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RESuUMO

O numero de quedas tornou-se uma das principais causas de lesdes e mortes na comunidade
geriatrica. Como resultado, o custo do tratamento das lesdes também aumenta. Portanto, é necessario
o desenvolvimento de estratégias relacionadas com quedas e que exibam capacidade de monitorizacao
em tempo real sem colocar restricdes ao usuario. Devido as suas vantagens, os acessorios do dia-a-dia
podem ser uma solucao para incorporar sistemas relacionados com quedas, sendo que as bengalas nao
sao excecdo. Além disso, a avaliacdo da marcha pode ser capaz de aprimorar a capacidade de uso de
uma bengala para usuarios mais idosos. Desta forma, é crucial o desenvolvimento de estratégias que
reconhecam estados de queda, do passo anterior a uma queda e dos diferentes eventos da marcha de
uma bengala. Esta dissertacdo tem como objetivo desenvolver estratégias capazes de identificar as
situacOes anteriormente descritas com base num sistema incorporado numa bengala que coleta
informacdes inerciais e de forca, a Assistive Smart Cane (ASCane).

A estratégia referente a detecdo de quedas consistiu em testar os dados adquiridos através da
ASCane com trés algoritmos de detecéo de quedas (baseados em thresholds fixos), com um algoritmo
de thresholds dinamicos e diferentes classificadores de machine learning encontrados na literatura.
Estes métodos foram testados e modificados para dar conta do uso de informacao adquirida através de
uma bengala. O melhor desempenho alcancado em termos de sensibilidade e especificidade foi de
96,90% e 98,98%, respetivamente.

Relativamente & detecéo dos diferentes eventos da ASCane em situacdes controladas e da vida
real, um detetor de eventos da marcha foi e comparado com um sistema de ground truth. Além disso,
foi também realizado um estudo de machine learning envolvendo oito métodos de selecdo de
features e nove classificadores diferentes de machine learning. Os resultados mostraram que a
precisao dos classificadores foi bastante aceitavel e apresentou, como melhores resultados, 98,32% de
precisao para situacoes controladas e 94.82% para situacoes do dia-a-dia.

No que concerne a detecao de passos pré-queda, a mesma abordagem de machine learning
foi realizada. Os modelos foram precisos (precisao = 98,15%) e com a implementacao de um filtro de
pos-processamento, todas as detecdes de falsos positivos foram eliminadas e uma queda foi passivel de

ser detetada 1,019s antes do final do respetivo passo de pré-queda e 2.009s antes do impacto.

PALAVRAS-CHAVE: QUEDAS, PASS0S PRE-QUEDA, EVENTOS DE UMA BENGALA, ASSISTIVE

SMART CANE



ABSTRACT

The number of falls is growing as the main cause of injuries and deaths in the geriatric community.
As a result, the cost of treating the injuries associated with falls is also increasing. Thus, the development
of fall-related strategies with the capability of real-time monitoring without user restriction is imperative.
Due to their advantages, daily life accessories can be a solution to embed fall-related systems, and canes
are no exception. Moreover, gait assessment might be capable of enhancing the capability of cane usage
for older cane users. Therefore, reducing, even more, the possibility of possible falls amongst them.
Summing up, it is crucial the development of strategies that recognize states of fall, the step before a fall
(pre-fall step) and the different cane events continuously throughout a stride. This thesis aims to develop
strategies capable of identifying these situations based on a cane system that collects both inertial and
force information, the Assistive Smart Cane (ASCane).

The strategy regarding the detection of falls consisted of testing the data acquired with the ASCane
with three different fixed multi-threshold fall detection algorithms, one dynamic multi-threshold and
machine learning methods from the literature. They were tested and modified to account the use of a
cane. The best performance resulted in a sensitivity and specificity of 96.90% and 98.98%, respectively.

For the detection of the different cane events in controlled and real-life situations, a state-of-the-art
finite-state-machine gait event detector was modified to account the use of a cane and benchmarked
against a ground truth system. Moreover, a machine learning study was completed involving eight feature
selection methods and nine different machine learning classifiers. Results have shown that the accuracy
of the classifiers was quite acceptable and presented the best results with 98.32% of overall accuracy for
controlled situations and 94.82% in daily-life situations.

Regarding pre-fall step detection, the same machine learning approach was accomplished. The
models were very accurate (Accuracy = 98.15%) and with the implementation of an online post-processing
filter, all the false positive detections were eliminated, and a fall was able to be detected 1.019s before

the end of the corresponding pre-fall step and 2.009s before impact.

KEYWORDS: FALLS, PRE-FALL STEPS, CANE EVENTS, ASSISTIVE SMART CANE
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1. [INTRODUCTION

This dissertation presents the work developed in the scope of the fifth year of the Integrated
Master’s in Biomedical Engineering during the academic year of 2018/19.

This dissertation was developed at BiRD LAB (Biomedical Robotic Devices Laboratory) of the Center
of MicroElectroMechanical Systems (CMEMs), at University of Minho, Braga, Portugal. This dissertation
addresses the development of offline strategies to distinguish not only normal gait from a fall and Pre-Fall
Step (PFS) situations, but also to detect cane events (both in controlled and realdife situations) with
information acquired in a system embedded into a regular cane, which was named Assistive Smart Cane

(ASCane).

1.1 Motivation

Human walking is a complex and fundamental human physical activity that can be done in an
assortment of ways and directions. It requires joint mobility, muscular strength, and coordination of the
central nervous system [1]. However, human gait can be modified by several muscular deformities and
neurological injuries, whose predominance tends to increase with ageing. In the United States of America
(USA) alone, there is a considerable number of people who have been affected by walking disorders, for
example, 4.7 million with stroke, 400 thousand with multiple sclerosis and 100 thousand with cerebral
palsy [2]. Thereby, walking diseases lead to disorders and abnormalities of the gait, which are the main
symptoms utilised to diagnose and evaluate the advancement of a person's gait impairments [1].

Falls are the second main reason of death by accident worldwide, which represents not
only one of the significant undesired accidents but also a challenge to patient safety, and therefore, their
care quality [3]. In 2000, in the USA alone, $19 billion were spent on medical costs of fall-related
injuries [4]. Since the population is ageing, their bodies go through numerous physical changes making
them more fragile and more predisposed to falls [5]. So, it is expected that both the number of falls and
the costs to treat them increase substantially. The estimated medical costs concerning falls in 2015
were approximately $32 billion, where $31.3 billion were from nonfatal falls alone [4]. By 2020,
expenses linked to injuries from falls to senior citizens are expected to cost roughly $43.8 billion [6].

Nowadays, falls in the elderly population is a subject of interest amongst the scientific community.
Systems that can detect, but, more importantly, to predict a fall, are crucial to reducing the costs, physical

and psychological consequences of a fall. Fall-related systems mainly focus on the development of



wearable methods in which a fall is automatically detected. Nonetheless, the system will weight on the
individual and hinder its flexibility [7]. Amongst the elderly that fall at home, a large amount does not
have their assistive device with them at the moment of the fall. Consequently, sustain severer injuries
when they fall without their assistive device.

The study of human locomeotion has the potential of assessing gait pathologies and
locomotion performance as well as predicting, preventing and detecting falls. Regularly, gait
analysis is carried out in a motion analysis laboratory with expensive, yet, very accurate systems (e.g.
optical systems, force plates). However, these systems are limited to laboratory standards. The challenge
is to provide comparable results with low-cost, unobtrusive solutions for constant all-day and any-place
monitoring [8]. The detection of human gait events can possibly be used in the rehabilitation field,
specifically, in the design of tuned therapy strategies per the patient requirements and venture to promote

a more effective functional motor recovery [1].

1.2 Problem statement and scope

In order to detect not only falls but also PFS situations, it is required continuous gait monitoring.
Recently, numerous fall-related studies have been carried out. Nevertheless, most of them require a
substantial number of sensors placed in the living environment to work successfully.

Consequently, the use of accessories where elderly may take with or wear on, e.g. necklaces,
watches or canes, can be a serious alternative. However, using these accessories to monitor the subject
continuously involves a considerably sized battery. Therefore, the use of smaller devices will result in a
low power supply for a short amount of time, which is not optimal. The constant hand movement is also
a factor to discard its use which is too high to monitor for long periods.

Therefore, embedding sensors into a cane can be the best choice since these assistive devices
are widely used amongst the geriatric community, and the number of prescriptions is increasing due to
gait/balance disorders and lower limbs weakness. Furthermore, an evaluation of the canes gait can be
capable of enhancing the ability of cane usage, also reducing the possibility of possible falls amongst
them. Consequently, it was possible to produce a system capable of providing information regarding the
gait of a cane. Firstly, a Fall Detection (FD) system was implemented comparing the different FD
methodologies existent in the literature. Secondly, two methods were accomplished to segment a cane
stride into six cane events. More specifically, an adapted state-of-the-art algorithm for human gait event

detection and a combination of machine learning classifiers and feature selection methods. Moreover, to



identify PFS situations, the same machine learning study accomplished for cane event segmentation was
performed.

These requirements are the core to the development of a gait monitoring wearable system
embedded into a cane, presenting an innovative character and allowing to improve some problems of the

actual fall and gait analysis related systems.

1.3 Goals and research questions

The main goals of this thesis are the development of offline strategies to distinguish not only normal
gait from a fall and pre-fall situations but also to detect cane events with information acquired in a system
embedded into a regular cane. To accomplish these goals, it is necessary the understanding of several
aspects of human walking, along with the knowledge of sensors’ characteristics, attachment location and
the most characteristic gait parameters to this situation.

Thereby, with this thesis, it is necessary to achieve the following goals:

e Goal 1: The first goal consists of a survey and interpretive study of pertinent information
concerning falls and technological approaches to detect and avoid them. It is intended
to understand the different stages of a fall, how falls are classified in the literature, their
risk factors and consequences, as well as the existent systems, methods and algorithms.
In this goal, it is also essential to know which are the typical gait parameters studied, used
sensors and their corresponding attachment location.

e (Goal 2: This goal aims to make an extensive analysis about several studies, techniques
and devices already developed that are already embedded into canes. Namely,
what type of sensors are used and their corresponding placement, what experimental
protocol was carried out, what features were computed, and what type of algorithm was
employed into the system. Also, it is expected to recognise the limitations in the existing
devices aiming at proposing new solutions.

e Goal 3: The third goal is the development of the monitoring system, namely, the
investigation and identification of the materials to ensure a sturdy, universal and adaptable
system. Moreover, it will be identified the electronic components required for the data
acquisition system, processing unit, and additional components which can be included.

e Goal 4: This goal consists of a survey for FD strategies already implemented and its
implementation in the ASCane. An experimental protocol needs to be established, and

several tests should be performed on the acquired data, as well as a comparative analysis
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considering the recent works in the literature and the eventual improvements completed
to account the use of a cane.

e Goal 5: The fifth goal is to identify the different event phases of a cane during human
locomotion that can be distinguished. Following, the acquired inertial data will be used as
an input to a modified Finite-State-Machine (FSM) for gait event detection for gyroscopic
foot data and understand how a cane event detection can be accomplished. Moreover, a
machine learning study will be achieved to uncover an adequate approach to distinguish
proper segment a stride into six different phases from a single vector of features
representative of a single time frame. Several feature selection methods, as well as various
machine learning classifiers, should be tested and compared to reach the best possible
results.

e Goal 6: The last goal aims at distinguishing normal from PFS with the same machine
learning approach as the previous goal. Therefore, it will be possible to merge in one
system a fall, a PFS and cane event detection. The overall work has been described

throughout this master’s thesis.
The following Research Questions (RQ) are expected to be answered in the present work:

e RQ1: Which is the best FD strategy to be implemented in a cane? This RQ is addressed
in Chapter 5.

e RQ2: Which are the features and machine learning classifier with greater potential to
distinguish the different cane events during the users’ walking? This RQ is addressed in
Chapter 6.

e RQ3: Which are the features and machine learning classifier with greater potential to
distinguish between normal and pre-fall situations in data acquired from a cane? This RQ

is addressed in Chapter 7.

1.4 Contribution to knowledge
The main contributions of this work are:

e The initial development of an instrumented cane system for human gait analysis, fall and PFS

detection, from a technology readiness level of O up to a level 3.



A FD technique applied to data acquired from a cane. Numerous experiments were conducted
to discover which FD method achieved the best results considering the processing power required
and detection time.

A tool that can differentiate between the various cane events during human locomotion. It was
tested offline, and an online test was mimicked. An analysis and comparison of the different
implemented approaches were fulfilled to reach the best possible results.

A tool that accurately distinguishes between normal and PFS. This tool and its main concepts
were tested offline and online simulated. Detailed comparisons between all methods tested were

accomplished.

1.5 Publications

papers.

From work produced throughout this academic year, it was possible to publish two conference

Conference Papers

P. Mouta, N. F. Ribeiro, L. Goncalves and C. P. Santos, “An Overview of Fall-Related Systems
Developed in Canes”, 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon,
Portugal, 22-23 February 2019.

P. Mouta, N. F. Ribeiro, L. Moreira and C. P. Santos, “Assistive Smart Cane (ASCane) for Fall
Detection: First Advances”, 2019 15th Mediterranean Conference on Medical and Biological

Engineering and Computing (MEDICON), Coimbra, Portugal, 26-28 September 2019

1.6 Thesis outline

This dissertation is organised as follows. An introduction concerning falls, their different stages, the

problems they constitute to the elderly, and how to classify them is available in Chapter 2. It is also

presented a state-of-the-art regarding the technological approaches to falls, how they can be classified,

which features systems use to discern between normal gait, falls and PFS, and the most used sensors

and respective attachment location in the scientific literature.

In Chapter 3 it is presented a general overview of fall-related strategies implemented into canes,

which sensors they embed and their corresponding location, the gait parameters used, which algorithms

were employed, and, finally, the results attained. It was also accomplished an extensive research for

commercial canes and patents with fall-related embedded systems.



Chapter 4 presents the developed solution, discussing the importance of its components,
specifying their functions, and a general overview of the software implemented to explain all the systems
that make up the global system developed.

An offline fall detection system is described in Chapter 5. In this chapter, a comprehensive overview
of different FD algorithms in literature is performed and tested with data acquired from the AScane.
Afterwards, analysis and discussion of the results were accomplished to understand how the algorithms
can be modified to achieve a more accurate FD.

In chapter 6, the AScane is used to collect gait's data from several subjects in four different walking
conditions. Then, a modified state-of-the-art FSM algorithm for human gait event segmentation was
benchmarked against a ground truth of the acquired data, which was developed with the information
acquired from the MTw Awinda (Xsens Netherlands) and Force Sensitive Resistors (FSR) systems.
Furthermore, the best machine learning model was chosen based on different feature selection methods,
in which the trade-off between the number of computed features and model performance was
acknowledged. Finally, with the best set of parameters, the classifier was mimicked online, and a post-
processing technique was developed to further increase the segmentation performance. Respective
results and discussion are also presented.

An offline PFS detection system is described in Chapter 7. In this chapter, the AScane is used to
collect gait's data from several subjects regarding walking and pre-fall situations. This information was,
initially, filtered, separated by normal and pre-fall situations and used to estimate the features previously
found in the literature. Then, through different feature selection methods, the most significant
combination of features were used to train different machine learning models. The best combination of
parameters was determined using various performance metrics. The results are also discussed.

The conclusions of this work are available in Chapter 8. The proposals to continue this work in the

future are also written in this chapter.

2. FALLS AND RELATED TECHNOLOGICAL APPROACHES: STATE-OF-THE-ART

2.1 Introduction

The definition of a fall has been varying over the years. In 1897, the Kellogg International Working
Group on the Prevention of Falls in the elderly defined a fall as “unintentionally coming to the ground, or
some lower level not as a consequence of sustaining a violent blow, loss of consciousness, sudden onset

of paralysis as in stroke or an epileptic seizure”. Later, this definition was updated to include several other
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health issues such as dizziness or even cardiac collapse, all of which might result in a fall and its possible
consequences [9]. The World Health Organization stated that falls are the second main reason of death
by accident worldwide, representing not only one of the main unwanted accidents but also a challenge to
patient safety, and Therefore, their care quality [3].

Falls in older adults represent a common and increasing health problem. One-third of the elderly
suffer at least one fall each year, frequently resulting in serious health complications. According to the
International Database of the U.S. Census Bureau, the typical proportion of individuals older than 65
years in developed countries in 2015 was roughly 17%. This proportion is expected to reach 30% in 2050
[4], [10]. Regarding statements from the same federal agency, there will be a 210% growth of the
population aged 65 and over within the next 50 years, in part due to ageing from the baby boomers
generation [11]. Projections for 2150 have shown that one-third of the population will be represented by
the elderly, which makes the goal of sustaining a healthy ageing a priority at the European level [12].

The probability of a fall increases with age since 32% to 42% of people over 75 years

suffer a fall in the same period. Previous fallers have a % chance of suffering from a fall in the following

year, and over 50% of residents in institutional care have had at least one fall over one year. About 65%
of women and 44% of men fall inside their usual residence. Most falls occur in the most frequently used

rooms such as bedrooms, kitchen and dining room [13].

2.2 Different Stages of a Fall

Some studies have proposed a multiphase fall model towards providing a more in-depth
observation of the fall event for improving automatic FD systems where the fall manages to be divided
into different phases, including a pre-fall, critical, post-fall, and recovery phases [9]. Other authors divide
the critical phase into the falling and impact stages [10], [14].

