e especificidade foi de 

96,90% e 98,98%, respetivamente. 

Relativamente à deteção dos diferentes eventos da ASCane em situações controladas e da vida 

real, um detetor de eventos da marcha foi e comparado com um sistema de ground truth. Além disso, 

foi também realizado um estudo de machine learning envolvendo oito métodos de seleção de 

features e nove classificadores diferentes de machine learning. Os resultados mostraram que a 

precisão dos classificadores foi bastante aceitável e apresentou, como melhores resultados, 98,32% de 

precisão para situações controladas e 94.82% para situações do dia-a-dia. 

No que concerne à deteção de passos pré-queda, a mesma abordagem de machine learning 

foi realizada. Os modelos foram precisos (precisão = 98,15%) e com a implementação de um filtro de 

pós-processamento, todas as deteções de falsos positivos foram eliminadas e uma queda foi passível de 

ser detetada 1,019s antes do final do respetivo passo de pré-queda e 2.009s antes do impacto. 

PALAVRAS-CHAVE: QUEDAS, PASSOS PRÉ-QUEDA, EVENTOS DE UMA BENGALA, ASSISTIVE 

SMART CANE 
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ABSTRACT 

The number of falls is growing as the main cause of injuries and deaths in the geriatric community. 

As a result, the cost of treating the injuries associated with falls is also increasing. Thus, the development 

of fall-related strategies with the capability of real-time monitoring without user restriction is imperative. 

Due to their advantages, daily life accessories can be a solution to embed fall-related systems, and canes 

are no exception. Moreover, gait assessment might be capable of enhancing the capability of cane usage 

for older cane users. Therefore, reducing, even more, the possibility of possible falls amongst them.  

Summing up, it is crucial the development of strategies that recognize states of fall, the step before a fall 

(pre-fall step) and the different cane events continuously throughout a stride. This thesis aims to develop 

strategies capable of identifying these situations based on a cane system that collects both inertial and 

force information, the Assistive Smart Cane (ASCane). 

The strategy regarding the detection of falls consisted of testing the data acquired with the ASCane 

with three different fixed multi-threshold fall detection algorithms, one dynamic multi-threshold and 

machine learning methods from the literature. They were tested and modified to account the use of a 

cane. The best performance resulted in a sensitivity and specificity of 96.90% and 98.98%, respectively. 

For the detection of the different cane events in controlled and real-life situations, a state-of-the-art 

finite-state-machine gait event detector was modified to account the use of a cane and benchmarked 

against a ground truth system. Moreover, a machine learning study was completed involving eight feature 

selection methods and nine different machine learning classifiers. Results have shown that the accuracy 

of the classifiers was quite acceptable and presented the best results with 98.32% of overall accuracy for 

controlled situations and 94.82% in daily-life situations. 

Regarding pre-fall step detection, the same machine learning approach was accomplished. The 

models were very accurate (Accuracy = 98.15%) and with the implementation of an online post-processing 

filter, all the false positive detections were eliminated, and a fall was able to be detected 1.019s before 

the end of the corresponding pre-fall step and 2.009s before impact. 

KEYWORDS: FALLS, PRE-FALL STEPS, CANE EVENTS, ASSISTIVE SMART CANE 
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1. INTRODUCTION 

This dissertation presents the work developed in the scope of the fifth year of the Integrated 

Master’s in Biomedical Engineering during the academic year of 2018/19.  

This dissertation was developed at BiRD LAB (Biomedical Robotic Devices Laboratory) of the Center 

of MicroElectroMechanical Systems (CMEMs), at University of Minho, Braga, Portugal. This dissertation 

addresses the development of offline strategies to distinguish not only normal gait from a fall and Pre-Fall 

Step (PFS) situations, but also to detect cane events (both in controlled and real-life situations) with 

information acquired in a system embedded into a regular cane, which was named Assistive Smart Cane 

(ASCane). 

1.1 Motivation 

Human walking is a complex and fundamental human physical activity that can be done in an 

assortment of ways and directions. It requires joint mobility, muscular strength, and coordination of the 

central nervous system [1]. However, human gait can be modified by several muscular deformities and 

neurological injuries, whose predominance tends to increase with ageing. In the United States of America 

(USA) alone, there is a considerable number of people who have been affected by walking disorders, for 

example, 4.7 million with stroke, 400 thousand with multiple sclerosis and 100 thousand with cerebral 

palsy [2]. Thereby, walking diseases lead to disorders and abnormalities of the gait, which are the main 

symptoms utilised to diagnose and evaluate the advancement of a person's gait impairments [1]. 

Falls are the second main reason of death by accident worldwide, which represents not 

only one of the significant undesired accidents but also a challenge to patient safety, and therefore, their 

care quality [3]. In 2000, in the USA alone, $19 billion were spent on medical costs of fall-related 

injuries [4]. Since the population is ageing, their bodies go through numerous physical changes making 

them more fragile and more predisposed to falls [5]. So, it is expected that both the number of falls and 

the costs to treat them increase substantially. The estimated medical costs concerning falls in 2015 

were approximately $32 billion, where $31.3 billion were from nonfatal falls alone [4]. By 2020, 

expenses linked to injuries from falls to senior citizens are expected to cost roughly $43.8 billion [6].  

Nowadays, falls in the elderly population is a subject of interest amongst the scientific community. 

Systems that can detect, but, more importantly, to predict a fall, are crucial to reducing the costs, physical 

and psychological consequences of a fall. Fall-related systems mainly focus on the development of 
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wearable methods in which a fall is automatically detected. Nonetheless, the system will weight on the 

individual and hinder its flexibility [7]. Amongst the elderly that fall at home, a large amount does not 

have their assistive device with them at the moment of the fall. Consequently, sustain severer injuries 

when they fall without their assistive device.  

The study of human locomotion has the potential of assessing gait pathologies and 

locomotion performance as well as predicting, preventing and detecting falls. Regularly, gait 

analysis is carried out in a motion analysis laboratory with expensive, yet, very accurate systems (e.g. 

optical systems, force plates).  However, these systems are limited to laboratory standards. The challenge 

is to provide comparable results with low-cost, unobtrusive solutions for constant all-day and any-place 

monitoring [8]. The detection of human gait events can possibly be used in the rehabilitation field, 

specifically, in the design of tuned therapy strategies per the patient requirements and venture to promote 

a more effective functional motor recovery [1].  

1.2 Problem statement and scope 

In order to detect not only falls but also PFS situations, it is required continuous gait monitoring. 

Recently, numerous fall-related studies have been carried out. Nevertheless, most of them require a 

substantial number of sensors placed in the living environment to work successfully.  

Consequently, the use of accessories where elderly may take with or wear on, e.g. necklaces, 

watches or canes, can be a serious alternative. However, using these accessories to monitor the subject 

continuously involves a considerably sized battery. Therefore, the use of smaller devices will result in a 

low power supply for a short amount of time, which is not optimal. The constant hand movement is also 

a factor to discard its use which is too high to monitor for long periods. 

Therefore, embedding sensors into a cane can be the best choice since these assistive devices 

are widely used amongst the geriatric community, and the number of prescriptions is increasing due to 

gait/balance disorders and lower limbs weakness. Furthermore, an evaluation of the canes gait can be 

capable of enhancing the ability of cane usage, also reducing the possibility of possible falls amongst 

them.  Consequently, it was possible to produce a system capable of providing information regarding the 

gait of a cane. Firstly, a Fall Detection (FD) system was implemented comparing the different FD 

methodologies existent in the literature. Secondly, two methods were accomplished to segment a cane 

stride into six cane events. More specifically, an adapted state-of-the-art algorithm for human gait event 

detection and a combination of machine learning classifiers and feature selection methods. Moreover, to 
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identify PFS situations, the same machine learning study accomplished for cane event segmentation was 

performed. 

These requirements are the core to the development of a gait monitoring wearable system 

embedded into a cane, presenting an innovative character and allowing to improve some problems of the 

actual fall and gait analysis related systems. 

1.3 Goals and research questions 

The main goals of this thesis are the development of offline strategies to distinguish not only normal 

gait from a fall and pre-fall situations but also to detect cane events with information acquired in a system 

embedded into a regular cane. To accomplish these goals, it is necessary the understanding of several 

aspects of human walking, along with the knowledge of sensors’ characteristics, attachment location and 

the most characteristic gait parameters to this situation. 

Thereby, with this thesis, it is necessary to achieve the following goals: 

• Goal 1: The first goal consists of a survey and interpretive study of pertinent information 

concerning falls and technological approaches to detect and avoid them. It is intended 

to understand the different stages of a fall, how falls are classified in the literature, their 

risk factors and consequences, as well as the existent systems, methods and algorithms. 

In this goal, it is also essential to know which are the typical gait parameters studied, used 

sensors and their corresponding attachment location. 

• Goal 2: This goal aims to make an extensive analysis about several studies, techniques 

and devices already developed that are already embedded into canes. Namely, 

what type of sensors are used and their corresponding placement, what experimental 

protocol was carried out, what features were computed, and what type of algorithm was 

employed into the system. Also, it is expected to recognise the limitations in the existing 

devices aiming at proposing new solutions. 

• Goal 3: The third goal is the development of the monitoring system, namely, the 

investigation and identification of the materials to ensure a sturdy, universal and adaptable 

system. Moreover, it will be identified the electronic components required for the data 

acquisition system, processing unit, and additional components which can be included. 

• Goal 4: This goal consists of a survey for FD strategies already implemented and its 

implementation in the ASCane. An experimental protocol needs to be established, and 

several tests should be performed on the acquired data, as well as a comparative analysis 
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considering the recent works in the literature and the eventual improvements completed 

to account the use of a cane. 

• Goal 5: The fifth goal is to identify the different event phases of a cane during human 

locomotion that can be distinguished. Following, the acquired inertial data will be used as 

an input to a modified Finite-State-Machine (FSM) for gait event detection for gyroscopic 

foot data and understand how a cane event detection can be accomplished. Moreover, a 

machine learning study will be achieved to uncover an adequate approach to distinguish 

proper segment a stride into six different phases from a single vector of features 

representative of a single time frame. Several feature selection methods, as well as various 

machine learning classifiers, should be tested and compared to reach the best possible 

results. 

• Goal 6: The last goal aims at distinguishing normal from PFS with the same machine 

learning approach as the previous goal. Therefore, it will be possible to merge in one 

system a fall, a PFS and cane event detection. The overall work has been described 

throughout this master’s thesis. 

The following Research Questions (RQ) are expected to be answered in the present work: 

• RQ1: Which is the best FD strategy to be implemented in a cane? This RQ is addressed 

in Chapter 5. 

• RQ2: Which are the features and machine learning classifier with greater potential to 

distinguish the different cane events during the users’ walking? This RQ is addressed in 

Chapter 6. 

• RQ3: Which are the features and machine learning classifier with greater potential to 

distinguish between normal and pre-fall situations in data acquired from a cane? This RQ 

is addressed in Chapter 7. 

1.4 Contribution to knowledge 

The main contributions of this work are: 

• The initial development of an instrumented cane system for human gait analysis, fall and PFS 

detection, from a technology readiness level of 0 up to a level 3. 
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• A FD technique applied to data acquired from a cane. Numerous experiments were conducted 

to discover which FD method achieved the best results considering the processing power required 

and detection time. 

• A tool that can differentiate between the various cane events during human locomotion. It was 

tested offline, and an online test was mimicked. An analysis and comparison of the different 

implemented approaches were fulfilled to reach the best possible results. 

• A tool that accurately distinguishes between normal and PFS. This tool and its main concepts 

were tested offline and online simulated. Detailed comparisons between all methods tested were 

accomplished. 

1.5 Publications 

From work produced throughout this academic year, it was possible to publish two conference 

papers. 

Conference Papers 

• P. Mouta, N. F. Ribeiro, L. Gonçalves and C. P. Santos, “An Overview of Fall-Related Systems 

Developed in Canes”, 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, 

Portugal, 22-23 February 2019.  

• P. Mouta, N. F. Ribeiro, L. Moreira and C. P. Santos, “Assistive Smart Cane (ASCane) for Fall 

Detection: First Advances”, 2019 15th Mediterranean Conference on Medical and Biological 

Engineering and Computing (MEDICON), Coimbra, Portugal, 26-28 September 2019 

1.6 Thesis outline 

This dissertation is organised as follows. An introduction concerning falls, their different stages, the 

problems they constitute to the elderly, and how to classify them is available in Chapter 2.  It is also 

presented a state-of-the-art regarding the technological approaches to falls, how they can be classified, 

which features systems use to discern between normal gait, falls and PFS, and the most used sensors 

and respective attachment location in the scientific literature. 

In Chapter 3 it is presented a general overview of fall-related strategies implemented into canes, 

which sensors they embed and their corresponding location, the gait parameters used, which algorithms 

were employed, and, finally, the results attained. It was also accomplished an extensive research for 

commercial canes and patents with fall-related embedded systems. 
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Chapter 4 presents the developed solution, discussing the importance of its components, 

specifying their functions, and a general overview of the software implemented to explain all the systems 

that make up the global system developed. 

An offline fall detection system is described in Chapter 5. In this chapter, a comprehensive overview 

of different FD algorithms in literature is performed and tested with data acquired from the AScane. 

Afterwards, analysis and discussion of the results were accomplished to understand how the algorithms 

can be modified to achieve a more accurate FD. 

In chapter 6, the AScane is used to collect gait's data from several subjects in four different walking 

conditions. Then, a modified state-of-the-art FSM algorithm for human gait event segmentation was 

benchmarked against a ground truth of the acquired data, which was developed with the information 

acquired from the MTw Awinda (Xsens Netherlands) and Force Sensitive Resistors (FSR) systems. 

Furthermore, the best machine learning model was chosen based on different feature selection methods, 

in which the trade-off between the number of computed features and model performance was 

acknowledged. Finally, with the best set of parameters, the classifier was mimicked online, and a post-

processing technique was developed to further increase the segmentation performance. Respective 

results and discussion are also presented. 

An offline PFS detection system is described in Chapter 7. In this chapter, the AScane is used to 

collect gait's data from several subjects regarding walking and pre-fall situations. This information was, 

initially, filtered, separated by normal and pre-fall situations and used to estimate the features previously 

found in the literature. Then, through different feature selection methods, the most significant 

combination of features were used to train different machine learning models. The best combination of 

parameters was determined using various performance metrics. The results are also discussed. 

The conclusions of this work are available in Chapter 8. The proposals to continue this work in the 

future are also written in this chapter. 

2. FALLS AND RELATED TECHNOLOGICAL APPROACHES: STATE-OF-THE-ART 

2.1 Introduction 

The definition of a fall has been varying over the years. In 1897, the Kellogg International Working 

Group on the Prevention of Falls in the elderly defined a fall as “unintentionally coming to the ground, or 

some lower level not as a consequence of sustaining a violent blow, loss of consciousness, sudden onset 

of paralysis as in stroke or an epileptic seizure”. Later, this definition was updated to include several other 
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health issues such as dizziness or even cardiac collapse, all of which might result in a fall and its possible 

consequences [9]. The World Health Organization stated that falls are the second main reason of death 

by accident worldwide, representing not only one of the main unwanted accidents but also a challenge to 

patient safety, and Therefore, their care quality [3]. 

Falls in older adults represent a common and increasing health problem. One-third of the elderly 

suffer at least one fall each year, frequently resulting in serious health complications. According to the 

International Database of the U.S. Census Bureau, the typical proportion of individuals older than 65 

years in developed countries in 2015 was roughly 17%. This proportion is expected to reach 30% in 2050 

[4], [10]. Regarding statements from the same federal agency, there will be a 210% growth of the 

population aged 65 and over within the next 50 years, in part due to ageing from the baby boomers 

generation [11]. Projections for 2150 have shown that one-third of the population will be represented by 

the elderly, which makes the goal of sustaining a healthy ageing a priority at the European level [12]. 

The probability of a fall increases with age since 32% to 42% of people over 75 years 

suffer a fall in the same period.  Previous fallers have a  
2

3
  chance of suffering from a fall in the following 

year, and over 50% of residents in institutional care have had at least one fall over one year. About 65% 

of women and 44% of men fall inside their usual residence. Most falls occur in the most frequently used 

rooms such as bedrooms, kitchen and dining room [13]. 

2.2 Different Stages of a Fall 

Some studies have proposed a multiphase fall model towards providing a more in-depth 

observation of the fall event for improving automatic FD systems where the fall manages to be divided 

into different phases, including a pre-fall, critical, post-fall, and recovery phases [9]. Other authors divide 

the critical phase into the falling and impact stages [10], [14]. 

The first stage of a fall is the moment in which the person performs Activities of Daily Living (ADL) 

which can include actions that sometimes can be classified as a fall due to sudden and rapid movements 

performed such as jumping and sitting down [9], [10], [14]. 

The critical phase can be defined by a lowering of the Center of Mass (COM) that can no longer be 

recovered by protective strategies. It is associated with the sudden movement of the body towards the 

ground, ending with a vertical shock [10]. While falling, there is a short moment where the person is in 

free-fall, which is characterised by an approximation of the three acceleration axis to zero [15]. Regarding 

its duration is expected to last from 0.3 up to 0.8 seconds [9], [10]. Then, the body typically hits the 
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ground or an obstacle. Regarding its acceleration, an abrupt polarity inversion of its vector in the direction 

of the trajectory is verified, which can be easily detected by an accelerometer or a shock detector.  

The post-fall phase is of varying duration, considering the different type of injuries that can be 

sustained in a fall. Normally, the faller remains immovable in a posture and a place. The end of this phase 

can be detected with the start of the next one, the recovery phase, usually including COM movement or 

the surpass of a predefined time interval [9], [10], [14]. 

Finally, the recovery phase can be either intentional and independent, where the faller stands up 

in his own or is assisted by someone. Its duration fluctuates since it can be anything from a full recovery 

to its absence [14]. In case there is no rescue in this event, a fall can be followed by a “long lie,” which 

is defined as the involuntarily remaining on the floor for at least an hour after a fall [16]. All the acceleration 

changes abovementioned of a person during a fall are represented in Figure 2.1. 

 

Figure 2.1: Acceleration changes during an accidental fall. 

2.3 Classification and type of falls 

The identification of different types of falls is essential to fall-related strategies to provide 

appropriate measures to assure the safety of the patient. Concerning the literature, there are not 

standardised fall type criteria. Thus, in each work, the researchers propose their division and classification 

of falls and ADL trials as can be seen from Table 2.1.   

Table 2.1: Types of falls and ADLs discriminated in different studies 
 

Study Falls and ADL description 

[17] 

Fall: (i) forward, (ii) backward, (iii) lateral left, (iv) lateral right and, (v) falling on the 

stairs. 

ADL: (i) standing, (ii) sitting in a chair, (iii) sitting on the floor, (iv) lying, (v) walking, 

(vi) running, (vii) going upstairs, (viii) going downstairs, (ix) bending. 
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Study Falls and ADL description 

[18] 

Fall: (i) forward due to a trip, (ii) backwards due to a slip, (iii) left lateral and (iv) 

right lateral. 

ADL: 9 participants kept the smartphone for a week to record everyday behaviour. 

[19] 
Fall: (i) forward, (ii) lateral left and (iii) lateral right. 

ADL: (i) standing up, (ii) sitting down in a chair, (iii) walking average pace. 

[20] 

Fall: (i) forward, (ii) backward, (iii) lateral left and (iv) lateral right. 

ADL: (i) sit-to-stand, (ii) stand-to-sit, (iii) level walking, (iv) walking up and (v) 

downstairs, (vi) answering the phone, (vii) picking up an object, (viii) getting up from 

supine. 

 

Falls can be discriminated by its direction and the incident that cause it, such as trips and slips. 

Bai et al. [15], studied the acceleration signal for different ADL and fall directions. The researchers 

concluded that the acceleration when falling is entirely different from that of ADL (jumping, 

standing up, walking and standing down) and fall direction was able to be determined by comparing the 

accelerations on all three axes before and after the fall.  Nevertheless, some ADL can be misinterpreted 

as a fall since some of its characteristics exists in typical actions such as crouching, which also 

demonstrates a fast downward motion [21]. 

Smeesters et al. [22], examined the effect of disturbances (faint, slip, step down, trip) and gait 

speed (fast, normal, slow) in fall direction and impact location. They concluded that disturbance type and 

gait speed knowingly affected the fall direction impact location. Regardless of gait speed, trips and steps 

down frequently result in forward falls, leading to abdominal pelvis impact. With faster gait speeds, slips 

and faints result in the same outcome. Decreasing gait speed, slips result more often in sideways or 

backwards falls, leading to hip or buttocks impact. Regarding impact velocities, they were constant, 1.51 

± 0.50 m/s, excluding step down that result in lower impact velocity. The age, gender, height, mass and 

physical activity did not suggestively affect fall direction, impact location or impact velocity. 

2.4 Risk factors 

Before any fall-related strategies can be implemented or analysed, it is essential to identify those 

individuals who have a higher fall risk. Falls occur as a result of dynamic interactions between 

numerous risk factors categorised into two types: intrinsic and extrinsic factors. Therefore, analysing 

fall risks is a challenging problem due to the multifactorial mechanisms behind a fall [23]. Falls among 
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older people are often allied with intrinsic factors, these are mainly age-related since older people suffer 

from a more severe weakening within its balance system, but more significantly, linked with 

pathophysiological aspects affecting any of the systems involved in balance. Extrinsic factors are 

connected to environmental hazards such as poor lighting, slippery floors and uneven surfaces, 

footwear/clothing and unsuitable walking aids/assistive devices [24]. Roughly one-third of fallers using a 

walking aid were prescribed with a device insufficient for their needs, not improving their gait the desired 

amount [25]. As a result, it is vital to identify the people who are more prone to falls to take full advantage 

of the intervention planned. Although several studies identify risk factors related to falls, a direct 

comparison is hindered due to different methodologies applied. This section presents risk factors 

associated with falls and including them into the two categories mentioned above. It is essential to 

understand that multiple factors are always involved in a fall since they do not have a single cause because 

most of the risk factors are linked [26]. 

2.4.1 Gender, Ethnicity and Age 

There is proof of racial differences regarding fall rates in the USA. The fall rate from the highest 

to lowest is white men, white woman, black man and black woman, although fall risk increases with 

age among different races. The risk and frequency of falls increase with age with its greatest 

intensification at the age of 80 [23], [24], [26]–[28]. 

Considering geographical and socioeconomic variations, caucasian women are more likely to 

suffer from a fall outdoors than African American women up to 1.6 times and twice as likely to land on 

surfaces suchlike ice, dirt and snow. They are not only 3.8 times more probable to fall straight down 

(along with the vertical direction), but also twice as plausible to fall laterally or posteriorly compared to 

falling forward [24], [27]. Although women are more likely to suffer from nonfatal falls, men are more 

prone to experience fatal falls, possibly due to the practice of more risky behaviours [27]. 

2.4.2 Psychological Status  

Although the relationship between falls and psychological factors still are unclear, the 

fear/anxiety of falling and depression are related to an increased risk of fall. Depression can 

be bound to the decrease in physical activity, gait speed and muscle strength, which are linked to lethargic 

behaviour typical in people with this disorder [29]. Fear of falling is due to several different aspects, such 

as reduced physical activity and a history of falls. Since up to 70% of people who suffered a fall recently 

and 40% of people who not account for falls lately recognises the existence of this fear which can lead to 



11 

the decrease of physical and social activities [24], [29]. Fear of falling makes people lose self-confidence 

in their safety, restricting their ADLs [10]. 

2.4.3 Medication intake 

The most common medications are the ones that interact with the central nervous systems, for 

instance, benzodiazepines, sedatives and tranquillisers, which cause cognitive impairment, dizziness, 

sedation and a decrease in neuromuscular function [27]. Studies show that with the intake of four 

medications, the fall risk increases significantly, the consumption of five or more is associated 

with a nine-fold increase of the cognitive weakening and fear of falling [24]. The intake of different drugs 

has consequences that include drug reactions, drug interactions and cognitive impairments and urinary 

incontinence. Which is why the patient clinical history is critical while prescribing such medications [28]. 

2.4.4 Physical conditions 

Physical disabilities can increase the risk of falls. This type of risk factor is directly linked 

to ageing. Table 2.2 presents several physical risk factors associated with falls, the ones mentioned were 

examined and compared between individuals who experienced a fall and with those who did not.  

As a person ages, muscle weakness, particularly in the lower limbs, debilitated neurologic 

feedback and chronic illnesses may be experienced. These changes, in combination with other risk 

factors, increase the likelihood of a fall. One study showed that a patient with a combination of four risk 

factors has about 78% chance of falling [30]. Starting with the medical conditions associated with the 

intensification of the fall risk, they can be subclassified dependent on the functional system associated. 

Table 2.2: Reported physical fall risk factors in older people [31], [32] 

Risk Factor Mean RRa Range 

Muscle Weakness 4.4 1.5 – 10.3 

Gait deficit 2.9 1.3 – 5.6 

Balance deficit 2.9 1.6 – 5.4 

Mobility limitation 2.5 1.0 – 5.3 

Visual deficit 2.5 1.1 – 3.5 

Impaired ADL 2.3 1.5 – 3.1 

Postural hypotension 1.9 1.0 – 3.4 

Cognitive impairment 1.8 1.0 – 2.3 

        a RR: Relative risk (Prospective studies) 
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The occurrence of falls among neurological patients is very high, carrying high costs for health 

institutions, and the prevalence of neurological disorders is increasing as a result of changes in population 

demographics. A study regarding falls in recurrent neurological diseases ranked the most frequent 

neurological disorders with the highest fall rate, which led to the results shown in Figure 2.2 [33]. 

From Figure 2.2, patients with Parkinson’s disease (71%) and stroke (89%) are more likely to fall 

than patients with every other type of neurologic disease. They were followed by a collection of diseases 

with an average of four times the likelihood of falling consisting of dementia, epilepsy, movement disorders 

and peripheral neuropathy. 

 

 

 

Stroke-related neurological conditions contribute to a large number of falls in the community 

since individuals with stroke do not only present a high fall risk during the acute phase but also during 

the poststroke phase considering that are various conditions that may develop after [34]. 

From studies performed in people who suffered from strokes, it is suggested that the individuals 

are more prone to fall when walking involves considerable cognitive control. Consequently, patients are 

usually incapable of walking and talking simultaneously or slow down when performing a current mental 

task. Stroke-related balance and gait deficits, which were acknowledged by clinical assessments, 

contribute to a large number of falls in these patients [34]. 

To maintain balance, the vertical projection of the body needs to be upheld inside the limits of 

the Base of Support (BOS). In tasks where the BOS changes size or position, such as ADL, the Center Of 

Figure 2.2: Difference in frequency of having at least one fall within the 12-month period for patients suffering 

from the 13 most commonly encountered neurological disorders, taken from [33]. 
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Mass (COM) has to be relocated with the new BOS in order not to fall. When an environmental perturbation 

changes the COM near the limits of the BOS or even out of them, the person needs to be able to 

counterforce the external forces applied to the one's body in order to maintain balance. Regarding one's 

gait, it must be able to produce adequate mechanical energy in order to walk and cause progression of 

gait. It must be able to attain sufficient clearance of the foot to avoid stumbling, the necessary stance 

stability of the weight-bearing lower limb and the correct positioning of the swinging leg. However, some 

deficits caused by stroke prevent the requirements mentioned above such as such decreased postural 

stability during quiet standing, tardy and fewer coordinated responses, reduced propulsion at push-off, 

lessened leg flexion through the swing phase, reduced stability throughout the stance phase and reduced 

automaticity of walking [34]. 

Parkinson’s Disease (PD) is a neurodegenerative disease that presents motor and non-motor 

signs and symptoms [28]. Studies indicate that people affected by this neurological illness experience 

falls and around 70% of them are affected by recurrent falls even in the early stages of the disease. It has 

been assessed that 76% of falls in PD patients require health care services and 33% result in fractures 

[35][36].  Patients with PD often walk with diminished gait speed, shorter stride length, stooped posture, 

and reduced arm swing [37]. 

Furthermore, amongst PD patients whose fall resulted in fractures, the mortality rate is 

approximately 10.6%. PD patients fall in various directions, and different body parts are wounded during 

such falls. Most of the population tend to fall forward. Some researches stated multiple fall directions and 

the association between the falling course and fractures obtained [35]. The two main mechanisms 

underlying recurrent falls in PD patients were identified as being the Freeze of Gait (FOG) and balance 

impairment. 

Freezing is defined as “an episodic inability to generate effective stepping” even though there is 

a desire to walk [38]. Thus, FOG is a predictor for falling forward, when it happens their Center of Gravity 

(COG) keeps moving forward when their feet stop moving, which leads to falling forward while balance 

impairment, akinetic-rigid subtype, and neuropsychiatric symptoms were linked with falling backwards or 

sideways [35]. This feature is most prevalent not only while initiating gait, turning, or approaching a 

destination but also is commonly triggered by environmental features such as narrow hallways, doorways 

and large crowds.  There are three types of FOG described in individuals with PD. The most common type 

observed is represented with trembling of legs, which is frequently linked with an effort to overcome the 

block that is associated with FOG. Akinesia is a condition where individuals suffer from loss of ability to 

move their muscles. Festination is a gait disturbance described as small and quick steps executes to 
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retain the COG between the feet while the trunk leans forward involuntarily, shifting the COG forward [38] 

Gait Disorders [39]. Therefore, a prevention strategy for falls in PD patients, could be established 

grounded in their main falling direction [35]. 

Female individuals have a higher incidence of both falls and fractures among PD patients, which 

is the same regarding the general population [40]. Although hip fractures have been described as the 

most common location of fractures and have revealed the strongest association with PD, in [40], upper 

limb fractures were the most common type sustained. However, the location of the fractures is 

determined by several factors. For case, osteoporosis and body mass index have been proven to be 

associated with increased risk of hip fractures, and low bone mineral density predominantly affects the 

risk of fracture for the hip, wrist, and spine [40]. The related factors and characteristics regarding the 

different falling directions in an individual with Parkinson’s disease and their gait are illustrated in Figure 

2.3. a) and b), respectively. 

Although dementia was not one of the neurological disorders with the highest fall rate, its 

predominance in the population is still significative. Dementia is a category of neurological syndromes 

which restrict the social and occupational functioning of predominantly elderly and are characterised by 

the progressive deterioration in cognition. The primary subtypes of dementia include vascular dementia 

and Alzheimer’s disease. Although in people younger than 65, the predominance of dementia is rare, its 

incidence increases exponentially in individuals older than that [42]. 

 

Figure 2.3: a) Scheme of the mechanism and characteristics of PD forward fallers and non-forward fallers; b) 
Graphic representation of Parkinson’s gait versus normal gait. 

Even though there are no studies about the type of falls in individuals diagnosed with dementia, 

falls are often a part of the disease, hence the reason to implement preventive strategies to prevent them. 

a) 

b) 
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Dementia is classified as an independent risk factor in falls due to its symptoms such as disorientation, 

dromomania, postural and neurovascular instability [41],[42].  

Regarding the incidence of falls in patients with dementia, it varies according to the type of study 

conducted, with studies that recorded data retrospectively obtaining considerably lower estimations of fall 

rates than those using prospective methods. Considering studies with prospective methods, people with 

dementia are two times more prone to fall than cognitive healthy older people. Regarding actual fractures 

sustained due to falls is estimated to be roughly 7% and 50% of the fractures are to the femoral neck [41]. 