The first stage of a fall is the moment in which the person performs Activities of Daily Living (ADL)
which can include actions that sometimes can be classified as a fall due to sudden and rapid movements
performed such as jumping and sitting down [9], [10], [14].

The critical phase can be defined by a lowering of the Center of Mass (COM) that can no longer be
recovered by protective strategies. It is associated with the sudden movement of the body towards the
ground, ending with a vertical shock [10]. While falling, there is a short moment where the person is in
free-fall, which is characterised by an approximation of the three acceleration axis to zero [15]. Regarding

its duration is expected to last from 0.3 up to 0.8 seconds [9], [10]. Then, the body typically hits the



ground or an obstacle. Regarding its acceleration, an abrupt polarity inversion of its vector in the direction
of the trajectory is verified, which can be easily detected by an accelerometer or a shock detector.

The post-fall phase is of varying duration, considering the different type of injuries that can be
sustained in a fall. Normally, the faller remains immovable in a posture and a place. The end of this phase
can be detected with the start of the next one, the recovery phase, usually including COM movement or
the surpass of a predefined time interval [9], [10], [14].

Finally, the recovery phase can be either intentional and independent, where the faller stands up
in his own or is assisted by someone. Its duration fluctuates since it can be anything from a full recovery
to its absence [14]. In case there is no rescue in this event, a fall can be followed by a “long lie,” which
is defined as the involuntarily remaining on the floor for at least an hour after a fall [16]. All the acceleration

changes abovementioned of a person during a fall are represented in Figure 2.1.

Acceleration (g)

Time (s)
Figure 2.1: Acceleration changes during an accidental fall.

2.3 Classification and type of falls

The identification of different types of falls is essential to fall-related strategies to provide
appropriate measures to assure the safety of the patient. Concerning the literature, there are not
standardised fall type criteria. Thus, in each work, the researchers propose their division and classification

of falls and ADL trials as can be seen from Table 2.1.

Table 2.1: Types of falls and ADLs discriminated in different studies

Study Falls and ADL description

Fall: (i) forward, (i) backward, (iii) lateral left, (iv) lateral right and, (v) falling on the
stairs.
[17]
ADL: (i) standing, (ii) sitting in a chair, (iii) sitting on the floor, (iv) lying, (v) walking,

(vi) running, (vii) going upstairs, (viii) going downstairs, (ix) bending.




Study Falls and ADL description

Fall: (i) forward due to a trip, (ii) backwards due to a slip, (iii) left lateral and (iv)
[18] right lateral.

ADL: 9 participants kept the smartphone for a week to record everyday behaviour.

Fall: (i) forward, (i) lateral left and (iii) lateral right.

[19]
ADL: (i) standing up, (ii) sitting down in a chair, (iii) walking average pace.
Fall: (i) forward, (ii) backward, (iii) lateral left and (iv) lateral right.
ADL: (i) sit-to-stand, (i) stand-to-sit, (iii) level walking, (iv) walking up and (v)
[20]

downstairs, (vi) answering the phone, (vii) picking up an object, (viii) getting up from

supine.

Falls can be discriminated by its direction and the incident that cause it, such as trips and slips.
Bai et al. [15], studied the acceleration signal for different ADL and fall directions. The researchers
concluded that the acceleration when falling is entirely different from that of ADL (jumping,
standing up, walking and standing down) and fall direction was able to be determined by comparing the
accelerations on all three axes before and after the fall. Nevertheless, some ADL can be misinterpreted
as a fall since some of its characteristics exists in typical actions such as crouching, which also
demonstrates a fast downward motion [21].

Smeesters et al. [22], examined the effect of disturbances (faint, slip, step down, trip) and gait
speed (fast, normal, slow) in fall direction and impact location. They concluded that disturbance type and
gait speed knowingly affected the fall direction impact location. Regardless of gait speed, trips and steps
down frequently result in forward falls, leading to abdominal pelvis impact. With faster gait speeds, slips
and faints result in the same outcome. Decreasing gait speed, slips result more often in sideways or
backwards falls, leading to hip or buttocks impact. Regarding impact velocities, they were constant, 1.51
+ 0.50 m/s, excluding step down that result in lower impact velocity. The age, gender, height, mass and

physical activity did not suggestively affect fall direction, impact location or impact velocity.

2.4 Risk factors

Before any fall-related strategies can be implemented or analysed, it is essential to identify those
individuals who have a higher fall risk. Falls occur as a result of dynamic interactions between
numerous risk factors categorised into two types: intrinsic and extrinsic factors. Therefore, analysing

fall risks is a challenging problem due to the multifactorial mechanisms behind a fall [23]. Falls among



older people are often allied with intrinsic factors, these are mainly age-related since older people suffer
from a more severe weakening within its balance system, but more significantly, linked with
pathophysiological aspects affecting any of the systems involved in balance. Extrinsic factors are
connected to environmental hazards such as poor lighting, slippery floors and uneven surfaces,
footwear/clothing and unsuitable walking aids/assistive devices [24]. Roughly one-third of fallers using a
walking aid were prescribed with a device insufficient for their needs, not improving their gait the desired
amount [25]. As a result, it is vital to identify the people who are more prone to falls to take full advantage
of the intervention planned. Although several studies identify risk factors related to falls, a direct
comparison is hindered due to different methodologies applied. This section presents risk factors
associated with falls and including them into the two categories mentioned above. It is essential to
understand that multiple factors are always involved in a fall since they do not have a single cause because

most of the risk factors are linked [26].

2.4.1 Gender, Ethnicity and Age

There is proof of racial differences regarding fall rates in the USA. The fall rate from the highest
to lowest is white men, white woman, black man and black woman, although fall risk increases with
age among different races. The risk and frequency of falls increase with age with its greatest
intensification at the age of 80 [23], [24], [26]-[28].

Considering geographical and socioeconomic variations, caucasian women are more likely to
suffer from a fall outdoors than African American women up to 1.6 times and twice as likely to land on
surfaces suchlike ice, dirt and snow. They are not only 3.8 times more probable to fall straight down
(along with the vertical direction), but also twice as plausible to fall laterally or posteriorly compared to
falling forward [24], [27]. Although women are more likely to suffer from nonfatal falls, men are more

prone to experience fatal falls, possibly due to the practice of more risky behaviours [27].

2.4.2 Psychological Status

Although the relationship between falls and psychological factors still are unclear, the
fear/anxiety of falling and depression are related to an increased risk of fall. Depression can
be bound to the decrease in physical activity, gait speed and muscle strength, which are linked to lethargic
behaviour typical in people with this disorder [29]. Fear of falling is due to several different aspects, such
as reduced physical activity and a history of falls. Since up to 70% of people who suffered a fall recently

and 40% of people who not account for falls lately recognises the existence of this fear which can lead to
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the decrease of physical and social activities [24], [29]. Fear of falling makes people lose self-confidence

in their safety, restricting their ADLs [10].

2.4.3 Medication intake

The most common medications are the ones that interact with the central nervous systems, for
instance, benzodiazepines, sedatives and tranquillisers, which cause cognitive impairment, dizziness,
sedation and a decrease in neuromuscular function [27]. Studies show that with the intake of four
medications, the fall risk increases significantly, the consumption of five or more is associated
with a nine-fold increase of the cognitive weakening and fear of falling [24]. The intake of different drugs
has consequences that include drug reactions, drug interactions and cognitive impairments and urinary

incontinence. Which is why the patient clinical history is critical while prescribing such medications [28].

2.4.4  Physical conditions

Physical disabilities can increase the risk of falls. This type of risk factor is directly linked
to ageing. Table 2.2 presents several physical risk factors associated with falls, the ones mentioned were
examined and compared between individuals who experienced a fall and with those who did not.

As a person ages, muscle weakness, particularly in the lower limbs, debilitated neurologic
feedback and chronic illnesses may be experienced. These changes, in combination with other risk
factors, increase the likelihood of a fall. One study showed that a patient with a combination of four risk
factors has about 78% chance of falling [30]. Starting with the medical conditions associated with the

intensification of the fall risk, they can be subclassified dependent on the functional system associated.

Table 2.2: Reported physical fall risk factors in older people [31], [32]

Risk Factor Mean RR? Range
Muscle Weakness 4.4 1.5-10.3
Gait deficit 2.9 1.3-56
Balance deficit 2.9 1.6-54
Mobility limitation 2.5 1.0-5.3
Visual deficit 2.5 1.1-35
Impaired ADL 2.3 1.5-3.1
Postural hypotension 1.9 1.0-34
Cognitive impairment 1.8 1.0-23

» RR: Relative risk (Prospective studies)
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The occurrence of falls among neurological patients is very high, carrying high costs for health
institutions, and the prevalence of neurological disorders is increasing as a result of changes in population
demographics. A study regarding falls in recurrent neurological diseases ranked the most frequent
neurological disorders with the highest fall rate, which led to the results shown in Figure 2.2 [33].

From Figure 2.2, patients with Parkinson’s disease (71%) and stroke (89%) are more likely to fall
than patients with every other type of neurologic disease. They were followed by a collection of diseases
with an average of four times the likelihood of falling consisting of dementia, epilepsy, movement disorders

and peripheral neuropathy.

One year fall incidence in common neurological disorders

Stroke

Parkinson's disease

Dementia _,
epitepsy |11
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Figure 2.2: Difference in frequency of having at least one fall within the 12-month period for patients suffering
from the 13 most commonly encountered neurological disorders, taken from [33].

Stroke-related neurological conditions contribute to a large number of falls in the community
since individuals with stroke do not only present a high fall risk during the acute phase but also during
the poststroke phase considering that are various conditions that may develop after [34].

From studies performed in people who suffered from strokes, it is suggested that the individuals
are more prone to fall when walking involves considerable cognitive control. Consequently, patients are
usually incapable of walking and talking simultaneously or slow down when performing a current mental
task. Stroke-related balance and gait deficits, which were acknowledged by clinical assessments,
contribute to a large number of falls in these patients [34].

To maintain balance, the vertical projection of the body needs to be upheld inside the limits of

the Base of Support (BOS). In tasks where the BOS changes size or position, such as ADL, the Center Of
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Mass (COM) has to be relocated with the new BOS in order not to fall. When an environmental perturbation
changes the COM near the limits of the BOS or even out of them, the person needs to be able to
counterforce the external forces applied to the one's body in order to maintain balance. Regarding one's
gait, it must be able to produce adequate mechanical energy in order to walk and cause progression of
gait. It must be able to attain sufficient clearance of the foot to avoid stumbling, the necessary stance
stability of the weight-bearing lower limb and the correct positioning of the swinging leg. However, some
deficits caused by stroke prevent the requirements mentioned above such as such decreased postural
stability during quiet standing, tardy and fewer coordinated responses, reduced propulsion at push-off,
lessened leg flexion through the swing phase, reduced stability throughout the stance phase and reduced
automaticity of walking [34].

Parkinson’s Disease (PD) is a neurodegenerative disease that presents motor and non-motor
signs and symptoms [28]. Studies indicate that people affected by this neurological illness experience
falls and around 70% of them are affected by recurrent falls even in the early stages of the disease. It has
been assessed that 76% of falls in PD patients require health care services and 33% result in fractures
[35][36]. Patients with PD often walk with diminished gait speed, shorter stride length, stooped posture,
and reduced arm swing [37].

Furthermore, amongst PD patients whose fall resulted in fractures, the mortality rate is
approximately 10.6%. PD patients fall in various directions, and different body parts are wounded during
such falls. Most of the population tend to fall forward. Some researches stated multiple fall directions and
the association between the falling course and fractures obtained [35]. The two main mechanisms
underlying recurrent falls in PD patients were identified as being the Freeze of Gait (FOG) and balance
impairment.

Freezing is defined as “an episodic inability to generate effective stepping” even though there is
a desire to walk [38]. Thus, FOG is a predictor for falling forward, when it happens their Center of Gravity
(COG) keeps moving forward when their feet stop moving, which leads to falling forward while balance
impairment, akinetic-rigid subtype, and neuropsychiatric symptoms were linked with falling backwards or
sideways [35]. This feature is most prevalent not only while initiating gait, turning, or approaching a
destination but also is commonly triggered by environmental features such as narrow hallways, doorways
and large crowds. There are three types of FOG described in individuals with PD. The most common type
observed is represented with trembling of legs, which is frequently linked with an effort to overcome the
block that is associated with FOG. Akinesia is a condition where individuals suffer from loss of ability to

move their muscles. Festination is a gait disturbance described as small and quick steps executes to
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retain the COG between the feet while the trunk leans forward involuntarily, shifting the COG forward [38]
Gait Disorders [39]. Therefore, a prevention strategy for falls in PD patients, could be established
grounded in their main falling direction [35].

Female individuals have a higher incidence of both falls and fractures among PD patients, which
is the same regarding the general population [40]. Although hip fractures have been described as the
most common location of fractures and have revealed the strongest association with PD, in [40], upper
limb fractures were the most common type sustained. However, the location of the fractures is
determined by several factors. For case, osteoporosis and body mass index have been proven to be
associated with increased risk of hip fractures, and low bone mineral density predominantly affects the
risk of fracture for the hip, wrist, and spine [40]. The related factors and characteristics regarding the
different falling directions in an individual with Parkinson’s disease and their gait are illustrated in Figure
2.3. a) and b), respectively.

Although dementia was not one of the neurological disorders with the highest fall rate, its
predominance in the population is still significative. Dementia is a category of neurological syndromes
which restrict the social and occupational functioning of predominantly elderly and are characterised by
the progressive deterioration in cognition. The primary subtypes of dementia include vascular dementia
and Alzheimer’s disease. Although in people younger than 65, the predominance of dementia is rare, its

incidence increases exponentially in individuals older than that [42].
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Figure 2.3: a) Scheme of the mechanism and characteristics of PD forward fallers and non-forward fallers; b)
Graphic representation of Parkinson's gait versus normal gait.

Even though there are no studies about the type of falls in individuals diagnosed with dementia,

falls are often a part of the disease, hence the reason to implement preventive strategies to prevent them.
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Dementia is classified as an independent risk factor in falls due to its symptoms such as disorientation,
dromomania, postural and neurovascular instability [41],[42].

Regarding the incidence of falls in patients with dementia, it varies according to the type of study
conducted, with studies that recorded data retrospectively obtaining considerably lower estimations of fall
rates than those using prospective methods. Considering studies with prospective methods, people with
dementia are two times more prone to fall than cognitive healthy older people. Regarding actual fractures

sustained due to falls is estimated to be roughly 7% and 50% of the fractures are to the femoral neck [41].

2.4.5 Non-use or non-access to assistive devices

Amongst the elderly that sustains a fall at home, a large amount does not possess an assistive
device with them at the moment of the fall. People sustain more severe injuries when they fall
without their assistive device. Data implies that a large percentage of people end up quitting their
prescribed assistive device. Moreover, they underestimate the significance of the cane to their safety.
Believing that the prescribed device decreases falls, doesn’t necessarily ensure device use. The known
risk of falling is not significant enough to justify engaging in the self-protective behaviour of using the
device [43]. Older adults do no use their canes or walkers, particularly in their homes where the most
considerable number of falls occur, even though knowing that it can help avert a fall. Instead, they steady
themselves by holding themselves against walls and furniture. Two factors that influence device use that
has not been adequately discussed are the disregard of older adults concerning fall prevention strategies
(e.g. proper use of canes and walkers), and their rejection about fall prevention actions [44].

A research accomplished by Luz et al. [45] suggests that people will not practice the required
precautions to avoid an adverse event (such as a fall) till people accept that the risk presents a notable
threat to them personally. Precautionary behaviour needs to be significant enough to their security that
overcomes every potential reason for not engaging in this behaviour. Patient education regarding the
connection within device use and fall-related injuries could improve the discernment of their own risk and
the importance of device use that could surpass the negative psychosocial context and stigma which
discourages use. Furthermore, the development and investigation of approaches to maximise device use
are demanded such as environmental reminders and employing new technologies to develop new types

of canes and walkers which could overcome the social stigma associated with device use.
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2.5 Consequences of a fall

As stated before, falls are a public health issue that predominantly affects older people and
can result in injury, hospitalisation, injuries, mobility impairment and even death. Fabricio et al. [46]
conducted a study not only to investigate the history of falls reported by the geriatric community, but also
to name likely associated factors, the place of occurrence, causes, and consequences. The most
frequently observed consequence were fractures (64%), occurred in 53% of men and 70% of women. The
most common fractures were of the femur (62%), followed by radius (12.5%), clavicle (6.25%), and others
such as spinal column, ulna, scapula, patella, and nose. Fear of additional falls (44%) and the remaining
consequences reported are presented in Figure 2.4. The population of the study was comprised of 251
older adults older than 60 years [46]. Furthermore, Figure 2.5 resumes the causes and effects of the

mentioned problem by using a Tree Problem Diagram.

2.6 Fall-Related Tools And Existing Strategies

As stated, fall-related medical care is linked to high financial expenditure, and it is expected to grow
significantly. Falls amongst the elderly community does not only concern the health practitioners but also
the scientific community. Fall Prediction (FP) and FD systems are vital to answer this problem and
can assist in reducing the financial, physical, and emotional consequences of a fall.
Consequently, numerous research papers have tackled falls and in methods of detecting and preventing
them, exploiting a wide range of sensing methods. At the moment, it is essential to differentiate between
the different fall-related systems. To this day, literature reviews lack a standard ground classification since
each analysed study presented a different classification based on the understanding of the problem of
falling and the expected contribution. Thus, a comprehensive review was accomplished.
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Figure 2.4: Consequences presented by older adults after falls (Adapted from [46]).
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Figure 2.5: Tree Problem Diagram.
2.6.1 Fall Detection Systems

Usually, FD systems rely on impact detection [5], [10], [14]. According to the literature, these
systems can be differently classified, and there are many efforts to structure them. Hsieh et al. [10],
categorise FD systems according to its type of detection, which includes user-manual and automatic
systems. User-manual systems are intended to send emergency messages through user manipulation.
Nevertheless, in case of loss of consciousness, they are useless, not providing the medical care
necessary. Contrarily, automatic FD systems are planned to detect falls without any user manipulation.
These devices alert the user and healthcare provider after a fall to accelerate and improve the medical
care provided to the user [10], [47].

FD systems can also be divided depending on what type of sensor the system employs. A survey
achieved by Delahoz et al. [5] presented the primary three-class division of current FD systems: camera-
based sensing, ambient sensors and wearable sensors.

Systems can make use of cameras to detect falls due to their typically short time of occurrence.
Consequently, the patients' posture and shape vary significantly, which is the key factor in this type of
system. For example, Stone et al. [48] presented a two-stages FD algorithm and validated the system
with an available dataset comprising 454 falls. The first stage of the detection system characterises a
person's vertical state in-depth image frames and then segments on-ground events from the vertical state
time series. The second stage employs an ensemble of decision trees to compute a percentage of
confidence that a fall preceded an on-ground event. It is required a high computational power to detect a
fall in realtime since on average, a picture is composed of at least 345,600 individual pixels that need to

be analysed. One of the significant concerns with camera-based systems is user privacy. As a result,
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instead of recording the patients' movements, the systems record their surrounding with body-mounted
cameras.

Ambient device-based FD systems normally surveil the subject of interest surroundings to track his
movements and behaviour. This type of systems is normally installed when the subject refuses to wear
any device on his body. Typically, pressure, infrared, vibration, acoustic and motion PIR sensors are
mounted in the SOI vicinity [49].

As previously stated, abrupt fluctuations in body motion parameters such as orientation or
acceleration may be due to a fall. To measure such parameters, sensors must be placed onto the body
of the subject. Wearable systems generally employ inertial sensors such as accelerometers,
inclinometers, gyroscopes, barometers, goniometers and magnetometers to identify not only sudden
changes in human gait but also to assess the subjects balance and monitor displacement [50]. They are
typically low-cost and small, which makes them an attractive solution. They also can be easily placed in
the human body or can be attached to daily life accessories. Numerous studies on sensor placement
have been done. Kangas et al. [51] studied low-complexity FD algorithms for wearable accelerometers
with different body placement. It was concluded that while the waist and head were valid positions, the
wrist was not. Bourke et al. [52] positioned sensors on the trunk and thighs and described the trunk as
a better position. Fang et al. [53] stated that more reliable performance is achieved when the sensor is
installed near the center of mass. The results revealed that the chest was the optimal location. The
subject's waist was recommended rather than the chest since it was a more comfortable position. Figure

2.6 summarises the sensor positions used in existing FD systems.

Head (4)
Ear (2)
Neck (2)
Shoulder (1)
Chest (11) Under armpit (1)
- Back (3)
Waist (28) Wrist (6)
Thigh (13)
Ankle (3)
Foot (2)

Front Back

Figure 2.6: Different positions and number of studies for sensor placement in wearable FD

systems (adapted from [54]).
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Pierry et al. in [55] contemplated a survey and evaluation of real-time accelerometry based FD
systems. Their classification was established on methods that evaluate acceleration, that merge
acceleration with additional sensor data and methods that do not assess acceleration at all. Most systems
use accelerometers along threshold-based algorithms to detect fall-related events due to an abrupt polarity
inversion of the acceleration of the subject when hitting the ground.

Ambient and Vision-based systems being limited to only some aspects of ADL or certain locations,
while wearable-based FD systems allow the monitorization of individuals under real-life conditions in their
natural environment, including both indoor and outdoor ADL. Even though wearable sensors are more
attractive, they can be uncomfortable for the person depending on their size and location on the [10],
[14]. Table 2.3 contains the results of the conducted search regarding FD systems, which includes the
type of sensors employed, their corresponding specifications and location, the computed features, and if

it is wearable or not.

Table 2.3: Features used in FD systems, as well as the sensors, their corresponding location, specification, and
wearability of the developed system.

Sensor Placement Work
Type of sensor Features used Wearable
Specification of sensor
Doppler range Melfrequency Cepstral
- - Floor [56]
control radar Coefficient;
Sum Vector Magnitude (SVM);
Android
Magnetometer Magnitude of angular + Hip [57]
Smartphone
displacement;
SVM; Wrist, Waist
Triaxial
Dynamic Sum Vector; + and [58]
Fs: 400Hz
Differences between the Forehead
maximum and minimum
Triaxial
acceleration (SVmaxmin); + Waist level [16]
Accelerometer Fs: 50Hz
Vertical Acceleration (Z2);
Triaxial Rotation angle of accelerometer
+ Waist [59]
Fs: 100Hz coordinate in 3D space;
Neck, waist,
Activity Signal Magnitude Area;
Triaxial + foot and [60]
SVM;
hand
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Sensor Placement Work
Type of sensor Features used Wearable
Specification of sensor
SVM;
Triaxial Signal Magnitude Area;
+ Waist [61]
Fs: 40Hz Postural Orientation;
Tilt Angle;
Triaxial
Thoracic
Fs: 100Hz SVM; + [19]
vertebrae
Range: 11g
SVM;
Delta Changes;
Triaxial Trouser
Average Resultant Acceleration; + [62]
pocket
Resultant of Standard Deviation;
Z-Score;
Smartphone Trouser
Transversal acceleration + [63]
Fs: 33Hz pocket
SVM; Chest, thigh
Smartphone + [11]
Absolute Vertical acceleration; and waist.
SVM;
Rotation angle;
Slope; + Waist [64]
The SVM of acceleration in the
horizontal plane;
SVM;
Magnitude of angular
Smartphone displacement; + Hip [57]
Roll, Pitch and Yaw;
Quaternion
SVM;
Maximum SVM; Chest and
+ [65]
Minimum SVM; waist
Average SVM;
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Sensor Placement Work
Type of sensor Features used Wearable
Specification of sensor

Root mean square SVM
Acceleration exponential moving
average;

Signal magnitude area;

SVM;
Triaxial
Fast changed vector;

Range: 2 g), + Waist [66]
Vertical acceleration;
Fs =200

Posture angle;

Skewness;
Skewness (X, Y and Z
Smooth Median Filter axis);
Skewness of SVM;
Skewness of SVM (Smooth
Median Filter axis);
Kurtosis;

Kurtosis (X, Y and Z Smooth

+ Waist [67]
Median Filter axis);
Kurtosis of SVM;
Kurtosis of SVM (Smooth
Median Filter axis);
Mean;
Mean of SVM;
Variance;

Variance of SVM;

Atmospheric air
pressure Fs: 1.8Hz Differential pressure + Waist [67]

Sensor

Under
8 orthogonal principal
FSR - + booth feet [68]
components;
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Sensor Placement Work
Type of sensor Features used Wearable
Specification of sensor
Vertical state of a segmented 3-
D object; Placed
Minimum Vertical Velocity; Around the [48]
Maximum Vertical Acceleration; room
Microsoft Kinect
Vertical Velocity;
Velocity; Placed
Acceleration; Around the [69]
Width/Height ratio; room
SVM;
Triaxial Thoracic
Total Angular Change; + [19]
Fs: 1000hz vertebrae
Resultant Angular Acceleration;
Gyroscope Resultant angle change;
Triaxial Maximum resultant angular
+ Waist [70]
Fs: 50Hz acceleration;

Fluctuation frequency;

Existing systems primarily focus on detecting a fall rather than predicting it. Therefore,

FP and prevention systems are of the highest importance to achieve since there is an imperative

need for the development of strategies that can minimise not only the cost associated with the

consequences of the fall but also improve the quality of life for persons who suffer from them [28], [47].

2.6.2 Fall Prediction Systems

Although FD and FP systems share some common ground such as commissioning sensors to

complete their task and the use of collected data through computer algorithms including artificial

intelligence, there are critical differences between these two systems [5].

FP systems aim at notifying the subjects before the occurrence of a fall, thus avoiding

the consequences of it. These systems ought to identify most of the scenarios and events leading to a fall

and deliver a framework based on data acquired from different scenarios, sensors and subjects from the

target population for increased reliability and safety [47].
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It is essential to distinguish two different systems linked to FP. Fall Risk Assessment Tools
(FRAT) identifies persons of high fall risk upon specific and protocoled interventions. Three types of

assessment are relevant regarding falls and the decrease of mobility in the geriatric population [71], [72]:

i) Comprehensive medical assessments - accomplished by geriatricians or nurse practitioners
in order to evaluate and rehabilitate patients with fall risk involving evaluation of the patients
fall history, strength, cognition, balance, gait, chronic diseases, mobility, nutrition, and
prescriptions;

i) Nursing fall risk assessments - which has been performed mainly in health institutions
commissioning popular measures, tools or scales used to assess the risk of fall. Some
examples are the Morse Fall Scale, St Thomas Risk Assessment Tool in Falling Elderly
Inpatients (STRATIFY), Resident Assessment Instrument (RAI), Fall Risk Assessment Tool,
Hendrich Fall Risk Model, High Risk for Falls Assessment Form, or Royal Melbourne Hospital
Risk Assessment Tool. Patients are classified into risk categories, which enables clinicians to
associate risk assessment with specific interventions. Therefore, the need for health facilities
to develop their scales is null, which could affect the type of treatment and care of fall patients
since scores and scales would not be comparable across similar types of facilities;

iii)  Functional mobility assessments - accomplished by physical therapists or physicians, such as
Timed-Up and Go test (TUG), Berg Balance scale (BBS), Physiological Profile Assessment
(PPA) and Tinetti Performance Oriented Mobility Assessment (POMA).

Differently, pre-impact FD systems also aim at detecting a fall before it happens in real-time,
although with a shorter lead time. For example, Tamura et al. [73], developed a wearable airbag which
incorporates a pre-impact FD system based on accelerometer and gyroscope’s signals to trigger their
inflation. In this study, it is assumed that the subject is in free fall, and before the impact, the airbag is
triggered, and the patient’s head, neck, hip, and thigh are protected.

According to [74], alterations in ADL are early signs of cognitive and physical decay, which is
related to gait deficiencies and an imminent fall. Therefore, these systems can identify irregularities, trace
all variations in gait parameters and, finally, identify dangerous and emergencies. The development of
these type of systems nowadays faces numerous challenges such as their performance in real-like
conditions since high outcomes are achieved in experimental/controlled environments and hardly any
studies collect data of elderly generations. User engagement is also a subject that requires attention as
recent surveys have shown that wearable systems have less appeal due to the lack of interaction and

familiarity with the recent technological advances since habitually, these types of systems combine data
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from multiple sensors and transmit them wirelessly to a central computational device. Integrity and
privacy concerns are raising in FP systems due to the large vision-based systems transmitting real-time
images that share user sensitive information to networks who can suffer from hacking [47]. Table 2.4
contains the results of the conducted search regarding FP systems. It includes the type of sensors
employed, heir corresponding specifications and location, the computed features, and if it is wearable or

not.

Table 2.4: Features used in FP systems, as well as the sensors, their corresponding location, specification, and
wearability of the developed system.

Sensor Placement
Type of sensor Features Wearable Work
Specification of sensor
Velocity of centre- Subject
Fs: 100Hz - [75]
of-pressure stand on it
Force Plate Ground reaction
Subject
Fs:20Hz forces; - [76]
stand on it
Center of Pressure
Fs: 50Hz
Maximum finite-time
Res: 0.05°
IMU Lyapunov exponent + Lower back [75]
Range: +bg
(maxLE)
+1,200/s
Biaxial; maxLE;
Range: +1.7 g, Step length;
+ Hip [77]
Res: 1mV/mg Step duration;
Fs: 125Hz Heel contact velocity,
Acceleration
Tri-axial
Fast Fourier + Waist [78]
Fs: 200Hz
Accelerometer Transform
TUG Time Duration;
RMS of HP Filtered
Tri-axial
SVM; + Waist [79]
Fs: 40Hz
Signal Magnitude
Area;
Tri-axial Cadence + Lower back [23]
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Sensor Placement

Type of sensor Features Wearable Work
Specification of sensor
Position;
Kinect Speed;
- SOl Vicinity [80]
Camera Fs: 30Hz Acceleration;
CoM;
Fs: 120Hz maxLE - Booth Heels [77]

A broader search about which features are analysed in studies regarding gait was accomplished,
and the results containing which features were computed, what sensor was used to acquire the data and

the type of study conducted are described in Table 2.5.

Table 2.5: Potentially relevant metrics for FP, and the sensors used to obtain them.

Feature Study Type Sensor Reference

Cumulative Horizontal Acceleration;

Velocity (X, Y and Z axis);

Displacement (X, Y and Z axis); Displacement of
Cumulative horizontal displacement; centre of mass
Accelerometer [81]
Cumulative horizontal sway length (X, Y and Z during quiet
axis); standing
Mean sway velocity (X, Y and Z axis);
Displacement range (X, Y and Z axis);
Movement
Acceleration (X, Y and Z axis); Accelerometer [82]
Classification
Detection of
Energy (X, Y and Z axis); Everyday Accelerometer [83]
Energy of SVM; Activities
Optimal
Accelerometer
Mean (X, Y and Z axis); Features to
and [84]
Mean of SVM; Classify Falls
Gyroscope

Correlation (XY, YZ and XZ);
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Feature Study Type Sensor Reference

Maximum and minimum of SVM (raw signal and
LP filtered);
% window where LP SVM is less than 0.9;

Approximate entropy; Quantifying Accelerometer
movement and [85]
Frequency Analysis; patterns Gyroscope
Wavelet Decomposition Classification of
Accelerometer [86]
Walking Patterns

Root Mean Square (X, Y and Z axis);
Root Mean Square of SVM;

Peak-to-peak values (X, Y and Z axis);

Peak-to-peak values of SVM; Accelerometer
Stability and
Minimum values (X, Y and Z axis); and [87]
harmony of gait
Harmonic Ratio Gyroscope

Ratio Index (X, Y and Z axis);
Ratio Index of SVM;

Ratio Index of Peak-to-peak values

Chaccour et al. [49], proposed a global standard reference scheme for all FD and FP
systems. The proposed method is a three-category based classification. Firstly, fall-related systems
are separated into two groups: FD and FP systems. FD systems use the fall impact to trigger an alarm,
whereas the FP Systems compute features of gait and balance. Due to a large number of studies and to
the shortage of a global classification, fall-related systems can be arranged concerning their technology.
The three main categories are Wearable based Systems, Non-wearable based Systems (NWS) and Fusion

or hybrid-based Systems (FS). The proposed classification criterion is depicted in Figure 2.7.

2.6.3 Fall Prevention Strategies

Recognising active interventions to prevent falls and fall-related injuries amongst older adults is a
field of research in geriatrics. Numerous published clinical guidelines evaluate the evidence for fall
prevention strategies and present directions for evaluation and intervention [88]. Fundamental to the

success of the before-mentioned interventions is not only to shape the minds, stands and roles of older
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Figure 2.7: A three-category based global classification scheme of fall-related systems according to [52].

people themselves, but also the health and social care specialists who assist, and the broader
communities in which the senior live. Someone will change his lifestyle if it is within their capacity to
achieve so, if he possesses the means to execute change, if the changes are recognised as being of good
to him and if the resultant advantages exceed the value in overcoming the hurdles [89].

Commonly, fall prevention interventions can be classified within particular general categories [28],
[88], [89]. Exercise has become a commonly considered intervention in fall prevention. It is proved
that exercises can decrease fall risk factors such as poor balance, muscle weakness, gait impairment
[88], and reaction time [89]. Endorsing fitting physical activities or exercises to enhance strength,
balance, and flexibility is one of the most suitable and cost-effective approaches to prevent falls amongst
the geriatric community [89]

Diet and lifestyle influence morbidity and mortality, therefore, aged people must adopt a diet and
a lifestyle that can minimise the risk of morbidity. A healthy well-balanced diet is fundamental to healthy
ageing. A proper intake of protein, calcium, essential vitamins and water are necessary for a healthy life.
If deficiencies do exist, it is prudent to expect that weakness, weak fall recovery and increase risk of
injuries will ensure. A diet composed with a proper intake of calcium and vitamin D is found to improve
bone mass amongst the elderly with low bone density and their musculoskeletal function. It also reduces

the risk of osteoporosis and falling [89][88].
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Environmental evaluation and adjustment are another promising fall prevention strategy.
Usually is practised as a method of recognising and excluding possible risks, such as clutter, poor lighting
and throw rugs. The environment is then revised to increase mobility and security, for example, with the
installation of grab bars, raising toilet seats and even lowering bed height. Nowadays, many self-
administered home safety checklists are created to evaluate older people homes, and to support in
identifying hazards and propose recommendations for promoting a safer environment. For patients with
a higher fall risk, usually, this assessment is accomplished by trained professionals, such as nurses or
occupational therapists. This in-home evaluation allows the health professionals to access how the patient
functions within the home, which help to name security problems that may not be identified with a self-
administered checklist [90]. Any risk-taking behaviours also improve the risk of falling in older age, such
as climbing ladders, standing on unsteady chairs, hurrying with limited attention to the conditions or not

using mobility devices prescribed such as a cane or a walker [88].