2.4.5 Non-use or non-access to assistive devices 

Amongst the elderly that sustains a fall at home, a large amount does not possess an assistive 

device with them at the moment of the fall. People sustain more severe injuries when they fall 

without their assistive device. Data implies that a large percentage of people end up quitting their 

prescribed assistive device.  Moreover, they underestimate the significance of the cane to their safety. 

Believing that the prescribed device decreases falls, doesn’t necessarily ensure device use. The known 

risk of falling is not significant enough to justify engaging in the self-protective behaviour of using the 

device [43]. Older adults do no use their canes or walkers, particularly in their homes where the most 

considerable number of falls occur, even though knowing that it can help avert a fall. Instead, they steady 

themselves by holding themselves against walls and furniture. Two factors that influence device use that 

has not been adequately discussed are the disregard of older adults concerning fall prevention strategies 

(e.g. proper use of canes and walkers), and their rejection about fall prevention actions [44].  

A research accomplished by Luz et al. [45] suggests that people will not practice the required 

precautions to avoid an adverse event (such as a fall) till people accept that the risk presents a notable 

threat to them personally. Precautionary behaviour needs to be significant enough to their security that 

overcomes every potential reason for not engaging in this behaviour. Patient education regarding the 

connection within device use and fall-related injuries could improve the discernment of their own risk and 

the importance of device use that could surpass the negative psychosocial context and stigma which 

discourages use. Furthermore, the development and investigation of approaches to maximise device use 

are demanded such as environmental reminders and employing new technologies to develop new types 

of canes and walkers which could overcome the social stigma associated with device use. 
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2.5 Consequences of a fall 

As stated before, falls are a public health issue that predominantly affects older people and 

can result in injury, hospitalisation, injuries, mobility impairment and even death. Fabricio et al. [46] 

conducted a study not only to investigate the history of falls reported  by the geriatric community, but also 

to name likely associated factors, the place of occurrence, causes, and consequences. The most 

frequently observed consequence were fractures (64%), occurred in 53% of men and 70% of women. The 

most common fractures were of the femur (62%), followed by radius (12.5%), clavicle (6.25%), and others 

such as spinal column, ulna, scapula, patella, and nose. Fear of additional falls (44%) and the remaining 

consequences reported are presented in Figure 2.4. The population of the study was comprised of 251 

older adults older than 60 years [46]. Furthermore, Figure 2.5 resumes the causes and effects of the 

mentioned problem by using a Tree Problem Diagram.  

2.6 Fall-Related Tools And Existing Strategies 

As stated, fall-related medical care is linked to high financial expenditure, and it is expected to grow 

significantly. Falls amongst the elderly community does not only concern the health practitioners but also 

the scientific community. Fall Prediction (FP) and FD systems are vital to answer this problem and 

can assist in reducing the financial, physical, and emotional consequences of a fall. 

Consequently, numerous research papers have tackled falls and in methods of detecting and preventing 

them, exploiting a wide range of sensing methods. At the moment, it is essential to differentiate between 

the different fall-related systems. To this day, literature reviews lack a standard ground classification since 

each analysed study presented a different classification based on the understanding of the problem of 

falling and the expected contribution. Thus, a comprehensive review was accomplished. 

 
Figure 2.4: Consequences presented by older adults after falls (Adapted from [46]). 
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Figure 2.5: Tree Problem Diagram. 

2.6.1 Fall Detection Systems 

Usually, FD systems rely on impact detection [5], [10], [14]. According to the literature, these 

systems can be differently classified, and there are many efforts to structure them. Hsieh et al. [10], 

categorise FD systems according to its type of detection, which includes user-manual and automatic 

systems. User-manual systems are intended to send emergency messages through user manipulation. 

Nevertheless, in case of loss of consciousness, they are useless, not providing the medical care 

necessary. Contrarily, automatic FD systems are planned to detect falls without any user manipulation. 

These devices alert the user and healthcare provider after a fall to accelerate and improve the medical 

care provided to the user [10], [47].  

FD systems can also be divided depending on what type of sensor the system employs.  A survey 

achieved by Delahoz et al. [5] presented the primary three-class division of current FD systems: camera-

based sensing, ambient sensors and wearable sensors.   

Systems can make use of cameras to detect falls due to their typically short time of occurrence.  

Consequently, the patients' posture and shape vary significantly, which is the key factor in this type of 

system. For example,  Stone et al. [48] presented a two-stages FD algorithm and validated the system 

with an available dataset comprising 454 falls. The first stage of the detection system characterises a 

person's vertical state in-depth image frames and then segments on-ground events from the vertical state 

time series. The second stage employs an ensemble of decision trees to compute a percentage of 

confidence that a fall preceded an on-ground event. It is required a high computational power to detect a 

fall in real-time since on average, a picture is composed of at least 345,600 individual pixels that need to 

be analysed. One of the significant concerns with camera-based systems is user privacy. As a result, 
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instead of recording the patients' movements, the systems record their surrounding with body-mounted 

cameras.  

Ambient device-based FD systems normally surveil the subject of interest surroundings to track his 

movements and behaviour. This type of systems is normally installed when the subject refuses to wear 

any device on his body. Typically, pressure, infrared, vibration, acoustic and motion PIR sensors are 

mounted in the SOI vicinity [49]. 

As previously stated, abrupt fluctuations in body motion parameters such as orientation or 

acceleration may be due to a fall. To measure such parameters, sensors must be placed onto the body 

of the subject. Wearable systems generally employ inertial sensors such as accelerometers, 

inclinometers, gyroscopes, barometers, goniometers and magnetometers to identify not only sudden 

changes in human gait but also to assess the subjects balance and monitor displacement [50]. They are 

typically low-cost and small, which makes them an attractive solution. They also can be easily placed in 

the human body or can be attached to daily life accessories. Numerous studies on sensor placement 

have been done. Kangas et al. [51] studied low-complexity FD algorithms for wearable accelerometers 

with different body placement. It was concluded that while the waist and head were valid positions, the 

wrist was not. Bourke et al. [52] positioned sensors on the trunk and thighs and described the trunk as 

a better position. Fang et al. [53] stated that more reliable performance is achieved when the sensor is 

installed near the center of mass. The results revealed that the chest was the optimal location. The 

subject's waist was recommended rather than the chest since it was a more comfortable position. Figure 

2.6 summarises the sensor positions used in existing FD systems. 

 

 

Figure 2.6: Different positions and number of studies for sensor placement in wearable FD 

systems (adapted from [54]). 
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Pierry et al. in [55] contemplated a survey and evaluation of real-time accelerometry based FD 

systems. Their classification was established on methods that evaluate acceleration, that merge 

acceleration with additional sensor data and methods that do not assess acceleration at all. Most systems 

use accelerometers along threshold-based algorithms to detect fall-related events due to an abrupt polarity 

inversion of the acceleration of the subject when hitting the ground.  

Ambient and Vision-based systems being limited to only some aspects of ADL or certain locations, 

while wearable-based FD systems allow the monitorization of individuals under real-life conditions in their 

natural environment, including both indoor and outdoor ADL. Even though wearable sensors are more 

attractive, they can be uncomfortable for the person depending on their size and location on the [10], 

[14]. Table 2.3 contains the results of the conducted search regarding FD systems, which includes the 

type of sensors employed, their corresponding specifications and location, the computed features, and if 

it is wearable or not. 

Table 2.3: Features used in FD systems, as well as the sensors, their corresponding location, specification, and 
wearability of the developed system. 

Type of sensor 
Sensor 

Specification 
Features used Wearable 

Placement 

of sensor 

Work 

Doppler range 

control radar 
-  

Melfrequency Cepstral 

Coefficient; 
- Floor [56] 

Magnetometer 
Android 

Smartphone 

Sum Vector Magnitude (SVM); 

Magnitude of angular 

displacement; 

+ Hip [57] 

Accelerometer 

 

Triaxial  

Fs: 400Hz 

SVM; 

Dynamic Sum Vector; 

Differences between the 

maximum and minimum 

acceleration (SVmaxmin); 

Vertical Acceleration (Z2); 

+ 

Wrist, Waist 

and 

Forehead 

 [58] 

Triaxial  

Fs: 50Hz 
+ Waist level  [16] 

Triaxial  

Fs: 100Hz 

Rotation angle of accelerometer 

coordinate in 3D space; 
+ Waist  [59] 

Triaxial 
Activity Signal Magnitude Area; 

SVM; 
+ 

Neck, waist, 

foot and 

hand 

[60] 
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Type of sensor 
Sensor 

Specification 
Features used Wearable 

Placement 

of sensor 

Work 

Triaxial  

Fs: 40Hz 

SVM; 

Signal Magnitude Area; 

Postural Orientation; 

Tilt Angle; 

+ Waist  [61] 

Triaxial  

Fs: 100Hz 

Range: ±11g 

SVM; + 
Thoracic 

vertebrae  
[19] 

Triaxial 

 

SVM; 

Delta Changes; 

Average Resultant Acceleration; 

Resultant of Standard Deviation; 

Z-Score; 

+ 
Trouser 

pocket 
[62] 

Smartphone 

Fs: 33Hz 
Transversal acceleration + 

Trouser 

pocket 
[63] 

Smartphone 
SVM; 

Absolute Vertical acceleration; 
+ 

Chest, thigh 

and waist.  
[11] 

- 

SVM; 

Rotation angle; 

Slope; 

The SVM of acceleration in the 

horizontal plane; 

+ Waist [64] 

Smartphone 

SVM; 

Magnitude of angular 

displacement; 

Roll, Pitch and Yaw; 

Quaternion 

+ Hip  [57] 

 

SVM; 

Maximum SVM; 

Minimum SVM; 

Average SVM; 

+ 
Chest and 

waist 
[65] 
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Type of sensor 
Sensor 

Specification 
Features used Wearable 

Placement 

of sensor 

Work 

Root mean square SVM 

Acceleration exponential moving 

average; 

Signal magnitude area; 

Triaxial 

Range: ±2 g), 

Fs = 200 

SVM; 

Fast changed vector; 

Vertical acceleration; 

Posture angle; 

+ Waist [66] 

 

Skewness; 

Skewness (X, Y and Z 

Smooth Median Filter axis); 

Skewness of SVM; 

Skewness of SVM (Smooth 

Median Filter axis); 

Kurtosis; 

Kurtosis (X, Y and Z Smooth 

Median Filter axis); 

Kurtosis of SVM; 

Kurtosis of SVM (Smooth 

Median Filter axis); 

Mean; 

Mean of SVM; 

Variance; 

Variance of SVM; 

+ Waist [67] 

Atmospheric air 

pressure 

sensor 

Fs: 1.8Hz Differential pressure + Waist  [67] 

FSR - 
8 orthogonal principal 

components; 
+ 

Under 

booth feet 

 

[68] 
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Type of sensor 
Sensor 

Specification 
Features used Wearable 

Placement 

of sensor 

Work 

Microsoft Kinect 

- 

Vertical state of a segmented 3-

D object; 

Minimum Vertical Velocity; 

Maximum Vertical Acceleration; 

Vertical Velocity; 

- 

Placed 

Around the 

room  

[48] 

- 

Velocity; 

Acceleration; 

Width/Height ratio; 

- 

Placed 

Around the 

room 

[69] 

Gyroscope 

Triaxial 

Fs: 1000hz 

SVM; 

Total Angular Change; 

Resultant Angular Acceleration; 

+ 
Thoracic 

vertebrae  
[19] 

Triaxial 

Fs: 50Hz 

Resultant angle change; 

Maximum resultant angular 

acceleration; 

Fluctuation frequency; 

+ Waist [70] 

 

Existing systems primarily focus on detecting a fall rather than predicting it. Therefore, 

FP and prevention systems are of the highest importance to achieve since there is an imperative 

need for the development of strategies that can minimise not only the cost associated with the 

consequences of the fall but also improve the quality of life for persons who suffer from them [28], [47]. 

2.6.2 Fall Prediction Systems 

Although FD and FP systems share some common ground such as commissioning sensors to 

complete their task and the use of collected data through computer algorithms including artificial 

intelligence, there are critical differences between these two systems [5]. 

FP systems aim at notifying the subjects before the occurrence of a fall, thus avoiding 

the consequences of it. These systems ought to identify most of the scenarios and events leading to a fall 

and deliver a framework based on data acquired from different scenarios, sensors and subjects from the 

target population for increased reliability and safety [47]. 
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It is essential to distinguish two different systems linked to FP. Fall Risk Assessment Tools 

(FRAT) identifies persons of high fall risk upon specific and protocoled interventions. Three types of 

assessment are relevant regarding falls and the decrease of mobility in the geriatric population [71], [72]:  

i) Comprehensive medical assessments - accomplished by geriatricians or nurse practitioners 

in order to evaluate and rehabilitate patients with fall risk involving evaluation of the patients 

fall history, strength, cognition, balance, gait, chronic diseases, mobility, nutrition, and 

prescriptions;  

ii) Nursing fall risk assessments - which has been performed mainly in health institutions 

commissioning popular measures, tools or scales used to assess the risk of fall. Some 

examples are the Morse Fall Scale, St Thomas Risk Assessment Tool in Falling Elderly 

Inpatients (STRATIFY), Resident Assessment Instrument (RAI), Fall Risk Assessment Tool, 

Hendrich Fall Risk Model, High Risk for Falls Assessment Form, or Royal Melbourne Hospital 

Risk Assessment Tool. Patients are classified into risk categories, which enables clinicians to 

associate risk assessment with specific interventions.  Therefore, the need for health facilities 

to develop their scales is null, which could affect the type of treatment and care of fall patients 

since scores and scales would not be comparable across similar types of facilities; 

iii) Functional mobility assessments - accomplished by physical therapists or physicians, such as 

Timed-Up and Go test (TUG), Berg Balance scale (BBS), Physiological Profile Assessment 

(PPA) and Tinetti Performance Oriented Mobility Assessment (POMA). 

Differently, pre-impact FD systems also aim at detecting a fall before it happens in real-time, 

although with a shorter lead time. For example, Tamura et al. [73], developed a wearable airbag which 

incorporates a pre-impact FD system based on accelerometer and gyroscope’s signals to trigger their 

inflation. In this study, it is assumed that the subject is in free fall, and before the impact, the airbag is 

triggered, and the patient’s head, neck, hip, and thigh are protected.  

 According to [74], alterations in ADL are early signs of cognitive and physical decay, which is 

related to gait deficiencies and an imminent fall. Therefore, these systems can identify irregularities, trace 

all variations in gait parameters and, finally, identify dangerous and emergencies. The development of 

these type of systems nowadays faces numerous challenges such as their performance in real-like 

conditions since high outcomes are achieved in experimental/controlled environments and hardly any 

studies collect data of elderly generations. User engagement is also a subject that requires attention as 

recent surveys have shown that wearable systems have less appeal due to the lack of interaction and 

familiarity with the recent technological advances since habitually, these types of systems combine data 
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from multiple sensors and transmit them wirelessly to a central computational device. Integrity and 

privacy concerns are raising in FP systems due to the large vision-based systems transmitting real-time 

images that share user sensitive information to networks who can suffer from hacking [47]. Table 2.4 

contains the results of the conducted search regarding FP systems. It includes the type of sensors 

employed, heir corresponding specifications and location, the computed features, and if it is wearable or 

not. 

Table 2.4: Features used in FP systems, as well as the sensors, their corresponding location, specification, and 
wearability of the developed system. 

Type of sensor 
Sensor 

Specification 
Features Wearable 

Placement 

of sensor 
Work 

Force Plate 

Fs: 100Hz 
Velocity of centre- 

of-pressure 
- 

Subject 

stand on it 
[75] 

Fs:20Hz 

Ground reaction 

forces; 

Center of Pressure 

- 
Subject 

stand on it 
[76] 

IMU 

Fs: 50Hz 

Res: 0.050 

Range: ±5g 

±1,200o/s 

Maximum finite-time 

Lyapunov exponent 

(maxLE) 

+ Lower back [75] 

Accelerometer 

Biaxial; 

Range: ±1.7 g, 

Res: 1mV/mg 

Fs: 125Hz 

maxLE; 

Step length; 

Step duration; 

Heel contact velocity, 

+ Hip [77] 

Tri-axial 

Fs: 200Hz 

Acceleration 

Fast Fourier 

Transform 

+ Waist [78] 

Tri-axial 

Fs: 40Hz 

TUG Time Duration; 

RMS of HP Filtered 

SVM; 

Signal Magnitude 

Area; 

+ Waist [79] 

Tri-axial Cadence + Lower back [23] 
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Type of sensor 
Sensor 

Specification 
Features Wearable 

Placement 

of sensor 
Work 

Camera 

Kinect 

Fs: 30Hz 

Position; 

Speed; 

Acceleration; 

CoM; 

- SOI Vicinity [80] 

Fs: 120Hz maxLE - Booth Heels [77] 

 

A broader search about which features are analysed in studies regarding gait was accomplished, 

and the results containing which features were computed, what sensor was used to acquire the data and 

the type of study conducted are described in Table 2.5. 

Table 2.5: Potentially relevant metrics for FP, and the sensors used to obtain them. 

Feature Study Type Sensor Reference 

Cumulative Horizontal Acceleration; 

Velocity (X, Y and Z axis); 

Displacement (X, Y and Z axis); 

Cumulative horizontal displacement; 

Cumulative horizontal sway length (X, Y and Z 

axis); 

Mean sway velocity (X, Y and Z axis); 

Displacement range (X, Y and Z axis); 

Displacement of 

centre of mass 

during quiet 

standing 

Accelerometer [81] 

Acceleration (X, Y and Z axis); 
Movement 

Classification 
Accelerometer [82] 

Energy (X, Y and Z axis); 

Energy of SVM; 

Detection of 

Everyday 

Activities 

Accelerometer [83] 

Optimal 

Features to 

Classify Falls 

Accelerometer 

and 

Gyroscope 

[84] 
Mean (X, Y and Z axis); 

Mean of SVM; 

Correlation (XY, YZ and XZ); 
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Feature Study Type Sensor Reference 

Maximum and minimum of SVM (raw signal and 

LP filtered); 

% window where LP SVM is less than 0.9; 

Approximate entropy; Quantifying 

movement 

patterns 

Accelerometer 

and 

Gyroscope 

[85] 

Frequency Analysis; 

Wavelet Decomposition Classification of 

Walking Patterns 
Accelerometer [86] 

Root Mean Square (X, Y and Z axis); 

Root Mean Square of SVM; 

Peak-to-peak values (X, Y and Z axis); 

Peak-to-peak values of SVM; 

Minimum values (X, Y and Z axis); 

Harmonic Ratio 

Ratio Index (X, Y and Z axis); 

Ratio Index of SVM; 

Ratio Index of Peak-to-peak values 

Stability and 

harmony of gait 

Accelerometer 

and 

Gyroscope 

[87] 

 

Chaccour et al. [49], proposed a global standard reference scheme for all FD and FP 

systems. The proposed method is a three-category based classification. Firstly, fall-related systems 

are separated into two groups: FD and FP systems. FD systems use the fall impact to trigger an alarm, 

whereas the FP Systems compute features of gait and balance. Due to a large number of studies and to 

the shortage of a global classification, fall-related systems can be arranged concerning their technology. 

The three main categories are Wearable based Systems, Non-wearable based Systems (NWS) and Fusion 

or hybrid-based Systems (FS). The proposed classification criterion is depicted in Figure 2.7.  

2.6.3 Fall Prevention Strategies 

Recognising active interventions to prevent falls and fall-related injuries amongst older adults is a 

field of research in geriatrics. Numerous published clinical guidelines evaluate the evidence for fall 

prevention strategies and present directions for evaluation and intervention [88]. Fundamental to the 

success of the before-mentioned interventions is not only to shape the minds, stands and roles of older 
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people themselves, but also the health and social care specialists who assist, and the broader 

communities in which the senior live. Someone will change his lifestyle if it is within their capacity to 

achieve so, if he possesses the means to execute change, if the changes are recognised as being of good 

to him and if the resultant advantages exceed the value in overcoming the hurdles [89].  

Commonly, fall prevention interventions can be classified within particular general categories [28], 

[88], [89]. Exercise has become a commonly considered intervention in fall prevention. It is proved 

that exercises can decrease fall risk factors such as poor balance, muscle weakness, gait impairment 

[88], and reaction time [89]. Endorsing fitting physical activities or exercises to enhance strength, 

balance, and flexibility is one of the most suitable and cost-effective approaches to prevent falls amongst 

the geriatric community [89] 

Diet and lifestyle influence morbidity and mortality, therefore, aged people must adopt a diet and 

a lifestyle that can minimise the risk of morbidity. A healthy well-balanced diet is fundamental to healthy 

ageing. A proper intake of protein, calcium, essential vitamins and water are necessary for a healthy life. 

If deficiencies do exist, it is prudent to expect that weakness, weak fall recovery and increase risk of 

injuries will ensure. A diet composed with a proper intake of calcium and vitamin D is found to improve 

bone mass amongst the elderly with low bone density and their musculoskeletal function. It also reduces 

the risk of osteoporosis and falling [89][88]. 

Figure 2.7: A three-category based global classification scheme of fall-related systems according to [52]. 
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Environmental evaluation and adjustment are another promising fall prevention strategy. 

Usually is practised as a method of recognising and excluding possible risks, such as clutter, poor lighting 

and throw rugs. The environment is then revised to increase mobility and security, for example, with the 

installation of grab bars, raising toilet seats and even lowering bed height. Nowadays, many self-

administered home safety checklists are created to evaluate older people homes, and to support in 

identifying hazards and propose recommendations for promoting a safer environment. For patients with 

a higher fall risk, usually, this assessment is accomplished by trained professionals, such as nurses or 

occupational therapists. This in-home evaluation allows the health professionals to access how the patient 

functions within the home, which help to name security problems that may not be identified with a self-

administered checklist [90]. Any risk-taking behaviours also improve the risk of falling in older age, such 

as climbing ladders, standing on unsteady chairs, hurrying with limited attention to the conditions or not 

using mobility devices prescribed such as a cane or a walker [88]. 

2.7 Machine Learning Algorithms in Fall Detection 

Machine learning is a field of computer science regarding programs and algorithms that learn from 

experience. Just as the type of sensors used in fall-related system change aside from the technological 

progress, FD algorithms also change. Xu et al. [7], reviewed the FD algorithms on the most cited works 

before and after 2014 until the end of 2017 and found that since formerly the most used sensors 

were accelerometers which detect accelerations in specific parts of the body, threshold-based 

algorithms were the most used. With the technological progress and the increasing usage of vision-based 

sensing with FD algorithms, the application of machine learning techniques has been 

significantly increasing, as seen in Figure 2.8, since the sensors nowadays can perceive more details 

in human activities [7]. For example, Aguiar et al. [91], using information from a built-in smartphone 

accelerometer, retrieved features and threshold information to detect a fall through DT. Moreover, 

Pierleoni et al. [92], with data acquired from an accelerometer, gyroscope, and magnetometer, used 

Support Vector Machines to choose acceleration thresholds to develop a FD algorithm. 
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Figure 2.8: Tendency of algorithms used in FD system: (a) main categories of algorithm used before 2014; (b) 
main categories of the algorithm used before. Taken from [7]. 

2.7.1 Model Evaluation 

In the evaluation of classification models, if their application leads to a misclassification, the 

performance of the chosen classifier decreases, increasing the error rate. Hence, classifier evaluation is 

essential in the learning progress allowing to access the performance of different algorithms which cannot 

be compared any other way.  Alternatively, to access the classifier performance, Cross-Validation (CV) 

can also be accomplished. 

CV assesses how the results of a statistical analysis will generalise to an independent data set. It 

is mostly used in machine learning, and one wants to estimate how accurately a predictive model will 

perform in practice. Normally it is given a dataset of known data to the classifier on which training is run 

and a dataset of unknown data on which the model is tested. Thus, the model will be tested only with 

unseen data to signal problems such as overfitting, selection bias and to understand how the model 

generalises to a different dataset which indicates who the system will perform when applied to real-world 

problems. CV involves partitioning a sample of data into complementary subsets, training the model with 

one subset and testing it with another. To reduce variability, multiple rounds of CV are performed using 

different partitions, and the validation results are averaged over the rounds to give an estimate of the 

model’s predictive performance. This technique is the method of choice in fall-related systems [5]. 

Usually, the results are stored in a confusion matrix, as seen in Figure 2.9, which allows visualising the 

performance of the classifier. 
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Figure 2.9: Confusion Matrix Example 

Numerous designations are frequently used along with the description of sensitivity, specificity 

and accuracy. They are True Positive (TP), True Negative (TN), False Negative (FN), and False Positive 

(PF).  Sensitivity (SENS), Specificity (SPEC) and Accuracy (ACC) are defined in terms of TP, TN, FN and 

PF. ACC is an evaluation measure that indicates the percentage of correct results that the classifier 

obtained, equation 2.1. The major disadvantages of ACC are the neglect of the differences between the 

types of errors and their dependence on the class distribution of the data, since it is usually important, in 

practical examples, the differentiation between the different types of errors.[3]. 

 
Accuracy=  

TP+TN

TP+TN+PF+FN
 (2.1) 

Although this metric is one of the first to analyses when evaluating the classifier, when the number 

of tests is not balanced, that is, the number of tests of each class is different this metric cannot clearly 

describe the effectiveness of the classifier. For this reason, it is necessary to calculate other metrics that 

capture the more specific aspects of the evaluation. PREC, is the metric that indicates the percentage of 

correct positive results of all positive results obtained by the classifier, given by equation 2.2. 

 
Precision =

TP

TP + PF
  (2.2) 

SENS, presented in equation 2.3, measures the proportion of current positives that are correctly 

identified. 

 
Sensitivity =

TP

TP + FN
  (2.3) 

SPEC displays the proportion of negatives that are correctly identified, and this metric is 

presented in equation 2.4. 

 
Specificity =  

TN

N + PF
  (2.4) 
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The Matthews Correlation Coefficient (MCC), is a metric used in Machine Learning for the 

evaluation of the quality of binary classifications, i.e., there are only two classes, consequently if there is 

a higher number of classes, the classification is done by joining several classes with respect to another, 

this process being iterative until there are no other possible combinations, this metric is presented in 

equation 2.5. 

 
MCC =   

TP ∗ TN − PF ∗ FN

√(TP + PF)(TP + FN)(TN + PF)(TN + FN)
  (2.5) 

The F1 Score (F1S) combines PREC and SENS. By equation 2.6, we can observe that the TN 

number is not considered in the calculation formula, so we can have the same value of this metric if we 

have a high or low TN value in the classification results.  

 

 
f1_score =   

2 ∗ (SENS + PREC)

SENS + PREC
  (2.6) 

 

Cohen’s Kappa (KAPPA) is a very valuable performance metric when faced with a multi-class 

classification problem. In those cases, measures such as ACC, or PREC may not provide the full 

understanding regarding the performance of the classifiers. For the computation of KAPPA is necessary 

the relative observed agreement among raters (Po) and the hypothetical probability of chance agreement 

(Pe), as seen in equation 2.7. 

 
Kappa =   1 −

Po − Pe

1 − Pe
 (2.7) 

2.8 Discussion 

A contextualization about falls, including its different stages, costs, classification criteria, risk factors 

and consequences, was presented. Then, all fall-related strategies common in literature were 

discriminated, including the recent trends, associated limitations, difficulties, and future research areas 

for designing fall-related system with prediction capabilities.  

FP is a complex multifactorial problem which includes the interaction between several risk factors 

already disclosed. Current FD and FP systems are primarily tested in controlled conditions and 

do not take into account the interactions within the various fall risk factors. Furthermore, these systems 

need to be capable to contextualise the problem of falling in real-life scenarios where the accuracy of the 

systems is assessed. Also, future systems will require the merge for indoor and outdoor fall 

assessment with the smallest obtrusiveness to the subjects. The principal difficulties in producing 



32 

adequate FP systems involve assessing its reliability amongst frequent fallers and the geriatric 

community, safety and privacy in data transmission and power optimisation.  

Since the time interval between the detection of an imminent fall and its impact is relatively small, 

the devices being developed must increase this lead time. Consequently, the establishment of a 

framework that considers the perceptual information in order to monitor movement execution in real-time 

and use it to prevent unwanted situations such as falls is imperative. The system must distinguish 

normal gait from fall and PFS situations, using proper gait’s parameters using a sensorial 

system during ADLs. 

3. CANES AS A FALL-RELATED SYSTEM 

3.1 Introduction 

The scientific community has been proposing several different solutions concerning fall-related 

technology, the most common one attaching a sensor to the subject's body. Even though the system 

can detect the fall, the system will weight on the individual [51], [52]. In contrast, image-based 

methods employ specific algorithms to liberate the subject of any wearable system. The entire system 

is constrained due to environmental reasons and must be installed in a suitable place [48]. Most 

of the developed projects focus on FD and employ methods supported by vision, wearable and 

environmental approaches discussed in Chapter 2, subsection 2.6, “Fall-Related Tools And Existing 

Strategies”. 

Initially, all developed systems trusted on the individual to trigger an alarm by pressing a button 

when a fall happened. In the case of inaccessibility of the alarm system, loss of consciousness or even if 

the subject is in a coma or disabled, all system is insignificant. Nowadays, most research focuses on 

developing methods in which a fall is automatically detected, and an alarm is triggered. The majority uses 

acceleration sensors, or image processing algorithms along with vision-based sensors. Regardless, many 

sensors need to be installed so the system can work effectively, nonetheless, installing sensors on the 

body of the elderly can reduce the flexibility of their movement, and the indoor sensors cannot detect the 

accidents that happen outside the surveyed areas [49][10]. 

Thus, the use of accessories where elderly may take with or wear on, e.g. necklaces, bracelets, 

watches or canes, can be a serious alternative. Since a real-time monitoring system needs a 

considerably sized battery to operate for a reasonable period, the use of smaller devices will result in a 

low power supply for a short amount of time. Consequently, the systems need to be charged several 
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times a day, which is not optimal. The constant hand movement is also a factor to discard its use, which 

is too high to monitor for long periods. So, if we would like to insert sensors on these objects for FD and 

FP, then canes can be a great choice due to its size, but also since they are commonly used by the 

geriatric community [93].  

3.2 Canes 

Assistive devices such as canes are defined as mechanical implements specifically intended to 

assist individuals with disabilities to accomplish their needs, providing biomechanical support for their 

mobility [94]. Canes are often prescribed to patients with indications of gait/balance disorders and 

weakness in inferior members, which are one of the leading indicators of falls [95]. Typically, canes are 

prescribed to people with a reasonable level of impairment and when minimal stability is needed [96], 

[97]. They are operated by the individual dominant hand or the hand opposite of its weakness or injury 

since it can shift up to 25% of the individual's weight [97], [98]. By reducing weight supported on 

the individual legs, these devices can aid ease pain related from injuries or clinical pathology’s 

such as hip fracture, or compensate for weakness or impaired motor control of the leg [96]. Canes 

increase the person stability by widening the base of support, reducing the weight load on the inferior 

extremities, and giving the user a sense of safety, which results in a lower fall risk [45]. The use of 

mobility aid devices is expected to increase since the elderly community is growing, and device 

ownership increased with age [45]. More than 4 million people in the USA alone use a cane.  