2.7 Machine Learning Algorithms in Fall Detection

Machine learning is a field of computer science regarding programs and algorithms that learn from
experience. Just as the type of sensors used in fall-related system change aside from the technological
progress, FD algorithms also change. Xu et al. [7], reviewed the FD algorithms on the most cited works
before and after 2014 until the end of 2017 and found that since formerly the most used sensors
were accelerometers which detect accelerations in specific parts of the body, threshold-based
algorithms were the most used. With the technological progress and the increasing usage of vision-based
sensing with FD algorithms, the application of machine learning techniques has been
significantly increasing, as seen in Figure 2.8, since the sensors nowadays can perceive more details
in human activities [7]. For example, Aguiar et al. [91], using information from a built-in smartphone
accelerometer, retrieved features and threshold information to detect a fall through DT. Moreover,
Pierleoni et al. [92], with data acquired from an accelerometer, gyroscope, and magnetometer, used

Support Vector Machines to choose acceleration thresholds to develop a FD algorithm.

28



Machine Signal
Learning Processing
46.34% 12.50%

Conventional
approach
29.17%

Machine
Learning
$8.33%

Conventional
approach
53.66%

(a) (b)

Figure 2.8: Tendency of algorithms used in FD system: (a) main categories of algorithm used before 2014; (b)
main categories of the algorithm used before. Taken from [7].

2.7.1 Model Evaluation

In the evaluation of classification models, if their application leads to a misclassification, the
performance of the chosen classifier decreases, increasing the error rate. Hence, classifier evaluation is
essential in the learning progress allowing to access the performance of different algorithms which cannot
be compared any other way. Alternatively, to access the classifier performance, Cross-Validation (CV)
can also be accomplished.

CV assesses how the results of a statistical analysis will generalise to an independent data set. It
is mostly used in machine learning, and one wants to estimate how accurately a predictive model will
perform in practice. Normally it is given a dataset of known data to the classifier on which training is run
and a dataset of unknown data on which the model is tested. Thus, the model will be tested only with
unseen data to signal problems such as overfitting, selection bias and to understand how the model
generalises to a different dataset which indicates who the system will perform when applied to real-world
problems. CV involves partitioning a sample of data into complementary subsets, training the model with
one subset and testing it with another. To reduce variability, multiple rounds of CV are performed using
different partitions, and the validation results are averaged over the rounds to give an estimate of the
model's predictive performance. This technique is the method of choice in fall-related systems [5].
Usually, the results are stored in a confusion matrix, as seen in Figure 2.9, which allows visualising the

performance of the classifier.
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Figure 2.9: Confusion Matrix Example

Numerous designations are frequently used along with the description of sensitivity, specificity
and accuracy. They are True Positive (TP), True Negative (TN), False Negative (FN), and False Positive
(PF). Sensitivity (SENS), Specificity (SPEC) and Accuracy (ACC) are defined in terms of TP, TN, FN and
PF. ACC is an evaluation measure that indicates the percentage of correct results that the classifier
obtained, equation 2.1. The major disadvantages of ACC are the neglect of the differences between the
types of errors and their dependence on the class distribution of the data, since it is usually important, in

practical examples, the differentiation between the different types of errors.[3].

A ~ TP+TN o
Ay = TPFTN+PF+FN '

Although this metric is one of the first to analyses when evaluating the classifier, when the number
of tests is not balanced, that is, the number of tests of each class is different this metric cannot clearly
describe the effectiveness of the classifier. For this reason, it is necessary to calculate other metrics that
capture the more specific aspects of the evaluation. PREC, is the metric that indicates the percentage of

correct positive results of all positive results obtained by the classifier, given by equation 2.2.
Precision = TP (2.2)
recision = TP T PF .

SENS, presented in equation 2.3, measures the proportion of current positives that are correctly

SPEC displays the proportion of negatives that are correctly identified, and this metric is

presented in equation 2.4.

TN
N + PF

Specificity = (2.4)
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The Matthews Correlation Coefficient (MCC), is a metric used in Machine Learning for the
evaluation of the quality of binary classifications, i.e., there are only two classes, consequently if there is
a higher number of classes, the classification is done by joining several classes with respect to another,
this process being iterative until there are no other possible combinations, this metric is presented in

equation 2.5.

TP « TN — PF « FN

MCC = (2.5)
/(TP + PF)(TP + FN)(TN + PF)(TN + FN)

The F1 Score (F1S) combines PREC and SENS. By equation 2.6, we can observe that the TN
number is not considered in the calculation formula, so we can have the same value of this metric if we

have a high or low TN value in the classification results.

o _ 2% (SENS + PREC) .
-SCOT® = ~SENS + PREC '

Cohen’s Kappa (KAPPA) is a very valuable performance metric when faced with a multi-class
classification problem. In those cases, measures such as ACC, or PREC may not provide the full
understanding regarding the performance of the classifiers. For the computation of KAPPA is necessary
the relative observed agreement among raters (Po) and the hypothetical probability of chance agreement

(Pe), as seen in equation 2.7.

K - Po — Pe 2.7)
appa = 1-Pe '

2.8 Discussion

A contextualization about falls, including its different stages, costs, classification criteria, risk factors
and consequences, was presented. Then, all fall-related strategies common in literature were
discriminated, including the recent trends, associated limitations, difficulties, and future research areas
for designing fall-related system with prediction capabilities.

FP is a complex multifactorial problem which includes the interaction between several risk factors
already disclosed. Current FD and FP systems are primarily tested in controlled conditions and
do not take into account the interactions within the various fall risk factors. Furthermore, these systems
need to be capable to contextualise the problem of falling in real-life scenarios where the accuracy of the
systems is assessed. Also, future systems will require the merge for indoor and outdoor fall

assessment with the smallest obtrusiveness to the subjects. The principal difficulties in producing
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adequate FP systems involve assessing its reliability amongst frequent fallers and the geriatric
community, safety and privacy in data transmission and power optimisation.

Since the time interval between the detection of an imminent fall and its impact is relatively small,
the devices being developed must increase this lead time. Consequently, the establishment of a
framework that considers the perceptual information in order to monitor movement execution in real-time
and use it to prevent unwanted situations such as falls is imperative. The system must distinguish
normal gait from fall and PFS situations, using proper gait’s parameters using a sensorial

system during ADLs.

3. CANES AS A FALL-RELATED SYSTEM

3.1 Introduction

The scientific community has been proposing several different solutions concerning fall-related
technology, the most common one attaching a sensor to the subject's body. Even though the system
can detect the fall, the system will weight on the individual [51], [52]. In contrast, image-based
methods employ specific algorithms to liberate the subject of any wearable system. The entire system
is constrained due to environmental reasons and must be installed in a suitable place [48]. Most
of the developed projects focus on FD and employ methods supported by vision, wearable and
environmental approaches discussed in Chapter 2, subsection 2.6, “Fall-Related Tools And Existing
Strategies”.

Initially, all developed systems trusted on the individual to trigger an alarm by pressing a button
when a fall happened. In the case of inaccessibility of the alarm system, loss of consciousness or even if
the subject is in a coma or disabled, all system is insignificant. Nowadays, most research focuses on
developing methods in which a fall is automatically detected, and an alarm is triggered. The majority uses
acceleration sensors, or image processing algorithms along with vision-based sensors. Regardless, many
sensors need to be installed so the system can work effectively, nonetheless, installing sensors on the
body of the elderly can reduce the flexibility of their movement, and the indoor sensors cannot detect the
accidents that happen outside the surveyed areas [49][10].

Thus, the use of accessories where elderly may take with or wear on, e.g. necklaces, bracelets,
watches or canes, can be a serious alternative. Since a realtime monitoring system needs a
considerably sized battery to operate for a reasonable period, the use of smaller devices will result in a

low power supply for a short amount of time. Consequently, the systems need to be charged several
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times a day, which is not optimal. The constant hand movement is also a factor to discard its use, which
is too high to monitor for long periods. So, if we would like to insert sensors on these objects for FD and
FP, then canes can be a great choice due to its size, but also since they are commonly used by the

geriatric community [93].

3.2 Canes

Assistive devices such as canes are defined as mechanical implements specifically intended to
assist individuals with disabilities to accomplish their needs, providing biomechanical support for their
mobility [94]. Canes are often prescribed to patients with indications of gait/balance disorders and
weakness in inferior members, which are one of the leading indicators of falls [95]. Typically, canes are
prescribed to people with a reasonable level of impairment and when minimal stability is needed [96],
[97]. They are operated by the individual dominant hand or the hand opposite of its weakness or injury
since it can shift up to 25% of the individual's weight [97], [98]. By reducing weight supported on
the individual legs, these devices can aid ease pain related from injuries or clinical pathology’s
such as hip fracture, or compensate for weakness or impaired motor control of the leg [96]. Canes
increase the person stability by widening the base of support, reducing the weight load on the inferior
extremities, and giving the user a sense of safety, which results in a lower fall risk [45]. The use of
mobility aid devices is expected to increase since the elderly community is growing, and device
ownership increased with age [45]. More than 4 million people in the USA alone use a cane.

Hui-Ching [99] conducted a research in order to study the use and the attitude of the geriatric
community towards the use of assistive devices. The attained results revealed that most older people had
a neutral to a positive outlook towards the adoption of assistive devices in their lives. Moreover,
the will to preserve their independence and rely less on personal assistance was crucial to the use of
assistive devices. Furthermore, there was no notable relationship linking the use of assistive devices and
living situations. Even though social influences were noticeable in the use of assistive devices, they were
insignificant. The existing negative attitude towards these devices pointed out to be through their first use,
and after a period, older people accepted and began to enjoy their assistive devices. It was also
concluded that the reasons for the abandonment of assistive devices were mainly design related, and
due to the device bulkiness, reliability, performance and difficulty of use.

The association between the use of mobility aid devices and the increased risk of sustaining a fall

are to this day not clear. The fall risk and limitation upon the use of canes develop from several factors
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including the inappropriate use and abandon of canes, usage of the device in hazardous environment

and disruption of balance as a result of attention between cane mobility and manipulation [94].

3.3 Canes in literature

3.3.1 Search strategy & Eligibility Criteria

A comprehensive search was accomplished in order to understand the following topics: i) what fall-
related strategies are implemented with canes; ii) how canes are instrumentalized; iii) how and what
algorithms are implemented; and iv) what researchers did to validate their system to be able to construct
an innovative cane capable of detecting and avoiding falls.

On October 9th, 2018, the search was completed in the IEEE Xplore Digital Library, Scopus and
Web of Science with the keywords (“Cane” OR "Walking Stick") AND ("Near Fall" OR "Fall Detection" OR
"Fall Prediction" OR "Fall Prevention" OR "Falling") and in total 325 articles were found. To decide which
ones were most relevant, articles were selected based on whether the system has implemented fall

detection/prediction mechanisms with built-in technology into the cane, in total 9 articles were selected.

3.3.2 Search Results

All the found studies implemented FD systems and only some FP strategies. Di et al. [100]-[103]
and Yan et al. [104] tried to avoid falls by using a cane robot with an omni-wheel base different from the
other instrumented canes. Di et al. developed several systems with embedded fall-related methodologies.
In 2011, designed an omni-wheeled cane robot with an FD and FP system. With a combination of two
LRF and six force sensors, a fall was detected through the computation of the COG of the subject which
was estimated due to the force applied in the cane and from the subject’s legs and body position. In order
to prevent a fall, an impedance control system was implemented in which the robotic cane moved in
order to equal the fall direction to the direction from the robot and the user. However, the experimental
protocol did not include falls, and its results were not disclosed [103]. Later, in 2013, another prototype
of an intelligent cane robot also comprising FD and FP was developed based on the Zero Moment Point
(ZMP) Stability Theory. Associating the collection of different data from an accelerometer, gyroscope,
magnetometer, LRF and pressure sensors, the ZMP is estimated. Since this feature equals the ground
point where the total moment produced due to inertia and gravity is null, when the ZMP surpasses the
support polygon, a fall is imminent. Moving the robotic cane in the direction of the eminent fall, ensuring
the ZMP remains inside the boundaries. Thus, a fall is prevented. In this work, the experimental protocol

and results are not revealed [101], [102]. For last, in 2016, the same research team realised a
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comparison between the employment of two different algorithms for FD based on a real-time calculation
of the individual's COP and its leg motion which obtained an accuracy of 75% and 91,2% respectively.
Regarding the FP mechanism, a similar impedance control system to the one previously described was
implemented. With the fall prevention results, it was concluded that the algorithm based on the relative
acceleration of each leg is faster by 30%, detecting a fall in less than 210 mms [100].

Yan et al. [104] developed a cane-type walking-aid robot in which his system was based on the
Human-Robot Coordination Stability which can describe the stability of the integrated human-robot system
during the user operating the cane robot. Although the results from their experiments were not uncovered,
they concluded that the system reached the expected effect for stability measure and provided a new way
for FD and fall prevention. The previous articles described a cane robot with an omni-wheel base, and for
the computation of the individuals, COP included wearable foot pressure sensors, which is not the
intended.

Excluding robotic systems with a wheeled base, generally, contact and triaxial inertial sensors are
the most common sensors embedded into canes. More specifically, accelerometers, gyroscopes,
magnetometers and FSR with a Sampling Frequency (FS) between 15 and 100 Hz. Its location can be in
one of three places, near the canes handle [95], [105], into the handle [95], [104], or in its base near
the tip [12], [98].

Concerning the implemented algorithms, it is possible to say that the strategies can be
considered as complete in terms of low-power consumption, considering that almost all developed system
implemented threshold-based algorithms of the acceleration data for classification [12], [98], [105]. After
the collection of enough acceleration data from different fall directions, thresholds are computed, and
when its values exceed a single value or several thresholds in a specific sequence over a time period, a
fall is detected. This method is prone to give PF outcomes to many exceptional scenarios. As a result,
algorithms used in fall-related systems tend to increase the number of devices with embedded machine
learning algorithms; nevertheless, its implementation in canes is yet to be completed. Therefore, Lan, M.
et al. [95], employed an algorithm based on subsequent matching which instead of focusing on
instantaneous values from suchlike acceleration threshold-based strategies, it emphasises the general
signal shape.

From the acceleration data acquired, features can be extracted from the signal in the time
domain. The Sum Vector magnitude is the most commonly computed feature [95], [98], [105] because

the fall direction and the posture of the subject are almost impossible to predict considering there is not
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a pattern observed in a single acceleration axis. When the acceleration data from all the different axis are
summed, a pattern describing the different stages of a fall is observed [105].

Regarding the experimental protocol and age/health status of the subjects, only half of the
systems disclosed it. All the systems were tested with healthy subjects [95], [100], [105] excluding
Lachtar, A. et al. [12], which is not ideal whereas the target population for fall-related systems is the
elderly community. The fall direction can be divided into forward, backward and sideward [12], [95], yet,
[105] only consider forward and backwards falls and [100], [104] only account for falls in the forward
direction. The number of trials for each case is divided between 10 [105] and 30 [12], [95]. According
to the experimental protocols, the success detection rate of the systems can achieve between 84%
(forward and backwards falls) [105] and 100% (forward falls) [12], [95].

As a result, information about sensors used on canes and their location were combined. In Figure
3.1, four cane’s locations, as well as three body locations (to assist the cane device) are pointed, and
associated numbers correspond to sensors used by found studies. The matching between numbers,
sensors and studies is found in Table 3.1.

All information regarding the systems mentioned above including their features, sensors,
algorithms and/or strategies, sensors’ attachment location, type of falls and ADL considered, subjects’
information, experimental protocols, performance/results and other important information are disclosed
in Table 3.2.

3,8,10,16

1,2,5

12,13,18

4,6,7,17,19,20
11,16

Figure 3.1: Four cane’s locations, as well as three body locations where sensors are
attached (numbers correspond to sensors — description available in Table 3.1).
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Table 3.1: Matching between numbers from Figure 3.1, sensors and found studies

Study Accelerometer Gyroscope Pressure LFR Force/Torque Magnetometer

Sensor Sensor
[95] 1 2 3,4
[105] 5
[98] 6
[104] 7 8
[100] 9 10,11
[101][102] 12 13,14 15 16,17 18
(12] 19 20
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Table 3.2: Features, sensors, algorithms and/or strategies, sensors’ attachment location, type of falls and ADL's considered, subjects’ information, experimental protocols,

performance/results used in different fall-related strategies related to canes.