Hui-Ching [99] conducted a research in order to study the use and the attitude of the geriatric 

community towards the use of assistive devices. The attained results revealed that most older people had 

a neutral to a positive outlook towards the adoption of assistive devices in their lives. Moreover, 

the will to preserve their independence and rely less on personal assistance was crucial to the use of 

assistive devices. Furthermore, there was no notable relationship linking the use of assistive devices and 

living situations. Even though social influences were noticeable in the use of assistive devices, they were 

insignificant. The existing negative attitude towards these devices pointed out to be through their first use, 

and after a period, older people accepted and began to enjoy their assistive devices. It was also 

concluded that the reasons for the abandonment of assistive devices were mainly design related, and 

due to the device bulkiness, reliability, performance and difficulty of use. 

The association between the use of mobility aid devices and the increased risk of sustaining a fall 

are to this day not clear. The fall risk and limitation upon the use of canes develop from several factors 
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including the inappropriate use and abandon of canes, usage of the device in hazardous environment 

and disruption of balance as a result of attention between cane mobility and manipulation [94]. 

3.3 Canes in literature 

3.3.1 Search strategy & Eligibility Criteria 

A comprehensive search was accomplished in order to understand the following topics: i) what fall-

related strategies are implemented with canes; ii) how canes are instrumentalized; iii) how and what 

algorithms are implemented; and iv) what researchers did to validate their system to be able to construct 

an innovative cane capable of detecting and avoiding falls. 

On October 9th, 2018, the search was completed in the IEEE Xplore Digital Library, Scopus and 

Web of Science with the keywords (“Cane” OR "Walking Stick") AND ("Near Fall" OR "Fall Detection" OR 

"Fall Prediction" OR "Fall Prevention" OR "Falling") and in total 325 articles were found. To decide which 

ones were most relevant, articles were selected based on whether the system has implemented fall 

detection/prediction mechanisms with built-in technology into the cane, in total 9 articles were selected. 

3.3.2 Search Results 

All the found studies implemented FD systems and only some FP strategies. Di et al. [100]–[103] 

and Yan et al. [104] tried to avoid falls by using a cane robot with an omni-wheel base different from the 

other instrumented canes. Di et al. developed several systems with embedded fall-related methodologies. 

In 2011, designed an omni-wheeled cane robot with an FD and FP system. With a combination of two 

LRF and six force sensors, a fall was detected through the computation of the COG of the subject which 

was estimated due to the force applied in the cane and from the subject’s legs and body position. In order 

to prevent a fall, an impedance control system was implemented in which the robotic cane moved in 

order to equal the fall direction to the direction from the robot and the user. However, the experimental 

protocol did not include falls, and its results were not disclosed [103]. Later, in 2013, another prototype 

of an intelligent cane robot also comprising FD and FP was developed based on the Zero Moment Point 

(ZMP) Stability Theory. Associating the collection of different data from an accelerometer, gyroscope, 

magnetometer, LRF and pressure sensors, the ZMP is estimated. Since this feature equals the ground 

point where the total moment produced due to inertia and gravity is null, when the ZMP surpasses the 

support polygon, a fall is imminent. Moving the robotic cane in the direction of the eminent fall, ensuring 

the ZMP remains inside the boundaries. Thus, a fall is prevented. In this work, the experimental protocol 

and results are not revealed [101], [102]. For last, in 2016, the same research team realised a 
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comparison between the employment of two different algorithms for FD based on a real-time calculation 

of the individual's COP and its leg motion which obtained an accuracy of 75% and 91,2% respectively. 

Regarding the FP mechanism, a similar impedance control system to the one previously described was 

implemented. With the fall prevention results, it was concluded that the algorithm based on the relative 

acceleration of each leg is faster by 30%, detecting a fall in less than 210 mms [100].  

Yan et al. [104] developed a cane-type walking-aid robot in which his system was based on the 

Human-Robot Coordination Stability which can describe the stability of the integrated human-robot system 

during the user operating the cane robot. Although the results from their experiments were not uncovered, 

they concluded that the system reached the expected effect for stability measure and provided a new way 

for FD and fall prevention. The previous articles described a cane robot with an omni-wheel base, and for 

the computation of the individuals, COP included wearable foot pressure sensors, which is not the 

intended. 

Excluding robotic systems with a wheeled base, generally, contact and triaxial inertial sensors are 

the most common sensors embedded into canes. More specifically, accelerometers, gyroscopes, 

magnetometers and FSR with a Sampling Frequency (FS) between 15 and 100 Hz. Its location can be in 

one of three places, near the canes handle  [95], [105], into the handle [95], [104], or in its base near 

the tip [12], [98]. 

  Concerning the implemented algorithms, it is possible to say that the strategies can be 

considered as complete in terms of low-power consumption, considering that almost all developed system 

implemented threshold-based algorithms of the acceleration data for classification [12], [98], [105]. After 

the collection of enough acceleration data from different fall directions, thresholds are computed, and 

when its values exceed a single value or several thresholds in a specific sequence over a time period, a 

fall is detected. This method is prone to give PF outcomes to many exceptional scenarios. As a result, 

algorithms used in fall-related systems tend to increase the number of devices with embedded machine 

learning algorithms; nevertheless, its implementation in canes is yet to be completed. Therefore, Lan, M. 

et al. [95], employed an algorithm based on subsequent matching which instead of focusing on 

instantaneous values from suchlike acceleration threshold-based strategies, it emphasises the general 

signal shape. 

From the acceleration data acquired, features can be extracted from the signal in the time 

domain. The Sum Vector magnitude is the most commonly computed feature [95], [98], [105] because 

the fall direction and the posture of the subject are almost impossible to predict considering there is not 
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a pattern observed in a single acceleration axis. When the acceleration data from all the different axis are 

summed, a pattern describing the different stages of a fall is observed [105]. 

Regarding the experimental protocol and age/health status of the subjects, only half of the 

systems disclosed it. All the systems were tested with healthy subjects [95], [100], [105] excluding 

Lachtar, A. et al. [12], which is not ideal whereas the target population for fall-related systems is the 

elderly community. The fall direction can be divided into forward, backward and sideward [12], [95], yet, 

[105] only consider forward and backwards falls and [100], [104] only account for falls in the forward 

direction. The number of trials for each case is divided between 10 [105] and 30 [12], [95]. According 

to the experimental protocols, the success detection rate of the systems can achieve between 84% 

(forward and backwards falls) [105] and 100% (forward falls) [12], [95]. 

As a result, information about sensors used on canes and their location were combined. In Figure 

3.1, four cane’s locations, as well as three body locations (to assist the cane device) are pointed, and 

associated numbers correspond to sensors used by found studies. The matching between numbers, 

sensors and studies is found in Table 3.1. 

All information regarding the systems mentioned above including their features, sensors, 

algorithms and/or strategies, sensors’ attachment location, type of falls and ADL considered, subjects’ 

information, experimental protocols, performance/results and other important information are disclosed 

in Table 3.2. 

 

Figure 3.1: Four cane’s locations, as well as three body locations where sensors are 
attached (numbers correspond to sensors – description available in Table 3.1). 
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Table 3.1: Matching between numbers from Figure 3.1, sensors and found studies 

Study Accelerometer Gyroscope Pressure 

Sensor 

LFR Force/Torque 

Sensor 

Magnetometer 

[95] 1 2 3,4    

[105] 5      

[98]  6     

[104]    7 8  

[100]    9 10,11  

[101][102] 12 13,14  15 16,17 18 

[12] 19     20 
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Table 3.2: Features, sensors, algorithms and/or strategies, sensors’ attachment location, type of falls and ADL’s considered, subjects’ information, experimental protocols, 
performance/results used in different fall-related strategies related to canes. 

Study, Type 
of work 

Sensor type and 
specification 

Sensor 
placement 

Falls and ADL 
Sample size 

(n), Age, 
health status 

Experimental protocol Features 
Algorithm 

development 
Accuracy 

 [95], FD 

1 Acc (Triaxial, Fs: 
26 Hz) 

Near the handle Fall: Forward, 
backward, side and 

free-fall 
ADL: Slow walk, Fast 

walk, sit & stand, stand 
still, swing, lay on the 

lap 

n = 3 (healthy, 
2 men, 1 
woman, 

dissimilar body 
builds) 

Each type of fall 
performed 30 times 
ADL’s performed 30 

times excepting standstill 
(30 second period) 

SVM (x and 
y-axis) 

Subsequence 
matching 

100% forward; 
97,8 % Backward; 

98,9% Side; 
100% Free-fall 

3 Gyr 
(Uniaxial, Fs: 26 Hz) 

Perpendicular to 
each other near the 

handle 

2 Pressure Sensors 
(Fs: 26 Hz) 

Cane tip and handle 

 [98], FD 
1 Gyr 

(Biaxial, Fs:15Hz) 
The base of the 

stick 
NA NA NA 

SVM (axis 
parallel to 

the ground) 
Threshold NA 

 [105], FD 
1 Acc (Triaxial, Fs: 
42 Hz, sens: ±8g, 

res:0.1g) 

Top of the cane 
before the handle 

Fall: forward, backward 
ADL: Walking normal, 

trot, stroll 
Cane: freely falling, 

thrown out 

n = 3 (young) 

Each mode (fall + cane) 
was performed 10 times. 

Walking: walk-in hard 
ground for 1 minute 

SVM (x, y 
and z-axis) 

FSM with 
several 

thresholds 
84% 

 [12], FD 

1 Acc (Triaxial, Fs: 
100Hz) 

Base of cane 

Fall: forward, backward, 
sideways 

ADL:  Slow walk, fast 
walk, swing, sit and 

stand, lay on the lap, 
free fall 

n = 1 (elderly) 
30 trials for each type of 

fall and ADL 

Linear and 
gravitational 
acceleration 

Multi-Threshold 
100% forward; 

96,7% backwards; 
100% sideways 1 Mag (Triaxial, 

Fs:100Hz) 
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Study, Type 
of work 

Sensor type and 
specification 

Sensor 
placement 

Falls and ADL 
Sample size 

(n), Age, 
health status 

Experimental protocol Features 
Algorithm 

development 
Accuracy 

[100]FD/FP 
 

1 force/torque 
sensor  

handle 

Fall: forward 
Walk: normal/abnormal 

n = 3 (male) 
Each subject walked for 

12 min forward, turn 
right/left, stumbled 12x 

COP Threshold 75%  
4 Flexiforce Load 

sensors 
Insole of feet 

1 laser rangefinder Robot base 
Relative 

acceleration 
of each leg 

Fuzzy Control 
System 

91,2 %  

 [101][102] 
FD/FP 

1 force/torque 
sensor  

Handle 

NA NA NA ZMP Threshold NA 

4 Flexiforce Load 
sensors 

Insole of feet 

1 laser rangefinder Robot base 

9 axis sensor 
(Accelerometer, 

Gyroscope, 
Magnetometer) 

Back of heel 

 [104], FD/FP 

4 Force/Torque 
sensor 

Under the handle 

Fall: forward NA NA 

Robot 
Stability 
Users 

Stability 

Threshold NA 

2 LRFs 
Robots Body 

towards/ backwards 
the user 

 [103], FD/FP  

2 LRFs 
Robots Base / 

Robots body at hip 
height  

Walking: Stop, straight 
forward, straight in 

other directions, turn 
right, turn left  

NA Subjects lean to the right 

COG; 
Distance 
between 
user and 

robot; 

Multi-threshold NA 
6 Force/torque 

sensor 
Handle 
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3.4 Commercial Canes 

 Even though FP systems are relatively new regarding canes, FD systems have been employed for 

a considerable amount of time as we can see from the bibliographical search above. After an extensive 

search for commercial canes with fall-related embedded systems, it was possible to find two products in 

which one is available for sale. 

3.4.1 iStand SmartCane™ 

 The iStand Smart Cane, Figure 3.2, is a device manufactured by WhatBox, Inc., that offers 

families a trackable cane with Global Positioning System (GPS) and a FD system. The device has Bluetooth 

capabilities which allow it to pair with the iStand cane mobile application, ending the communication gap 

and allowing real-time visibility for family, friends and caregivers. All notifications are sent through 

Facebook or text messages in the event of a lost Cane, low battery, or FD. Every cane has a flexible shaft 

for joint comfort and a no-trip base that stands alone [106].  

 Optional features, which are only available for a monthly fee, include a 911 panic button, daily 

activity collection such as the number of falls sustained and fingernail sticker with a QR Code that can be 

scanned by any smartphone to help a person with Alzheimer’s to find the way home or call its caregiver 

if he/she gets lost. The device is currently available only in the US for $99 [106].   

 

Figure 3.2: iStand Smart Cane. Taken from [106] 
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3.4.2 Dring Smartcane 

 The Dring Smartcane from French start-up Nov'in, Figure 3.3, appear for the first time in the 

Consumer Electronics Show in 2017 towards people with decreased mobility. The cane has a built-in 

GPS, Acc and Gyr to track the individual’s movements, is also equipped with an alert system that connects 

directly with the GSM network suppressing the need of a smartphone to be paired with. In case of a fall, 

the cane can send back an alert to a selected caregiver which can respond with a confirmation that is 

sent to the device, letting its user know that someone has been warned. With the purpose of every device 

being able to adapt to a specific user, artificially intelligent algorithms were implemented to process the 

data which helps understand a user's habits and movements to infer low activity, tiredness and other 

changes in walking patterns that can be related to a deteriorating condition. The device also has long 

battery life. The company estimates several weeks between two consecutive charges. The release date of 

the device is yet to be disclosed [107]. 

 

Figure 3.3: Dring Smartcane. Taken from [107]. 

3.5 Patent Review 

3.5.1 Search Strategy 

 On October 10th, 2018, an advanced patent search on international patents was performed on 

Espacenet /http://spacenet.com), which allows free access to over 100 million international inventions 

and technical developments. The search parameters for the smart search based on title and abstract 

were (“Cane” OR "Walking Stick") AND ("Fall" OR "Near Fall" OR "Fall Detection" OR "Fall Prediction" 
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OR "Fall Prevention" OR "Falling"). The selection of patents was based on available schemes, and 

appropriate titles and abstracts. 

On October 11th, the previous procedure was also performed this time on the United States Patent and 

Trademark Office (http://patft.uspto.gov). The selected keywords the same as also the selection process. 

3.5.2 Search Results 

 Regarding the search process accomplished, a total of 17 patents were selected in the end. On 

Espacenet, 404 patents were found, and only 50 were selected based on its title. In turn, 6756 patents 

were found on the United States Patent and trademark office, where 25 patents were selected similarly 

as Espacenet. Ultimately, from the 75 patents selected, 17 were included based on abstract, description 

and drawings.   

 Figure 3.4 illustrates a flow diagram of the entire study selection process. All articles were excluded 

because they focused in several different areas, such as sugarcane cleaning, separator, harvester, purifier 

and planter, bamboo canes, walking aids which do not fall, fall-related systems not related to canes, 

improvements in canes, walking aid holders, skin treatments and methods related to the biomass 

industry. 

 

Figure 3.4: Flow Diagram PRISMA. 



43 

  From the 17 chosen patents, it was selected the three that most closely relate to the concepts 

developed, Table 3.4. This can be related to concepts developed on two strands: whether it has fall 

detection/prediction mechanisms and whether or not it has only built-in technology into the cane. 

Table 3.3: The three most similar patents with name, number and scheme to the FD and FP system developed 

Name and 
Reference 

Anti-falling walking stick for an old 
person  
[108] 

Robotic cane 
devices 
 [109] 

Walking Support Device 
and Fall Prevention Method 

[110] 

Patent 
Number 

CN20141567378 20141023 
US 

20130041507 
A1 

JP20140103331 
20140519 

Scheme 

 

 
 

 

 All the three chosen patents present FP mechanisms. The patent regarding the anti-falling walking 

stick comprises a walking stick shell, a supporting unit, a three-dimensional axial accelerated speed 

monitor and a central analysing unit in which the accelerated speed of the stick is supervised by a balance 

sensor, and the system can be unfolded automatically to keep it stable. When the subject walks unstably, 

is about to fall or even its already falling, a supportive leg can pop up automatically. Therefore, the user, 

can be successfully supported, and he/she is prevented from being wounded, or the injury degree is 

decreased by the new triangular support of the walking stick. Since a person can sustain falls in different 

directions, the central analysis unit analyses the received data, computes the characteristics of the 

changes and determines the direction of the fall. Thus, whether the leg needs to be ejected, and if 

necessary, selects the two branches closest to the fall direction to pop up [108].  

 The robotic cane device includes a grip handle equipped with force sensors, a cane body extending 

from the grip handle, a motorised omnidirectional wheel, a balance control sensor and a controller 

module. With the data acquired and computed, the omnidirectional wheel will attempt to retain the robotic 

cane in a substantially upright position. As regards to the FP mechanism, if the grip force value surpasses 

the grip force threshold such that the motorised omnidirectional wheel quickly provides a counterforce 
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that is contrary from a user weight projection, a fall can be avoided [109]. Finally, the walking support 

device and fall prevention also comprises an omni wheeled base with a fall prevention mechanism linked 

to the computation of the subjects ZMP much like Di, P. et al., 2013, [101], [102]. An LRF attached to 

the upper surface of the base of the system can detect the positions of both legs below the knees, 

measuring its distance to each leg. If case the ZMP of the pedestrian surpasses the plane connecting 

both its legs and the robotic system, it is determined that the user is in a pre-fall state. As a result, the 

system moves to the direction opposite to the fall direction, returning the individuals ZMP to inside the 

plane [110]. 

3.6 Discussion 

 After a thorough, careful and comprehensive search, it can be concluded that till this day, it has 

not been developed a cane system that focuses on the temporal window that precedes a 

fall and prevents/minimises it by predicting a fall. 

 Regarding commercial canes only one was available for sale concluding that the only systems 

comparable to the envisioned only embed FD mechanisms. As far as patents go, from the three selected, 

none can also be directly compared to the projected system. Only the robotic cane system with an omni-

wheeled base comprises fall prevention algorithms. 

 Several steps have already been taken in this direction, and one of the conclusions reached is that 

wearable systems, despite their advantages, are still seen with some rejection by patients 

regarding their use. Furthermore, these devices are reliant on the subject, not only remembering to 

wear the device but also choosing to wear the device. Also, the installation of many sensors in the elderly 

can affect the flexibility of their movement.  

 The main challenge in this area is to develop highly accurate devices that are as unobtrusive as 

possible. As stated, the number of prescribed walking aids is increasing due to gait/balance disorders 

and lower limbs weakness. Since they are relatively low cost, the cane is an ideal candidate for 

universal healthcare and implementation of fall-related mechanisms incorporating FD and 

FP methods. 
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4. SYSTEM OVERVIEW 

Up to the moment, it has been concluded that it has not been developed a cane system that 

focuses on the temporal window that precedes a fall and prevents/minimises it by predicting a fall. 

Further, limitations of the currently developed systems were raised, so it is mandatory to accomplish the 

critical literature research and carry out all the essential requirements to be met. In this chapter is 

presented the proposed solution. Thus, it is presented the importance of each used components and 

their functions to explain all the systems that make up the global system developed: The Assistive Smart 

Cane (ASCane). 

4.1 Basic Architecture of Fall-related Systems 

Fall-related systems follow three main phases of operation: sense, analysis and 

communication/operation. The first phase is where suitable physical quantities are measured using 

appropriate sensors including, for instance, accelerometers, gyroscopes, temperature sensors and 

magnetic field sensors. According to Chapter 2, the tri-axial accelerometer is the most employed 

sensor in fall-related projects [111]. 

Subsequently, the data and signals acquired need to be analysed. To accomplish it, relevant 

features are computed, and decisions are made by classifying those extracted features. Most of the fall-

related systems use threshold-based algorithms due to its low computational cost and reduced battery 

consumption. The application of machine learning algorithms has increased dramatically over 

the few past years due to the increased computational power of the latest microcontrollers [7].  Aziz et 

al. [111] compared the accuracy of FD algorithms, more specifically, threshold-based versus machine 

learning. The fall and non-fall trials data were acquired from controlled laboratory conditions and after 

evaluating five different machine learning techniques (Logistic Regression, Naïve Bayes, Nearest 

Neighbor, Decision Tree, Support Vector Machine) and five different threshold-based algorithms 

(Kangas2Phase, Kangas3Phase, BourkeUFT, BourkeLFT, Bourke4Phase). It was concluded that 

machine learning algorithms provided higher overall SPEC and SENS. 

Whenever a fall-related system detects or predicts a fall, it communicates with the user, pre-

selected caregivers and another system to prevent the imminent fall.  In many systems, the device expects 

feedback from the user by verifying the preliminary decision and, consequently, improve the overall 

sensitivity of the system. Furthermore, rather than alerting the user for the pending fall, other systems 

can be activated (e.g. cane robot [100], [104]) to protect the user from harmful consequences of a fall, 



46 

as disclosed in section 2.7. The underlying architecture of the proposed strategy for the current device is 

depicted in Figure 4.1. 

 

Figure 4.1: Common basic architecture of fall-related systems, adapted from [111]. 

4.2 Global Architecture 

The strategy imposed in this chapter follows the standard architecture of fall-related systems 

unveiled in subsection 4.1. The implemented system is composed of six central systems: the Processing 

Unit, the Inertial Acquisition System, the Data Storage System, the Haptic Feedback System, the cane tip 

Force Acquisition System and the Lighting Acquisition System.  

These primary systems and the respective components are displayed in Figure 4.2. The system 

was power supplied by a portable computer through the micro USB connector with +5V. The inertial 

measurements are collected through the IMU (MPU 9250), and the processing unit (STM32f303k8) 

receives this information to process the acquired data and save it to the micro SD card. Also, the force 

applied on the canes' tip is saved onto the SD card through the FSR. Depending on the readings from the 

ultrasonic sensor (MB 1010), the processing unit delivers signals to the haptic drivers (DRV 2605) to 

control the vibrotactile units and provide the vibrotactile feedback. The respective breadboard 

implementation with the different subsystems delimited is depicted in Figure 4.3. 
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Figure 4.2: The systems architecture overview, illustrating the central systems with the respective components and 
interfaces between them: the processing unit (delimited at red); the Inertial Acquisition System  (delimited at blue) 
constituted by an MPU 9250; the data storage system (delimited at green) composed by a micro SD card and the 
respective interface module; the Haptic feedback System (delimited at purple) with the haptic drivers, the 
vibrotactile units (ERM motors) and the ultrasonic sensor; the power supply (delimited at brown), the Light and 
Force Sensing System (delimited at yellow and pink, respectively), and the algorithms development tool (delimited 
at marron). 

 

Figure 4.3: The ASCane System breadboard implementation. 
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4.3 Hardware Overview 

4.3.1 Processing Unit 

The processing unit is an STM32 Nucleo-32 Development board, with an STM32F303K8 MCU. 

This development board gives an affordable and flexible way for users to tackle new ideas and develop 

prototypes with the STM32 microcontroller, picking from numerous combinations of performance, power 

consumption and features. The microcontroller presents a maximum clock speed of 72 MHz, a wide 

range of PWM outputs and analogue inputs, supports I2C and SPI communication and up to two ADC 

0.20  (up to 21 channels) with a selectable resolution of 12/10/8/6 bits. The STM32 Nucleo-32 board 

integrates the ST-LINK/V2 debugger, and it comes with the STM32 comprehensive software HAL library. 

The board can operate on an external supply of 3.3V, 5V or from 7 up to 12V [112]. The mainboard 

features are listed in Table 4.1.  

Table 4.1: STM32f303k8 Characteristics [112] 

Parameter Value 

Microcontroller STM32F303K8 
Architecture ARM 

Voltage Supply (USB) 5V 
Voltage Supply (External) 3.3V; 5V; 7 – 12V 

Memory flash 64 KB 
Pins 32 

Analog Pins 9 
Clock Speed 48 MHz 

SRAM 16 KB 
ADC 2x12-bit with 9 channels 
DAC 2x12-bit with 9 channels 

Timers 11 
 

The I2C pins provide communication with the IMU to process the acquired acceleration and 

angular velocity. It also provides an interface with the Haptic drivers to control the vibrotactile motors, in 

a PWM mode through the use of the PWM output pins. Also, the SPI pins enable the communication 

between the SD Card Module Interface and the Arduino board. The board pinout, including the pins 

legend, is depicted in Figure 4.4. 
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Figure 4.4: Stm32f303k8 board pinout and pins legend [113]. 

The MCU was programmed in the Keil uVision5 Integrated Development Environment (IDE), with 

the aid of the STM32CubeMX firmware. This firmware is part of STMicroelectronics STMCube original 

initiative to make developers’ lives easier by reducing development effort, time and cost. By selecting and 

configuring the MCU peripherals, it generates the code in C, using the HAL library, and create a Keil 

project with the code generated [114]. The STM32CubeMX Pins used in this project and their 

corresponding STM32f303k8 Pins, their function and to where they are connected is summarised in 

Table 4.2 [113]. 

Table 4.2: STM32CubeMX Pins used and corresponding STM32f303k8 board Pins, their function and connection. 

STM32CubeMX 

Pins 

STM32f303k8 

Pins 

Pin 

Function 

Pin connection 

PA0 A0 ADC1 entry 1 Button 

PA1 A1 ADC1 entry 2 Ultrasound 

PA2 A7 ADC1 entry 3 FSR 

PA3 A2 ADC1 entry 4 LDR 

PA4 A3 GPIO Output Yellow LED 

PA7 A6 
PWM Timer 

17 Channel 1 
IN (DRV2605) 



50 

STM32CubeMX 

Pins 

STM32f303k8 

Pins 

Pin 

Function 

Pin connection 

PA9 D1 GPIO Output Red LED 

PA10 D0 GPIO Output EN (DRV2605) 

PA11 D10 GPIO Output D3 (SD Card Shield) 

PB1 D6 GPIO Output Green LED 

PB3 D13 SPI1 SCLK CLK (SD Card Shield) 

PB4 D12 SPI1 MISO D0 (SD Card Shield) 

PB5 D11 SPI1 MOSI CMD (SD Card Shield) 

PB6 D5 I2C1 SCL 
SCL (DRV2605) 

SCL (MPU 9250) 

PB7 D4 I2C1 SDA 
SDA (DRV2605) 

SDA (MPU 9250) 

4.3.2 Data Storage System 

To store the acquired gait data during the experimental tests, an SD card with enough memory 

was used to store the data over a substantial period.  Even though the microcontroller processing unit 

includes 64kB in flash memory, this is an insufficient quantity of built-in storage for the current proposal. 

Therefore, it was used an SD card, as an alternative. 

For an Fs of 200Hz, considering a test duration of 60segunds, and at least 10 trials per subject, 

it is needed an SD card with at least 10.2 Mb. There are two ways to interface with SD cards: Serial 

Peripheral Interface (SPI) mode and Secure Digital Input Output (SDIO) mode. The SDIO mode is faster 

but is more complex, and module used only supports SPI. Also, the SPI protocol can be interrupted while 

the software code is running, and the SDIO cannot. Figure 4.5 depicts the used connections between the 

processing unit and the micro SD card Module. Also, Table 4.3 sums the module main features [115]. 

 
Table 4.3: Micro SD Card Shield main characteristics [115] 

Parameter Value 

Voltage Supply 3.3 V 

Dimensions 3.5 cm x 2.2 cm 
Interface SPI and SDIO 
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Figure 4.5: Implemented connections between the processing unit and the micro SD card Shield. 

4.3.3 Haptic Feedback System  

The ability to conduct activities like walking, sit-to-stand and stair negotiation determine the 

independence of elderly patients. Incapacity in ADL became a frequent obstacle for elderly adults. 

Accompanying the deterioration of functional capacity and skills, older people are limited in their ADL. 

Their lives become more and more semi-dependent until they are entirely dependent. Typically, they 

require to get someone’s help to bathe, going down and climbing up the stairs and even walking. Climbing 

up and downstairs remains one of the five activities that older adults have difficulty at most [116][117]. 

Typically, assistive devices that incorporate haptic feedback in the form of mechanical vibrations 

are designed to assist blind users so that they can be guided into some specific direction. Nevertheless, 

a study accomplished by Boonsinsukh, R. et al. [118], documented that a light touch cue can be given 

while walking by the use of a cane. This augmented sensory information contributes to increased lateral 

stability while walking for subjects with stroke. By promoting the activations of weight-bearing muscles 

towards the paretic leg throughout the stance phase, greater balance is achieved when the paretic leg 

supports the body weight, which also increases the muscle activation. 

Afzal et al. [119], developed a cane concept in which haptic feedback on the canes handle was 

used for stability in walking. The research team concluded that the system provided rehabilitation during 

walking, and posture stability with a haptic handle. 

Miiõ Studio developed a cane which improves mobility for people who have Parkinson’s disease. 

Amongst the main manifestations of Parkinson’s disease is FOG. During FOG episodes, the patient’s 

brain senses an incapacity to move, even though their bodies might still be able to respond to commands. 

FOG episodes can boost the risk of falls and generally occur in narrow spaces and stressful situations. 



52 

The Albert cane, Figure 4.6, employs haptic feedback through built-in vibrational motors, 

stabilising the rhythm of the user’s walk [120]. Recent studies discovered that not only rhythmic 

stimulation, whether vibratory, visual, or auditory but also vibratory and auditory alerts can assist patients 

in avoiding so episodes [121].  

 

Figure 4.6: Albert Cane, designed by Miiõ Studio, taken from [120]. 

The human tactile sensory system is mediated via the cutaneous mechanoreceptors. They relate 

to our touch sensitivity, vibration, sense of position and pressure. The mechanoreceptors usually are 

susceptible to the deformation or stretching and are in numerous parts of the body, such as the skin, 

muscles and tendons. When stimulated, the sensory system transmits encoded information (e.g. location, 

intensity and duration) in subgroups of receptors, axons and neurons which stimulate the primary and 

secondary somatosensory cerebral cortex. Consequently, the receptors and their connection to the central 

pathways and target areas within the cerebral cortex establish the human vibratory sensory system [122]–

[124]. Usually, the receptors react to a form of energy, whether it is mechanical, chemical, thermal or 

even electromagnetic. Hence, each receptor, according to its distinct modality, serves as a transducer 

which converts the sensed data into action potentials. In this, skin receptors intervene in tactile sensitivity 

[122]–[124]. 

Generally, the skin vibration detection ranges between 80 and 300Hz.  Additionally, It is essential 

to remark that the amplitude of the vibratory mechanical wave does not relate to its frequency, and the 

perceived magnitude ranges between 17 and 30 dB [122]. Since a continuous decrease of the “firing” 

frequency of the nerve impulse occurs until it reaches the cerebral cortex, the frequency discrimination 

of the human body ranges from  80 to 250 Hz [122]–[124]. Therefore, it is crucial to understand that 
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the capacity of the mechanical receptors and the capacity of the sensorial information of the cerebral 

cortex, relative to the somatosensory system, are different. 

In conclusion, even though the skin can achieve a vibration detection between 80-300 Hz, the 

cerebral cortex only distinguishes frequencies between 80 and 250 Hz, as is described in Figure  4.7 

[122]. 

 

Figure 4.7: Representation of the frequency discrimination in the human body. 

The human glabrous skin (skin with no hair) and the skin with hairs present notable differences 

regarding their vibratory detection. In hairy skin, the vibratory threshold is higher when compared with 

glabrous skin, which is attributable to the fact that each skin type presents different receptors and afferent 

fibres [122]–[124]. In Table 4.4, it is presented the body sites with the highest sensitivity, respecting the 

sensitivity regarding the spatial location, the vibration and the pressure and the discrimination between 

two points, in descending order [123]. 

Table 4.4: Body sites listed in order of most sensitive to least sensitive for tactile sensitivity measures [123] 

Tactile Sensitivity 
Measures 

Body Site 
(listed in order of most sensitive to least sensitive) 

Pressure Sensitivity Forehead (face), trunk, fingers, lower extremities 

Two-Point 
Discrimination 

Fingers, forehead/face region, feet, arms, lower trunk 

Point Localization 
Face region, fingers, hallux, palms, abdomen, arms, lower legs, upper 

chest, thigh 

Vibration Sensitivity Hands, soles of feet, larynx region, abdomen, head region, gluteus region 

 

The lower frequencies depend on the sensory fibres associated with the hair follicles in the hairy 

skin (5-80 Hz). Contrarily, the higher frequencies (60-400 Hz) rely strongly on mechanoreceptors which 

are present in the glabrous skin. These specific mechanoreceptors, the Pacinian corpuscles, are the most 
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abundant mechanoreceptors that exist. They are presented in 20 to 70 layers.  Therefore, human 

vibratory perception depends principally on Pacini corpuscles [122]. 

As reported, the hairless areas of the skin are more sensitive to vibrations, which can be verified 

by Table 4.4.  The hands and the soles of the feet are the areas with higher vibration 

sensitivity [123]. Another critical factor is the patient's adaptation to the feedback. Adaptation happens 

if a stimulus is given for an extended amount of time. It is described by a decrease in the perception of 

the intensity of the signal and can occur for any stimulus. It can be avoided if stimuli are manifested for 

smaller periods. The adaptation stimulus can increase the threshold for the following stimulus [122]. 

Ultrasonic sensors are fit for close-range obstacle detection up to ten meters and provide multiple 

range measurements per second. The benefit of these sensors is its inexpensiveness, low power 

consumption and can continue operating in environmental situations whereas other sensors would fail, 

such as a smoked filled environment. 

To detect obstacles, the LV-MaxSonar®-EZ3™ (MaxBotix® Inc.) ultrasonic sensor was preferred 

due to its small dimensions, low power requirements (2.5 - 5.5 V), and detection angle, Figure 4.8. The 

detection capability of this ultrasonic sensor ranges from 0.15 to 6.45 meters, and the sensor operates 

at 42 kHz [125]. The sensor has two modes of operation. It can output an analogue voltage with a scaling 

factor of (Vcc/512) per inch. Also, the output is buffered, which corresponds to the most recent range of 

data. The sensor can also output a pulse-width representation of the detected range. The distance can 

be calculated using the scale factor of 147uS per inch. The mode of operation chosen was the one which 

utilises the output analogue voltage [125]. 

 

Figure 4.8: LV-MaxSonar®-EZ™ Series High-Performance Sonar Range Finder MB1010, taken from [125]. 

The Haptic Feedback system is constituted by the Haptic Drivers and the corresponding 

vibrotactile motors. The vibrotactile units used are the Precision Microdrivers 10 mm Vibration Motor 

Model Number310-103.005, a type of Eccentric Rotating Mass ERM motors, Figure 4.9 a). Due to their 

small size and enclosed vibration mechanism, vibrating coin motors are a popular choice for many 

different applications. The whole constitution of an ERM motor is portrayed in Figure 4.9 b) [126]. 
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Figure 4.9: a) Precision Microdrivers 10mm Vibration Motor Model Number 310-103 b) the constitution of the 
ERM motor. Taken from [126]. 

Concerning the haptic drivers, it was used the Texas Instruments DRV2605L Haptic Motor 

Driver, which is able of handling two distinct kinds of motors, ERM and Linear Resonance Actuator (LRA). 

The Haptic Motor Driver breakout board features six pins, as depicted in Figure 4.10. The supply pin 

(VDD), being recommend a voltage range between 2 and 5.2 V; the two I2C-compatible bus pins (SCL 

and SDA), the ground pin (GND); the multi-mode input I2C selectable pin (IN/TRIG); and the device 

enable pin (EN). The haptic drivers were used in PWM interface mode and operated with EN control. They 

accept a PWM signal at the IN/TRIG pin. The DRV2605 drives the actuator in this mode until the user 

sets the device to standby mode or to enter another interface mode. In this mode, a constant voltage 

from the PWM will induce the motor at a steady vibration speed, and, therefore, at a regular frequency 

and vibration amplitude until the supply is turned off. The EN pin of the DRV2605 device gates the active 

operation. When the EN pin is logic high, the driver is active. When the EN pin is logic low, the drivers 

enter the shutdown state, which is the lowest power state of the device [127]. 

 

Figure 4.10: DRV2605 Haptic Driver for ERM and LRA from Texas Instruments, taken from [127]. 

A considerable range of DC voltages can drive these motors. Nevertheless, it exists a “start 

voltage” which matches the lowest voltage that needs to be applied to ensure the rotation of the motor. 

As the applied voltage is increased, also the vibration frequency increases in an almost-proportionally 

way, as depicted in Figure 4.10 [127]. Figure 4.11 also shows the relation between the voltage applied 
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vs amplitude, current and efficiency of the ERM motor. The used connections between the processing 

unit and the Haptic feedback system are presented in Figure 4.12. 

 

Figure 4.11: Relation between the voltage applied vs frequency, amplitude, current and efficiency of vibration for 
the Model No. 310-103.005 10mm Vibration Motor - 3mm Type from Precision Microdrivers, taken from [127]. 

 

Figure 4.12: Implemented connections between the processing unit and the haptic drives with the respective 
vibrotactile motors and ultrasonic sensor. 

4.3.4 Inertial measurement unit System 

The MPU-9250, although only a single chip, internally consists of: an accelerometer and a 3-axis 

gyroscope - InvenSense MPU-6500, a 3 - axis magnetometer AK8963 from Asahi Kasei Microdevices 

Corporation and a processing unit called the Digital Motion Processor (DMP). Figure 4.13 displays the 



57 

diagram of the MPU-9250 with the main components and mode of communication with the 

microcontrollers. A communication interface can be established between the main microcontroller and 

the sensors via 400KHz Fast I2C or 1MHz SPI. The communication protocol chosen was I2C [128].  

 

Figure 4.13: Diagram of the MPU-9250 with the main components and its modes of communication 

Regarding the sensors reviewed in chapter 2 regarding fall-related systems, accelerometers, and 

gyroscopes are widely embedded into these systems. So, it is proposed to use those sensors in order to 

collect the data, which will serve as the primary source of signals used in the ASCane. The IMU will be 

mounted on the top of the cane since Chen et al. [105] studied acceleration readings in different places 

of a cane and concluded that the amplitudes of the acquired data in the “upper” location of the 

device were higher than the other locations. Since the higher the amplitude of the variation, 

discriminative characteristics of the signal are more easily observed, placing the sensing units in the 

upper part of the cane is more desirable. The embedded system also must be able to collect 

continuous readings from the sensors at a rate which meets the minimum requirements for FD systems. 

Bouten et al. [129], conducted a study in which a tri-axial accelerometer was described to conduct 

daily physical activity. It was concluded that a range of ±6g would suffice. For this reason, the closest 

possible sensitivity was chosen, ±8g. Regarding the gyroscope, studies regarding its range for human 

motion purposes were not found for canes. As a result, their operation range will be set according to 

studies conducted on FD [130]. Consequently, a sensitivity of ±2000o/s was chosen. Figure 4.14 depicts 

the used connections between the processing unit and the MPU 9250. 

Inertial sensors present measurements influenced by drifts and offsets. The characteristics of these 

changes are described in the datasheets given by the manufacturers. To correct the measurements, a 

calibration process is required. 

The IMU is placed on a surface as horizontal as possible on its different faces as described in 

Figure 4.15 a). These positions correspond to the alignment of the three accelerometer axis with the 

gravity. At every position, the gravity value is stored for 6 seconds, considering only the sensitive axis 

parallel to the gravitational force [131]. This calibration was accomplished every two weeks for 6 weeks, 

and the calibration values did not change significantly.  
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Figure 4.14: Implemented connections between the processing unit and the IMU. 

Regarding the gyroscope calibration, its offsets were measured every time the cane starts. A total 

of 500 samples are saved, and the mean values of each axis are subtracted to values of the readings 

during the experimental trials. The position of the gyroscope calibration depicted in Figure 4.15 b), which 

is the IMU orientation inside the ASCane. 

 

Figure 4.15: a) The six different positions for the extraction of Maximum and Minimum values of the 
accelerometer b) IMU orientation inside the ASCane. 

4.3.5 Force Sensitive Resistor Interface 

To obtain a voltage drop from the FSR sensor, a hardware interface is required to connect it with 

the MCU. For a force-to-voltage conversion, the FSR is connected to a measuring resistor in a voltage 

divider configuration, Figure 4.16, and the following equation (Equation 4.1) describes the output:  

 

 
VOUT =  

RM × VCC

RM + RFSR
  (4.1) 
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The output voltage increases with increasing force. If the resistors are swapped, the output voltage 

will decrease with increasing force.  The measuring resistor, RM (Figure 4.16) , is chosen to maximise 

the desired force sensitivity range.  

 

Figure 4.16: Voltage Divide Eletronic circuit 

The FSR chosen for the project was the FSR-402 from Interlink Electronics which have a circular 

sensing area with a diameter 12.7 mm, Figure 4.17. The FSR chosen for the project was the FSR-402 

from Interlink Electronics which have a circular sensing area with a diameter 12.7mm and thickness 

around 0.46mm. In this design, one FSR-402 will be used beneath the canes' tip. The readings from the 

FSR can identify when the cane is in contact with the ground [132]. 

 

Figure 4.17: Interlink Electronics FSRTM 402 Force Sensing Resistor, taken from [132]. 

4.3.6 Light Sensing Mechanism 

The designed circuit is based on an Light Dependent Resistor (LDR), that is, a resistance that 

varies its resistance by the amount of light that reaches it. An LDR has a semiconductor material inside 

it, which allows electrons to pass through when struck by light photons. Thereby, when the light strikes 

bend the LDR, it will enable the passage of electric current. The circuit shown in the following figure allows 

the construction of a simple adjustable dimmer detector. This circuit has a straightforward operation. The 

potentiometer together with the resistor R1 and the LDR form a voltage divider which, by the brightness 
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reaching the LDR, puts a variable voltage on resistor R2, which has the function of limiting the base 

current of transistor NPN BC547. The potentiometer allows to adjust and set the output voltage of the 

voltage divider that will be applied to the transistor base through R2. 

When the voltage reaching the base of the transistor reaches the value necessary for it to conduct 

conduction, current begins to flow from the collector to the emitter, as well as from the LED and resistor 

R3, and it begins to emit light. The described and implemented circuit is depicted in Figure 4.18. 

 

Figure 4.18: Light Sensing Circuit implemented and designed for the ASCane. 

4.4 Software Methodology Overview 

The main goals of this thesis are the development of strategies to distinguish not only normal gait 

from a fall and pre-fall situations but also to detect cane events with information acquired in a system 

embedded into a regular cane. Described in Figure 4.19, the sensor's raw data were collected from trials, 

and these data were normalized through a calibration process. Subsequently, for each trial acquired, all 

the features found in the literature were computed, as listed in Table XXIV, Appendix 3. Finally, depending 

on the what type of detection is desired, different methodologies were accomplished. All the process, 

starting from the experimental protocol to the results attained, are described in Chapters 5, 6 and 7 for 

FD, cane event detection, and PFS detection, respectively. 
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Figure 4.19: Main General block diagram for the methodology implemented. 

5. ASCANE FALL DETECTION SYSTEM 

The main goal of this chapter is to achieve a system capable of detecting a fall using inertial sensors 

embedded into the ASCane. It is hypothesised that the system will only detect falls from an ordinary cane, 

which corresponds to a fall from its user. A FD system will be implemented and tested by using data from 

an IMU attached to a cane. This chapter will be divided into four major parts: i) Detailed research of the 

existing FD methods in the literature; ii) Data collection through trials with healthy young subjects; iii) 

Implementation of several offline FD methods and some improvements to these methods; iv) Selection 

of the best FD method based on the collected data. 

Wearable FD systems regularly employ accelerometers. However, other sensors are used such as 

gyroscopes, magnetometers and barometers, have also been explored in the literature. In FD systems, 

sensor measurements are fed to an algorithm that identifies fall events. FD algorithms aim to 

detect accurately falls and not to generate false alarms during ADL. The algorithms suggested in the 

literature can principally be classified into two categories: threshold-based and machine learning 

algorithms. Nevertheless, the threshold-based algorithms can implement fixed or dynamic 

thresholds [133]. 

5.1 Threshold-based Algorithms 

In threshold-based algorithms, features are computed from sensorial data and are constantly 

compared with pre-defined thresholds [51], [52], [134], [135]. A multi-stage threshold system employs 

at least two different thresholds, and all need to be surpassed in an appropriate order over a specific 

period. 



62 

Bourke et al. [134], studied signals from accelerometers placed at the trunk and thigh, to discover 

if their peak values could be utilised to distinguish between ADL and falls. The team developed a threshold-

based algorithm through the computation of the acceleration SVM. The algorithm is based upon two 

different thresholds. If the Upper Fall Threshold (UFT) or the Lower Fall Threshold (LFT) is surpassed, a 

fall is detected. The complete algorithm developed is depicted in Figure 5.1. 

Regarding the UFT, for all the trunk and thigh signals, it was established at the smallest magnitude 

upper fall peak value registered for both locations separately. The UFT is connected to the impact force 

endured by the body when it impacts with the ground. Concerning LFT, they were set at the level of the 

smallest magnitude lower fall peak recorded. The LFT is linked to the approximation of acceleration with 

zero before the contact of the body with the ground.  

Thus, four thresholds were determined, as presented in Table 5.1, and transcending any individual 

limit would register that a fall had happened. Since these thresholds would also be applied to ADL, they 

were tested against recorded ADL to conclude regarding the extent of misdetection of ADL as falls. 

The UFT for each location provided greater SPEC than the LFT value. The UFT from the thighs 

provided a SPEC of 83.3%, as the LFT presented a SPEC of only 67.08%.  For the trunk, the LFT achieved 

a SPEC of 91.25%, concerning the UFT, all ADL tasks were correctly detected as non-falls, obtaining a 

SPEC of 100%.  

 
Figure 5.1: Flowchart of the threshold-based FD algorithm using accelerometric data by Bourke et al. [134]. 

FD upon impact is proven to be possible utilising data solely from a triaxial accelerometer located 

on the trunk. Nevertheless, if the 3-D accelerometer sensor fails for any reason, the fall cannot be 
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detected. Consequently, Bourke et al. [52], also developed a threshold-based algorithm which can 

automatically discriminate between falls and ADL, utilising a bi-axial gyroscope. After acquiring gyroscopic 

data from the sagittal and coronal planes (ωr, ωp) from both simulated falls (on healthy subjects) and 

ADLs (from elderly in their own home), it was concluded that the resultant angular velocity peak values 

for the recorded falls and ADL overlapped. Consequently, by setting a single-threshold, ADL can be 

misclassified as falls. 

In the end, three different thresholds were set. The first threshold (ωres) was established at the 

lowest recorded resultant angular velocity fall peak value, wich will guarantee that 100% of falls are 

accurately identified.  To differentiate some ADLs that could be detected as fall, the resultant angular 

acceleration (αres) and the resultant change in trunk angle (θres) were also computed. The resultant 

angular acceleration indicated the unforeseen change in the trunks rotation and was set at the lowest 

recorded αres in falls. The final threshold, the θres shows what angle the trunk had swept through in the 

time just before impact and was also set the lowest recorded θres in falls. The complete algorithm 

developed is depicted in Figure 5.2, and the corresponding thresholds are shown in Table 5.1. 

 

Figure 5.2: Flowchart of the threshold based FD algorithm using gyroscopic data developed by Bourke et al. [52]. 
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A single threshold for ωres rightly classified 97.5% of ADL as non-falls, which corresponds to a 

SPEC of 97.5%. By combining the threshold for ωres and αres, a SPEC of 99.2% was achieved. Finally, 

by merging all three thresholds, 100% SPEC was obtained. 

The algorithm introduced by Kangas et al.[51], is a multi-threshold algorithm based on the analysis 

of 4 acceleration parameters from the wrist, head or waist, Figure 5.3.  The parameters used were the 

SVTOT (which contains both the dynamic and static acceleration), SVD (which includes only the dynamic 

acceleration), Vertical Acceleration (Z2), the differences between the maximum and minimum 

acceleration (SVmaxmin) and the final posture, which is detected 2 seconds after the impact. The authors 

attained a FD SENS of 97% and SPEC of 100% from the waist. All the thresholds were adjusted until a 

maximum a maximum SPEC was reached. All the thresholds set for the different parameters and 

locations are summarized in Table 5.1. 

 

Figure 5.3: Flowchart of the threshold-based FD algorithm with in accelerometric data by Kangas et al. [51]. 
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Table 5.1: Threshold values for the different fixed threshold FD algorithms 

Study Parameter Location Value 
Type of 

Threshold 

Bourke et al. 

[134] 
SVM (g) 

Trunk 
3.52 UFT 

0.41 LFT 

Thigh 
2.74 UFT 

0.60 LFT 

Bourke et al. 

[52] 

ωres (rads/s) 

Trunk 

3.1 

UFT 

αres (rads/s2) 0.05 

θres (rad) 0.59 

Kangas et al. 

[51] 

SVMTOT (g) 

Waist 2.0 

Head 2.0 

Wrist 5.2 

SVD (g) 

Waist 1.7 

Head 1.2 

Wrist 5.1 

Z2 (g) 

Waist 1.5 

Head 1.8 

Wrist 3.9 

SVMaxMin (g) 

Waist 2.0 

Head 1.7 

Wrist 6.5 

5.2 Dynamic Threshold Algorithm 

Nyan et al. [136], revealed that falls could be identified with an average most extended lead-time 

of 700 msec under pre-impact FD, with 100 % SPEC (no false alarms) and 95.2% SENS (falls do occur 

but fails to detect them in 4.8% of trials).  

Furthermore, the researcher observed that the application of a dynamic threshold might decrease 

the false alarm rate. If the fixed threshold is estimated too low, the likelihood of the number of falls 

happening that are correctly detected will increase. Meanwhile, the PF rate, ADL which are classified as 

falls, will be increased simultaneously. Contrarily, if a fixed threshold-based method is established too 
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high, not only the false-positive but also the true-positive rate will decrease. Thus, fixed threshold-based 

algorithms can be insufficient to achieve the primary goal of fall-related systems due to inter and intra-

variability of subjects, and limited sample [51], [52], [134]. These methods should be adaptive and 

account for variability. 

Otanasap et al. [135], developed a dynamic threshold algorithm through accelerometry data, 

Figure 5.4. A Fixed Threshold (FT) is computed based on the data acquired from the subject while 

performing ADL, ADLacc. Secondly, the Dynamic Threshold (DT) is formulated by the FT added by a 

standard deviation calculated with the data gathered in the last second. The algorithm outputs a 

percentage which discriminates the possibility of a fall, reaching results of 97.4%, 99.5% and 95.3% for 

ACC, SENS and SPEC, respectively. 

 

Figure 5.4: Flowchart of the dynamic threshold model for FD using accelerometric data by Otanasap et al. [135]. 
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5.3 Machine Learning Algorithms 

In supervised learning, the classifier can learn on a labelled dataset. Therefore, it can construct a 

model that can predict the correct output about data it has never seen. Each input has the outcome that 

the algorithm should be able to predict which is used to evaluate its accuracy on training data [137]. 

There are two main fields where this kind of learning is helpful, which is in classification and regression 

problems. The first one concerns the type of problem where the output is discrete values which represents 

a specified category, in the simplest case conceivable, selecting between positive and negative. 

Regression problems intend to model the underlying behaviour of the data given to the classifier expecting 

it to provide an output based on past training stages, such as the price of a stock in 6 months [138]. In 

this type of learning, the output will always be the same for specific input. 

The field of unsupervised training is more complex, contrarily to supervised learning, the classifier 

has to learn to perform specified tasks without telling it how to execute them, that is to say, that only the 

predictor variables are given, therefore the training time is much longer [137], [138]. The output produced 

by the system may vary each run for the same input variable. 

Regarding reinforcement learning, the classifier outputs are actions, and the only guiding signals 

are scalar rewards, these ways, the systems learn based on interactions with the surrounding 

environment. Occasionally restrictions as a set of rules are imposed on the systems that influence its 

behaviour directly [138]. Since the output depends on the interactions made, it can change if the 

environment changes even if the input remains the same. 

To detect falls, systems normally respect a defined general model composed by different modules. 

The data collection module is responsible for collect all the information concerning the SOI’s gait. Since 

a dataset can have thousands of features, feature extraction is essential to minimise problems that could 

originate in future steps. Before the classifiers learn the features and can establish relationships between 

the dataset introduced, it must be divided into training and test dataset. 

5.3.1 Data collection 

The first step when collecting data is identifying the variables needed to accomplish the final 

result. In this case, considering fall-related systems, the collected data is the acceleration, angular 

velocity, speed and force measurement from different body parts. The data must be collected following a 

formal procedure to guarantee it is accuracy and validity [5].  
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5.3.2 Dimensionality reduction & Feature selection 

The size of the data currently available is massive and constantly increasing due to technological 

advances and cheap sensor manufacturing. Hence, researchers can calculate as many features possible 

from the data collected. Yet, this poses a challenge to the majority of machine learning algorithms due to 

a large amount of storage and computational power required [139]. Considering that raw data obtained 

from the sensor have insignificant information, feature reduction aims to diminish the problems 

aforementioned with choosing a small subset of relevant features removing irrelevant, redundant and 

noisy features, even though their existence does not affect the learning performance [5][139]. Irrelevant 

features are the ones that cannot support the classifier to differentiate between different classes, not 

make it able to predict an outcome [139]. 

Selecting the most relevant and not redundant information helps to generalise the model, being 

able to adapt appropriately to new, previously unseen data, obtained from the same distribution as the 

one used to create the model. Faster and cost-friendly are more advantages of feature selection [140]. 

Through feature selection, the meaningless information is removed, which translate in the advantages 

above described [5]. 

5.3.3 Feature Computation 

Feature computation is essential in the way that is a substantial influence in the following stages 

in which mathematical procedures and algorithms are applied to the information to recognise linear and 

non-linear combinations among the remaining features. Some of the procedures usually used are 

standardisation, Principal Component Analysis (PCA), signal enhancement and normalisation. Choosing 

the features that effectively will be used to construct the model is extremely important, which is why a 

meticulous study of the problem should be executed [5]. 

5.3.4 Learning Classifiers  

Regarding FD and prevention systems, supervised learning is widely employed, about the 

remaining subfields, hardly any information can be found about their use in this type of applications [5]. 

Some of the most used supervised algorithms are: support vector machines, Decision Trees and K-

Nearest Neighbours (KNN). Support vector machines are a class of supervised classifiers that attempts 

to find the hyperplane/line in n-dimensional space that’s able to separate different classes. In Support 

vector machines, the input data is transformed into a higher-dimensional space through non-linear 

mapping in which they are linearly separable wherein the initial space they are not. The training points 



69 

closest to the maximum decision margin are called support vectors, the higher the number of support 

vectors used, the change of overfitting is more significant since the classifiers are more tailored to the 

training data. When new data is presented to the algorithm, the data will be classified reliably on the 

section that it falls [5], [139], [140].  

In DT, the goal is to generate a model that predicts the value of a target variable based on 

numerous input variables. A decision tree is constituted by a condition/internal node, based on which 

the tree splits into branches. The end of the branch that doesn’t split any longer is the decision/leaf.  

For its construction, an attribute/node must be selected to place at the root and make one branch for its 

every possible value, which separates the example into subsets. This process continues iteratively in every 

branch until every instance of it have the same classification which should happen as fastest as possible 

since we seek small tree sizes. The decision of which attribute to split is made based on its measure of 

purity, measured in bits. The level of purity is the number of instances in the node that has the same 

class. To classify an unknown instance, its directed through the tree accordingly to the values of its 

attributes in the nodes, when a leaf is reached, the instance is classified accordingly to the class that the 

leaf is assigned to [141]. 

In instance-based learning (KNN), each new instance is compared with all the classified dataset 

available and the instance closest by means of distance metrics is used to classify it which is the difference 

between the KNN algorithm and others. Different methods require training phases in order to be able to 

operate. Computing the distance between two instances is easy when assuming that all samples of the 

dataset have the same importance, which in most of the cases that is not true, and deciding which 

features are most important varies from the application. This problem is reflected in the distance metric 

by applying some attribute weighting which till this day is a significant problem instance-based learning 

even though is usually more robust than regular KNN. Since, for every instance that need to be classified, 

every sample of the dataset must be checked, not only the time but complexity of the algorithms increases 

proportionally to the dataset size [141].  

5.3.5 Machine Learning approaches in Fall Detection 

Xu et al. com [7], completed a survey regarding the new advances and challenges of FD systems 

where compared FD algorithms on the most cited works. As sensors development progresses, FD 

algorithms adjust with it. When comparing FD algorithms used in the most cited work before and after 

2014, it was observed a trend by comparing the algorithms employed in the most cited work before and 

after 2014.  
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Concerning FD algorithms adopted before 2014, the accelerometer was a mainstream sensor 

employed by the FD system in early days. Considering the accelerometer can just record velocity and 

acceleration of a single part of the human body, thresholds-based methods became the chosen method. 

For FD algorithms adopted after 2014, machine learning-based FD algorithms became the preferred 

method. Considering that with the development of new types of sensors, they can discern further detail 

of human activities, the threshold-based algorithm became more inadequate to accomplish this goal. 

From the aspect of the specific type of algorithm, the support vector machine and the DT are the most 

employed algorithms with relatively high accuracies above 90%, ranging between 79.6% and 100% [7]. 

Chen et al.[64] developed an accelerometer-based FD algorithm using support vector machines 

for classifying the features (ADLs and falls). The model accuracy was the averaged after ten-fold CV. The 

average system accuracy was 94.58%. The sensitivity and specificity were 95.76% and 93.28%, 

respectively. Putra et al. [65] proposed an event-triggered machine learning strategy to classify ADLs and 

falls with accelerometery data. The proposed method aligns all fall stages so that the unique features 

each fall stage are more efficiently identified. Some of the used classifiers were the KNN and support 

vector machines. It was achieved an F-score of 98%. Liu et al. [66] applied support vector machines to 

accelerometery features in order to identify ADL and fall situations. The results revealed that the computed 

features had the highest accuracy with 99.1% and 98.4% in the training and testing, respectively. Finally, 

Shibuya et al. [142] used both acceleration and angular velocity to also classify balls and ADLs. Six 

features were extracted for fall classification using a support vector machines, achieving 98.8% and 98.7% 

fall classification accuracies of the data at the T4 and belt locations, sequentially. 

5.4 Methods and Materials 

5.4.1 Experimental Protocol 

The system used to acquire the data was part of the one described in Chapter 4. For this 

experimental protocol, only the data from the MPU 9250 was necessary. A set of activities (Table 5.2 and 

Figure 5.5) was executed by eleven volunteers which ranged from 22 to 29 years (24.20 ±2.60 years), 

with a body mass between 52 and 80 kg (70.80 ± 8.23 Kg) and a height of 1.51 to 1.83 m (1.73 ± 

0.09m). All participants provided their written consent. Each activity was performed three times. A total 

of 132 simulated falls were recorder with 66 combining the subject and cane (Table 5.2- Activities 6 and 

7) and 66 only with the cane (Table 5.2 – Activities 4 and 5). Also, 99 ADL were registered (Table 5.2 – 

Activities 1, 2 and 3).  
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Figure 5.5: Activities performed for data acquisition: a) Activity 1; b) Activities 2 and 3; c) Activity 4; d)Activity 5; 
e)Activity 6; f)Activity 7. 

Table 5.2: Activities simulated with the ASCane Prototype 

Activity No. Description 

1 Walking at Normal Speed and 180º rotation (Subject + Cane) 

2 Walk forward and turn right (Subject + Cane) 

3 Walk forward and turn left (Subject + Cane) 

4 Free Falling (Cane) 

5 Thrown out (Cane) 

6 Falling Forward (Subject + Cane) 

7 Falling Sideways (Subject + Cane) 

5.4.2 Strategy 

The implemented strategy to uncover which FD algorithm is best suited to detect falls of a cane 

can be subdivided into four segments, as depicted in Figure 5.6. Three types of threshold-based 

algorithms found in the literature were implemented and tested. Namely, three fixed (Original Fixed 

Threshold Algorithms - Figure 5.6) one dynamic (Dynamic Threshold Algorithm - Figure 5.6) threshold 

algorithms found in the literature, as well as two improvements on the same algorithms (Modified Fixed 

Threshold Algorithms - Figure 5.6). Finally, a machine learning approach was also accomplished. Trough 

the conducted search, the computed features from the selected articles were extracted and are presented 

in Table 5.3 [64]–[66], [142]. Data were then divided into two different classes: Fall and ADL samples. 

Afterwards, 70% of each data were used to train the classifier and 30% to test it. The complete 

methodology for the development and testing of FD algorithms is depicted in Figure 5.6. All the algorithms 

were implemented offline using the Matlab 2018b version. 
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Different tests were accomplished by varying the kernel type and proportion of class samples in 

the support vector machine classifier. However, the best set of parameters was determined by enabling 

the "OptimizeHyperparameters" option in MATLAB. Features regarding ADL and falls were labelled using 

the parameter CVFast to mark the falling range [66]. The maximum CVFast of each fall trial was calculated 

and multiplied by 0.87. The samples higher than 0.87CVFast were considered a fall and labelled as 1. 

Table 5.3: Summary of the features that may correlate with falls-risk in the selected FD algorithms [64]–[66], [142] 

Study Feature Name 

Shibuya et al. [142] 
Range of angular velocity for each individual axis 

Range of acceleration for each individual axis 

Liu et al.[66] 

SVM 

Fast Changed Vector 

Vertical Acceleration 

Chen et al. [64] 

SVM 

Rotation angle 

Slope  

The acceleration in the xy – plane 

Putra et al. [65] 

SVM 

Maximum Sum Vector Magnitude 

Minimum Sum Vector Magnitude 

Average Sum Vector Magnitude 

Root mean square of the acceleration vector magnitude 

Acceleration exponential moving average 

Signal magnitude area 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.6: Schematic diagram of the implemented strategy for evaluation of different FD algorithms. 
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5.5 Results 

5.5.1 Original Algorithms 

The algorithms were tested with the acquired data on the aforementioned thresholds with their 

corresponding original thresholds. The results of the different performance indicators are summarized in 

Table 5.4. 