Sample size .
Study, Type Sensor: pre. and Sensor Falls and ADL (n), Age, Experimental protocol Features Algorithm Accuracy
of work specification placement development
health status
1 Acc (Triaxial, Fs:
26 HZ) Near the handle Fall: FOI’WE:ll’d,
backward, side and n = 3 (healthy, Each type of fall )
Perpendicular to ( y P . 100% forward;
3 Gyr h oth h free-fall 2 men, 1 performed 30 fimes SVM (x and Subsequence 97,8 % Backward;
[95], FD (Uniaxial, Fs: 26 Hz) each other near the ADL: Slow walk, Fast woman, ADL’s performed 30 ) ) =0 o o '
! handle ) o . . . y-axis) matching 98,9% Side;
walk, sit & stand, stand  dissimilar body  times excepting standstill 0
il swing. | th builds) (30 d period) 100% Free-fall
2 Pressure Sensors Cane o and handle sti ,swmig, ay on the uilds second perio
(Fs: 26 Hz) P p
SVM (axis
98], FD LG The base of the NA NA NA parallel to Threshold NA
(Biaxial, Fs:15Hz) stick
the ground)
Fall: forward, backward Each mode (fall + cane)
1 Acc (Triaxial, Fs: ADL: Walking normal, . FSM with
Top of the cane was performed 10 times. SVM (x, y .
[105], FD 42 Hz, sens: +8g, trot, stroll n = 3 (young) : . ) several 84%
before the handle ) Walking: walk-in hard and z-axis)
res:0.1g) Cane: freely falling, ) thresholds
ground for 1 minute
thrown out
1 Acc (Triaxial, Fs:
100Hz) Fall: forward, backward,
sideways .
. Linear and 100% forward,;
[12], FD Base of cane ADL: S'O.W Wal.k’ fast n =1 (elderly) 30 trials for each type of gravitational ~ Multi-Threshold ~ 96,7% backwards;
o walk, swing, sit and fall and ADL acceleration 100% sidewavs
1 Mag (Triaxial, stand, lay on the lap, ’ y
Fs:100Hz)

free fall
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Sample size

Study, Type Sensor: pre. and Sensor Falls and ADL (n), Age, Experimental protocol Features Algorithm Accuracy
of work specification placement development
health status
1 force/torque handle
sensor
4 Flexiforce Load Each subject walked for coP Threshold 75%
[100]FD/FP Insole of feet Fall: forward .
Sensors Walk: normal/abnormal n =3 (male) 12 min forward, turn
’ right/left, stumbled 12x
_ Relative
1 laser rangefinder Robot base . Fuzzy Control
acceleration 91,2 %
System
of each leg
1 force/torque Handle
sensor
4 Flexiforce Load
Insole of feet
Sensors
101][102
[ FI]J[/FP] 1 laser rangefinder Robot base NA NA NA ZMP Threshold NA
9 axis sensor
(Accelerometer,
Back of heel
Gyroscope,
Magnetometer)
4 Force/Torque
sensor Under the handle Robot
[104], FD/FP Fall: forward NA NA Stability Threshold NA
Robots Body Users
2 LRFs towards/ backwards Stability
the user
Robots Base / _ . COG;
2 LRFs Robots body at hip ~ Walking: Stop, straight Distance
[103], FD/FP height forward, straight in NA Subjects lean to the right ~ between  Multithreshold NA
other directions, turn
6 Force/torque . user and
Handle right, turn left
sensor robot;
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3.4 Commercial Canes

Even though FP systems are relatively new regarding canes, FD systems have been employed for
a considerable amount of time as we can see from the bibliographical search above. After an extensive
search for commercial canes with fall-related embedded systems, it was possible to find two products in

which one is available for sale.

3.4.1 iStand SmartCane™

The iStand Smart Cane, Figure 3.2, is a device manufactured by WhatBox, Inc., that offers
families a trackable cane with Global Positioning System (GPS) and a FD system. The device has Bluetooth
capabilities which allow it to pair with the iStand cane mobile application, ending the communication gap
and allowing real-time visibility for family, friends and caregivers. All notifications are sent through
Facebook or text messages in the event of a lost Cane, low battery, or FD. Every cane has a flexible shaft
for joint comfort and a no-trip base that stands alone [106].

Optional features, which are only available for a monthly fee, include a 911 panic button, daily
activity collection such as the number of falls sustained and fingernail sticker with a QR Code that can be
scanned by any smartphone to help a person with Alzheimer’s to find the way home or call its caregiver

if he/she gets lost. The device is currently available only in the US for $99 [106].

)

|

g

Figure 3.2: iStand Smart Cane. Taken from [106]
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3.4.2 Dring Smartcane

The Dring Smartcane from French start-up Nov'in, Figure 3.3, appear for the first time in the
Consumer Electronics Show in 2017 towards people with decreased mobility. The cane has a built-in
GPS, Acc and Gyr to track the individual's movements, is also equipped with an alert system that connects
directly with the GSM network suppressing the need of a smartphone to be paired with. In case of a fall,
the cane can send back an alert to a selected caregiver which can respond with a confirmation that is
sent to the device, letting its user know that someone has been warned. With the purpose of every device
being able to adapt to a specific user, artificially intelligent algorithms were implemented to process the
data which helps understand a user's habits and movements to infer low activity, tiredness and other
changes in walking patterns that can be related to a deteriorating condition. The device also has long
battery life. The company estimates several weeks between two consecutive charges. The release date of

the device is yet to be disclosed [107].

Figure 3.3: Dring Smartcane. Taken from [107].

3.5 Patent Review

3.5.1 Search Strategy

On October 10th, 2018, an advanced patent search on international patents was performed on
Espacenet /http://spacenet.com), which allows free access to over 100 million international inventions
and technical developments. The search parameters for the smart search based on title and abstract

were (“Cane” OR "Walking Stick") AND ("Fall" OR "Near Fall" OR "Fall Detection" OR "Fall Prediction"
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OR "Fall Prevention" OR "Falling"). The selection of patents was based on available schemes, and
appropriate titles and abstracts.
On October 11th, the previous procedure was also performed this time on the United States Patent and

Trademark Office (http://patft.uspto.gov). The selected keywords the same as also the selection process.

3.5.2 Search Results

Regarding the search process accomplished, a total of 17 patents were selected in the end. On
Espacenet, 404 patents were found, and only 50 were selected based on its title. In turn, 6756 patents
were found on the United States Patent and trademark office, where 25 patents were selected similarly
as Espacenet. Ultimately, from the 75 patents selected, 17 were included based on abstract, description
and drawings.

Figure 3.4 illustrates a flow diagram of the entire study selection process. All articles were excluded
because they focused in several different areas, such as sugarcane cleaning, separator, harvester, purifier
and planter, bamboo canes, walking aids which do not fall, fall-related systems not related to canes,
improvements in canes, walking aid holders, skin treatments and methods related to the biomass

industry.
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Figure 3.4: Flow Diagram PRISMA.
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From the 17 chosen patents, it was selected the three that most closely relate to the concepts
developed, Table 3.4. This can be related to concepts developed on two strands: whether it has fall

detection/prediction mechanisms and whether or not it has only built-in technology into the cane.

Table 3.3: The three most similar patents with name, number and scheme to the FD and FP system developed

Anti-falling walking stick for an old Robotic cane Walking Support Device

::f': :ei:: person devices and Fall Prevention Method
[108] [109] [110]
uS
Patent JP20140103331
Number CN20141567378 20141023 2013OA01415O7 20140519
Scheme

All the three chosen patents present FP mechanisms. The patent regarding the anti-falling walking
stick comprises a walking stick shell, a supporting unit, a three-dimensional axial accelerated speed
monitor and a central analysing unit in which the accelerated speed of the stick is supervised by a balance
sensor, and the system can be unfolded automatically to keep it stable. When the subject walks unstably,
is about to fall or even its already falling, a supportive leg can pop up automatically. Therefore, the user,
can be successfully supported, and he/she is prevented from being wounded, or the injury degree is
decreased by the new triangular support of the walking stick. Since a person can sustain falls in different
directions, the central analysis unit analyses the received data, computes the characteristics of the
changes and determines the direction of the fall. Thus, whether the leg needs to be ejected, and if
necessary, selects the two branches closest to the fall direction to pop up [108].

The robotic cane device includes a grip handle equipped with force sensors, a cane body extending
from the grip handle, a motorised omnidirectional wheel, a balance control sensor and a controller
module. With the data acquired and computed, the omnidirectional wheel will attempt to retain the robotic
cane in a substantially upright position. As regards to the FP mechanism, if the grip force value surpasses

the grip force threshold such that the motorised omnidirectional wheel quickly provides a counterforce
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that is contrary from a user weight projection, a fall can be avoided [109]. Finally, the walking support
device and fall prevention also comprises an omni wheeled base with a fall prevention mechanism linked
to the computation of the subjects ZMP much like Di, P. et al., 2013, [101], [102]. An LRF attached to
the upper surface of the base of the system can detect the positions of both legs below the knees,
measuring its distance to each leg. If case the ZMP of the pedestrian surpasses the plane connecting
both its legs and the robotic system, it is determined that the user is in a pre-fall state. As a result, the
system moves to the direction opposite to the fall direction, returning the individuals ZMP to inside the

plane [110].

3.6 Discussion

After a thorough, careful and comprehensive search, it can be concluded that till this day, it has
not been developed a cane system that focuses on the temporal window that precedes a
fall and prevents/minimises it by predicting a fall.

Regarding commercial canes only one was available for sale concluding that the only systems
comparable to the envisioned only embed FD mechanisms. As far as patents go, from the three selected,
none can also be directly compared to the projected system. Only the robotic cane system with an omni-
wheeled base comprises fall prevention algorithms.

Several steps have already been taken in this direction, and one of the conclusions reached is that
wearable systems, despite their advantages, are still seen with some rejection by patients
regarding their use. Furthermore, these devices are reliant on the subject, not only remembering to
wear the device but also choosing to wear the device. Also, the installation of many sensors in the elderly
can affect the flexibility of their movement.

The main challenge in this area is to develop highly accurate devices that are as unobtrusive as
possible. As stated, the number of prescribed walking aids is increasing due to gait/balance disorders
and lower limbs weakness. Since they are relatively low cost, the cane is an ideal candidate for
universal healthcare and implementation of fall-related mechanisms incorporating FD and

FP methods.
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4, SYSTEM OVERVIEW

Up to the moment, it has been concluded that it has not been developed a cane system that
focuses on the temporal window that precedes a fall and prevents/minimises it by predicting a fall.
Further, limitations of the currently developed systems were raised, so it is mandatory to accomplish the
critical literature research and carry out all the essential requirements to be met. In this chapter is
presented the proposed solution. Thus, it is presented the importance of each used components and
their functions to explain all the systems that make up the global system developed: The Assistive Smart

Cane (ASCane).

4.1 Basic Architecture of Fall-related Systems

Fall-related systems follow three main phases of operation: sense, analysis and
communication/operation. The first phase is where suitable physical quantities are measured using
appropriate sensors including, for instance, accelerometers, gyroscopes, temperature sensors and
magnetic field sensors. According to Chapter 2, the tri-axial accelerometer is the most employed
sensor in fall-related projects [111].

Subsequently, the data and signals acquired need to be analysed. To accomplish it, relevant
features are computed, and decisions are made by classifying those extracted features. Most of the fall-
related systems use threshold-based algorithms due to its low computational cost and reduced battery
consumption. The application of machine learning algorithms has increased dramatically over
the few past years due to the increased computational power of the latest microcontrollers [7]. Aziz et
al. [111] compared the accuracy of FD algorithms, more specifically, threshold-based versus machine
learning. The fall and non-fall trials data were acquired from controlled laboratory conditions and after
evaluating five different machine learning techniques (Logistic Regression, Naive Bayes, Nearest
Neighbor, Decision Tree, Support Vector Machine) and five different threshold-based algorithms
(Kangas2Phase, Kangas3Phase, BourkeUFT, BourkeLFT, Bourke4Phase). It was concluded that
machine learning algorithms provided higher overall SPEC and SENS.

Whenever a fall-related system detects or predicts a fall, it communicates with the user, pre-
selected caregivers and another system to prevent the imminent fall. In many systems, the device expects
feedback from the user by verifying the preliminary decision and, consequently, improve the overall
sensitivity of the system. Furthermore, rather than alerting the user for the pending fall, other systems

can be activated (e.g. cane robot [100], [104]) to protect the user from harmful consequences of a fall,
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as disclosed in section 2.7. The underlying architecture of the proposed strategy for the current device is

depicted in Figure 4.1.
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Figure 4.1: Common basic architecture of fall-related systems, adapted from [111].

4.2 Global Architecture

The strategy imposed in this chapter follows the standard architecture of fall-related systems
unveiled in subsection 4.1. The implemented system is composed of six central systems: the Processing
Unit, the Inertial Acquisition System, the Data Storage System, the Haptic Feedback System, the cane tip
Force Acquisition System and the Lighting Acquisition System.

These primary systems and the respective components are displayed in Figure 4.2. The system
was power supplied by a portable computer through the micro USB connector with +5V. The inertial
measurements are collected through the IMU (MPU 9250), and the processing unit (STM32f303k8)
receives this information to process the acquired data and save it to the micro SD card. Also, the force
applied on the canes' tip is saved onto the SD card through the FSR. Depending on the readings from the
ultrasonic sensor (MB 1010), the processing unit delivers signals to the haptic drivers (DRV 2605) to
control the vibrotactile units and provide the vibrotactile feedback. The respective breadboard

implementation with the different subsystems delimited is depicted in Figure 4.3.
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Figure 4.2: The systems architecture overview, illustrating the central systems with the respective components and
interfaces between them: the processing unit (delimited at red); the Inertial Acquisition System (delimited at blue)
constituted by an MPU 9250; the data storage system (delimited at green) composed by a micro SD card and the
respective interface module; the Haptic feedback System (delimited at purple) with the haptic drivers, the
vibrotactile units (ERM motors) and the ultrasonic sensor; the power supply (delimited at brown), the Light and
Force Sensing System (delimited at yellow and pink, respectively), and the algorithms development tool (delimited
at marron).
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Figure 4.3: The ASCane System breadboard implementation.
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4.3 Hardware Overview

4.3.1 Processing Unit

The processing unit is an STM32 Nucleo-32 Development board, with an STM32F303K8 MCU.
This development board gives an affordable and flexible way for users to tackle new ideas and develop
prototypes with the STM32 microcontroller, picking from numerous combinations of performance, power
consumption and features. The microcontroller presents a maximum clock speed of 72 MHz, a wide
range of PWM outputs and analogue inputs, supports 12C and SPI communication and up to two ADC
0.20 (up to 21 channels) with a selectable resolution of 12/10/8/6 bits. The STM32 Nucleo-32 board
integrates the ST-LINK/V2 debugger, and it comes with the STM32 comprehensive software HAL library.
The board can operate on an external supply of 3.3V, 5V or from 7 up to 12V [112]. The mainboard

features are listed in Table 4.1.

Table 4.1: STM32f303k8 Characteristics [112]

Parameter Value
Microcontroller STM32F303K8
Architecture ARM
Voltage Supply (USB) 5V
Voltage Supply (External) 3.3V;5V; 7 - 12V
Memory flash 64 KB
Pins 32
Analog Pins 9
Clock Speed 48 MHz
SRAM 16 KB
ADC 2x12-bit with 9 channels
DAC 2x12-bit with 9 channels
Timers 11

The I12C pins provide communication with the IMU to process the acquired acceleration and
angular velocity. It also provides an interface with the Haptic drivers to control the vibrotactile motors, in
a PWM mode through the use of the PWM output pins. Also, the SPI pins enable the communication
between the SD Card Module Interface and the Arduino board. The board pinout, including the pins
legend, is depicted in Figure 4.4.
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Figure 4.4: Stm32f303k8 board pinout and pins legend [113].

The MCU was programmed in the Keil uVision5 Integrated Development Environment (IDE), with
the aid of the STM32CubeMX firmware. This firmware is part of STMicroelectronics STMCube original
initiative to make developers’ lives easier by reducing development effort, time and cost. By selecting and
configuring the MCU peripherals, it generates the code in C, using the HAL library, and create a Keil
project with the code generated [114]. The STM32CubeMX Pins used in this project and their
corresponding STM32f303k8 Pins, their function and to where they are connected is summarised in

Table 4.2 [113].

Table 4.2: STM32CubeMX Pins used and corresponding STM32f303k8 board Pins, their function and connection.

STM32CubeMX STM32f303k8 Pin Pin connection
Pins Pins Function
PAO A0 ADC1 entry 1 Button
PAl Al ADC1 entry 2 Ultrasound
PA2 A7 ADCI1 entry 3 FSR
PA3 A2 ADC1 entry 4 LDR
PA4 A3 GPIO Output Yellow LED
PA7 A6 PWM Timer IN (DRV2605)

17 Channel 1
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STM32CubeMX STM32f303k8 Pin Pin connection
Pins Pins Function
PAS D1 GPIO Output Red LED
PA10 DO GPIO Output EN (DRV2605)
PAl1l D10 GPIO Output D3 (SD Card Shield)
PB1 D6 GPIO Output Green LED
PB3 D13 SPI1 SCLK CLK (SD Card Shield)
PB4 D12 SPI1 MISO DO (SD Card Shield)
PB5 D11 SPI1 MQOSI CMD (SD Card Shield)
PBG D5 261 SCL SCL (DRV2605)

SCL (MPU 9250)

b7 D4 12C1 SDA SDA (DRV2605)

SDA (MPU 9250)

4.3.2 Data Storage System

To store the acquired gait data during the experimental tests, an SD card with enough memory

was used to store the data over a substantial period. Even though the microcontroller processing unit

includes 64kB in flash memory, this is an insufficient quantity of built-in storage for the current proposal.

Therefore, it was used an SD card, as an alternative.

For an Fs of 200Hz, considering a test duration of 60segunds, and at least 10 trials per subject,

it is needed an SD card with at least 10.2 Mb. There are two ways to interface with SD cards: Serial

Peripheral Interface (SPI) mode and Secure Digital Input Output (SDIO) mode. The SDIO mode is faster

but is more complex, and module used only supports SPI. Also, the SPI protocol can be interrupted while

the software code is running, and the SDIO cannot. Figure 4.5 depicts the used connections between the

processing unit and the micro SD card Module. Also, Table 4.3 sums the module main features [115].

Table 4.3: Micro SD Card Shield main characteristics [115]

Parameter Value
Voltage Supply 3.3V
Dimensions 3.5cmx2.2cm
Interface SPI and SDIO

50



%%ﬁﬁ?ﬁ!“ 2 ”Um] MicroSD Card
d Q. =

P
® 3|00 e
3

Figure 4.5: Implemented connections between the processing unit and the micro SD card Shield.
4.3.3 Haptic Feedback System

The ability to conduct activities like walking, sit-to-stand and stair negotiation determine the
independence of elderly patients. Incapacity in ADL became a frequent obstacle for elderly adults.
Accompanying the deterioration of functional capacity and skills, older people are limited in their ADL.
Their lives become more and more semi-dependent until they are entirely dependent. Typically, they
require to get someone’s help to bathe, going down and climbing up the stairs and even walking. Climbing
up and downstairs remains one of the five activities that older adults have difficulty at most [116][117].

Typically, assistive devices that incorporate haptic feedback in the form of mechanical vibrations
are designed to assist blind users so that they can be guided into some specific direction. Nevertheless,
a study accomplished by Boonsinsukh, R. et al. [118], documented that a light touch cue can be given
while walking by the use of a cane. This augmented sensory information contributes to increased lateral
stability while walking for subjects with stroke. By promoting the activations of weight-bearing muscles
towards the paretic leg throughout the stance phase, greater balance is achieved when the paretic leg
supports the body weight, which also increases the muscle activation.

Afzal et al. [119], developed a cane concept in which haptic feedback on the canes handle was
used for stability in walking. The research team concluded that the system provided rehabilitation during
walking, and posture stability with a haptic handle.

Miié Studio developed a cane which improves mobility for people who have Parkinson’s disease.
Amongst the main manifestations of Parkinson’s disease is FOG. During FOG episodes, the patient’s
brain senses an incapacity to move, even though their bodies might still be able to respond to commands.

FOG episodes can boost the risk of falls and generally occur in narrow spaces and stressful situations.
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The Albert cane, Figure 4.6, employs haptic feedback through built-in vibrational motors,
stabilising the rhythm of the user’s walk [120]. Recent studies discovered that not only rhythmic
stimulation, whether vibratory, visual, or auditory but also vibratory and auditory alerts can assist patients
in avoiding so episodes [121].

} S

Figure 4.6: Albert Cane, designed by Miid Studio, taken from [120].

The human tactile sensory system is mediated via the cutaneous mechanoreceptors. They relate
to our touch sensitivity, vibration, sense of position and pressure. The mechanoreceptors usually are
susceptible to the deformation or stretching and are in numerous parts of the body, such as the skin,
muscles and tendons. When stimulated, the sensory system transmits encoded information (e.g. location,
intensity and duration) in subgroups of receptors, axons and neurons which stimulate the primary and
secondary somatosensory cerebral cortex. Consequently, the receptors and their connection to the central
pathways and target areas within the cerebral cortex establish the human vibratory sensory system [122]-
[124]. Usually, the receptors react to a form of energy, whether it is mechanical, chemical, thermal or
even electromagnetic. Hence, each receptor, according to its distinct modality, serves as a transducer
which converts the sensed data into action potentials. In this, skin receptors intervene in tactile sensitivity
[122]-[124].

Generally, the skin vibration detection ranges between 80 and 300Hz. Additionally, It is essential
to remark that the amplitude of the vibratory mechanical wave does not relate to its frequency, and the
perceived magnitude ranges between 17 and 30 dB [122]. Since a continuous decrease of the “firing”
frequency of the nerve impulse occurs until it reaches the cerebral cortex, the frequency discrimination

of the human body ranges from 80 to 250 Hz [122]-[124]. Therefore, it is crucial to understand that
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the capacity of the mechanical receptors and the capacity of the sensorial information of the cerebral
cortex, relative to the somatosensory system, are different.

In conclusion, even though the skin can achieve a vibration detection between 80-300 Hz, the
cerebral cortex only distinguishes frequencies between 80 and 250 Hz, as is described in Figure 4.7
[122].

Legend
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Frequency of the Haptic Feedback System

Discrimiation of the cerebral cortex

| I | | | | | |
LA | | ! | | | > 1

80
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Figure 4.7: Representation of the frequency discrimination in the human body.

The human glabrous skin (skin with no hair) and the skin with hairs present notable differences
regarding their vibratory detection. In hairy skin, the vibratory threshold is higher when compared with
glabrous skin, which is attributable to the fact that each skin type presents different receptors and afferent
fibres [122]-[124]. In Table 4.4, it is presented the body sites with the highest sensitivity, respecting the
sensitivity regarding the spatial location, the vibration and the pressure and the discrimination between

two points, in descending order [123].

Table 4.4: Body sites listed in order of most sensitive to least sensitive for tactile sensitivity measures [123]

Tactile Sensitivity Body Site
Measures (listed in order of most sensitive to least sensitive)
Pressure Sensitivity Forehead (face), trunk, fingers, lower extremities
Two-Point

Discrimination Fingers, forehead/face region, feet, arms, lower trunk

Face region, fingers, hallux, palms, abdomen, arms, lower legs, upper

Point Localization chest, thigh

Vibration Sensitivity Hands, soles of feet, larynx region, abdomen, head region, gluteus region

The lower frequencies depend on the sensory fibres associated with the hair follicles in the hairy
skin (5-80 Hz). Contrarily, the higher frequencies (60-400 Hz) rely strongly on mechanoreceptors which

are present in the glabrous skin. These specific mechanoreceptors, the Pacinian corpuscles, are the most
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abundant mechanoreceptors that exist. They are presented in 20 to 70 layers. Therefore, human
vibratory perception depends principally on Pacini corpuscles [122].

As reported, the hairless areas of the skin are more sensitive to vibrations, which can be verified
by Table 4.4. The hands and the soles of the feet are the areas with higher vibration
sensitivity [123]. Another critical factor is the patient's adaptation to the feedback. Adaptation happens
if a stimulus is given for an extended amount of time. It is described by a decrease in the perception of
the intensity of the signal and can occur for any stimulus. It can be avoided if stimuli are manifested for
smaller periods. The adaptation stimulus can increase the threshold for the following stimulus [122].

Ultrasonic sensors are fit for close-range obstacle detection up to ten meters and provide multiple
range measurements per second. The benefit of these sensors is its inexpensiveness, low power
consumption and can continue operating in environmental situations whereas other sensors would fail,
such as a smoked filled environment.

To detect obstacles, the LV-MaxSonar®-EZ3™ (MaxBotix® Inc.) ultrasonic sensor was preferred
due to its small dimensions, low power requirements (2.5 - 5.5 V), and detection angle, Figure 4.8. The
detection capability of this ultrasonic sensor ranges from 0.15 to 6.45 meters, and the sensor operates
at 42 kHz [125]. The sensor has two modes of operation. It can output an analogue voltage with a scaling
factor of (Vec/512) per inch. Also, the output is buffered, which corresponds to the most recent range of
data. The sensor can also output a pulse-width representation of the detected range. The distance can
be calculated using the scale factor of 147uS per inch. The mode of operation chosen was the one which

utilises the output analogue voltage [125].

Figure 4.8: LV-MaxSonar®-EZ™ Series High-Performance Sonar Range Finder MB1010, taken from [125].
The Haptic Feedback system is constituted by the Haptic Drivers and the corresponding
vibrotactile motors. The vibrotactile units used are the Precision Microdrivers 10 mm Vibration Motor
Model Number310-103.005, a type of Eccentric Rotating Mass ERM motors, Figure 4.9 a). Due to their
small size and enclosed vibration mechanism, vibrating coin motors are a popular choice for many

different applications. The whole constitution of an ERM motor is portrayed in Figure 4.9 b) [126].
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Figure 4.9: a) Precision Microdrivers 10mm Vibration Motor Model Number 310-103 b) the constitution of the
ERM motor. Taken from [126].

Concerning the haptic drivers, it was used the Texas Instruments DRV2605L Haptic Motor
Driver, which is able of handling two distinct kinds of motors, ERM and Linear Resonance Actuator (LRA).
The Haptic Motor Driver breakout board features six pins, as depicted in Figure 4.10. The supply pin
(VDD), being recommend a voltage range between 2 and 5.2 V; the two 12C-compatible bus pins (SCL
and SDA), the ground pin (GND); the multi-mode input 12C selectable pin (IN/TRIG); and the device
enable pin (EN). The haptic drivers were used in PWM interface mode and operated with EN control. They
accept a PWM signal at the IN/TRIG pin. The DRV2605 drives the actuator in this mode until the user
sets the device to standby mode or to enter another interface mode. In this mode, a constant voltage
from the PWM will induce the motor at a steady vibration speed, and, therefore, at a regular frequency
and vibration amplitude until the supply is turned off. The EN pin of the DRV2605 device gates the active
operation. When the EN pin is logic high, the driver is active. When the EN pin is logic low, the drivers

enter the shutdown state, which is the lowest power state of the device [127].

Figure 4.10: DRV2605 Haptic Driver for ERM and LRA from Texas Instruments, taken from [127].

A considerable range of DC voltages can drive these motors. Nevertheless, it exists a “start
voltage” which matches the lowest voltage that needs to be applied to ensure the rotation of the motor.
As the applied voltage is increased, also the vibration frequency increases in an almost-proportionally

way, as depicted in Figure 4.10 [127]. Figure 4.11 also shows the relation between the voltage applied
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vs amplitude, current and efficiency of the ERM motor. The used connections between the processing
unit and the Haptic feedback system are presented in Figure 4.12.
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Figure 4.11: Relation between the voltage applied vs frequency, amplitude, current and efficiency of vibration for
the Model No. 310-103.005 10mm Vibration Motor - 3mm Type from Precision Microdrivers, taken from [127].

Figure 4.12: Implemented connections between the processing unit and the haptic drives with the respective

vibrotactile motors and ultrasonic sensor.

4.3.4 Inertial measurement unit System

The MPU-9250, although only a single chip, internally consists of: an accelerometer and a 3-axis
gyroscope - InvenSense MPU-6500, a 3 - axis magnetometer AK8963 from Asahi Kasei Microdevices

Corporation and a processing unit called the Digital Motion Processor (DMP). Figure 4.13 displays the
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diagram of the MPU-9250 with the main components and mode of communication with the
microcontrollers. A communication interface can be established between the main microcontroller and

the sensors via 400KHz Fast I2C or 1MHz SPI. The communication protocol chosen was 12C [128].

MPU-9250

Gyro Accel
Compass

Application

Processor

I*C / SPI

Figure 4.13: Diagram of the MPU-9250 with the main components and its modes of communication

Regarding the sensors reviewed in chapter 2 regarding fall-related systems, accelerometers, and
gyroscopes are widely embedded into these systems. So, it is proposed to use those sensors in order to
collect the data, which will serve as the primary source of signals used in the ASCane. The IMU will be
mounted on the top of the cane since Chen et al. [105] studied acceleration readings in different places
of a cane and concluded that the amplitudes of the acquired data in the “upper” location of the
device were higher than the other locations. Since the higher the amplitude of the variation,
discriminative characteristics of the signal are more easily observed, placing the sensing units in the
upper part of the cane is more desirable. The embedded system also must be able to collect
continuous readings from the sensors at a rate which meets the minimum requirements for FD systems.

Bouten et al. [129], conducted a study in which a tri-axial accelerometer was described to conduct
daily physical activity. It was concluded that a range of +6g would suffice. For this reason, the closest
possible sensitivity was chosen, +8g. Regarding the gyroscope, studies regarding its range for human
motion purposes were not found for canes. As a result, their operation range will be set according to
studies conducted on FD [130]. Consequently, a sensitivity of £2000:/s was chosen. Figure 4.14 depicts
the used connections between the processing unit and the MPU 9250.

Inertial sensors present measurements influenced by drifts and offsets. The characteristics of these
changes are described in the datasheets given by the manufacturers. To correct the measurements, a
calibration process is required.

The IMU is placed on a surface as horizontal as possible on its different faces as described in
Figure 4.15 a). These positions correspond to the alignment of the three accelerometer axis with the
gravity. At every position, the gravity value is stored for 6 seconds, considering only the sensitive axis
parallel to the gravitational force [131]. This calibration was accomplished every two weeks for 6 weeks,

and the calibration values did not change significantly.
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Figure 4.14: Implemented connections between the processing unit and the IMU.

Regarding the gyroscope calibration, its offsets were measured every time the cane starts. A total
of 500 samples are saved, and the mean values of each axis are subtracted to values of the readings
during the experimental trials. The position of the gyroscope calibration depicted in Figure 4.15 b), which

is the IMU orientation inside the ASCane.
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Figure 4.15: a) The six different positions for the extraction of Maximum and Minimum values of the
accelerometer b) IMU orientation inside the ASCane.

4.3.5 Force Sensitive Resistor Interface

To obtain a voltage drop from the FSR sensor, a hardware interface is required to connect it with
the MCU. For a force-to-voltage conversion, the FSR is connected to a measuring resistor in a voltage

divider configuration, Figure 4.16, and the following equation (Equation 4.1) describes the output:

Ry X VCC

V, = —
o0UT = R Rren (4.1)
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The output voltage increases with increasing force. If the resistors are swapped, the output voltage
will decrease with increasing force. The measuring resistor, RM (Figure 4.16) , is chosen to maximise

the desired force sensitivity range.

Vin ——

—0
RM § Vout
O

Figure 4.16: Voltage Divide Eletronic circuit

The FSR chosen for the project was the FSR-402 from Interlink Electronics which have a circular
sensing area with a diameter 12.7 mm, Figure 4.17. The FSR chosen for the project was the FSR-402
from Interlink Electronics which have a circular sensing area with a diameter 12.7mm and thickness
around 0.46mm. In this design, one FSR-402 will be used beneath the canes' tip. The readings from the

FSR can identify when the cane is in contact with the ground [132].

Figure 4.17: Interlink Electronics FSRTM 402 Force Sensing Resistor, taken from [132].
4.3.6 Light Sensing Mechanism

The designed circuit is based on an Light Dependent Resistor (LDR), that is, a resistance that
varies its resistance by the amount of light that reaches it. An LDR has a semiconductor material inside
it, which allows electrons to pass through when struck by light photons. Thereby, when the light strikes
bend the LDR, it will enable the passage of electric current. The circuit shown in the following figure allows
the construction of a simple adjustable dimmer detector. This circuit has a straightforward operation. The

potentiometer together with the resistor R1 and the LDR form a voltage divider which, by the brightness
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reaching the LDR, puts a variable voltage on resistor R2, which has the function of limiting the base
current of transistor NPN BC547. The potentiometer allows to adjust and set the output voltage of the
voltage divider that will be applied to the transistor base through R2.

When the voltage reaching the base of the transistor reaches the value necessary for it to conduct
conduction, current begins to flow from the collector to the emitter, as well as from the LED and resistor

R3, and it begins to emit light. The described and implemented circuit is depicted in Figure 4.18.

3.3V
D
Red (633nm)

R1 :
1kQ
LE
10kQ
R2
1kQ
MM BC 547

R3
@ LDR

330Q
Figure 4.18: Light Sensing Circuit implemented and designed for the ASCane.
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4.4 Software Methodology Overview

The main goals of this thesis are the development of strategies to distinguish not only normal gait
from a fall and pre-fall situations but also to detect cane events with information acquired in a system
embedded into a regular cane. Described in Figure 4.19, the sensor's raw data were collected from trials,
and these data were normalized through a calibration process. Subsequently, for each trial acquired, all
the features found in the literature were computed, as listed in Table XXIV, Appendix 3. Finally, depending
on the what type of detection is desired, different methodologies were accomplished. All the process,
starting from the experimental protocol to the results attained, are described in Chapters 5, 6 and 7 for

FD, cane event detection, and PFS detection, respectively.
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Figure 4.19: Main General block diagram for the methodology implemented.

5. ASCANE FALL DETECTION SYSTEM

The main goal of this chapter is to achieve a system capable of detecting a fall using inertial sensors
embedded into the ASCane. It is hypothesised that the system will only detect falls from an ordinary cane,
which corresponds to a fall from its user. A FD system will be implemented and tested by using data from
an IMU attached to a cane. This chapter will be divided into four major parts: i) Detailed research of the
existing FD methods in the literature; ii) Data collection through trials with healthy young subjects; iii)
Implementation of several offline FD methods and some improvements to these methods; iv) Selection
of the best FD method based on the collected data.

Wearable FD systems regularly employ accelerometers. However, other sensors are used such as
gyroscopes, magnetometers and barometers, have also been explored in the literature. In FD systems,
sensor measurements are fed to an algorithm that identifies fall events. FD algorithms aim to
detect accurately falls and not to generate false alarms during ADL. The algorithms suggested in the
literature can principally be classified into two categories: threshold-based and machine learning
algorithms. Nevertheless, the threshold-based algorithms can implement fixed or dynamic

thresholds [133].

5.1 Threshold-based Algorithms

In threshold-based algorithms, features are computed from sensorial data and are constantly
compared with pre-defined thresholds [51], [52], [134], [135]. A multi-stage threshold system employs
at least two different thresholds, and all need to be surpassed in an appropriate order over a specific

period.
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Bourke et al. [134], studied signals from accelerometers placed at the trunk and thigh, to discover
if their peak values could be utilised to distinguish between ADL and falls. The team developed a threshold-
based algorithm through the computation of the acceleration SVM. The algorithm is based upon two
different thresholds. If the Upper Fall Threshold (UFT) or the Lower Fall Threshold (LFT) is surpassed, a
fall is detected. The complete algorithm developed is depicted in Figure 5.1.