Table 5.4: Performance Indicators of FD algorithms 

Type Study Details ACC PREC SENS SPEC MCC KAPPA 

Fi
xe

d 
Th

re
sh

ol
d 

Bourke et 
al. [134] 

1Trunk 0.5746 0.5708 1 0.0202 0.1074 0.023 

1Thigh 0.5658 0.5658 1 0 NaN6 0 

Bourke et 
al. [52] 

1Trunk 0.8114 0.9388 0.7132 0.9394 0.6534 0.6296 

Kangas et 
al.[51] 

1Waist 0.5789 0.5740 0.9922 0.0404 0.1105 0.0367 

1Head 0.5658 0.5658 1 0 NaN6 0 

1Wrist 0.5789 0.9714 0.2636 0.9899 0.3485 0.2282 

D
yn

am
ic

 
Th

re
sh

ol
d 

Otanasap 
N. [135] 

20.0740 0.5658 0.5658 1 0 NaN6 0 

M
ac

hi
ne

 L
ea

rn
in

g 

Support 
Vector 

Machine 

31:60 
4RBF 

0.9913 0.9744 0.4863 0.9998 0.6852 0.6449 

31:1.6 
4RBF 

0.9154 0.9390 0.8347 0.9660 0.8211 0.8178 

31:1.6 
4Linear 

0.9105 0.9329 0.8273 0.9627 0.8106 0.8070 

31:1.6 
5Optimized 

0.9121 0.9358 0.8289 0.9643 0.8141 0.8105 

1
Location; 

2
Fixed threshold Value; 

3
ADL: Fall Proportion; 

4
Kernel Function; 

5
Optimized with MATLAB; 

6
Not a Number 

The algorithm introduced by Bourke et al. [134] presented similar results for the two sets of 

thresholds described (Table 5.4). It detected a fall in 100% of the cases. However, all or almost all the 

ADLs performed were also considered a fall with a SPEC of 0 and 2.02% for the thighs and trunk, 

respectively. With the method presented by Kangas et al. [51], the results are similar to the ones reached 

by Bourke et al. [134] in the three different sets of thresholds (Table 5.4). Nevertheless, while with the 
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waist and head thresholds a fall is detected in 99.22% and 100% of the cases, respectively, the thresholds 

for the wrist detected only 26.36% of falls. Using the algorithm from Bourke et al. [52], it resulted in 

overall higher performance compared to the remaining fixed threshold algorithms (Table 5.4), achieving 

an ACC of 81.14%. Like Bourke et al. [134] and Kangas et al. [51], with the dynamic algorithm proposed 

by Otanasap et al. [135], a fall was spotted 100% of the cases, yet, the entirely ADL dataset was also 

assessed as a fall (Table 5.4). With the machine learning approach, the best set of parameters achieved 

an ACC of 91.54 %, SENS of 83.47% and SPEC of 96.60%. The results for all accomplished tests are 

revealed in Table 5.4. 

5.5.2 Modified Algorithms 

Both falls and ADLs present a similar acceleration maximum as identified in Table 5.5 and Figure 

5.7 a), which explains why the algorithm by Bourke et al. [134] was not able to detect ADLs. Thus, the 

algorithm was tested with a single lower threshold, Figure 5.7 b). The corresponding results are presented 

in Table 5.6. On the contrary, the ωres does not exhibit the same behaviour as the acceleration (Table 

5.5). The maximum angular velocity achieved during an ADL is much lower than the one reached during 

a fall (3.5636 vs. 12.6706). Consequently, the first threshold of 3.1 rad/s (ωres) is hardly ever 

surpassed, as can be seen in Figure 5.8, on one trial. 

Table 5.5: Maximum, minimum, mean and standard Deviation of the acceleration Sum Vector Magnitude and the 
angular velocity for the intentional falls and ADL trials 

Feature Type of Activity Maximum Minimum Mean Standard Deviation 

SVM (g) 
ADL 13.8357 0.1351 1.0557 0.3427 

Fall 13.8980 0.0681 3.8644 3.8296 

ωres (rad/s) 
ADL 3.5636 0 0.6711 0.5440 

Fall 12.6706 0 2.7512 1.89002 
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Figure 5.7: Sum Vector Magnitude for: a) One ADL trial; b) One intentional fall trial with the corresponding FD as 
a result of the lower threshold of 0.41g and the corresponding fall detection (blue X). 

Table 5.6: Performance indicators of the FD algorithm proposed by Bourke et al. [134] tested only with a single 
lower threshold 

Lower 

Threshold 
ACC PREC SENS SPEC MCC Kappa 

0.41 0.9190 0.8815 0.9917 0.8222 0.8406 0.8312 

0.2 0.9781 0.9920 0.9690 0.9898 0.9559 0.9555 
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Figure 5.8: Angular Velocity of an ADL trial versus a simulated fall trial. 

The algorithm present by Otanasap et al. [135], was also not able to detect ADLs. Consequently, 

an analysis of the feature's behaviour throughout the trials was accomplished (Figure 5.9) and the 

algorithm was tested with several different FT which results are indicated in Table 5.7. 

Table 5.7: Performance Indicators of the FD algorithm proposed by Otanasap et al. [135] tested with different FT 

FT ACC PREC SENS SPEC MCC KAPPA 

7 0.8478 0.8444 0.9157 0.7455 0.6796 0.6756 

7.2 0.8229 0.8488 0.9125 0.7679 0.6945 0.6914 

7.4 0.8636 0.8750 0.8974 0.8148 0.7167 0.7163 

7.6 0.8837 0.9155 0.8784 0.8909 0.7648 0.7639 

7.8 0.8819 0.9104 0.8714 0.8947 0.7633 0.7624 

8 0.8810 0.9206 0.8529 0.9138 0.7643 0.7619 

 

5.6 Discussion 

The algorithm introduced by Bourke et al. [134] considered a fall in almost all ADL trials, indicating 

that the original thresholds are not appropriate or adapted to canes considering that when the cane hits 

the ground, there is a substantial increase in the SVM, Figure 5.7 a), similarly to the trials of falls, 

Figure 5.7 b). Since the UFT is frequently surpassed when the cane hits the ground, contrarily to the LFT, 

Figure 5.7 a), the algorithm was tested with different lower thresholds. Consequently, the performance  
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Figure 5.9: a) Fall possibility computed by the algorithm proposed by [170] during an ADL trial b) ADLacc of the same trial. 

was significantly higher, in Table 5.6. Thus, the use of UFTs with SVM on canes are not 

recommended  due to the problem mentioned above. This feature is directly related to the force applied 

to the cane for each strike with the floor, and it is different for every gait cycle (Figure 5.7 a)). 

Regarding the study from Kangas et al. [51], none of the set of thresholds are suitable to canes. 

Both waist and head thresholds detect falls in almost ADL trials, and the wrist thresholds only detect a 

fall in 26% of the cases (Table 5.4). Considering that the five features used to evaluate the trial are 

accelerometery based, all of them will be affected when the cane hits the ground. Therefore, using this 

algorithm with the original thresholds is inefficient.   

Since peak values of ωres for the recorded ADLs and falls are different (Table 5.5), the first 

threshold of 3.1 rad/s (ωres) is hardly ever surpassed, as can be seen in Figure 5.8, on one trial. Thus, 

the algorithm described by Bourke et al. [52] presented the best results among the fixed threshold FD 

algorithms. However, when using a single lower acceleration threshold of 0.2g, the ACC 

increased to 97.81%, which is better than the results attained by the aforementioned algorithms. 

Since the algorithm introduced by [135] is mainly based upon the ADLacc, it is expected a lower 

performance compared to the results stated in this study because this feature is accelerometery based. 
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As seen in Figure 5.9 b), during an ADL trial, the ADLacc surpasses the fixed threshold numerous times, 

as proven by the fall possibility computed and plotted in Figure 5.9 a). Thus, this method is not optimized 

for cane systems with the original FT. Consequently, the dynamic algorithm was tested with several 

different FT (Table 5.7). A new FT of 7.6g achieved the best performance. 

Class imbalance is a common problem faced in data mining due to imbalanced datasets [65]. 

In this situation, the number of samples from ADL is immensely more extensive than the number of fall 

samples with a proportion of 60:1. From Table 5.4, when the classifier was trained with an imbalanced 

dataset, it achieved an ACC of 99.13%. However, the classifier is overfitting the data. Afterwards, when 

the classifier was trained with a proportion of 1:1.6 (Table 5.4), the SENS improved by almost 40% in the 

three other cases. However, when using the RBF (Radial Basis Kernel) kernel, the best result in this 

domain was achieved with a SPEC and SENS of 96.60% and 83.47%, respectively. Comparing the MCC 

and KAPPA values from the implemented algorithms, the embedment of a single LFT of 0.2g is more 

desirable (MCC = 95.59%; KAPPA = 95.55%). This method surpasses the values of the machine learning 

implementation which has a range of MCC between 0.68 and 0.82 and a KAPPA between 0.69 and 0.82. 

However, the best performance was achieved by the algorithm proposed by Bourke et al. [134] 

that was modified. With a single lower threshold of 0.2g, values of SENS, SPEC and MCC were 96.90%, 

98.98% and 95.59%, respectively. Results obtained from the machine learning classifier were lower when 

compared to the proposed method likely because of the sample labelling method used, the CVFast. This 

method could be inappropriate for data acquired with a cane and may need to be improved. Thus, the 

proposed FD method is rather simple, with only a single lower threshold, which is suitable where restricted 

computational power will be available in the ASCane. Furthermore, it has been proven that ωres can also 

be an excellent variable to distinguish fall from ADLs. Although it was not evaluated, coupling a ωres 

threshold with the 0.2 g lower threshold appears to be the best strategy regarding FD since 

only the lower threshold may not be sufficient for a robust algorithm. Hence the need to be accompanied 

by another variable.  

6. ASCANE EVENT DETECTION IN CONTROLLED AND REAL-LIFE SITUATIONS 

The main goal of this chapter is to detect six cane phases through the ASCane during 

assisted walking. A cane event detection system will be implemented and tested by comparing data 

acquired from an IMU attached to a cane and a ground truth. 
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This chapter will be subdivided into six major parts: i) Examination of how the cane's gait is related 

to the user's gait; ii) The human gait event detection algorithm found in literature; iii) Data collection from 

sensing devices through trials in healthy young people and feature computation; iv) Comparison between 

the detected cane events and the developed ground truth system; v) Comparison between the ground 

truth and several different combinations of machine learning classifiers and feature selection methods; 

vi) Post-processing algorithm for increased performance. 

6.1 Relationship between gait assessment and fall risk 

Using a cane is intended to help the user. However, research has shown this is not always the 

situation. Liu et al. [143] assess the usage of canes by older adults in senior living communities and 

revealed that patients still fall, despite the help of their device. Also, the research team revealed 

five significant problems that should be approached by the medical community: the need for medical 

consultation for device selection/use, the incorrect cane height/maintenance, the use of a cane in the 

wrong hand,  the inability to sustain the proper gait pattern, and inaccurate posture during locomotion, 

which can improve the fall risk [144]. Furthermore, the use of an assistive device alters the users' 

spatiotemporal parameters, such as cadence, steps/min, step length, step time, stance and swing 

percentage [144]. 

Consequently, a gait assessment describing cane usage while walking can provide 

valuable information not only to the user, but also the medical professionals. This evaluation might 

be capable of enhancing the capability of cane usage for older cane users. Therefore, reducing 

the possibility of possible falls amongst them. Moreover, gait event detection can possibly be used 

in the rehabilitation domain, specifically, in the design of personalized gait therapies that tune 

therapeutic assistance in accordance to the patient-specific demands and strive to promote a more 

effective functional motor recovery. Several motion capture systems have been employed to evaluate 

human gait events. Most generally, this analysis is conducted in a motion analysis laboratory with force 

platforms and optical motion systems. Nonetheless, these motion capture systems are non-portable and 

are operated only in controlled environments. They are not optimized for the analysis of continuous gait 

cycles for long-term mobility situations. Thus, embedding the detection of the different events 

into a cane is optimal [145]–[147]. 

Before examining gait with a walking aid, it is necessary to understand the mechanics of what is 

perceived as a "gait cycle." The human gait is a rhythmic and standardised sequence of movements that 

end in a displacement of the person's COG [33]. A gait cycle can be described as a period separating the 
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initial contact of the foot with the floor until the instant that happens again. The human gait cycle can be 

divided into two different phases: stance and swing. The stance phase corresponds to the period in which 

the foot is in contact with the floor. 

In contrast, the swing phase coincides with the time in which the foot is not on the floor [94]. However, 

the human gait cycle can be divided into several more phases. In the following, it is presented the 

description of all gait phases considered and are depicted in Figure 6.1 [1]. 

➢ Heel-Strike (HS): the event which equals to the first ground contact of the leading limb. By 

definition, a gait cycle ends and begins with the HS; 

➢ Foot-Flat (FF): when the plantar surface of the foot contacts with the ground, thus, the leading 

limb can take over the bodyweight; 

➢ Middle Mid-Stance (MMST): begins when the opposing foot elevates and continues till the 

bodyweight is aligned over the forefoot; 

➢ Heel-Off (HO): the moment which the heel lifts from the ground; 

➢ Toe-Off (TO): corresponds to the moment in time that the foot leaves the ground; 

➢ Middle Mid-Swing (MMSW):  phase in which the swinging limb passes the opposite stance limb. 

 

 
Figure 6.1: Human gait phases and corresponding events during one gait cycle. 

6.2 Ambulation with a cane 

For proper locomotion with a cane, the device must be used on the opposing side of the affected 

leg and in tandem with it to simulate normal gait and to improve balance. Moreover, there are two ways 

of walking with a cane, two and three-point gate [148]. The sequential moves of two-point gait are listed 

below, and their representation is portrayed in Figure 6.2. 

1. Balance the body weight onto the healthy or unaffected leg (Figure 6.2 - Stage 1); 

2. Move the cane and the affected leg forward in unison, keeping the cane near the body to prevent 

leaning to the side (Figure 6.2 - Stage 2); 
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3. Transfer the bodyweight forward to the cane and move the unaffected leg forward (Figure 6.2 - 

Stage 3). 

 

Figure 6.2: Representation of Two-Point Gait with a cane. 

The consecutive movements of three-point gait are depicted in Figure 6.3 and are as follows: 

1. Balance the body-weight on the strong or unaffected limb (Figure 6.3 - Stage 1). 

2. Move the cane forward, assuring the cane is close to the body (Figure 6.3 - Stage 2). 

3. Move the weak or affected foot forward (Figure 6.3 - Stage 3). 

4. Transfer the weight from the unaffected foot to the affected foot and cane, and then brings the 

unaffected foot forward to join the affected foot (Figure 6.3 - Stage 4). 

 

Figure 6.3: Representation of Three-Point Gait with a cane. 

Ambulating with two-point gait, the cane accompanies the opposite leg movement. Consequently, 

both gait events (foot and cane) occur approximately at the same time. Following, the six different cane 

events are described and matched to the human gait cycle phases previously described in Section 6.1, 

as seen in Figure 6.4. 

➢ First Ground Contact (FGC): the event which equals to the first ground contact of the cane. Similar 

to the human gait cycle, the cane gait cycle ends and begins with the FGC; 

➢ Full Base Contact (FBC): when the cane base is in complete contact with the ground; 

➢ Maximum Support Moment (MSM): begins when the cane is in full support of the subject's body 

weight; 

➢ Partial Cane Off (PCO): the moment which the cane lifts from the ground; 
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➢ Full Cane Off (FCO): corresponds to the moment in time that the cane base lifts entirely from the 

ground; 

➢ Cane MidSwing (CMSW): phase in which the swinging cane passes the opposite stance limb. 

 

 

Figure 6.4: Human gait phases matched to the respective cane phases during one gait cycle. 

6.3 Real-time gait event detection  

The difficulty of gait detection is the development of algorithms that can detect gait events while 

the subject is walking (real-time detection). Various sensor arrangements have been employed for gait 

detection in ambulatory settings, including single and multiple sensor arrangements. Three types of 

measurements are found in the literature for gait event detection: force, angular rate and accelerometery 

based measurements [1].  

Regarding force-based measurements, the single possible location for these types of sensors is 

between the sole and the ground. Regarding cane event detection, the placement of the sensor is in the 

tip of the cane, which has a minimal surface area. Thus, just one sensor could be installed, and only the 

stance and swing phases could be determined. Typically, these types of systems provide adequate results. 

Still, they present a few disadvantages. For example, specifying load changes produced during walking 

from those created by weight shifting is not possible. Nevertheless, force-based event detection either 
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with sensors attached to the foot or even with force plates is yet part of the ground truth system for 

computation of the accuracy of gait event detection in newly developed methods [1][149]. 

Usually, the use of accelerometers entails extra signal processing techniques and compensation 

regarding the influence of gravity. Additional drift problems can be present due to the integration of the 

acquired data. The corresponding attachment of the sensors can also be a difficulty considering muscle 

movement while walking, appearing as a high-frequency error in the data [1][150][151]. 

Most of the algorithms using angular rate measurements use the same one-dimensional angular 

rate sensor in a single sensor solution. The significant advantage of using gyroscopes as motion analysis 

systems is that it is not affected by the gravitational component as the accelerometery based systems. 

Additionally, the vibration subjected by the sensors through the heel strike does not alter the gyroscope 

output since they are less susceptible to their position as a result of their measurement principle. They 

can be anyplace on the same plane giving nearly an equal signal output. Besides, movements in other 

planes are not taken, e.g. change in walking direction [1][149]. 

For real-time human gait event detection through the foot angular velocity, it is possible to detect 

the previous gait events described. In Figure 6.5 is presented the angular velocity of the foot through one 

gait cycle with the corresponding gait events delimited [152]. 

 

Figure 6.5: Angular velocity of the right foot along the sagittal plane (sensor’s z-axis) (continuous line) and 
representation of six human gait events (HS, FF, MMST, HO, TO, and MMSW) during one gait cycle performed by 
a healthy subject, taken from [152]. 

Figueiredo et al. [152] developed an adaptive rule-based FSM for human gait event 

detection in controlled and real-life situations that can operate at various gait speeds and relies 

only on the angular velocity of the sagittal plane. The proposed method was proven to be an 

accurate (ACC > 90.12%), time-effective (delay detection < 30.53 ± 9.88 ms and advanced detections < 
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15.31 ± 5,52 ms), low-cost, wearable, and with a low-computation power towards real-time gait analysis. 

Therefore, it can be used either in rehabilitation tasks and gait assessment [152]. Based on curve tracing 

techniques, threshold crossing, local extrema and signal derivatives evaluation, the authors established 

decision rules for gait events transitions. The flowchart of the abovementioned algorithm is presented in 

Figure 6.6. 

 

Figure 6.6: Flow chart of the proposed algorithm to detect the gait events 

After the signal acquisition and respective filtration (First and second stages, Figure 6.6), the first 

derivative is computed which enables the detection of velocity increases (positive signal), decreases 

(negative signal) or constant velocity (approximately zero). To detect only the significant variations (that 

usually are correlated with the local peaks), derivatives under a threshold (near zero) are fixed to zero, 

reducing the signal noise (Stage 3 – Figure 6.6). The minimum/maximum calculation stage (Stage 4 – 

Figure 6.6) is utilised to recognise HS, MMSW, FF, and TO, given their dependence to the local extrema. 

The 5th stage computes the given steps step calculation using the last three valid steps, which enables 

the algorithm to be sensitive to changes in the pattern. The last stage implements the FSM that changes 

states per defined decision rules. 

6.4 Methods And Materials 

6.4.1 General Overview 

The proposed methodology used for recognition of cane's events during gait is comprised of 

several steps. A schematic overview of the accomplished approach is highlighted in Figure 6.7. After the 

experimental trials and manual segmentation per pre-defined conditions, this chapter is subdivided into 

two sections. Firstly, the modification of an adaptive state-of-the-art FSM human gait event 

detector to detect the six cane gait events was accomplished. Secondly, a machine learning study 

was performed to find which are the best set of features and machine learning classifier to segment a 

cane stride in six phases. In the following subsections, a full description of each module is given, together 

with the explanation of the work developed. 
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6.4.2 Experimental Protocol  

To collect sensor data during locomotion, experimental procedures were conducted, following a 

designed protocol. The system used to collect the data was part of the one described in Chapter 4. Since 

the algorithm designed by Figueiredo et al. [152] used angular velocity from the foot, an IMU was also 

placed in that same location.  

Furthermore, to achieve a complete study of cane ambulation and to link the different gait phases 

with the recorded angular velocity and acceleration, another inertial measurement system was coupled, 

the MTw Awinda (Xsens Netherlands). The developed system (without Xsens) is depicted in Figure 6.8 

 

Figure 6.7: General Overview of the carried-out methodology for the detection of canes gait events 

For the validation of the gait event detector, it was used repeated measures of healthy gait patterns 

recorded in controlled and real-life situations, as portrayed in Figure 6.9. Fourteen subjects were included 

in two protocols, one for each condition. The subjects approved to participate in this study and were 

randomly distributed within the two protocols. 

Considering the controlled walking situations, to validate cane event detection and to test the 

effect of variations in the ground surface and gait speed it was included seven healthy volunteers (five 

males and two females). The subjects presented an age which ranged from 22 to 25 years (23.29 ±1.16 

years), with a body mass between 52 and 81 kg (69.57 ± 9.06 Kg) and a height of 1.51 to 1.81 m (1.70 

± 0.09m). The participants carried walking experiments on an instrumented split-belt treadmill at different 

speeds (1.0 and 1.5 km/h) and slopes (0%, and 10%). Three gait trials were randomly conducted for the 
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Figure 6.8: A) Subject equipped with all systems B) Developed system used during data acquisition (1) IMUs; (2) 
FSRs. 

following scenarios: 30 seconds walking without inclination and speed of 1.0 km/h and 30 seconds 

walking with an inclination of 10º and speed of 1.0 km/h. Besides, the participants were told to carry 

walking trials at changeable speeds to approximate a real-life environment. In this case, the subjects 

walked for 60 seconds and changed gait speed every 20 seconds according to the provided instructions 

(increasing from 1.0 km/h to 1.5 km/h and decreasing from 1.5 km/h to 1.0km/h). To give reliable 

results, the acceleration period was not admitted in the detection of gait events, except for the trials where 

the speed was variable.  

Real-Life Walking Situations were also considered to assess human locomotion in various 

conditions. For this matter, it was included seven healthy subjects (five males and two females), who 

used their sports-shoes). The subjects presented an age which ranged from 23 to 25 years (24.14 ±0.83 

years), with a body mass between 61 and 75 kg (70.85 ± 5.25 Kg) and a height of 1.70 to 1.81 m (1.75 

± 0.04m). Since human gait is very dynamic in the real-world frequently, including different gait speeds, 

surfaces and surface inclinations, the recommended computational method was verified in uncontrolled 

indoor and outdoor conditions. Three gait trials were randomly conducted for the following scenarios, 

which are shown in Figure 6.9: forward level-ground walking on a 20 m flat surface; forward level-ground 
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walking on a rough surface (urban ground) along 30 m; descending and ascending an inclined ground 

(approximately 10°) and a 10 m rough surface, and climbing a staircase of 8 steps with standard 

dimensions (a height of 17 cm, depth of 31 cm, and step width of 110 cm). For each condition, the 

participants were asked to walk at a comfortable speed to achieve proper ambulation with a cane. 

 

Figure 6.9: Validation of the gait event detection system under controlled and real-life walking conditions (flat and 
rough level-ground, inclined surfaces and staircases). 

6.4.3 Data Labelling 

The gait event detection algorithm developed by Figueiredo et al. [152] relies only on the foot 

angular velocity. Comparing the mean and mean plus/minus standard deviation of the cane and foot 

angular velocity of all collected strides (for controlled situations), as depicted in Figure 6.10, it is possible 

to conclude that the waveform of the signals throughout the stride presents several key 

differences. The two minimums, Figure 6.10 a) and c), which are used to detect the HS, MMSW, FF 

and TO events, are not as significant (FGC, CMSW, FBC and FCO for the cane events, respectively). The 

angular velocity reached by the ASCane, Figure 6.10 b) is not as steady at 0º/s as the one achieved by 

the foot, which is part of the decision rules for FF and MMST detection. Furthermore, the peak value in 

the gyroscope signal, which happens at the moment of MMSW, is also not as high as the one achieved 

by the foot, Figure 6.10 d). Consequently, to accomplish precise data labelling, additional signals 

and/or features are needed. To keep the segmentation as simple as possible, only the raw signals 

collected from the ASCane were used. 
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Figure 6.10: Cane angular velocity along the sensor’s z-axis (moves relatively to the sagittal plane) mean, and 
plus/minus its standard deviation of all collected strides measured at controlled situations. 

The Xsens company developed a robust software engine using a biomechanical model of the 

human body to estimate human motion in real-time accurately. The biomechanical model, Figure 6.11, 

is composed by 23 segments: pelvis, L5, L3, T12, T8, neck, head, right and left shoulder, upper arms, 

forearms, hands, upper legs, lower legs, feet and toes. Moreover, for the segments where no sensor is 

attached, the kinematics are determined based on the biomechanical model combining stiffness 

parameters between connecting segments. In addition to the standard configuration abovementioned, 

additional motion trackers can be added to items to be included in the trial, for example, a walking stick, 

as shown in Figure 6.11.  

 

Figure 6.11: Biomechanical model of human body ambulation with a cane through the different gait phases. 
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To properly segment gait events, the algorithm must incorporate the acceleration and 

FSR signals. In Figure 6.12 and 6.13 are portrayed the mean, and the mean plus/minus the standard 

deviation of the ASCane FSR and acceleration (transverse plane) signal for the four different walking 

situations assessed, respectively. It is verified that both acceleration and FSR signals present a 

constant waveform on level-ground, inclined surfaces and staircases. 

 

Figure 6.12: ASCane FSR reading along the sensor’s z-axis (moves relatively to the sagittal plane) mean, and 
plus/minus its standard deviation of all collected strides measured at different ground facets: A) controlled 
situations, B)  level-ground, C) inclined surface (10°), D) staircase. 

 

Figure 6.13: ASCane acceleration along the sensor’s Y-axis (moves relatively to the transverse plane) mean, and 
plus/minus its standard deviation of all collected strides measured at different ground facets: A) controlled 
situations, B)  level-ground, C) inclined surface (10°), D) staircase. 
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After an extensive analysis of all the seven signals acquired, it was possible to achieve the decision 

rules for the ground truth of all the 1620 steps taken. More specifically, 962 controlled steps, 234 steps 

on a flat surface, 161 steps on rough ground, 151 steps on inclined terrain, and 112 steps on staircases. 

First, it was verified that the cane acceleration and angular velocity presented a constant 

waveform on level-ground, inclined surfaces and staircases (Figure 6.14). Therefore, the same 

heuristic rules can be established for all different scenarios. 

 

Figure 6.14: Cane angular velocity along the sensor’s Z-axis (moves relatively to the sagittal plane) mean, and plus/minus its 
standard deviation of all collected strides measured at different ground facets: A) controlled situations, B)  level-ground, C) 
inclined surface (10°), D) staircase. 

When the cane impacts with the ground, an intense polarity inversion of the acceleration vector 

is detected as well as an increase in the FSR reading, which is used to determine the exact moment of 

the FGC. FBC is set at the moment were the FSR reading stabilizes at is maximum. The ground truth for 

the MSM event was set when the acceleration oscillates, and the data from the ASCane FSR remains at 

is maximum, which corresponds to the moment where the subject transfers his bodyweight to the cane 

and moves the unaffected leg. PCO and FCO events, the user is lifting the cane to move it along with the 

affected leg. Therefore, for the PCO, the FSR signals starts decreasing. Concerning the FCO, the FSR 

signal continues decreasing until zero and, the acceleration increases due to the cane is beginning to 

swing. The CMSW is determined as the maximum angular velocity detected in the stride after the FCO 

detection. A complete segmentation of a stride with all the features used is exposed in Figure 6.15. 
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Figure 6.15: Acceleration (moves relatively to the transverse plane), angular velocity (moves relatively to the sagittal 
plane) and FSR signals of a full cane stride with corresponding gait events manually segmented per pre-defined 
conditions. 

6.4.4 Finite-State-Machine Framework 

As stated, the cane angular velocity throughout a stride is less prominent than the one from the 

foot. Nevertheless, the algorithm was tested with the data acquired with the cane. However, after an 

extensive inspection of the algorithm decision rules and signal processing techniques, two 

modifications were accomplished.  

Figueiredo et al.[152] use two distinct thresholds as a part of the decision rules to detect the TO 

and MMSW event, MINthr and MAXthr, respectively. The MINthr corresponds to an adaptive 

threshold used for the detection of the second minimum. Contrarily, the MAXthr is used to determine 

the maximum angular velocity reached during the stride. In the original algorithm, both these thresholds 

are defined as 60% of the mean value of the three previous detected minima and maxima, respectively. 

Since the new signal is not as distinctive, the condition was updated for 40%. As asserted, the 

algorithm also relies upon signal derivatives. A pre-processing technique in which if the signal first 

derivative is lower than 0.01, the derivative is considered null was accomplished Figueiredo et al. [152]. 

To increase the efficiency of the algorithm, and since the FS of the ASCane signal is much higher, this 

pre-processing technique was discarded. 
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6.4.5 Machine Learning Framework 

In this stage, the pre-processing techniques are applied to the unprocessed acquired data to 

maximize model performance and decrease its training time. The pre-processing methods used involve 

data normalization and feature selection. 

The computation of features is not only required for the creation of machine learning models but 

also for future online classification. In fact, after gathering all the sensor data from the ASCane, it is 

essential to create a vector of features for every time window of the measured signals. They should be 

significant and representative of the data to have the needed information for correct classification, which 

is disclosed in chapter 2. All the computed features are listed in Table XXIV – Appendix 3. This module 

converts the input data to an output feature vector containing 288 features (Figure 6.16). 

 

Figure 6.16: Inputs and outputs of the feature computing module 

Throughout data normalization, features are treated using the min-max scaling method, as 

illustrated in Figure 6.17. This process intends to convert all metrics to a standard range such that 

features with a higher value range do not decrease the significance of features with smaller ranges. It 

changes the values of each feature, which means that the data is centered in 0.5 and is limited to vary 

between 0 and 1.  

 

Figure 6.17: Feature normalization method used. 

The selection of an optimal subset of features is an essential step in every classification challenge. 

Often, a considerable number of features are computed to represent the target concept better. Given this 

set of 288 features, the problem is to select the subset of size x (with x being the number of features) 
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that maximizes a scoring function of a given classifier. Since the classification of six different gait phases 

of a cane was never accomplished, the best subset of features is yet to be uncovered. Thus, 8 feature 

selection methods were used: Correlation Based Feature Selection (CFS), Relief, Unsupervised 

Discriminative Feature Selection (UDFS), Principal Component Analysis (PCA), Least Absolute Shrinkage 

and Selection Operator (LASSO), Laplacian Score, Unsupervised Feature Selection with Ordinal Locality 

(UFSOL) and Local Learning-Based Clustering Feature Selection (LLCFS), as seen in Fig 6.18. 

Various classification algorithms in machine learning have been used to predict and classify 

different human gait phases in recent research. Yet, none of them is applied to canes. Building an 

accurate classifier is challenging for several reasons. If the training set is small, then it is less feasible to 

understand the underlying distribution of the data. 

Another problem is the complexity of the model and its generalizing abilities. If the classifier is 

too dull, it may fail to seize the underlying structure of the data. However, if the classifier is too elaborate 

and there are too many free parameters, it may include noise in the model, which leads to overfitting 

performing poorly on test samples.  The 9 machine learning classifiers used were the KNN, with an 

equal, inverse and squared inverse distance weighting function; Discriminant Analysis Classification with 

linear and quadratic discriminant function; Ensemble Learning; Decision Tree and Regression Model with 

linear and pure quadratic terms.  

 

Figure 6.18: Inputs, outputs and the different feature selection methods used in the feature 
selection module. 