Regarding the UFT, for all the trunk and thigh signals, it was established at the smallest magnitude
upper fall peak value registered for both locations separately. The UFT is connected to the impact force
endured by the body when it impacts with the ground. Concerning LFT, they were set at the level of the
smallest magnitude lower fall peak recorded. The LFT is linked to the approximation of acceleration with
zero before the contact of the body with the ground.

Thus, four thresholds were determined, as presented in Table 5.1, and transcending any individual
limit would register that a fall had happened. Since these thresholds would also be applied to ADL, they
were tested against recorded ADL to conclude regarding the extent of misdetection of ADL as falls.

The UFT for each location provided greater SPEC than the LFT value. The UFT from the thighs
provided a SPEC of 83.3%, as the LFT presented a SPEC of only 67.08%. For the trunk, the LFT achieved
a SPEC of 91.25%, concerning the UFT, all ADL tasks were correctly detected as non-falls, obtaining a
SPEC of 100%.

Acceleration Sample
(Ax A A7)

|

28d grder Low-Pass
Butterworth Filter
f, =250Hz

I
SVM = \/|AI|‘2 +14,) + | A,

2

SVM = Upper
threshold

Fall Not a Fall

Figure 5.1: Flowchart of the threshold-based FD algorithm using accelerometric data by Bourke et al. [134].

FD upon impact is proven to be possible utilising data solely from a triaxial accelerometer located

on the trunk. Nevertheless, if the 3-D accelerometer sensor fails for any reason, the fall cannot be
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detected. Consequently, Bourke et al. [52], also developed a threshold-based algorithm which can
automatically discriminate between falls and ADL, utilising a bi-axial gyroscope. After acquiring gyroscopic
data from the sagittal and coronal planes (wr, wp) from both simulated falls (on healthy subjects) and
ADLs (from elderly in their own home), it was concluded that the resultant angular velocity peak values
for the recorded falls and ADL overlapped. Consequently, by setting a single-threshold, ADL can be
misclassified as falls.

In the end, three different thresholds were set. The first threshold (wres) was established at the
lowest recorded resultant angular velocity fall peak value, wich will guarantee that 100% of falls are
accurately identified. To differentiate some ADLs that could be detected as fall, the resultant angular
acceleration (ares) and the resultant change in trunk angle (Bres) were also computed. The resultant
angular acceleration indicated the unforeseen change in the trunks rotation and was set at the lowest
recorded ares in falls. The final threshold, the Bres shows what angle the trunk had swept through in the
time just before impact and was also set the lowest recorded Ores in falls. The complete algorithm

developed is depicted in Figure 5.2, and the corresponding thresholds are shown in Table 5.1.
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Figure 5.2: Flowchart of the threshold based FD algorithm using gyroscopic data developed by Bourke et al. [52].
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A single threshold for wres rightly classified 97.5% of ADL as non-falls, which corresponds to a
SPEC of 97.5%. By combining the threshold for wres and ares, a SPEC of 99.2% was achieved. Finally,
by merging all three thresholds, 100% SPEC was obtained.

The algorithm introduced by Kangas et al.[51], is a multi-threshold algorithm based on the analysis
of 4 acceleration parameters from the wrist, head or waist, Figure 5.3. The parameters used were the
SVTOT (which contains both the dynamic and static acceleration), SVD (which includes only the dynamic
acceleration), Vertical Acceleration (Z2), the differences between the maximum and minimum
acceleration (SVmaxmin) and the final posture, which is detected 2 seconds after the impact. The authors
attained a FD SENS of 97% and SPEC of 100% from the waist. All the thresholds were adjusted until a
maximum a maximum SPEC was reached. All the thresholds set for the different parameters and

locations are summarized in Table 5.1.
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Figure 5.3: Flowchart of the threshold-based FD algorithm with in accelerometric data by Kangas et al. [51].
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Table 5.1: Threshold values for the different fixed threshold FD algorithms

Type of
Study Parameter Location Value
Threshold
3.52 UFT
Trunk
Bourke et al. 0.41 LFT
SVM(g)
[134] 2.74 UFT
Thigh
0.60 LFT
wres (rads/s) 3.1
Bourke et al. S
ares (rads/s2) Trunk 0.05
[52] -
Ores (rad) 0.59
Waist 2.0
SVMTOT (g) Head 2.0
Wrist 5.2
Waist 1.7
SVD (g) Head 1.2 UFT
Kangas et al. Wrist 5.1
[51] Waist 1.5
72 (g) Head 1.8
Wrist 3.9
Waist 2.0
SVMaxMin (g) Head 1.7
Wrist 6.5

5.2 Dynamic Threshold Algorithm

Nyan et al. [136], revealed that falls could be identified with an average most extended lead-time
of 700 msec under pre-impact FD, with 100 % SPEC (no false alarms) and 95.2% SENS (falls do occur
but fails to detect them in 4.8% of trials).

Furthermore, the researcher observed that the application of a dynamic threshold might decrease
the false alarm rate. If the fixed threshold is estimated too low, the likelihood of the number of falls
happening that are correctly detected will increase. Meanwhile, the PF rate, ADL which are classified as

falls, will be increased simultaneously. Contrarily, if a fixed threshold-based method is established too
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high, not only the false-positive but also the true-positive rate will decrease. Thus, fixed threshold-based
algorithms can be insufficient to achieve the primary goal of fall-related systems due to inter and intra-
variability of subjects, and limited sample [51], [52], [134]. These methods should be adaptive and
account for variability.

Otanasap et al. [135], developed a dynamic threshold algorithm through accelerometry data,
Figure 5.4. A Fixed Threshold (FT) is computed based on the data acquired from the subject while
performing ADL, ADLacc. Secondly, the Dynamic Threshold (DT) is formulated by the FT added by a
standard deviation calculated with the data gathered in the last second. The algorithm outputs a
percentage which discriminates the possibility of a fall, reaching results of 97.4%, 99.5% and 95.3% for
ACC, SENS and SPEC, respectively.
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Figure 5.4: Flowchart of the dynamic threshold model for FD using accelerometric data by Otanasap et al. [135].
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5.3 Machine Learning Algorithms

In supervised learning, the classifier can learn on a labelled dataset. Therefore, it can construct a
model that can predict the correct output about data it has never seen. Each input has the outcome that
the algorithm should be able to predict which is used to evaluate its accuracy on training data [137].
There are two main fields where this kind of learning is helpful, which is in classification and regression
problems. The first one concerns the type of problem where the output is discrete values which represents
a specified category, in the simplest case conceivable, selecting between positive and negative.
Regression problems intend to model the underlying behaviour of the data given to the classifier expecting
it to provide an output based on past training stages, such as the price of a stock in 6 months [138]. In
this type of learning, the output will always be the same for specific input.

The field of unsupervised training is more complex, contrarily to supervised learning, the classifier
has to learn to perform specified tasks without telling it how to execute them, that is to say, that only the
predictor variables are given, therefore the training time is much longer [137], [138]. The output produced
by the system may vary each run for the same input variable.

Regarding reinforcement learning, the classifier outputs are actions, and the only guiding signals
are scalar rewards, these ways, the systems learn based on interactions with the surrounding
environment. Occasionally restrictions as a set of rules are imposed on the systems that influence its
behaviour directly [138]. Since the output depends on the interactions made, it can change if the
environment changes even if the input remains the same.

To detect falls, systems normally respect a defined general model composed by different modules.
The data collection module is responsible for collect all the information concerning the SOI's gait. Since
a dataset can have thousands of features, feature extraction is essential to minimise problems that could
originate in future steps. Before the classifiers learn the features and can establish relationships between

the dataset introduced, it must be divided into training and test dataset.

5.3.1 Data collection

The first step when collecting data is identifying the variables needed to accomplish the final
result. In this case, considering fall-related systems, the collected data is the acceleration, angular
velocity, speed and force measurement from different body parts. The data must be collected following a

formal procedure to guarantee it is accuracy and validity [5].
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5.3.2 Dimensionality reduction & Feature selection

The size of the data currently available is massive and constantly increasing due to technological
advances and cheap sensor manufacturing. Hence, researchers can calculate as many features possible
from the data collected. Yet, this poses a challenge to the majority of machine learning algorithms due to
a large amount of storage and computational power required [139]. Considering that raw data obtained
from the sensor have insignificant information, feature reduction aims to diminish the problems
aforementioned with choosing a small subset of relevant features removing irrelevant, redundant and
noisy features, even though their existence does not affect the learning performance [5][139]. Irrelevant
features are the ones that cannot support the classifier to differentiate between different classes, not
make it able to predict an outcome [139].

Selecting the most relevant and not redundant information helps to generalise the model, being
able to adapt appropriately to new, previously unseen data, obtained from the same distribution as the
one used to create the model. Faster and cost-friendly are more advantages of feature selection [140].
Through feature selection, the meaningless information is removed, which translate in the advantages

above described [5].

5.3.3 Feature Computation

Feature computation is essential in the way that is a substantial influence in the following stages
in which mathematical procedures and algorithms are applied to the information to recognise linear and
non-linear combinations among the remaining features. Some of the procedures usually used are
standardisation, Principal Component Analysis (PCA), signal enhancement and normalisation. Choosing
the features that effectively will be used to construct the model is extremely important, which is why a

meticulous study of the problem should be executed [5].

5.3.4 Learning Classifiers

Regarding FD and prevention systems, supervised learning is widely employed, about the
remaining subfields, hardly any information can be found about their use in this type of applications [5].
Some of the most used supervised algorithms are: support vector machines, Decision Trees and K-
Nearest Neighbours (KNN). Support vector machines are a class of supervised classifiers that attempts
to find the hyperplane/line in n-dimensional space that's able to separate different classes. In Support
vector machines, the input data is transformed into a higher-dimensional space through non-linear

mapping in which they are linearly separable wherein the initial space they are not. The training points

68



closest to the maximum decision margin are called support vectors, the higher the number of support
vectors used, the change of overfitting is more significant since the classifiers are more tailored to the
training data. When new data is presented to the algorithm, the data will be classified reliably on the
section that it falls [5], [139], [140].

In DT, the goal is to generate a model that predicts the value of a target variable based on
numerous input variables. A decision tree is constituted by a condition/internal node, based on which
the tree splits into branches. The end of the branch that doesn’t split any longer is the decision/leaf.
For its construction, an attribute/node must be selected to place at the root and make one branch for its
every possible value, which separates the example into subsets. This process continues iteratively in every
branch until every instance of it have the same classification which should happen as fastest as possible
since we seek small tree sizes. The decision of which attribute to split is made based on its measure of
purity, measured in bits. The level of purity is the number of instances in the node that has the same
class. To classify an unknown instance, its directed through the tree accordingly to the values of its
attributes in the nodes, when a leaf is reached, the instance is classified accordingly to the class that the
leaf is assigned to [141].

In instance-based learning (KNN), each new instance is compared with all the classified dataset
available and the instance closest by means of distance metrics is used to classify it which is the difference
between the KNN algorithm and others. Different methods require training phases in order to be able to
operate. Computing the distance between two instances is easy when assuming that all samples of the
dataset have the same importance, which in most of the cases that is not true, and deciding which
features are most important varies from the application. This problem is reflected in the distance metric
by applying some attribute weighting which till this day is a significant problem instance-based learning
even though is usually more robust than regular KNN. Since, for every instance that need to be classified,
every sample of the dataset must be checked, not only the time but complexity of the algorithms increases

proportionally to the dataset size [141].

5.3.5 Machine Learning approaches in Fall Detection

Xu et al. com [7], completed a survey regarding the new advances and challenges of FD systems
where compared FD algorithms on the most cited works. As sensors development progresses, FD
algorithms adjust with it. When comparing FD algorithms used in the most cited work before and after
2014, it was observed a trend by comparing the algorithms employed in the most cited work before and

after 2014.
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Concerning FD algorithms adopted before 2014, the accelerometer was a mainstream sensor
employed by the FD system in early days. Considering the accelerometer can just record velocity and
acceleration of a single part of the human body, thresholds-based methods became the chosen method.
For FD algorithms adopted after 2014, machine learning-based FD algorithms became the preferred
method. Considering that with the development of new types of sensors, they can discern further detail
of human activities, the threshold-based algorithm became more inadequate to accomplish this goal.
From the aspect of the specific type of algorithm, the support vector machine and the DT are the most
employed algorithms with relatively high accuracies above 90%, ranging between 79.6% and 100% [7].

Chen et al.[64] developed an accelerometer-based FD algorithm using support vector machines
for classifying the features (ADLs and falls). The model accuracy was the averaged after ten-fold CV. The
average system accuracy was 94.58%. The sensitivity and specificity were 95.76% and 93.28%,
respectively. Putra et al. [65] proposed an event-triggered machine learning strategy to classify ADLs and
falls with accelerometery data. The proposed method aligns all fall stages so that the unique features
each fall stage are more efficiently identified. Some of the used classifiers were the KNN and support
vector machines. It was achieved an F-score of 98%. Liu et al. [66] applied support vector machines to
accelerometery features in order to identify ADL and fall situations. The results revealed that the computed
features had the highest accuracy with 99.1% and 98.4% in the training and testing, respectively. Finally,
Shibuya et al. [142] used both acceleration and angular velocity to also classify balls and ADLs. Six
features were extracted for fall classification using a support vector machines, achieving 98.8% and 98.7%

fall classification accuracies of the data at the T4 and belt locations, sequentially.

5.4 Methods and Materials

5.4.1 Experimental Protocol

The system used to acquire the data was part of the one described in Chapter 4. For this
experimental protocol, only the data from the MPU 9250 was necessary. A set of activities (Table 5.2 and
Figure 5.5) was executed by eleven volunteers which ranged from 22 to 29 years (24.20 +2.60 years),
with a body mass between 52 and 80 kg (70.80 + 8.23 Kg) and a height of 1.51 to 1.83 m (1.73 +
0.09m). All participants provided their written consent. Each activity was performed three times. A total
of 132 simulated falls were recorder with 66 combining the subject and cane (Table 5.2- Activities 6 and
7) and 66 only with the cane (Table 5.2 — Activities 4 and 5). Also, 99 ADL were registered (Table 5.2 -
Activities 1, 2 and 3).
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Figure 5.5: Activities performed for data acquisition: a) Activity 1; b) Activities 2 and 3; c) Activity 4; d)Activity 5;
e)Activity 6; f)Activity 7.
Table 5.2: Activities simulated with the ASCane Prototype

Activity No. Description

1 Walking at Normal Speed and 180° rotation (Subject + Cane)

Walk forward and turn right (Subject + Cane)

Walk forward and turn left (Subject + Cane)

Thrown out (Cane)

Falling Forward (Subject + Cane)

2
3
4 Free Falling (Cane)
5
6
7

Falling Sideways (Subject + Cane)

5.4.2 Strategy

The implemented strategy to uncover which FD algorithm is best suited to detect falls of a cane
can be subdivided into four segments, as depicted in Figure 5.6. Three types of threshold-based
algorithms found in the literature were implemented and tested. Namely, three fixed (Original Fixed
Threshold Algorithms - Figure 5.6) one dynamic (Dynamic Threshold Algorithm - Figure 5.6) threshold
algorithms found in the literature, as well as two improvements on the same algorithms (Modified Fixed
Threshold Algorithms - Figure 5.6). Finally, a machine learning approach was also accomplished. Trough
the conducted search, the computed features from the selected articles were extracted and are presented
in Table 5.3 [64]-[66], [142]. Data were then divided into two different classes: Fall and ADL samples.
Afterwards, 70% of each data were used to train the classifier and 30% to test it. The complete
methodology for the development and testing of FD algorithms is depicted in Figure 5.6. All the algorithms
were implemented offline using the Matlab 2018b version.
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Different tests were accomplished by varying the kernel type and proportion of class samples in
the support vector machine classifier. However, the best set of parameters was determined by enabling
the "OptimizeHyperparameters'" option in MATLAB. Features regarding ADL and falls were labelled using
the parameter CVFast to mark the falling range [66]. The maximum CVFast of each fall trial was calculated

and multiplied by 0.87. The samples higher than 0.87CVFast were considered a fall and labelled as 1.