To cover all possible scenarios, a 3-stage process was achieved. With the first stage, an 

incremental feature method combining all feature selection methods and machine learning 
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classifier scenarios was performed. For example, with PCA as the feature selection method, and 

ensemble learning as the classifier, the machine learning model was built and tested with one up to the 

120 most discriminate features. For the second stage, the two most suitable combinations were tested 

once again, this time with increased j-k-fold CV. The machine learning models presented in this work 

were built and tested offline using Matlab® (2018b, The Mathworks, Natick, USA). Nevertheless, their 

implementation in a microcontroller will be discussed in future challenges. Both studies are depicted in 

Figure 6.19. 

 

Figure 6.19: The different combinations of feature selection methods, number of features and classifier tested for 
the first and second stage. 

The third and last stage involved an online post-processing algorithm of the machine 

learning classifier results (Figure 6.20). Firstly, the classifier was tested with unseen data to test its 

predictive power, more specifically, 9 full trials (3 of controlled situations and 2 of each remaining walking 

condition). Secondly, a post-processing algorithm was applied to the same results and benchmarked 

against the classifier results. 

 

Figure 6.20: Completed methodology for the third stage. 
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Firstly, all the gait event transitions are found. The algorithm starts by detection the first transition 

from first ground contact (phase 1) and will iteratively find the next ones. In case a transition is not found, 

the algorithm will try to find a transition overleaping the one not detected. It will always verify if the new 

found transition occurs after the last one identified. In the end, a gait event detection transition list is 

exhibited, and the signal samples between them are set. Which means, for example, that the samples 

between the transition MSM (phase 3) to PCO (phase 4) and PCO (phase 4) to FCO (phase 5) are set as 

PCO. The algorithms flowchart is presented in Figure 6.21. 

 

Figure 6.21: Flowchart of the post-processing algorithm developed for increasing the performance of gait event detection. 

After the model building, its performance is evaluated utilising CV. The evaluation 

procedure is used for analysing models with varying input parameters such as their hyperparameters or 

feature combinations. The evaluation is especially essential to conclude the classification performance of 

unseen data, to use a limited number of samples to estimate how the model is expected to perform when 

used to make predictions of unseen data through its training. In the first stage, only 5-fold CV was 

performed due to the high number of combinations to evaluate. In the second stage, each model’s 

performance is evaluated using 10-5--fold CV. To assess the classification results, nine different metrics 

were used previously described in Chapter 2, namely, MCC, ACC, SENS, SPEC, PREC and F1S. 
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6.5 Results 

6.5.1 Finite-State Machine Algorithm 

It was examined the ACC, the percentage of occurrence and duration of delays and advances in 

controlled and real-life scenarios to evaluate the versatility and time-effectiveness of the algorithm. 

Furthermore, the time-effectiveness was just inspected for accurate detections. A misdetection was 

considered for timing error higher than 100ms, which is considered a critical duration for motor 

rehabilitation purposes. 

   By analysing Table I in Appendix 1, it is verified that the CMS and FGC events exhibited the 

highest ACC (98.51% and 83.92%, respectively). On the other hand, the MSM event and PCO were 

not detected (0.74% and 0.96%, respectively). The findings of the controlled situations also indicate that 

the FBC and FCO have a higher occurrence of delayed detections (43.25% and 34.91%), being 

detected with a mean delay of 55.32±27.90ms and 51.42±16.85ms, respectively. Advanced 

detections were mainly observed for the PCO (77.78ms) and MSM (71.43).  

The results throughout the different gait phases for the remaining walking situations are consistent 

with the ones achieved for controlled situations, although with lower accuracies Tables II to IV in Appendix 

1. The FGC was the most accurately detected gait event (ACC > 52.78%) while the MSM was 

the least detected phase (ACC < 11.11%). Delayed detections were more common than advanced 

ones ranging between 0% to 32.43% and 0% to 95.41%. 

In controlled situations, the algorithm did not detect, on average, 1.11% of each gait event, followed 

by 4.52%, 8.96% and 27.38% for level-ground surfaces, inclined surfaces and stairs, sequentially. It is 

crucial to disclose that the timing errors revealed in Tables I, II, III and VI do not comprehend the algorithm 

latency of 10ms due to the filtering process. 

6.5.2 Machine Learning Framework 

To determine which are the best set of features and machine learning classifier for the ASCane 

gait event recognition, three studies were conducted. The first stage aimed to evaluate which were the 

two combinations of classifier and feature selection method that provided the best overall results. It is 

crucial to disclose that the evaluation metrics presented in this first stage are the mean between the six 

different classes. 

The results comparing the different feature selection methods and classifiers are presented from 

Tables V to XII in Appendix 1. Through direct observation, it is possible to acknowledge that the ensemble 
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learning classifier is the one that achieved the best results amongst all feature selection methods 

(ACC > 93.17%, SENS > 92.86 %, SPEC > 98.62%, PREC> 93.26%, MCC > 91.68%, F1S > 93.03%). On 

the other hand, both regression models tested (linear and pure quadratic) presented the lowest 

performance (ACC > 40.60%, SENS > 40.02%, SPEC > 88.61%, PREC > 44.28%, MCC > 28.69%, F1S 

> 37.06%). It is also verified that the number of features used to train the classifier, which results in the 

best overall performance, relates to the feature selection method used. For each feature selection method 

tested, curiously, the three KNN classifiers performed the same, even with different distance weight 

functions (Squared Inverse, Equal and Inverse). The two best combinations were chosen based on two 

criteria: the classifier must be different and have the best overall performance amongst all computed 

evaluation metrics. Consequently, two combinations resulted from these criteria: LLCFS with 

Ensemble Learning and UDFS with KNN (Squared Inverse as distance weight function), which results 

are exposed in Table 6.1. 

Table 6.1: Overall ACC, SENS, SPEC, PREC, MCC and F1S of the two best combinations of feature selection methods, 
classifiers and number of features in the first stage. 

Feature 

Selection 

Method 

Classifier 

Number 

of 

Features 

Overall Performance  

ACC SENS SPEC PREC MCC F1S 

UDFS 
KNN Squared 

Inverse 
20 94.49 94.51 98.90 94.24 93.26 94.36 

LLCFS 
Ensemble 

Learning 
118 96.10 96.03 99.22 96..06 95.26 96.02 

 

The second stage intended to estimate the real performance of the selected machine learning 

classifiers and choose the one who performed the best. Consequently, the chosen combinations were 

tested once again with a 10-5-fold CV, instead of 1-5-fold CV. For both combinations, all the evaluation 

metrics increased, as seen in Table XIII from Appendix 1. Moreover, in Figure 6.22 is represented the 

evaluation performance of the KNN model with UDFS as feature selection method trained with 1 up to 

120 features. Contrarily, in Figure 6.23 is represented the evaluation performance of the ensemble 

learning model with LLCFS as feature selection method trained with 1 up to 120 features. 
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Figure 6.22: Overall ACC, SENS, F1S and MCC obtained with the KNN model trained from 1 up to the 120 most 
significant features computed by the UDFS feature selection method. 

 

Figure 6.23: Overall ACC, SENS, F1S and MCC obtained with the ensemble learning model trained from 1 up to 
the 120 most significant features computed by the LLCFS feature selection method. 

For the KNN classifier, the ACC increased by 3.73% (reaching 98.22%), the SENS improved by 

2.83% (97.34%), and the SPEC, PREC, MCC and F1S reached 99.63%, 97.33 %, 97.33% and 96.97%, 

respectively. Regarding the Ensemble Learning model, the results improved similarly. The resultant ACC 

raised 2.36% (matching 98.46%), the SENS increased 1.60% (97.63%), and the SPEC, PREC, MCC and 

F1S reached 99.68%, 97.87%, 97.75% and 97.43%, respectively.  

 The classifier was chosen considering the existing trade-off between the evaluation metrics, 

computational power and number of features needed. Therefore, the combination of the 20 most 

significant features through the UDFS method with the KNN algorithm as classifier was chosen. In 

Table XIV from Appendix 1, the different evaluation performance metrics for each gait event are presented. 

The PCO was the gait event that presented the lowest detection with an ACC and SENS of 92.87% and 

92.86% while the FBC presented the highest with 98.88% and 98.87%, respectively. The 20 most 

significant features (through the UDFS) for cane event classification are listed in Table 6.2. 
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Table 6.2:  The 20 most significant features by the feature selection method UDFS for the detection of six cane 
gait events 

Feature 

Ranking 
Feature Description 

1 ‘High_Pass_Filter_Acc_X’ 
Acceleration along the X-axis plane High-Pass filtered 

with cut-off frequency of 0.1Hz 

2 'High_Pass_Filter_Acc_Z' 
Acceleration along the Z-axis plane High-Pass filtered 

with cut-off frequency of 0.1Hz 

3 'Acc_Z_Raw' Raw acceleration along the Z axis 

4 'Acc_X_Raw' Raw acceleration along the X axis 

5 'GC_Acc_X' Gravity Component along the X-axis 

6 'GC_Acc_Z' Gravity Component along the Z-axis 

7 'Displacement_X' Displacement along the X axis 

8 'Velocity_Y' Velocity along the Y axis 

9 'Velocity_Z' Velocity along the Z axis 

10 'Quaternion4' Fourth element of quaternion vector 

11 'Pitch' Euler Angle - Pitch 

12 'Quaternion3' Third element of quaternion vector 

13 'Yaw' Euler Angle - Yaw 

14 'SVM_Gyr_Band_Pass' 

Sum Vector Magnitude of the angular velocity Band-

Pass filtered with cut-off frequencies of 0.1Hz and 

90Hz 

15 'SVM_Gyr_High_Pass' 
Sum Vector Magnitude of the angular velocity High-

Pass filtered with a cut-off frequency of 0.1Hz  

16 'GC_Acc_Y' Gravity Component along the Y-axis 

17 'High_Pass_Filter_Gyr_Z' 
Angular Velocity along the Z-axis plane High-Pass 

filtered with cut-off frequency of 0.1Hz 

18 'Gyr_Z_Raw' Raw Angular velocity along the Z axis 

19 'Quaternion2' Second element of quaternion vector 

20 'Roll' Euler Angle - Roll 

 

The use of a post-processing algorithm intended to increase the performance metrics and 

remove outliers from the resultant signal. The comparison between the use and non-use of the 
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algorithm is represented in Table 6.3. It is verified that all evaluation metrics slightly increase apart of the 

SENS, SPEC and F1S in staircase climbing, which decreased by 0.71% (90.29%), 0.03% (98.66%), and 

0.61% (90.46%), respectively. The ACC increased by 0.16% (98.32%), 0.24% (94.02%), 0.42% (96.72%) 

and 0.13% (93.72%) in controlled situations, inclined surfaces, level ground and staircase walking, 

accordingly. 

Table 6.3: Comparison between the ACC, SENS, SPEC and PREC before and after the application of the post-
processing algorithm in the four different walking scenarios. 

Walking Situations 
ACC SENS SPEC PREC 

Before After Before After Before After Before After 

Controlled Situations 98.16 98.32 97.78 97.90 99.63 99.66 97.61 97.92 

Inclined Surfaces 93.78 94.02 91.90 91.96 98.75 98.81 90.93 91.19 

Level Ground It is 96.30 96.72 90.33 90.81 99.28 99.37 93.55 94.72 

Stairs 93.59 93.72 91.00 90.29 98.69 98.66 89.43 91.16 

 

In Figure 6.24 is depicted a comparison between the ground truth with the output of the best 

machine learning model with unseen data. Following, in Figure 6.25 is portrayed a comparison between 

the output of the best machine learning model with unseen data and the post-processing algorithm 

results. Finally, to contrast the use and non-use of the post-processing algorithm, in Figure 6.26 is pictured 

the comparison between the output of the post-processing algorithm and the output of the best machine 

learning model with unseen data.  

6.6 Discussion 

A real-time and adaptive computational method for assessing human gait events in controlled 

and real-life walking situations using repeated measures of healthy gait patterns was modified to account 

for the cane angular velocity signal differences of the sagittal plane.  

Even though the angular velocity signal in the sagittal plane of a cane presents similar shape as 

the one recorded for the foot, it is not as distinctive. Therefore, the segmentation of gait events becomes 

more challenging. In Figure 6.14, is portrayed the mean, and the mean plus/minus the standard deviation 

of the foot and cane angular velocity on the sagittal plane for the four different walking situations assessed 

throughout a gait cycle. In all four cases, the amplitude of the foot signal is much higher, both in the 

maximum, first and the second minimum, which is used to identify the MMSW, FF and TO events.  
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Figure 6.24: Comparison between the ground truth (orange) with the output of the best machine learning model 
with unseen data (blue) for a full trial. 

 

Figure 6.25: Comparison between the use (red) and non-use (blue) of the post-processing algorithm for a full trial. 
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Figure 6.26: Comparison between the output of the post-processing algorithm (red) and the ground truth 
(orange) for a full trial. 

The FGC was the second most detected event with ACC ranging between 52.78% and 

83.92% for climbing stairs and controlled situations, respectively. Advanced detections were highly 

observed (between 69.36% and 96.94%). Even with trial and error thresholds adjustments after an 

empirical analysis, both the ACC and time advance in detection did not improve significantly. 

Throughout the different walking conditions, the MSM was the least detected event inside 

the time range, with ACC between 0.74% and 11.11%.  In the algorithm, human MMST was established 

as n samples after FF occurred, where n corresponds to the duration of the last valid MMST. In contrast, 

the cane MSM is the moment where the subjects transfer his weight to the cane, which can occur at a 

different time throughout several strides and the angular velocity signal cannot represent that moment, 

while the acceleration values can. 

The average human foot area is much larger than the base area of a cane. Thus, the time interval 

between PCO and FCO is much smaller than the one between HO and TO, happening almost 

instantaneously, as seen in Figure 6.14. Consequently, the segmentation of the phases can be 

challenging for a finite-state-machine algorithm, with ACC lower than 46.54% and a high number of 

advanced and delayed detections. 
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Moreover, the CMSW was the most accurately detected event (ACC > 77.36%). The 

highest time advance and delay percentages were 1.50% and 0.95%, respectively. Hence, if the algorithm 

identified the CMSW event, it would accurately be segmented with sample PREC 98.50% of the times. 

The algorithm decision rules depend on stride time, which sets adaptative periods where the events shall 

occur, and the stride time calculation considers rising or declining periods (which are not as significant 

in data acquired through the ASCane. Consequently, the stride time is easily miscomputed, decreasing 

the detection rate of all gait events  

The results prove that the modified algorithm cannot be directly applied to the detection 

of cane events without further modifications. The single axis of a gyroscope located on the top of 

the cane does not provide enough information for the segmentation of a cane gait events at these 

conditions. The implementation of the ground truth decision rules into the literature algorithm is discussed 

in future work. 

To estimate the real performance of machine learning classifiers, J-K-fold CV was performed in 

all studies and combinations. In the first stage, due to time constraints, only a 1-5-K-fold CV was 

accomplished. According to [153] if K > 3, to guarantee overlapping training sets, it is possible to have 

comparable variance across K. Meaning that the only reliable reason to increase K is to reduce bias.  

In contrast, increasing J does not affect bias but does significantly decrease the internal variability. 

The authors also concluded that the ACC of the model tuned by 1-10-fold CV is not stable enough to 

enable the comparison with other models of close performance. To be capable of distinguishing between 

the trained models with close performance differing, it requires higher choices of J. Also, based on a 

study by Kohavi et al. [154], using K=5 or k=10 produces a reasonable trade-off between bias and 

variance. Consequently, a 10-5--fold CV was chosen for the second stage. 

From Figure 6.22, which represents the evaluation performance of the KNN model with UDFS 

as feature selection method from 1 to 120 features in the training dataset, the model, with only 10 

features, already presents overall performance above 90%, contrarily to the ensemble learning model with 

LLCFS as a feature selection method, Figure 6.23. The highest overall performance of the KNN classifier 

was with only 20 features, which was the model chosen to the third stage. With the same number of 

features, the ensemble learning model presents lower performance, 5.51% in ACC, 7.84% in SENS, 1.27% 

in SPEC and 4.77%, 6.42%, 7.52% in PREC, F1S and MCC, respectively. Moreover, the computational 

power required for an ensemble learning model is much higher than the one needed for a KNN model. 

After testing the model with unseen data, even though the performance was high, occasionally 

the model misclassified samples, resulting in outliers, as seen in Figure 6.24 (orange boxes). 
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Furthermore, the model misclassified samples right after a gait event transition, as also seen in Figure 

6.24 (blue boxes). The developed algorithm aimed only at removing the outliers of the signal, since 

there is not possible, with a pre-processing technique, to suppress the advanced of delayed detections in 

gait event transitions. The algorithm result for a full trial is depicted in Figure 6.25, as seen, all the 

outliers for the trial were removed and replaced with the correct gait event. Only a small increase 

in performance was expected since the presence of outliers was low when compared to the 

number of times the model considered a transition delayed or advanced in time. Lastly, in 

Figure 6.26 it is possible to compare the true labels with the algorithm results, as seen, the only 

difference between both signals is the sample in which the transition between the gait 

event happens (Figure 6.26 (red boxes)). 

7. ASCANE PRE-FALL STEP DETECTION SYSTEM 

One of the primary goals of this thesis was to be capable of estimating a fall through an ordinary 

cane system. According to the literature, fall and pre-fall states are considered relevant to be 

detected. Subsequently, this chapter aims at developing a classifier fitted of distinguishing normal 

gait and PFS situations, using ASCane gait parameters through an IMU-based system throughout 

ADLs. This chapter will be divided into three major arts: i) System setup, data collection from sensing 

devices through trials in healthy young people, and computation of metrics; ii) Selection of the most 

relevant metrics through several feature selection methods; iii) Training and testing of different machine 

learning classifiers with the most suitable set of metrics. 

The scientific literature regarding fall-related systems installed into a cane is very focused on FD 

systems which employ threshold or multi-threshold algorithms. FD systems are often based on impact 

detection [94], [95], [105], [155]. Nevertheless, some canes embed systems which try to avoid falls or 

imbalances, but they are embedded in a robotic system with a wheele based [100]–[103], [156]. Besides 

up to our knowledge, there is still no cane system proposed regarding PFS detection using 

IMUs. Hence it is necessary to establish a framework that takes advantage of the perceptual information 

to monitor the subject movement execution and, in the most undesirable case, use it to prevent fall 

situations. 

Ribeiro et al. [157] developed a strategy to predict a fall only using wearable sensors attached to 

the subjects’ lower back, thighs and feet. It was considered four different locomotion modes to be 

classified: fall, pre-fall (Gait cycle before the fall’s situation), walk forward, and global (including walking 
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in circle and walk forward, bypassing an obstacle). Using convolutional neural networks based on deep 

learning, PFS were identified with a success rate of 88.24%, whereas fall and walk forward plus global 

locomotion modes presented accuracies of 100% and 93.26%, respectively. Consequently, the pre-fall 

step presents key differences from normal steps. Based on these achieved results, it is possible to 

establish the hypothesis that the inertial data acquired from a cane from the last step before 

a fall might be different from data of standard steps. 

7.1 Methods and Materials 

7.1.1 General Overview 

The proposed methodology used for detecting PFS situations is very similar to the one achieved in 

Chapter 6. A schematic overview of the completed strategy is highlighted in Figure 7.1. After the 

experimental trials and segmentation of the last complete valid step before a fall, a machine learning 

study was performed to find which are the best set of features and machine learning classifier to identify 

PFS situations. In the following subchapters, a brief description of each module is given, together with 

the explanation of the work developed. 

 

Figure 7.1: General Overview of the carried-out methodology for the detection of pre-fall situations. 

7.1.2 Experimental Protocol 

All trials were performed at the gymnasium and data from four different fall directions were 

collected (front, backward, right and left), as portrayed in Figure. 7.2. The falls were executed by ten 

volunteers which ranged from 22 to 25 years (23.6 ± 1.02 years), with a body mass between 52 and 80 

kg (67.80 ± 7.88 Kg) and a height of 1.51 to 1.81 m (1.71 ± 0.83 m). All participants provided their 

written consent, and each fall direction was performed a total three times per subject with a total of 120 
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simulated falls. Figure 7.3 a) depicts the ASCane and Figure 7.3b) illustrates the ASCane system with the 

sensors location and their corresponding orientation. 

 

Figure 7.2: a) Fall scenarios mimicked - Subjects starts walking (green arrow) and Falls (red X) to the red arrow 
direction; b) Example of a fall to the right in the gymnasium. 

 

Figure 7.3: a) ASCane; b) ASCane system during data acquisition (1) IMU; (2) FSR. 

7.1.3 Machine Learning Framework 

Since the data acquired was equal as Chapter 6 (ASCane acceleration, angular velocity and FSR), 

the computed features were the same (Table XXIV – Appendix 3). Consequently, feature computation and 
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normalization were equal for both sections, resulting in 288 features normalized between 0 and 1. 

Regarding feature selection methods, the same ones were used to rank the features for the 

predictive model, with exception of PCA, which was not able to rank the features. Therefore, the feature 

selection methods used were: CFS, Relieff, UDFS, LASSO, Laplacian Score, UFSOL and LLC. 

Considering this is a binary classification, support vector machines can be directly applied to the 

dataset. For PFS detection, it was used support vector machines using three different kernels: linear, 

gaussian and polynomial. Moreover, the machine learning classifiers previously used were also 

implemented for PFS detection, namely: KNN, with an equal, inverse and squared inverse distance 

weighting function; DA with linear and quadratic discriminant function; Ensemble Learning; Decision 

Trees and Regression Model with linear and pure quadratic terms. The support vector machines were 

only built and tested with up to 60 most discriminative features (instead of the 120) due to time-constrains 

since, for each model, the computation time was approximately 1 hour. 

The goal was to find the beast combination of classifier and features to maximize performance. To 

do so, a three-stage study was accomplished. Similar to the previous chapter, all possible combination of 

machine learning classifiers and features resulting from several feature selection methods were tested 

and evaluated. Secondly, the two most suitable combinations were tested once again, this time with 

increased j-k-fold CV, both stages are depicted in Figure 7.4. 

The third and last stage involved the development of an online post-processing filtering to 

reduce the false-positive rate. The classifier was tested with unseen data to test its predictive power, more 

precisely, 6 full trials from different subjects with random fall direction and 9 full trials of ADLs (the same 

walking activities tested in Chapter 6). Subsequently, the developed post-processing online filter was 

applied to the same results and benchmarked against the classifier results. The algorithms flowchart is 

presented in Figure 7.5. Initially, all the samples inside the pre-defined window of the sample (i) with 

length (window_size) are selected, and the number of positive detections (N) is calculated. A positive 

detection is considered a sample of a PFS. At this point, four different scenarios are possible: 

➢ The number of positive detections (N) can be equal or superior to the number of positive 

detections threshold (sample_thr), and the sample (i) is classified as a normal step, in 

which the sample (i) remains a normal step. 

➢ The number of positive detections (N) can be equal or superior to the number of positive 

detections threshold (sample_thr), and the sample (i) is classified as a PFS. Consequently, 

the sample (i) remains classified as a PFS. 
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Figure 7.4: The different combinations of feature selection methods, number of features and classifier tested for 
the first and second stage. 

➢ The number of positive detections (N) can be inferior to the number of positive detections 

threshold (sample_thr), and the sample (i) is classified as a PFS. Thus, the sample (i) is 

overridden as a normal step. 

➢ The number of positive detections (N) can be inferior to the number of positive detections 

threshold (sample_thr), and the sample (i) is classified as a normal step. Hence, the 

sample (i) remains classified as a normal step. 

This decision process continues for each sample (i) until the end of the given trial. It is crucial to 

disclose that N is independent of i, meaning that instead of modifying the original results of the machine 

learning model, the post-processing algorithm creates a new result vector. To achieve the 

highest performance, this filter was iteratively tested with every combination of sample_thr and 

window_size from 1 up to 100, which performs a total of 10 000 different combinations. Lastly, a 

study regarding the detection time was conducted with the filtered classification to uncover how 

much time in delay the cane detects the PFS as well as the time difference between the PFS detection 

and the impact with the ground/end of the PFS. To evaluate all possible combinations, six metrics were 

computed, specifically: MCC, ACC, SENS; SPEC, PREC and F1S, the same as Chapter 6. 
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Figure 7.5: Flowchart of the post-processing filter developed for increasing the performance of PFS detection and 
elimination of PF detections. 

7.2 Results 

The first stage conducted for PFS detection intended at assessing which were the two best 

combinations of machine learning classifiers and feature selection methods that provided the best overall 

performance, with the least number of features. The results comparing the best combinations of 

performances are presented from Tables XV to XXI in Appendix 2. The number of features selected was 

the one that achieved the best ACC. The Laplacian Score and Relieff feature selection methods 

produced the best overall performance. While the Relief method performed slightly better, 

considering the trade-off within performance, number of features required and model size, the Laplacian 

Score is the most fitting feature selection method (ACC> 89.89%, SENS>91.92%, SPEC>80.97%, 

PREC>95.43%, MCC>67.74%, F1S>93.66%). Concerning the application of the different classifiers with 

the Laplacian Score, it is possible to acknowledge that the KNN classifier and support vector 

machines with a polynomial kernel attained the best outcomes (ACC> 98.85%, SENS>99.29%, 

SPEC>96.97%, PREC>99.30%, MCC>96.25%, F1S>99.29%). On the other hand, both DA tested (linear 
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and quadratic) presented the lowest performance (ACC> 80.97%%, SENS>91.92%, SPEC> 80.97%, 

PREC> 95.43%, MCC > 67.74%, F1S > 93.66%).  

The two best combinations were chosen based on two criteria: the classifier must be different and 

needs to have the best trade-off between performance and number of features necessary. Consequently, 

two combinations resulted from these criteria: Laplacian Score with support vector machines 

(polynomial kernel) and KNN (squared inverse as distance weight function), which results are 

exposed in Table 7.1. 

Table 7.1: Overall ACC, SENS, SPEC, PREC, MCC and F1S of the two best combinations of feature selection 
method, classifiers and number of features in the first stage accomplished for PFS detection 

Feature 

Selection 

Method 

Classifier 

Number 

of 

Features 

Overall Performance  

ACC SENS SPEC PREC MCC F1S 

Laplacian 

KNN Squared 

Inverse 
12 98.85 99.29 96.97 99.30 99.29 96.25 

Support Vector 

Machines - 

Polynomial 

51 99.89 99.92 99.78 99.95 99.93 99.67 

 

The second stage was designed to estimate the real performance of the selected machine learning 

classifiers and choose the one who performed the best. Consequently, the chosen combinations were 

tested once again with a 10-5-fold CV, instead of 1-5-fold CV. With increased J-K-fold, the training 

time of the classifier increases proportionally. Since for each iteration, the support vector machines 

training time was approximately 39 hours, due to time constraints, only the first 30 iterations of both 

classifiers were conducted for their comparison.  

Regarding the KNN classifier, all the evaluation metrics increased, as seen in Table XXII from 

Appendix 2. The ACC increased by 0.23% (reaching 99.08%), the SENS improved by 0.1% (99.39%), and 

the SPEC, PREC, MCC and F1S reached 97.72%, 99.47%, 99.43%, 97.00, respectively. The comparison 

between the results from the first and second stage are exhibited in Table 7.2 and the evaluation 

performance of the KNN classifier trained with 1 up to the 30 most significant features is represented in 

Figure 7.6. 
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Table 7.2: Comparison between the first and second stage results (ACC, SENS, SPEC, F1S and MCC) of the KNN 
model (Squared Inverse as distance weight function) trained with the 12 most significant features resulted from 

the Laplacian Score Feature Selection method 

ACC SENS SPEC PREC F1S MCC 

1st  2nd 1st  2nd 1st  2nd 1st  2nd 1st  2nd 1st  2nd 

98.85 99.08 99.29 99.39 96.97 97.72 99.30 99.47 99.29 99.43 96.25 97.00 

            

 

Figure 7.6: Overall ACC, SENS, F1S and MCC obtained with the KNN model trained from 1 up to the 30 most 
significant features computed by the Laplacian Score feature selection method. 

Concerning the application of support vector machines, the results decreased slightly. The 

resultant ACC lowered 0.8% (matching 99.09%), the SENS dropped 1.00% (98.92%), and the SPEC, 

PREC, MCC and F1S reached 98.63%, 99.91%, 99.92% and 99.58%, respectively. The comparison 

between the results from the first and second stage are exhibited in Table 7.3. and the evaluation 

performance of the support vector machines trained with 1 up to the 30 most significant features is 

represented in Figure 7.7. 

Table 7.3: Comparison between the first and second stage results (ACC, SENS, SPEC, F1S and MCC) of the 
support vector machines model (polynomial kernel) trained with the 12 most significant features resulted from 

the Laplacian Score Feature Selection method 

ACC SENS SPEC PREC F1S MCC 

1st  2nd 1st  2nd 1st  2nd 1st  2nd 1st  2nd 1st  2nd 

99.89 99.09 99.92 98.92 99.78 98.63 99.95 99.91 99.93 99.92 99.67 99.58 
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Figure 7.7: Overall ACC, SENS, F1S and MCC obtained with support vector machines (polynomial kernel) model 

trained from 1 up to the 30 most significant features computed by the Laplacian Score feature selection method. 

Once again, the classifier was chosen considering the existing trade-off between the evaluation 

metrics, computational power and number of features needed. The KNN classifier performance 

was superior to the one reached by the support vector machines, and the difference between the 

number of features is significantly (approximately 40). Therefore, the combination of the 12 most 

significant features through the Laplacian Score method with the KNN algorithm as classifier was chosen 

to continue to the next and final stage, the 12 most significant features are listed in Table 7.4. 

Table 7.4: The 12 most significant features by the Laplacian Score for the detection of PFSs in a cane. 

Feature Ranking Feature Description 

1 'FSR' ASCane FSR 

2 'Quaternion1' First element of quaternion vector 

3 ‘Correlation - Gyr X – Z’ 
Correlation Between Angular Velocity 

X and Z axis 

4 'MAD' Magnitude of Angular Displacement 

5 'Quaternion2' Second element of quaternion vector 

6 'Roll' 
Roll (Madgwick Sensor-Fusion 

Algorithm) 

7 'Max_Gyr_Z' Maximum Angular Velocity (Z axis) 

8 'Displacement_Y' Displacement (Y axis) 

9 'RAC - Y' 
Resultant of Average Acceleration (Y 

axis) 
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Feature Ranking Feature Description 

10 'Yaw' 
Yaw (Madgwick Sensor-Fusion 

Algorithm) 

11 'RAC SVM' 
SVM of Resultant of Average 

Acceleration 

12 'RAC - X' 
Resultant of Average Acceleration (X 

axis) 

 

The use of a post-processing algorithm intended to increase the performance metrics and 

remove PF from the resultant signal. The comparison between the use and non-use of the algorithm 

for different windows sizes and sample numbers are presented in Table XXIII in Appendix 2. It is verified 

that ACC, SENS F1S and MCC increase while SPEC and PREC decreased. As we increase window_size, 

the ACC rises until it peaks (ACC = 99.76%) with a window_size of 20 and sample_thr of 20 (Figure 

7.8 - grey X). Yet, PF detections are still detected (SENS = 99.93%).  With a window_size of 39 and 

sample_thr of 39 (Figure 7.8 - blue X), all the PF are eliminated, resulting in an ACC of 99.65% 

(1.5% increase), SENS of 100% (1.89% increase), SPEC of 84.44% (decrease of 15.56%), PREC of 

99.64%(decrease of 0.39%) and F1S and MCC of 99.82% and 91.73% (increase of 0.78% and 18.58%) 

respectively. Increasing the window_size to 100, PF detections start to appear again (SENS = 99.73%). 

The comparison between the use and non-use of the post-processing algorithm with a window_size of 

39 and sample_thr of 39 for all tested trials is depicted in Figure 7.9. 

 

Figure 7.8: ACC of all tested combinations (sample_thr and window_size) from 1 up to 100 (each) of the post-
processing algorithm where the combination with the highest achieved ACC is marked with grey and the chosen 
combination market at blue. 
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Figure 7.9: Comparison between the non-use (a) and use (b) of the post-processing filter with sample_thr and 
window_size of 39. 

With the use of the post-processing filter, the detection of a PFS is delayed 0.191±0.011s (Table 

7.5), detected 1.019±0.11s (Table 7.6) before the end of the respective step and 2.009±0.628s 

(Table 7.7) before the impact with the ground. Without the use of the filter, the PFS is detected 

1.22±0.11s (Table 7.6) before the end of the respective step and 2.107±0.635s (Table 7.7) before 

the impact with the ground. The use of the post-processing filter results in a delayed impact detection of 

0.098s. 

Table 7.5: Comparison between the Mean and Standard Deviation of the time difference between the detection of 
the PFS (with and without the use of the post-processing filter) and the real labels 

 

Without Filter 
With Filter: Window Size / Number of Samples 

20/20 39/39 100/33 

Samples Time(s) Samples Time(s) Samples Time(s) Samples Time(s) 

Mean -0.333 -0,002 18.83 0,094 38.33 0,191 31.83 0,159 

Standard Deviation 0.516 0,003 0.752 0,003 2.338 0,011 0.752 0,003 
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Table 7.6: Comparison between the Mean and Standard Deviation of the time difference between the detection of 
the PFS (with and without the use of the post-processing filter) and the end of the PFS 

 

Without Filter 
With Filter: Window Size / Number of Samples 

20/20 39/39 100/33 

Samples Time(s) Samples Time(s) Samples Time(s) Samples Time(s) 

Mean 242.5 1.215 223.33 1,117 203.83 1,019 210.33 1,052 

Standard Deviation 21.95 0.109 22.214 0,111 22.0410 0,110 21.805 0,109 

 
Table 7.7: Comparison between the Mean and Standard Deviation of the time difference between the detection of 
the PFS (with and without the use of the post-processing filter) and the impact with the ground 

 

Without Filter 
With Filter: Window Size / Number of Samples 

20/20 39/39 100/33 

Samples Time(s) Samples Time(s) Samples Time(s) Samples Time(s) 

Mean 440.5 2.20 421.33 2,107  401.83 2,009  408.33 2,042 

Standard Deviation 126.92 0.63 127.19 0,636 125.57  0,628 126.98  0,635 

 

For example, in Figure 7.10, a fall trial is depicted with all events marker with an X. The beginning 

of the PFS is marked at orange, the detection of the PFS with the post-processing algorithm 

(window_size of 39 and sample_thr of 39) labelled at green (1.675s and 1.025 before impact and 

end of the PFS, respectively), the end of the PFS indicated at grey and the impact at yellow. 

 

Figure 7.10: PFS detection of a trial with all events marker with an X, PFS (marked at orange), detection of the PFS 
with the post-processing algorithm (window_size of 39 and sample_thr of 39 marked at green), the end of the PFS 
(marked at grey) and the impact (marked at yellow). 
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7.3 Discussion 

From Figure 7.6, which represents the evaluation performance of the KNN model with Laplacian 

Score as feature selection method from 1 to 30 features in the training dataset, the model, with only 10 

features, already presents overall performance above 98%. Contrarily, the support vector machines 

model, Figure 7.7, demands more than 25 features to achieve performance above 90%.  

Moreover, starting at 12 features until 30, the performance of the model prevails constant, and 

slightly decreasing at some iterations. The highest overall performance of the KNN classifier was 

with 12 features, which was the model chosen to the third stage. With the same number of features, 

the support vector machines present much lower performance, 45.66% in ACC, 45.98% in SENS, 32.98% 

in SPEC and 12.66%, 33.32%, 82.88% in PREC, F1S and MCC, respectively. 

After testing the model with unseen data, even though the performance was high, occasionally the 

model misclassified samples, resulting in false positive detections, as seen in Figure 7.9 a). The 

elimination of PF was imperative admitting that if a PFS system was installed into the ASCane, it 

would be activated several times during ADLs.  

The developed post-processing filter aimed only at excluding the false positives of the signal. In 

Figure 7.9 b) it is possible to observe that the post-processing filter in the unseen data eliminated 

all PF detections. However, by applying a sample_thr of 39, the PFS will be detected with a delay of 

39 samples, which translated to a 0.195s mean delay, as seen in Figure 7.9 b) (zoomed area). To 

guarantee that a fall is prevented, the system needs to act during PFS. By Table 7.6, with the use of a 

window_size of 39 and sample_thr of 39, the PFS is detected 1.019s before the end of the 

corresponding PFS and 2.009s before impact, Table 7.7, which is a significant amount of time for 

an actuator. 

8. CONCLUSIONS 

Throughout this master thesis, the author realized that the occurrence of falls amongst the elderly 

is a significant risk that can lead to fatal or non-fatal falls, and present high costs. As a result, it is 

imperative to achieve efficient methodologies to counteract the stated problem, and any attempt to avoid 

or prevent a fall can save multiple lives. According to the state-of-the-art, research groups and commercial 

brands are more focused on fall detection systems embedding IMUs. Nevertheless, only detecting falls is 

not enough to prevent or save lives. Thus, PFS detection systems are crucial devices that can save lives 

by detecting a fall before it happens, giving more time to actuate.  
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Although several steps have already been taken in this direction, one of the conclusions reached 

is that wearable systems, even with their advantages, still are rejected by patients since the proposed 

systems required to be attached to the subject's body, which weighs on the individual and constrains his 

movements. Therefore, embedding sensors into a cane can be the best choice since these assistive 

devices are widely used amongst the geriatric community and the number of prescriptions is increasing 

due to gait/balance disorders and lower limbs weakness. Furthermore, an evaluation of the canes gait 

can be capable of enhancing the ability of cane usage, also reducing the possibility of possible falls 

amongst them. The work carried out in this dissertation addresses the use of a cane system not only for 

fall and pre-fall detection but also for the segmentation of a cane stride into six different gait phases. 

Chapter 4 addresses the development of the ASCane system. The result is a light and small 

system, that is easily installed into any ordinary cane. The use of the IMU for the acquisition of kinematics 

and the FSR limits the number of sensors embedded into the cane, increasing the system simplicity, 

which facilitates its setup. 

Concerning the detection of falls in Chapter 5, typically, FD strategies can be divided into three 

categories: fixed threshold, adaptive threshold and machine learning. With the application of support 

vector machines, it was achieved good results (SENS = 83.47%), (SPEC = 96.60%) and (MCC = 82.11%). 

However, the best performance was achieved with a single lower threshold of 0.2g, (SENS = 96.90%), 

(SPEC = 98.98%) and (MCC = 95.59%) which decreases the computational power required by the 

microprocessor used. 

Regarding machine learning in this dissertation, the classification of PFS and cane events was 

established using a min-max scaling procedure [0,1] to normalize the data features, followed by a 

combination of different machine learning classifiers and feature selection methods. The selected 

classification algorithm for building the final machine learning model was then optimized with post-

processing algorithms and filters. 

For the classification of cane events, which is disclosed in Chapter 6, detailed comparisons were 

evaluated due to the implementation of two different approaches: a finite-state-machine algorithm present 

in the literature, and a machine learning study to uncover which set of features and classifier better 

distinguish the six different gait phases of a cane. From these results, it was concluded that, for the time 

being, the machine learning approach with a post-processing algorithm is more suitable to be embedded 

into the cane system while the state-of-the-art algorithm is not improved to account for the inertial 

differences of data acquired in the cane. For the different walking scenarios tested, it was achieved an 
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overall high performance (ACC = 95.70%, SENS =92.74 %, SPEC =99.13%, PREC = 93.74%) considering 

the misdetections existed only in the gait event transitions. 

The results for PFS detection, the same machine learning approach was conducted, and it was 

concluded that the combination of the 12 most relevant features from the Laplacian score feature 

selection methods combined with the KNN (Squared Inverse) as the machine learning classifier provided 

the best results, followed by an online post-processing filter to remove false positive detections. It was 

achieved great performance (ACC = 99.65%, SENS =100 %, SPEC =84.44%, PREC = 99.64%) detecting 

the PFS 1.019s ± 0.110 before its end and 2.009 ± 0.628 before impact. 

The work herein presented enables to answer the RQs outlined in Chapter 1. 

➢ RQ1: Which is the best fall detection strategy to be implemented in a cane? This RQ is 

addressed in Chapter 5 

The best fall detection strategy that can be implemented into a cane is a single lower 

threshold of 0.2g. However, for increased robustness, the use of another threshold, ωres 

is indicated. 

 

➢ RQ2: Which are the features and machine learning classifier with greater potential to 

distinguish between the different human gait events in the implemented classifiers? This 

RQ is addressed in Chapter 6. 

The 20 most significant features resulting from the UDFS combined with the KNN 

machine learning classifier (followed by and post-processing algorithm) achieved the 

highest overall performance amongst all combinations tested (Table 6.2). More 

specifically the Acceleration along the X-axis plane High-Pass filtered with cut-off 

frequency of 0.1Hz; Acceleration along the Z-axis plane High-Pass filtered with cut-off 

frequency of 0.1Hz; Raw acceleration along the Z axis; Raw acceleration along the X axis; 

Gravity Component along the X-axis; Gravity Component along the Z-axis; Displacement 

along the X axis; Velocity along the Y axis; Velocity along the Z axis; Fourth element of 

quaternion vector; Euler Angle - Pitch; Third element of quaternion vector; Euler Angle - 

Yaw; SVM of the angular velocity Band-Pass filtered with cut-off frequencies of 0.1Hz and 

90Hz; SVM of the angular velocity High-Pass filtered with a cut-off frequency of 0.1Hz ; 

Gravity Component along the Y-axis; Angular Velocity along the Z-axis plane High-Pass 

filtered with cut-off frequency of 0.1Hz; Raw Angular velocity along the Z axis; Second 

element of quaternion vector and the Euler Angle – Roll. With a 10-5-Fold CV it was 
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achieved 99.08%, 99.39%, 97.72%, 99.47%, 99.43%, and  97.00% for ACC, SENS, 

SPEC, PREC, F1S and MCC, respectively. When testing the trained model with unseen 

data it was achieved an ACC, SENS, SPEC, PREC, F1S and MCC of 99.65%, 100%, 

84.44%,99.64%, 99.82% and 91.73%, sequentially. 

  

➢ RQ3: Which are the features and machine learning classifier with greater potential to 

distinguish between normal gait and pre-fall situations in data acquired from a cane? 

This RQ is addressed in Chapter 7. 

The 12 most significant features resulting from the Laplacian Score feature selection 

methods combined with the KNN machine learning classifier (followed by and post-

processing filter) achieved the highest overall performance amongst all combinations 

tested (Table XXII – Appendix 2). More specifically the ASCane FSR; First element of 

quaternion vector; Correlation Between Angular Velocity X and Z axis; Magnitude of 

Angular Displacement; Second element of quaternion vector; Roll (Madgwick Sensor-

Fusion Algorithm); Maximum Angular Velocity (Z axis); Displacement (Y axis); Resultant 

of Average Acceleration (Y axis); Yaw (Madgwick Sensor-Fusion Algorithm); SVM of 

Resultant of Average Acceleration; Resultant of Average Acceleration (X axis); With a 10-

5-Fold CV it was achieved 98.85%, 99.29%, 96.97%, 99.30%, 99.29% and 96.25% for 

ACC, SENS, SPEC, PREC, F1S, and MCC, respectively. When testing the trained model 

with unseen data it was achieved an ACC, SENS, SPEC, PREC, F1S and MCC of 98.15%, 

98.11%, 100%, 100%, 99.04% and 73.15%, sequentially. 

8.1 Future Work 

As future work, the ASCane system should be improved with some changes at the hardware level. 

Firstly, the system implementation should be accomplished in a printed circuit board instead of a 

breadboard since the cane is continuously subjected to falls, the internal circuits can be jeopardised. 

Secondly, a rechargeable battery should be installed since the ASCane must be connected to a USB 

power supply (e.g. computer) to operate. Furthermore, interoperability is a subject that needs to be 

studied regarding the developed system in order to different information systems (e.g. desktop and mobile 

apps) be able to access, exchange, integrate and cooperatively use data in a coordinated manner. Thus, 

providing timely and seamless portability of information regarding the health of individuals and 

populations globally. 
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Regarding the developed FD strategies (Chapter 5), the addition of the ωres feature into the single 

LFT algorithm must be tested to perceive if the extra feature increases the overall performance of the 

developed algorithm. Moreover, it would improve its robustness since it was proved that ωres presents 

significant differences between fall and ADL situations. Moreover, different labelling methods should be 

studied regarding the machine learning approach taken since the used method (CVFast) may not be the 

most suitable for a cane. 

The implementation of the newly discovered conditions in the finite-state-machine algorithm for 

cane event segmentation is mandatory (Chapter 6). Subsequently, a comparison with the attained results 

from the most suited machine learning model needs to be completed to decide which methodology should 

be implemented into the microcontroller of the ASCane, enabling real-time testing. 

It is also critical to study feature redundancy, both in Chapter 6 and 7, since some of the selected 

features are highly correlated, offering small training "value" considering that the presence/state of one 

value (e.g. filtered signal) can always (or almost always) be used to determine the presence/state of the 

other (e.g. raw signal). Performing a hyperparameter optimisation in the best obtained model is essential 

since all models in this thesis were trained with the default parameters. Additionally, the construction and 

use of associative skill memories and convolutional neural networks based on deep learning as tools for 

locomotion mode recognition (standard steps, PFS and falls) and cane event recognition (FGC, FBC, 

MSM, PCO, FCO, CMSW) should be completed since are innovative concepts used within the context of 

human fall prediction and gait analysis. Applying the results from the cane event machine learning model 

(Chapter 6) as input for the machine learning model, which predicts PFS is also proposed. 

In addition, it is required to surmount the considerable small number of samples acquired in 

Chapters 5, 6 and 7. It would be crucial building such a database with relevant gait parameters obtained 

from not only healthy but also elderly and impaired subjects during walking over different conditions of 

speed and ground, using the ASCane system. Consequently, it would be possible to determine if the 

ASCane is capable of accurately detecting its gait phases, as well as fall and PFS situations. 
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APPENDICES 

Appendix 1 

In this appendix it is represented the complete results regarding chapter 6. 
 
Table I: Algorithm performance in controlled situations with ground truth the manual segmentation 

Gait 

Event 
ACC 

Delay Advance ND within 

range 

ND by 

Cane % ms % ms 

FGC 83.92 14.37 19.25±10.61 69.36 45.34±25.31 14.92 1.16 

FBC 46.34 43.25 55.32±27.90 8.47 43.92±30.44 52.49 1.16 

MSM 0.74 28.57 35.00±0.00 71.43 58.00±30.33 98.09 1.16 

PCO 0.96 11.11 90.00±0.00 77.78 78.57±21.74 97.87 1.17 

FCO 22.60 34.91 51.42±16.85 57.08 53.06±28.32 76.33 1.01 

CMSW 98.51 0.95 6.67±4.08 0.76 19.29±29.50 0.42 1.01 

 
Table II: Algorithm performance in Real-Life situations (Level-ground Surfaces) with ground the manual 

segmentation 

Gait 

Event 
ACC 

Delay Advance ND within 

range 

ND by 

Cane % ms % ms 

FGC 72.38 0.76 15.00±0.00 96.94 54.13±23.87 22.65 4.97 

FBC 49.45 29.61 35.19±23.31 30.17 44.07±26.74 45.58 4.97 

MSM 8.84 15.63 43.00±16.81 68.75 62.27±28.52 86.19 4.97 

PCO 12.98 8.51 38.75±31.98 85.10 67.50±24.62 82.59 4.41 

FCO 46.54 2.38 10.00±4.08 74.40 42.60±23.98 49.58 3.88 

CMSW 93.54 0.60 5.00±0.00 1.50 7.60±4.2.52 2.52 3.93 

 
Table III: Algorithm performance in Real-Life situations (Inclined Surfaces) with ground the manual segmentation 

Gait 

Event 
ACC 

Delay Advance ND within 

range 

ND by 

Cane % ms % ms 

FGC 72.19 1.83 12.50±3.54 95.41 51.68±24.98 19.21 8.61 

FBC 56.95 18.60 47.50±28.87 29.07 53.00±28.46 34.44 8.61 

MSM 7.28 0 0.00±0.00 81.81 77.22±19.22 84.11 8.61 

PCO 10.60 18.75 13.33±10.41 75.00 77.92±20.05 78.80 10.60 
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Gait 

Event 
ACC 

Delay Advance ND within 

range 

ND by 

Cane % ms % ms 

FCO 38.93 5.17 16.67±10.41 77.59 42.89±25.79 52.35 8.72 

CMSW 87.42 0 0.00±0.00 0.76 5.00±0.00 3.97 8.61 

 

Table IV: Algorithm performance in Real-Life situations (Stairs) with ground the manual segmentation 

Gait 

Event 
ACC 

Delay Advance ND within 

range 

ND by 

Cane % ms % ms 

FGC 52.78 17.54 18.50±11.07 75.43 54.30±22.00 17.59 29.63 

FBC 34.26 32.43 34.17±21.30 29.73 30.00±22.36 36.11 29.63 

MSM 11.11 16.67 80.00±21.21 41.67 52.00±38.01 59.26 29.63 

PCO 17.59 26.32 30.00±27.16 68.42 78.46±23.66 52.77 29.63 

FCO 34.26 24.32 69.44±36.70 45.95 46.76±26.34 42.59 23.15 

CMSW 77.36 0 0.00±0.00 0 0.00±0.00 0 22.65 

 

 
Table V: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the CFS feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
77.67 77.90 95.50 77.93 77.87 73.41 120 

KNN Equal 77.67 77.90 95.50 77.93 77.87 73.41 120 

KNN Inverse 77.67 77.90 95.50 77.93 77.87 73.41 120 

DA Linear 77.07 76.42 95.39 78.83 76.77 72.79 75 

DA Quadratic 70.13 68.71 93.99 71.20 68.23 63.54 75 

Ensemble Learning 94.35 94.29 98.86 94.38 94.32 93.13 113 

Decision Tree 90.04 90.00 98.00 89.96 89.90 87.97 117 

Regression Model - 

Linear 
46.88 46.48 89.24 54.09 45.67 38.21 120 

Regression Model – 

Pure Quadratic 
58.17 57.38 91.54 64.07 57.03 51.24 120 
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Table VI: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the Laplacian Score 

feature selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
86.27 86.61 97.23 86.45 86.45 83.74 60 

KNN Equal 86.27 86.61 97.23 86.45 86.45 83.74 60 

KNN Inverse 86.27 86.61 97.23 86.45 86.45 83.74 60 

DA Linear 69.40 69.18 93.90 70.58 68.71 63.44 102 

DA Quadratic 65.32 64.03 93.09 66.60 63.82 58.01 95 

Ensemble Learning 95.72 95.63 99.14 95.70 95.65 94.80 111 

Decision Tree 90.95 90.79 98.18 90.80 90.79 88.97 110 

Regression Model - 

Linear 
57.49 56.23 91.41 62.80 55.36 49.75 120 

Regression Model – 

Pure Quadratic 
61.78 60.80 92.28 66.14 60.61 54.98 120 

 
Table VII: Comparison of the best classification results ((ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the LASSO feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
90.86 90.85 98.16 90.72 90.75 88.94 34 

KNN Equal 90.86 90.85 98.16 90.72 90.75 88.94 34 

KNN Inverse 90.86 90.85 98.16 90.72 90.75 88.94 34 

DA Linear 69.41 69.14 93.88 71.61 69.20 63.95 117 

DA Quadratic 64.20 61.69 92.80 64.39 60.88 55.33 118 

Ensemble Learning 93.17 92.86 98.62 93.26 93.03 91.68 119 

Decision Tree 86.89 86.54 97.37 86.50 86.52 83.89 117 

Regression Model - 

Linear 
43.37 43.83 88.61 47.40 40.54 32.30 119 

Regression Model – 

Pure Quadratic 
50.76 50.15 90.10 53.96 48.71 41.16 120 
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Table VIII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the LLCFS feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
84.39 84.59 96.86 84.49 84.43 81.37 120 

KNN Equal 84.39 84.59 96.86 84.49 84.43 81.37 120 

KNN Inverse 84.39 84.59 96.86 84.49 84.43 81.37 120 

DA Linear 75.91 75.68 95.20 76.42 75.46 71.05 116 

DA Quadratic 72.87 72.25 94.57 73.85 72.10 67.39 31 

Ensemble Learning 96.10 96.03 99.22 96..06 96.02 95.26 118 

Decision Tree 91.83 91.73 98.36 91.74 91.73 90.09 120 

Regression Model - 

Linear 
60.51 59.36 92.02 65.22 59.32 53.50 120 

Regression Model – 

Pure Quadratic 
63.96 62.93 92.72 67.83 63.03 57.48 120 

 
Table  IX: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the PCA feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
92.38 92.51 98.47 92.36 92.40 90.89 62 

KNN Equal 92.38 92.51 98.47 92.36 92.40 90.89 62 

KNN Inverse 92.38 92.51 98.47 92.36 92.40 90.89 62 

DA Linear 68.12 67.66 93.63 69.72 67.24 61.94 120 

DA Quadratic 62.86 61.16 92.61 64.35 60.72 54.81 106 

Ensemble Learning 95.08 94.95 99.01 95.06 94.98 94.01 103 

Decision Tree 91.11 90.95 98.21 90.95 90.95 89.17 104 

Regression Model - 

Linear 
58.17 57.20 91.54 63.78 57.05 51.04 120 

Regression Model – 

Pure Quadratic 
61.62 60.70 62.24 63.31 60.69 54.97 119 
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Table X: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the Relieff feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
86.44 86.63 97.27 86.45 86.49 83.80 119 

KNN Equal 86.44 86.63 97.27 86.45 86.49 83.80 119 

KNN Inverse 86.44 86.63 97.27 86.45 86.49 83.80 119 

DA Linear 77.99 77.14 95.57 73.93 77.35 73.80 37 

DA Quadratic 77.18 76.70 95.43 78.31 76.62 72.72 31 

Ensemble Learning 94.26 94.09 98.84 94.27 94.17 93.02 120 

Decision Tree 90.76 90.61 98.14 90.62 90.62 88.76 119 

Regression Model - 

Linear 
56.43 55.54 91.19 62.61 55.40 49.21 110 

Regression Model – 

Pure Quadratic 
60.63 59.68 92.03 65.84 59.83 53.99 120 

 
Table  XI: Comparison of the best classification results ((ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the UDFS feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
94.49 94.51 98.90 94.24 94.36 93.26 20 

KNN Equal 94.49 94.51 98.90 94.24 94.36 93.26 20 

KNN Inverse 94.49 94.51 98.90 94.24 94.36 93.26 20 

DA Linear 76.04 75.77 95.22 76.67 75.62 71.26 70 

DA Quadratic 71.11 70.25 94.24 71.74 70.12 65.01 108 

Ensemble Learning 94.71 94.65 98.93 94.75 94.68 93.63 118 

Decision Tree 89.86 89.84 97.96 89.79 89.81 87.78 118 

Regression Model - 

Linear 
52.88 52.05 90.46 58.45 51.74 44.72 120 

Regression Model – 

Pure Quadratic 
59.59 58.66 91.83 64.45 58.66 52.60 119 
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Table  XII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the 

highest ACC, for the different machine learning classifiers trained with the features ranked by the UFSOL feature 

selection method (fist stage) 

Classifiers 
Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

KNN Squared 

Inverse 
92.08 92.12 98.41 92.01 92.04 90.47 30 

KNN Equal 92.08 92.12 98.41 92.01 92.04 90.47 30 

KNN Inverse 92.08 92.12 98.41 92.01 92.04 90.47 30 

DA Linear 67.11 66.82 93.39 70.96 67.10 67.85 82 

DA Quadratic 53.89 52.10 90.70 55.58 49.24 43.40 84 

Ensemble Learning 93.88 93.66 98.77 93.91 93.77 92.55 88 

Decision Tree 88.49 88.25 97.69 88.24 88.24 85.93 93 

Regression Model - 

Linear 
40.60 40.02 88.09 44.28 37.06 28.69 120 

Regression Model – 

Pure Quadratic 
45.22 44.56 89.00 48.02 41.98 33.97 119 
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Table XIII: Comparison of the classification results (ACC, SENS, SPEC, PREC, F1S, MCC),), of the machine learning models, KNN and Ensemble Leaning, trained with the 
features ranked by the UDFS and LLCFS method, respectively and validated with a 10-5-Fold CV (second stage) 

Feature Selection 

Melhod 
Classifiers 

Overall Performance Number of 

Features ACC SENS SPEC PREC F1S MCC 

UDFS 
KNN 

SquaredInverse 

98.22 97.34 99.63 97.33 97.33 96.97 20 

97.27 96.01 99.42 96.21 96.11 95.54 10 

97.75 96.72 99.53 96.78 96.74 96.28 15 

LLCFS Emsemble Learning 

98.46 97.63 99.68 97.87 97.75 97.43 118 

92.71 89.50 98.36 92.56 90.91 89.45 20 

95.38 93.30 98.97 95.11 94.16 93.21 30 

97.86 96.69 99.54 97.13 96.91 96.47 35 

98.18 97.17 99.62 97.46 97.31 96.94 40 

Table  XIV: Performance Metrics for each gait event (ACC, SENS, SPEC, PREC, F1S, MCC) with the combination of the 20 most significant 
features through the UDFS feature selection method with the KNN algorithm as classifier (second stage) 

 
Gait Event ACC SENS SPEC PREC F1S MCC 

FGC 93.59 93.59 99.50 96.51 95.02 94.33 

FBC 98.88 98.87 99.13 98.59 98.73 97.96 

MSM 96.34 96.33 99.56 96.34 96.34 95.90 

PCO 92.87 92.86 99.66 91.90 92.38 92.07 

FCO 98.39 98.39 99.74 98.68 98.52 98.25 

CMS 98.40 98.40 99.29 96.90 97.64 97.11 
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Appendix 2 

In this appendix it is represented the complete results regarding Chapter 7. 

Table XV: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the 
highest ACC, for the different machine learning classifiers trained with the features ranked by the Relief feature 
selection method for PFS detection (first stage) 

Classifiers ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 
95.84 97.80 87.74 97.04 97.42 86.62 53 

Support Vector 

Machines - Polynomial 
99.89 99.92 99.74 99.94 99.93 99.65 60 

Support Vector 

Machines - Gaussian 
99.02 99.43 99.34 99.35 99.39 96.89 58 

KNN Squared Inverse 99.95 99.96 99.96 99.98 99.97 99.84 106 

KNN Equal 99.95 99.96 99.96 99.98 99.97 99.84 106 

KNN Inverse 99.95 99.96 99.96 99.98 99.97 99.84 106 

DA Linear 92.22 94.29 83.30 96.05 95.16 75.39 5 

DA Quadratic 92.14 95.31 78.50 95.02 95.17 74.18 5 

Ensemble Learning 99.93 99.96 99.84 99.96 99.96 99.78 30 

Decision Tree 99.78 99.87 99.39 99.86 99.87 99.28 34 

Regression Model - 

Linear 
95.07 98.21 81.49 95.82 97.00 83.35 118 

Regression Model – 

Pure Quadratic 
95.40 98.23 83.22 96.19 97.20 84.55 119 
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Table XVI: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the 
highest ACC, for the different machine learning classifiers trained with the features ranked by the Laplacian Score 
for PFS detection (first stage) 

Classifiers ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 

96.24 97.94 89.26 97.40 97.67 87.96 55 

Support Vector 

Machines - Polynomial 

99.89 99.92 99.78 99.95 99.93 99.67 51 

Support Vector 

Machines - Gaussian 

99.35 99.52 98.63 99.67 99.59 97.93 60 

KNN Squared Inverse 98.85 99.29 96.97 99.30 99.29 96.25 12 

KNN Equal 98.85 99.29 96.97 99.30 99.29 96.25 12 

KNN Inverse 98.85 99.29 96.97 99.30 99.29 96.25 12 

DA Linear 80.97 91.92 81.16 95.46 93.66 69.15 8 

DA Quadratic 90.17 92.30 80.97 95.43 93.84 67.74 11 

Ensemble Learning 99.94 99.94 99.90 99.98 99.96 99.79 67 

Decision Tree 99.71 99.82 99.25 99.83 99.82 99.06 118 

Regression Model - 

Linear 

95.19 98.21 82.17 95.96 97.09 83.81 119 

Regression Model – 

Pure Quadratic 

95.66 98.32 84.22 96.41 97.35 85.46 118 
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Table XVII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the 
highest ACC, for the different machine learning classifiers trained with the features ranked by the UDFS for PFS 
detection (first stage) 

Classifiers ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 
80.47 99.91 0.51 80.51 89.17 3.93 41 

Support Vector 

Machines - Polynomial 
80.45 100 0.01 80.45 89.16 0.91 1 

Support Vector 

Machines - Gaussian 
82.02 99.92 4.61 81.91 90.02 19.07 60 

KNN Squared Inverse 95.92 97.74 88.06 97.24 97.49 86.55 120 

KNN Equal 95.92 97.74 88.06 97.24 97.49 86.55 120 

KNN Inverse 95.92 97.74 88.06 97.24 97.49 86.55 120 

DA Linear 81.17 100 0.06 81.17 89.61 2.28 4 

DA Quadratic 81.16 100 0.00 81.16 89.60 NaN 1 

Ensemble Learning 94.73 99.98 72.10 93.92 96.85 82.23 120 

Decision Tree 90.57 94.31 74.48 94.09 94.02 69.05 120 

Regression Model - 

linear 
82.80 99.51 10.66 82.78 90.38 25.98 116 

Regression Model - pure 

quadratic 
83.39 99.06 15.81 83.53 90.64 30.66 119 
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Table XVIII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by 
the highest ACC, for the different machine learning classifiers trained with the features ranked by the LLC feature 
selection method for PFS detection (first stage) 

Classifier ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 
95.75 97.84 88.64 97.24 97.36 86.44 55 

Support Vector 

Machines - Polynomial 
99.26 99.51 98.21 99.56 99.54 97.64 58 

Support Vector 

Machines - Gaussian 
97.89 99.11 92.87 98.28 98.69 93.21 59 

KNN Squared Inverse 97.82 98.83 93.46 98.49 98.66 92.82 120 

KNN Equal 97.82 98.83 93.46 98.49 98.66 92.82 120 

KNN Inverse 97.82 98.83 93.46 98.49 98.66 92.82 120 

DA Linear 91.38 93.53 82.10 95.75 94.62 72.97 14 

DA Quadratic 90.78 93.57 78.79 95.00 94.28 70.65 17 

Ensemble Learning 99.94 99.95 99.89 99.97 99.96 99.80 84 

Decision Tree 99.72 99.83 99.25 99.83 99.83 99.08 78 

Regression Model - 

linear 
95.20 98.27 81.82 95.91 97.08 83.79 116 

Regression Model – 

Pure Quadratic 
95.69 98.33 84.33 96.43 97.37 85.57 117 
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Table XIX: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the 
highest ACC, for the different machine learning classifiers trained with the features ranked by the CFS for PFS 
detection (first stage) 

Classifier ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 
85.12 98.07 31.83 85.54 91.38 44.29 55 

Support Vector 

Machines - Polynomial 
96.09 97.95 88.41 97.20 97.58 87.43 58 

Support Vector 

Machines - Gaussian 
90.67 97.81 61.31 91.23 94.40 68.07 60 

KNN Squared Inverse 95.09 97.43 85.01 96.55 96.99 83.71 120 

KNN Equal 95.09 97.43 85.01 96.55 96.99 83.71 120 

KNN Inverse 95.09 97.43 85.01 96.55 96.99 83.71 120 

DA Linear 87.41 88.77 81.58 95.40 91.97 63.97 101 

DA Quadratic 81.16 100 0.00 81.16 89.60 NaN 1 

Ensemble Learning 99.92 99.95 99.8 99.95 99.95 99.73 85 

Decision Tree 99.66 99.8 99.06 99.78 99.79 98.89 96 

Regression Model - 

Linear 
94.86 97.84 81.99 95.91 96.87 82.72 118 

Regression Model - 

pure quadratic 
95.26 97.88 83.96 96.34 97.10 84.15 113 
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Table XX: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the 
highest ACC, for the different machine learning classifiers trained with the features ranked by the UFSOL feature 
selection method for PFS detection (first stage) 

Classifier ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 
81.23 99.88 0.87 81.28 89.63 5.83 15 

Support Vector 

Machines - Polynomial 
81.20 99.92 0.58 81.24 89.62 4.65 2 

Support Vector 

Machines - Gaussian 
84.63 99.69 22.72 84.14 91.26 42.01 59 

KNN Squared Inverse 99.14 99.56 97.34 99.38 99.47 97.18 118 

KNN Equal 99.14 99.56 97.34 99.38 99.47 97.18 118 

KNN Inverse 99.14 99.56 97.34 99.38 99.47 97.18 118 

DA Linear 80.80 98.88 2.91 81.44 89.32 5.86 1 

DA Quadratic 79.23 96.44 5.1 81.41 88.29 3.13 1 

Ensemble Learning 99.36 99.89 97.05 99.32 99.61 97.89 114 

Decision Tree 99.35 99.64 98.11 99.56 99.60 97.87 118 

Regression Model - 

Linear 
86.52 97.92 37.42 87.09 92.18 48.92 120 

Regression Model – 

Pure Quadratic 
89.99 98.96 51.02 89.77 94.14 63.86 120 
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Table XXI: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the 
highest ACC, for the different machine learning classifiers trained with the features ranked by the Lasso feature 
selection method for PFS detection (first stage) 

Classifier ACC SENS SPEC PREC F1S MCC 
Number of 

Features 

Support Vector 

Machines - Linear 
90.71 98.09 58.93 91.14 94.49 67.07 46 

Support Vector 

Machines - Polynomial 
98.12 98.63 95.92 99.05 98.84 93.89 53 

Support Vector 

Machines - Gaussian 
94.92 99.27 76.19 94.73 96.94 82.75 51 

KNN Squared Inverse 99.58 99.77 98.76 99.71 99.74 98.61 51 

KNN Equal 99.58 99.77 98.76 99.71 99.74 98.61 51 

KNN Inverse 99.58 99.77 98.76 99.71 99.74 98.61 51 

DA Linear 82.28 93.81 32.60 85.71 89.58 32.79 39 

DA Quadratic 81.11 93.26 28.75 84.94 88.91 27.64 20 

Ensemble Learning 99.91 99.95 99.77 99.95 99.95 99.72 50 

Decision Tree 99.68 99.81 99.12 99.79 99.80 98.96 50 

Regression Model - 

linear 
92.42 98.48 66.20 92.65 95.48 73.54 119 

Regression Model – 

Pure Quadratic 
94.76 98.33 79.32 95.36 96.82 82.21 120 
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Table XXII: Comparison of the classification results (ACC, SENS, SPEC, Precision, F1S and MCC), of the machine learning models, KNN and Support Vector Machines, trained 

with the features ranked by the Laplacian Score  and validated with a 10-5-Fold CV (second stage) 

Feature Selection 
Method 

Classifier ACC SENS SPEC PREC F1S MCC Number of 
Features 

Laplacian 

Support Vector 

Machines - 

Polynomial 

60.78 58.33 71.32 89.76 70.71 23.22 10 

53.42 53.41 64.74 86.81 66.11 17.23 12 

59.99 59.08 63.89 87.58 70.56 18.05 20 

97.11 97.88 93.81 98.55 98.22 90.68 30 

99.09 98.92 98.63 99.91 99.92 99.58 51 

KNN Squared 

Inverse 
 

98.84 99.24 97.12 99.33 99.28 96.21 10 

99.08 99.39 97.72 99.47 99.43 97.00 12 

98.22 98.98 94.97 98.83 98.90 94.18 20 

  
 
Table XXIII: Comparison the post-processing filter results (ACC, SENS, SPEC, Precision, F1S and MCC) with different windows size and sample number with the non-use of the 

filter (third stage) 

With/Without 
Filter 

Window Size 
Number of 

Samples 
ACC SENS SPEC PREC F1S MCC 

Without NA 98.15 98.11 100. 100 99.04 73.15 

With 

20 20 99.76 99.93 92.29 99.82 99.88 94.51 

39 39 99.65 100 84.44 99.64 99.82 91.73 

100 33 99.45 99.73 86.92 99.70 99.71 87.27 
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Appendix 3 

In this appendix it is represented the complete list of features computed for chapter 6 and 7. 
 

Table XXIV:Complete list of features used both in Chapter 6 and 7 with feature label, its description and 
the corresponding reference. 

Feature 

Number 
Feature Label Feature Description Reference 

1 Raw - Acc X Raw acceleration (X axis) [82] 

2 Raw - Acc Y Raw acceleration (Y axis) [82] 

3 Raw - Acc Z Raw acceleration (Z axis) [82] 

4 Raw - Gyr X Raw angular velocity (X axis) NA 

5 Raw - Gyr Y Raw angular velocity (Y axis) NA 

6 Raw - Gyr Z Raw angular velocity (Z axis) NA 

7 BP Filter - Acc X Band-pass filtered acceleration (X axis) NA 

8 BP Filter - Acc Y Band-pass filtered acceleration (Y axis) NA 

9 BP Filter - Acc Z Band-pass filtered acceleration (Z axis) NA 

10 BP Filter - Gyr X Band-pass filtered angular velocity (X axis) NA 

11 BP Filter - Gyr Y Band-pass filtered angular velocity (Y axis) NA 

12 BP Filter - Gyr Z Band-pass filtered angular velocity (Z axis) NA 

13 HP Filter - Acc X High-pass filtered acceleration (X axis) NA 

14 HP Filter - Acc Y High-pass filtered acceleration (Y axis) NA 

15 HP Filter - Acc Z High-pass filtered acceleration (Z axis) NA 

16 HP Filter - Gyr X High-pass filtered angular velocity (X axis) NA 

17 HP Filter - Gyr Y High-pass filtered angular velocity (Y axis) NA 

18 HP Filter - Gyr Z High-pass filtered angular velocity (Z axis) NA 

19 SVM Acc High Pass SVM of High-pass filtered acceleration  [58] 

20 SVM Acc Band Pass SVM of Band-pass filtered acceleration  [58] 

21 SVM Acc RAW SVM of Raw acceleration  [58] 

22 SVM Gyr High Pass SVM of High-pass filtered Angular Velocity  [19] 

23 SVM Gyr Band Pass SVM of Band-pass filtered Angular Velocity  [19] 

24 SVM Gyr RAW SVM of Raw Angular Velocity  [19] 

25 CHA Cumulative Horizontal Acceleration [81] 

26  Velocity X Velocity (X axis) [81] 

27  Velocity Y Velocity (Y axis) [81] 

28  Velocity Z Velocity (Z axis) [81] 

29 Displacement X Displacement (X Axis) [81] 

30 Displacement Y Displacement (Y Axis) [81] 

31 Displacement Z Displacement (Z Axis) [81] 

32 CHD Cumulative Horizontal Displacement [81] 

33 Cumulative horizontal SL - X Sway Length of Cumulative Horizontal acceleration (X axis) [81] 

34 Cumulative horizontal SL - Y Sway Length of Cumulative Horizontal acceleration (Y axis) [81] 

35 Cumulative horizontal SL - Z Sway Length of Cumulative Horizontal acceleration (Z axis) [81] 

36 Mean sway velocity - X Mean sway velocity (X Axis) [81] 



145 

Feature 

Number 
Feature Label Feature Description Reference 

37 Mean sway velocity - Y Mean sway velocity (Y Axis) [81] 

38 Mean sway velocity - Z Mean sway velocity (Z Axis) [81] 

39 Displacement range - X Displacement range (X axis) [81] 

40 Displacement range - Y Displacement range (Y axis) [81] 

41 Displacement range - Z Displacement range (Z axis) [81] 

42 Skewness - Acc X Skewness of acceleration (X axis) [67] 

43 Skewness - Acc Y Skewness of acceleration (Y axis) [67] 

44 Skewness - Acc Z Skewness of acceleration (Z axis) [67] 

45 Skewness SVM - Acc BP Skewness of band-pass filtered SVM acceleration  [67] 

46 Skewness - Gyr X Skewness of angular velocity (X axis) [67] 

47 Skewness - Gyr Y Skewness of angular velocity (Y axis) [67] 

48 Skewness - Gyr Z Skewness of angular velocity (Z axis) [67] 

49 Skewness SVM -Gyr BP Skewness of band-pass filtered SVM angular velocity [67] 

50 Kurtosis - Acc X Kurtosis of acceleration (X axis) [67] 

51 Kurtosis - Acc Y Kurtosis of acceleration (Y axis) [67] 

52 Kurtosis - Acc Z Kurtosis of acceleration (Z axis) [67] 

53 Kurtosis SVM - Acc BP Kurtosis of band-pass filtered SVM acceleration [67] 

54 Kurtosis - Gyr X Kurtosis of angular velocity (X axis) [67] 

55 Kurtosis - Gyr Y Kurtosis of angular velocity (Y axis) [67] 

56 Kurtosis - Gyr Z Kurtosis of angular velocity (Z axis) [67] 

57 Kurtosis SVM - Gyr BP Kurtosis of band-pass filtered SVM angular velocity  [67] 

58 Kurtosis - Acc X SMF Kurtosis of smooth-median filter acceleration (X axis) [67] 

59 Kurtosis - Acc Y SMF Kurtosis of smooth-median filter acceleration (Y axis) [67] 

60 Kurtosis - Acc Z SMF Kurtosis of smooth-median filter acceleration (Z axis) [67] 

61 Kurtosis SVM - Acc BP SMF Kurtosis of SVM acceleration band-pass and smooth-median 
filtered 

[67] 

62 Kurtosis - Gyr X SMF Kurtosis of smooth-median filter angular velocity (X axis) [67] 

63 Kurtosis - Gyr Y SMF Kurtosis of smooth-median filter angular velocity (Y axis) [67] 

64 Kurtosis - Gyr Z SMF Kurtosis of smooth-median filter angular velocity (Z axis) [67] 

65 Kurtosis SVM - Gyr BP SMF Kurtosis of SVM Angular Velocity band-pass and smooth-
median filtered 

[67] 

66 Min - Acc X Minimum Acceleration (X axis) [65] 

67 Min - Acc Y Minimum Acceleration (Y axis) [65] 

68 Min - Acc Z Minimum Acceleration (Z axis) [65] 

69 Min - Gyr X Minimum Angular Velocity (X axis) [65] 

70 Min - Gyr Y Minimum Angular Velocity (Y axis) [65] 

71 Min - Gyr Z Minimum Angular Velocity (Z axis) [65] 

72 Min SVM - Acc Minimum SVM of Acceleration [65] 

73 Min SVM - Gyr Minimum SVM of Angular Velocity [65] 

74 Max - Acc X Maximum Acceleration (X axis) [65] 

75 Max - Acc Y Maximum Acceleration (Y axis) [65] 

76 Max - Acc Z Maximum Acceleration (Z axis) [65] 

77 Max - Gyr X Maximum Angular Velocity (X axis) [65] 

78 Max - Gyr Y Maximum Angular Velocity (Y axis) [65] 
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Feature 

Number 
Feature Label Feature Description Reference 

79 Max - Gyr Z Maximum Angular Velocity (Z axis) [65] 

80 Max SVM - Acc Maximum SVM of Acceleration [65] 

81 Max SVM - Gyr Maximum SVM of Angular Velocity [65] 

82 Mean - Acc X Mean Acceleration (X axis) [67] 

83 Mean - Acc Y Mean Acceleration (Y axis) [67] 

84 Mean - Acc Z Mean Acceleration (Z axis) [67] 

85 Mean - Gyr X Mean Angular Velocity (X axis) [67] 

86 Mean - Gyr Y Mean Angular Velocity (Y axis) [67] 

87 Mean - Gyr Z Mean Angular Velocity (Z axis) [67] 

88 Mean SVM - Acc Mean SVM of Acceleration [67] 

89 Mean SVM - Gyr Mean SVM of Angular Velocity [67] 

90 Variance - Acc X Variance of Acceleration (X axis) [67] 

91 Variance - Acc Y Variance of Acceleration (Y axis) [67] 

92 Variance - Acc Z Variance of Acceleration (Z axis) [67] 

93 Variance - Gyr X Variance of Angular Velocity (X axis) [67] 

94 Variance - Gyr Y Variance of Angular Velocity (Y axis) [67] 

95 Variance - Gyr Z Variance of Angular Velocity (Z axis) [67] 

96 Variance - SVM Acc Variance of SVM of Acceleration [67] 

97 Variance - SVM Gyr Variance of SVM of Angular Velocity [67] 

98 Std - Acc X Standard Deviation of Acceleration (X Axis) NA 

99 Std - Acc Y Standard Deviation of Acceleration (Y Axis) NA 

100 Std - Acc Z Standard Deviation of Acceleration (Z Axis) NA 

101 Std - Gyr X Standard Deviation of Angular Velocity (X Axis) NA 

102 Std - Gyr Y Standard Deviation of Angular Velocity (Y Axis) NA 

103 Std - Gyr Z Standard Deviation of Angular Velocity (Z Axis) NA 

104 Std SVM - Acc Standard Deviation of Acceleration SVM NA 

105 Std SVM - Gyr Standard Deviation of Angular Velocity SVM NA 

106 Min SVM - Acc LP Minimum of SVM Acceleration Low-Pass Filtered  NA 

107 Max SVM - Acc LP Maximum of SVM Acceleration Low-Pass Filtered  NA 

108 Mean SVM - Acc LP Mean of SVM Acceleration Low-Pass Filtered  NA 

109 Var SVM - Acc LP Variance of SVM Acceleration Low-Pass Filtered  NA 

110 Std SVM - Acc LP Standard Deviation of SVM Acceleration Low-Pass Filtered  NA 

111 Min SVM - Gyr LP Minimum of SVM Angular Velocity Low-Pass Filtered  NA 

112 Max SVM - Gyr LP Maximum of SVM Angular Velocity Low-Pass Filtered  NA 

113 Mean SVM - Gyr LP Mean of SVM Angular Velocity Low-Pass Filtered  NA 

114 Var SVM - Gyr LP Variance of SVM Angular Velocity Low-Pass Filtered  NA 

115 Std SVM - Gyr LP Standard Deviation of SVM Angular Velocity Low-Pass Filtered  NA 

116 Correlation - Acc X - Y Correlation Between Accelerantion X and Y axis [84] 

117 Correlation - Acc X - Z Correlation Between Accelerantion X and Z axis [84] 

118 Correlation - Acc Y - Z Correlation Between Accelerantion Y and Z axis [84] 

119 Correlation - Gyr X - Y Correlation Between Angular Velocity X and Y axis [84] 

120 Correlation - Gyr X - Z Correlation Between Angular Velocity X and Z axis [84] 
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Feature 

Number 
Feature Label Feature Description Reference 

121 Correlation - Gyr Y - Z Correlation Between Angular Velocity Y and Z axis [84] 

122 Energy Acc X Acceleration Energy (X axis) [83] 

123 Energy Acc Y Acceleration Energy (Y axis) [83] 

124 Energy Acc Z Acceleration Energy (Z axis) [83] 

125 Total Energy - Acc SVM BP Total Energy of Band-Pass Filtered SVM acceleration [83] 

126 Dynamic Sum Vector Dynamic Sum Vector [58] 

127 Z2 Vertical Acceleration [58] 

128 Total angular change Total angular change [19] 

129 Resultant angular acceleration Resultant angular acceleration [19] 

130 % of window where the LP Acc 
SVM is < 0.9 

Percentage of Low-Pass Filtered Acceleration SVM lower than 
0.9 

[84] 

131 ASMA Activity Signal Magnitude Area [60] 

132 SMA Signal Magnitude Are [61] 

133 PP Values - Acc X Peak-to-peak values of Acceleration (X axis) [87] 

134 PP Values - Acc Y Peak-to-peak values of Acceleration (Y axis) [87] 

135 PP Values - Acc Z Peak-to-peak values of Acceleration (Z axis) [87] 

136 PP Values - Gyr X Peak-to-peak values of Angular Velocity (X axis) [87] 

137 PP Values - Gyr Y Peak-to-peak values of Angular Velocity (Y axis) [87] 

138 PP Values - Gyr Z Peak-to-peak values of Angular Velocity (Z axis) [87] 

139 PP Values - SVM Acc BP Peak-to-peak Values of Band-Pass filtered Acceleration SVM [87] 

140 PP Values - SVM Gyr BP Peak-to-peak Values of Band-Pass filtered Angular Velocity 
SVM 

[87] 

141 RMS -Acc X Root Mean Square of Acceleration (X axis) [87] 

142 RMS - Acc Y Root Mean Square of Acceleration (Y axis) [87] 

143 RMS - Acc Z Root Mean Square of Acceleration (Z axis) [87] 

144 RMS - Gyr X Root Mean Square of Angular Velocity (X axis) [87] 

145 RMS - Gyr Y Root Mean Square of Angular Velocity (Y axis) [87] 

146 RMS - Gyr Z Root Mean Square of Angular Velocity (Z axis) [87] 

147 RMS - SVM Acc Root Mean Square of Acceleration SVM [87] 

148 RMS - SVM Gyr Root Mean Square of Angular Velocity SVM [87] 

149 RI - Acc X Ration Index of Acceleration (X axis) [87] 

150 RI - Acc Y Ration Index of Acceleration (Y axis) [87] 

151 RI - Acc Z Ration Index of Acceleration (Z axis) [87] 

152 RI - SVM Acc Ratio Index of Acceleration SVM [87] 

153 RI - Gyr X Ration Index of Angular Velocity (X axis) [87] 

154 RI - Gyr Y Ration Index of Angular Velocity (Y axis) [87] 

155 RI - Gyr Z Ration Index of Angular Velocity (Z axis) [87] 

156 RI - SVM Gyr Ratio Index of Angular Velocity SVM [87] 

157 RI - Acc X PP Ration Index of Peak-to-peak of Acceleration (X axis) [87] 

158 RI - Acc Y PP Ration Index of Peak-to-peak of Acceleration (Y axis) [87] 

159 RI - Acc Z PP Ration Index of Peak-to-peak of Acceleration (Z axis) [87] 

160 RI - Gyr X PP Ration Index of Peak-to-peak of Angular Velocity (X axis) [87] 

161 RI - Gyr Y PP Ration Index of Peak-to-peak of Angular Velocity (Y axis) [87] 

162 RI - Gyr Z PP Ration Index of Peak-to-peak of Angular Velocity (Z axis) [87] 
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Number 
Feature Label Feature Description Reference 

163 GC - Acc X Gravity component of Acceleration (X Axis) NA 

164 GC - Acc Y Gravity component of Acceleration (Y Axis) NA 

165 GC- Acc Z Gravity component of Acceleration (Z Axis) NA 

166 Quaternion First element of quaternion vector [57] 

167 Quaternion Second element of quaternion vector [57] 

168 Quaternion Third element of quaternion vector [57] 

169 Quaternion Fourth element of quaternion vector [57] 

170 Roll Roll (Madgwick Sensor-Fusion Algorithm) [57] 

171 Pitch Pitch (Madgwick Sensor-Fusion Algorithm) [57] 

172 Yaw Yaw (Madgwick Sensor-Fusion Algorithm) [57] 

173 Acc of absolute vertical 
direction 

Absolute vertical acceleration [11] 

174 RAC SVM SVM of Resultant angle change [70] 

175 RAC - X Resultant angle change (X axis) [70] 

176 RAC - Y Resultant angle change (Y axis) [70] 

177 RAC - Y Resultant angle change (Z axis) [70] 

178 MRAA Maximum resultant angular acceleration [70] 

179 FF Sum of Fluctuation Frequency of all axis [70] 

180 FF DX Fluctuation Frequency (X axis) [70] 

181 FF DY Fluctuation Frequency (Y axis) [70] 

182 FF DZ Fluctuation Frequency (Z axis) [70] 

183 Transf - X Trapz of the Fast Fourier Transform of Acceleration (X axis)  [86] 

184 Transf - Y Trapz of the Fast Fourier Transform of Acceleration (Y axis)  [86] 

185 Transf - Z Trapz of the Fast Fourier Transform of Acceleration (Z axis)  [86] 

186 HR X Harmonic Ratio (X axis) [87] 

187 HR Y Harmonic Ratio (Y axis) [87] 

188 HR Z Harmonic Ratio (Z axis) [87] 

189 HR - SVM SVM of Harmonic Ratio [87] 

190 Wavelet_STD  2 - Gyr X Standard deviations of the angular velocity (X axis) at level 2 [86] 

191 Wavelet_STD  3 - Gyr X Standard deviations of the angular velocity (X axis) at level 3 [86] 

192 Wavelet_STD  4 - Gyr X Standard deviations of the angular velocity (X axis) at level 4 [86] 

193 Wavelet_STD  5 - Gyr X Standard deviations of the angular velocity (X axis) at level 5 [86] 

194 Wavelet_RMS  2 - Gyr X Root Mean Square of the angular velocity (X axis) at level 2 [86] 

195 Wavelet_RMS 3 - Gyr X Root Mean Square of the angular velocity (X axis) at level 3 [86] 

196 Wavelet_RMS 4 - Gyr X Root Mean Square of the angular velocity (X axis) at level 4 [86] 

197 Wavelet_RMS 5 - Gyr X Root Mean Square of the angular velocity (X axis) at level 5 [86] 

198 SumSquaredWavelet - Gyr X Sum of squared wavelet coefficients from level 2 to 6 from 
the Angular velocity (X axis) 

[86] 

199 Wavelet_STD  2 - Gyr Y Standard deviations of the angular velocity (Y axis) at level 2 [86] 

200 Wavelet_STD  3 - Gyr Y Standard deviations of the angular velocity (Y axis) at level 3 [86] 

201 Wavelet_STD  4 - Gyr Y Standard deviations of the angular velocity (Y axis) at level 4 [86] 

202 Wavelet_STD  5 - Gyr Y Standard deviations of the angular velocity (Y axis) at level 5 [86] 

203 Wavelet_RMS  2 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 2 [86] 

204 Wavelet_RMS 3 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 3 [86] 
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205 Wavelet_RMS 4 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 4 [86] 

206 Wavelet_RMS 5 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 5 [86] 

207 SumSquaredWavelet - Gyr Y Sum of squared wavelet coefficients from level 2 to 6 from 
the Angular velocity (Y axis) 

[86] 

208 Wavelet_STD  2 - Gyr Z Standard deviations of the angular velocity (Z axis) at level 2 [86] 

209 Wavelet_STD  3 - Gyr Z Standard deviations of the angular velocity (Z axis) at level 3 [86] 

210 Wavelet_STD  4 - Gyr Z Standard deviations of the angular velocity (Z axis) at level 4 [86] 

211 Wavelet_STD  5 - Gyr Z Standard deviations of the angular velocity (Z axis) at level 5 [86] 

212 Wavelet_RMS  2 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 2 [86] 

213 Wavelet_RMS 3 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 3 [86] 

214 Wavelet_RMS 4 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 4 [86] 

215 Wavelet_RMS 5 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 5 [86] 

216 SumSquaredWavelet - Gyr Z Sum of squared wavelet coefficients from level 2 to 6 from 
the Angular velocity (Z axis) 

[86] 

217 Wavelet_STD  2 - Gyr SVM SVM of the Standard deviations of the angular velocity at level 
2 

[86] 

218 Wavelet_STD  3 - Gyr SVM SVM of the Standard deviations of the angular velocity at level 
3 

[86] 

219 Wavelet_STD  4 - Gyr SVM SVM of the Standard deviations of the angular velocity at level 
4 

[86] 

220 Wavelet_STD  5 - Gyr SVM SVM of the Standard deviations of the angular velocity at level 
5 

[86] 

221 Wavelet_RMS  2 - Gyr SVM SVM of the Root Mean Square of the angular velocity at level 
2 

[86] 

222 Wavelet_RMS 3 - Gyr SVM SVM of the Root Mean Square of the angular velocity at level 
3 

[86] 

223 Wavelet_RMS 4 - Gyr SVM SVM of the Root Mean Square of the angular velocity at level 
4 

[86] 

224 Wavelet_RMS 5 - Gyr SVM SVM of the Root Mean Square of the angular velocity at level 
5 

[86] 

225 SumSquaredWavelet - Gyr SVM SVM of the Sum of squared wavelet coefficients from level 2 
to 6 from the Angular velocity 

[86] 

226 Wavelet_STD  2 - Acc X Standard deviations of the Acceleration (X axis) at level 2 [86] 

227 Wavelet_STD  3 - Acc X Standard deviations of the Acceleration (X axis) at level 3 [86] 

228 Wavelet_STD  4 - Acc X Standard deviations of the Acceleration (X axis) at level 4 [86] 

229 Wavelet_STD  5 - Acc X Standard deviations of the Acceleration (X axis) at level 5 [86] 

230 Wavelet_RMS  2 - Acc X Root Mean Square of the Acceleration (X axis) at level 2 [86] 

231 Wavelet_RMS 3 - Acc X Root Mean Square of the Acceleration (X axis) at level 3 [86] 

232 Wavelet_RMS 4 - Acc X Root Mean Square of the Acceleration (X axis) at level 4 [86] 

233 Wavelet_RMS 5 - Acc X Root Mean Square of the Acceleration (X axis) at level 5 [86] 

234 SumSquaredWavelet - Acc X Sum of squared wavelet coefficients from level 2 to 6 from 
the Acceleration (X axis) 

[86] 

235 Wavelet_STD  2 - Acc Y Standard deviations of the Acceleration (Y axis) at level 2 [86] 

236 Wavelet_STD  3 - Acc Y Standard deviations of the Acceleration (Y axis) at level 3 [86] 

237 Wavelet_STD  4 - Acc Y Standard deviations of the Acceleration (Y axis) at level 4 [86] 

238 Wavelet_STD  5 - Acc Y Standard deviations of the Acceleration (Y axis) at level 5 [86] 

239 Wavelet_RMS  2 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 2 [86] 

240 Wavelet_RMS 3 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 3 [86] 

241 Wavelet_RMS 4 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 4 [86] 
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242 Wavelet_RMS 5 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 5 [86] 

243 SumSquaredWavelet - Acc Y Sum of squared wavelet coefficients from level 2 to 6 from 
the Acceleration (Y axis) 

[86] 

244 Wavelet_STD  2 - Acc Z Standard deviations of the Acceleration (Z axis) at level 2 [86] 

245 Wavelet_STD  3 - Acc Z Standard deviations of the Acceleration (Z axis) at level 3 [86] 

246 Wavelet_STD  4 - Acc Z Standard deviations of the Acceleration (Z axis) at level 4 [86] 

247 Wavelet_STD  5 - Acc Z Standard deviations of the Acceleration (Z axis) at level 5 [86] 

248 Wavelet_RMS  2 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 2 [86] 

249 Wavelet_RMS 3 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 3 [86] 

250 Wavelet_RMS 4 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 4 [86] 

251 Wavelet_RMS 5 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 5 [86] 

252 SumSquaredWavelet - Acc Z Sum of squared wavelet coefficients from level 2 to 6 from 
the Acceleration (Z axis) 

[86] 

253 Wavelet_STD  2 - Acc SVM SVM of the Standard deviations of the Acceleration at level 2 [86] 

254 Wavelet_STD  3 - Acc SVM SVM of the Standard deviations of the Acceleration at level 3 [86] 

255 Wavelet_STD  4 - Acc SVM SVM of the Standard deviations of the Acceleration at level 4 [86] 

256 Wavelet_STD  5 - Acc SVM SVM of the Standard deviations of the Acceleration at level 5 [86] 

257 Wavelet_RMS  2 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 2 [86] 

258 Wavelet_RMS 3 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 3 [86] 

259 Wavelet_RMS 4 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 4 [86] 

260 Wavelet_RMS 5 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 5 [86] 

261 Sum Squared Wavelet - Acc 
SVM 

SVM of the Sum of squared wavelet coefficients from level 2 
to 6 from the Acceleration 

[86] 

262 RAC - SVM SVM of Resultant of Average Acceleration (X axis) [62] 

263 RAC - X Resultant of Average Acceleration (X axis) [62] 

264 RAC - Y Resultant of Average Acceleration (Y axis) [62] 

265 RAC - Z Resultant of Average Acceleration (Z axis) [62] 

266 RSD - SVM SVM of Resultant of Standard Deviation [62] 

267 RSD - X Resultant of Standard Deviation (X axis) [62] 

268 RSD - Y Resultant of Standard Deviation (Y axis) [62] 

269 RSD - Z Resultant of Standard Deviation (Z axis) [62] 

270 Slope Slope [64] 

271 Fast Change Vector Fast Change Vector [66] 

272 Acceleration in the horizontal 
Plane 

SVM of Acceleration in the horizontal Plane [64] 

273 EMA Acceleration exponential moving average [65] 

274 Rotational Angle - SVM Acc Rotational Angle of Acceleration SVM [64] 

275 Z-score Z-Score [62] 

276 entropy - Acc X Acceleration Entropy (X axis) [85] 

277 entropy - Acc Y Acceleration Entropy (Y axis) [85] 

278 entropy - Acc Z Acceleration Entropy (Z axis) [85] 

279 entropy - Gyr X Angular Velocity Entropy (X axis) [85] 

280 entropy - Gyr Y Angular Velocity Entropy (Y axis) [85] 

281 entropy - Gyr Z Angular Velocity Entropy (Z axis) [85] 

282 entropy - SVM Acc Acceleration SVM Entropy [85] 
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283 entropy - SVM Gyr Angular Velocity SVM Entropy [85] 

284 MAD Magnitude of Angular Displacement [57] 

285 Rotational Angle - SVM LP Acc Rotational Angle of Low-Pass filtered Acceleration SVM [64] 

286  Resultant of Delta Changes - 
Acc 

Acceleration Resultant of Delta Changes [62] 

287  Resultant of Delta Changes - 
Gyr 

Angular Velocity Resultant of Delta Changes [62] 

288 FSR ASCane FSR NA 

 