Table 5.3: Summary of the features that may correlate with falls-risk in the selected FD algorithms [64]-[66], [142]

Study Feature Name

Range of angular velocity for each individual axis

Shibuya et al. [142]
Range of acceleration for each individual axis

SVM
Liu et al.[66] Fast Changed Vector
Vertical Acceleration
SVM
Rotation angle

Chen et al. [64] Slope

The acceleration in the xy — plane
SVM
Maximum Sum Vector Magnitude
Minimum Sum Vector Magnitude
Putra et al. [65] Average Sum Vector Magnitude
Root mean square of the acceleration vector magnitude

Acceleration exponential moving average

Signal magnitude area

Training Set Machine
Learning
Data Labelling Model Building
Trained Evaluation
Model Performance
Module
Test Set

| PPN Data Feature
/A ANV iy Processing Computation

L~ Modified Threshold-based
Sensor 's Raw Data — Threshold ™ Algorithms
Algorithms
Dynamic ! Evaluation
" Threshold ! Performance
Algorithm — Module
Original Fixed
e Threshold —
Algorithms

Figure 5.6: Schematic diagram of the implemented strategy for evaluation of different FD algorithms.
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5.5 Results

5.5.1

Original Algorithms

The algorithms were tested with the acquired data on the aforementioned thresholds with their

corresponding original thresholds. The results of the different performance indicators are summarized in

Table 5.4.
Table 5.4: Performance Indicators of FD algorithms
Type Study Details ACC PREC SENS SPEC MCC  KAPPA
Bourke et Trunk 0.5746 0.5708 1 0.0202 0.1074  0.023
l.[134
al [134] Thigh 0.5658 0.5658 1 0 NaNe 0
=)
o
g B°|“rk5€2€t Tunk  0.8114 0.9388 0.7132  0.9394 0.6534 0.6296
£ al. [52]
3
= Waist 0.5789 0.5740 0.9922 0.0404 0.1105 0.0367
Kangas et
al.[51] 'Head 0.5658 0.5658 1 0 NaNe 0
Wrist 0.5789 09714 0.2636 0.9899 0.3485 0.2282
o=
E 2 Otanasap
3 20.0740 0.5658 0.5658 1 0 NaNe 0
s = N.[135]
0=
31:60
0 0.9913 0.9744 0.4863 0.9998 0.6852  0.6449
o ‘RBF
= -
§ Support }Réf 0.9154 0.9390 0.8347 0.9660 0.8211 0.8178
é Vector 116
= Machine 0.9105 0.9329 0.8273 0.9627 0.8106  0.8070
Q ‘Linear
= :1:1.6
- 0.9121 0.9358 0.8289 0.9643 0.8141 0.8105
sOptimized

1Location; 2Fixed threshold Value; 3aDL: Fall Proportion; 4Kernel Function; 5Optimized with MATLAB; 6Not a Number

The algorithm introduced by Bourke et al. [134] presented similar results for the two sets of

thresholds described (Table 5.4). It detected a fall in 100% of the cases. However, all or almost all the

ADLs performed were also considered a fall with a SPEC of 0 and 2.02% for the thighs and trunk,

respectively. With the method presented by Kangas et al. [51], the results are similar to the ones reached

by Bourke et al. [134] in the three different sets of thresholds (Table 5.4). Nevertheless, while with the
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waist and head thresholds a fall is detected in 99.22% and 100% of the cases, respectively, the thresholds
for the wrist detected only 26.36% of falls. Using the algorithm from Bourke et al. [52], it resulted in
overall higher performance compared to the remaining fixed threshold algorithms (Table 5.4), achieving
an ACC of 81.14%. Like Bourke et al. [134] and Kangas et al. [51], with the dynamic algorithm proposed
by Otanasap et al. [135], a fall was spotted 100% of the cases, yet, the entirely ADL dataset was also
assessed as a fall (Table 5.4). With the machine learning approach, the best set of parameters achieved
an ACC of 91.54 %, SENS of 83.47% and SPEC of 96.60%. The results for all accomplished tests are

revealed in Table 5.4.

5.5.2 Modified Algorithms

Both falls and ADLs present a similar acceleration maximum as identified in Table 5.5 and Figure
5.7 a), which explains why the algorithm by Bourke et al. [134] was not able to detect ADLs. Thus, the
algorithm was tested with a single lower threshold, Figure 5.7 b). The corresponding results are presented
in Table 5.6. On the contrary, the wres does not exhibit the same behaviour as the acceleration (Table
5.5). The maximum angular velocity achieved during an ADL is much lower than the one reached during
a fall (3.5636 vs. 12.6706). Consequently, the first threshold of 3.1 rad/s (wres) is hardly ever

surpassed, as can be seen in Figure 5.8, on one trial.

Table 5.5: Maximum, minimum, mean and standard Deviation of the acceleration Sum Vector Magnitude and the
angular velocity for the intentional falls and ADL trials

Feature Type of Activity Maximum Minimum Mean Standard Deviation

ADL 13.8357 0.1351  1.0557 0.3427
SVM (g)
Fall 13.8980 0.0681  3.8644 3.8296
ADL 3.5636 0 0.6711 0.5440
wres (rad/s)
Fall 12.6706 0 2.7512 1.89002
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Figure 5.7: Sum Vector Magnitude for: a) One ADL trial; b) One intentional fall trial with the corresponding FD as
a result of the lower threshold of 0.41g and the corresponding fall detection (blue X).
Table 5.6: Performance indicators of the FD algorithm proposed by Bourke et al. [134] tested only with a single
lower threshold

Lower
ACC PREC SENS SPEC MCC Kappa
Threshold
0.41 0.9190 0.8815 0.9917 0.8222 0.8406 0.8312
0.2 0.9781 0.9920 0.9690 0.9898 0.9559 0.9555
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Figure 5.8: Angular Velocity of an ADL trial versus a simulated fall trial.

The algorithm present by Otanasap et al. [135], was also not able to detect ADLs. Consequently,
an analysis of the feature's behaviour throughout the trials was accomplished (Figure 5.9) and the

algorithm was tested with several different FT which results are indicated in Table 5.7.

Table 5.7: Performance Indicators of the FD algorithm proposed by Otanasap et al. [135] tested with different FT

FT ACC PREC SENS SPEC MCC KAPPA
7 08478 0.8444 09157 0.7455 0.6796 0.6756
7.2 0.8229 0.8488 09125 0.7679 0.6945 0.6914
7.4 0.8636 0.8750 0.8974 08148 0.7167 0.7163
7.6 0.8837 0.9155 0.8784 0.8909 0.7648 0.7639
7.8 0.8819 09104 0.8714 0.8947 0.7633 0.7624
8 0.8810 09206 0.8529 09138 0.7643 0.7619

5.6 Discussion

The algorithm introduced by Bourke et al. [134] considered a fall in almost all ADL trials, indicating
that the original thresholds are not appropriate or adapted to canes considering that when the cane hits
the ground, there is a substantial increase in the SVM, Figure 5.7 a), similarly to the trials of falls,
Figure 5.7 b). Since the UFT is frequently surpassed when the cane hits the ground, contrarily to the LFT,

Figure 5.7 a), the algorithm was tested with different lower thresholds. Consequently, the performance
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Figure 5.9: a) Fall possibility computed by the algorithm proposed by [170] during an ADL trial b) ADLacc of the same trial.

was significantly higher, in Table 5.6. Thus, the use of UFTs with SVM on canes are not
recommended due to the problem mentioned above. This feature is directly related to the force applied
to the cane for each strike with the floor, and it is different for every gait cycle (Figure 5.7 a)).

Regarding the study from Kangas et al. [51], none of the set of thresholds are suitable to canes.
Both waist and head thresholds detect falls in almost ADL trials, and the wrist thresholds only detect a
fall in 26% of the cases (Table 5.4). Considering that the five features used to evaluate the trial are
accelerometery based, all of them will be affected when the cane hits the ground. Therefore, using this
algorithm with the original thresholds is inefficient.

Since peak values of wres for the recorded ADLs and falls are different (Table 5.5), the first
threshold of 3.1 rad/s (wres) is hardly ever surpassed, as can be seen in Figure 5.8, on one trial. Thus,
the algorithm described by Bourke et al. [52] presented the best results among the fixed threshold FD
algorithms. However, when using a single lower acceleration threshold of 0.2g, the ACC
increased to 97.81%, which is better than the results attained by the aforementioned algorithms.

Since the algorithm introduced by [135] is mainly based upon the ADLacc, it is expected a lower

performance compared to the results stated in this study because this feature is accelerometery based.
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As seen in Figure 5.9 b), during an ADL trial, the ADLacc surpasses the fixed threshold numerous times,
as proven by the fall possibility computed and plotted in Figure 5.9 a). Thus, this method is not optimized
for cane systems with the original FT. Consequently, the dynamic algorithm was tested with several
different FT (Table 5.7). A new FT of 7.6g achieved the best performance.
Class imbalance is a common problem faced in data mining due to imbalanced datasets [65].
In this situation, the number of samples from ADL is immensely more extensive than the number of fall
samples with a proportion of 60:1. From Table 5.4, when the classifier was trained with an imbalanced
dataset, it achieved an ACC of 99.13%. However, the classifier is overfitting the data. Afterwards, when
the classifier was trained with a proportion of 1:1.6 (Table 5.4), the SENS improved by almost 40% in the
three other cases. However, when using the RBF (Radial Basis Kernel) kernel, the best result in this
domain was achieved with a SPEC and SENS of 96.60% and 83.47%, respectively. Comparing the MCC
and KAPPA values from the implemented algorithms, the embedment of a single LFT of 0.2g is more
desirable (MCC = 95.59%; KAPPA = 95.55%). This method surpasses the values of the machine learning
implementation which has a range of MCC between 0.68 and 0.82 and a KAPPA between 0.69 and 0.82.
However, the best performance was achieved by the algorithm proposed by Bourke et al. [134]
that was modified. With a single lower threshold of 0.2g, values of SENS, SPEC and MCC were 96.90%,
98.98% and 95.59%, respectively. Results obtained from the machine learning classifier were lower when
compared to the proposed method likely because of the sample labelling method used, the CVFast. This
method could be inappropriate for data acquired with a cane and may need to be improved. Thus, the
proposed FD method is rather simple, with only a single lower threshold, which is suitable where restricted
computational power will be available in the ASCane. Furthermore, it has been proven that wres can also
be an excellent variable to distinguish fall from ADLs. Although it was not evaluated, coupling a wres
threshold with the 0.2 g lower threshold appears to be the best strategy regarding FD since
only the lower threshold may not be sufficient for a robust algorithm. Hence the need to be accompanied

by another variable.

6. ASCANE EVENT DETECTION IN CONTROLLED AND REAL-LIFE SITUATIONS

The main goal of this chapter is to detect six cane phases through the ASCane during
assisted walking. A cane event detection system will be implemented and tested by comparing data

acquired from an IMU attached to a cane and a ground truth.
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This chapter will be subdivided into six major parts: i) Examination of how the cane's gait is related
to the user's gait; ii) The human gait event detection algorithm found in literature; iii) Data collection from
sensing devices through trials in healthy young people and feature computation; iv) Comparison between
the detected cane events and the developed ground truth system; v) Comparison between the ground
truth and several different combinations of machine learning classifiers and feature selection methods;

vi) Post-processing algorithm for increased performance.

6.1 Relationship between gait assessment and fall risk

Using a cane is intended to help the user. However, research has shown this is not always the
situation. Liu et al. [143] assess the usage of canes by older adults in senior living communities and
revealed that patients still fall, despite the help of their device. Also, the research team revealed
five significant problems that should be approached by the medical community: the need for medical
consultation for device selection/use, the incorrect cane height/maintenance, the use of a cane in the
wrong hand, the inability to sustain the proper gait pattern, and inaccurate posture during locomotion,
which can improve the fall risk [144]. Furthermore, the use of an assistive device alters the users'
spatiotemporal parameters, such as cadence, steps/min, step length, step time, stance and swing
percentage [144].

Consequently, a gait assessment describing cane usage while walking can provide
valuable information not only to the user, but also the medical professionals. This evaluation might
be capable of enhancing the capability of cane usage for older cane users. Therefore, reducing
the possibility of possible falls amongst them. Moreover, gait event detection can possibly be used
in the rehabilitation domain, specifically, in the design of personalized gait therapies that tune
therapeutic assistance in accordance to the patient-specific demands and strive to promote a more
effective functional motor recovery. Several motion capture systems have been employed to evaluate
human gait events. Most generally, this analysis is conducted in a motion analysis laboratory with force
platforms and optical motion systems. Nonetheless, these motion capture systems are non-portable and
are operated only in controlled environments. They are not optimized for the analysis of continuous gait
cycles for long-term mobility situations. Thus, embedding the detection of the different events
into a cane is optimal [145]-[147].

Before examining gait with a walking aid, it is necessary to understand the mechanics of what is
perceived as a "gait cycle." The human gait is a rhythmic and standardised sequence of movements that

end in a displacement of the person's COG [33]. A gait cycle can be described as a period separating the
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initial contact of the foot with the floor until the instant that happens again. The human gait cycle can be

divided into two different phases: stance and swing. The stance phase corresponds to the period in which

the foot is in contact with the floor.

In contrast, the swing phase coincides with the time in which the foot is not on the floor [94]. However,

the human gait cycle can be divided into several more phases. In the following, it is presented the

description of all gait phases considered and are depicted in Figure 6.1 [1].

>

Heel-Strike (HS): the event which equals to the first ground contact of the leading limb. By
definition, a gait cycle ends and begins with the HS;

Foot-Flat (FF): when the plantar surface of the foot contacts with the ground, thus, the leading
limb can take over the bodyweight;

Middle Mid-Stance (MMST): begins when the opposing foot elevates and continues till the
bodyweight is aligned over the forefoot;

Heel-Off (HO): the moment which the heel lifts from the ground;

Toe-Off (TO): corresponds to the moment in time that the foot leaves the ground;

Middle Mid-Swing (MMSW): phase in which the swinging limb passes the opposite stance limb.

Q0 O O O ) O
I |
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> v I T*\ﬁ— = ‘ T
HS FF MMST HO TO MMSW HS

Figure 6.1: Human gait phases and corresponding events during one gait cycle.

6.2 Ambulation with a cane

For proper locomotion with a cane, the device must be used on the opposing side of the affected

leg and in tandem with it to simulate normal gait and to improve balance. Moreover, there are two ways

of walking with a cane, two and three-point gate [148]. The sequential moves of two-point gait are listed

below, and their representation is portrayed in Figure 6.2.

L.
2.

Balance the body weight onto the healthy or unaffected leg (Figure 6.2 - Stage 1);
Move the cane and the affected leg forward in unison, keeping the cane near the body to prevent

leaning to the side (Figure 6.2 - Stage 2);
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3. Transfer the bodyweight forward to the cane and move the unaffected leg forward (Figure 6.2 -

Stage 3).

Stage 1 Stage 2 Stage 3
Figure 6.2: Representation of Two-Point Gait with a cane.

The consecutive movements of three-point gait are depicted in Figure 6.3 and are as follows:

1. Balance the body-weight on the strong or unaffected limb (Figure 6.3 - Stage 1).

2. Move the cane forward, assuring the cane is close to the body (Figure 6.3 - Stage 2).

3. Move the weak or affected foot forward (Figure 6.3 - Stage 3).

4. Transfer the weight from the unaffected foot to the affected foot and cane, and then brings the

unaffected foot forward to join the affected foot (Figure 6.3 - Stage 4).

® L ® [ ]
Stage 1 Stage 2 Stage 3 Stage 4

Figure 6.3: Representation of Three-Point Gait with a cane.

Ambulating with two-point gait, the cane accompanies the opposite leg movement. Consequently,
both gait events (foot and cane) occur approximately at the same time. Following, the six different cane
events are described and matched to the human gait cycle phases previously described in Section 6.1,
as seen in Figure 6.4.

» First Ground Contact (FGC): the event which equals to the first ground contact of the cane. Similar
to the human gait cycle, the cane gait cycle ends and begins with the FGC;

» Full Base Contact (FBC): when the cane base is in complete contact with the ground,;

» Maximum Support Moment (MSM): begins when the cane is in full support of the subject's body
weight;

» Partial Cane Off (PCO): the moment which the cane lifts from the ground;
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» Full Cane Off (FCO): corresponds to the moment in time that the cane base lifts entirely from the
ground;

» Cane MidSwing (CMSW): phase in which the swinging cane passes the opposite stance limb.

‘L - i U
O O OO @ S O ®
\__/
First Ground Full Base Maximum Partial Full Cane First Ground
Contact Contact Support  Cane Off Cane Off MidSwing Contact
(Heel Strike) (Foot Flat) (Heel-0ff) (Toe-0ff) (Middle Mid-Swing ) (Heel Strike)

Moment
(Middle Mid-Stance)

Figure 6.4: Human gait phases matched to the respective cane phases during one gait cycle.

6.3 Real-time gait event detection

The difficulty of gait detection is the development of algorithms that can detect gait events while
the subject is walking (real-time detection). Various sensor arrangements have been employed for gait
detection in ambulatory settings, including single and multiple sensor arrangements. Three types of
measurements are found in the literature for gait event detection: force, angular rate and accelerometery
based measurements [1].

Regarding force-based measurements, the single possible location for these types of sensors is
between the sole and the ground. Regarding cane event detection, the placement of the sensor is in the
tip of the cane, which has a minimal surface area. Thus, just one sensor could be installed, and only the
stance and swing phases could be determined. Typically, these types of systems provide adequate results.
Still, they present a few disadvantages. For example, specifying load changes produced during walking

from those created by weight shifting is not possible. Nevertheless, force-based event detection either
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with sensors attached to the foot or even with force plates is yet part of the ground truth system for
computation of the accuracy of gait event detection in newly developed methods [1][149].

Usually, the use of accelerometers entails extra signal processing techniques and compensation
regarding the influence of gravity. Additional drift problems can be present due to the integration of the
acquired data. The corresponding attachment of the sensors can also be a difficulty considering muscle
movement while walking, appearing as a high-frequency error in the data [1][150][151].

Most of the algorithms using angular rate measurements use the same one-dimensional angular
rate sensor in a single sensor solution. The significant advantage of using gyroscopes as motion analysis
systems is that it is not affected by the gravitational component as the accelerometery based systems.
Additionally, the vibration subjected by the sensors through the heel strike does not alter the gyroscope
output since they are less susceptible to their position as a result of their measurement principle. They
can be anyplace on the same plane giving nearly an equal signal output. Besides, movements in other
planes are not taken, e.g. change in walking direction [1][149].

For real-time human gait event detection through the foot angular velocity, it is possible to detect
the previous gait events described. In Figure 6.5 is presented the angular velocity of the foot through one

gait cycle with the corresponding gait events delimited [152].
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Figure 6.5: Angular velocity of the right foot along the sagittal plane (sensor's z-axis) (continuous line) and
representation of six human gait events (HS, FF, MMST, HO, TO, and MMSW) during one gait cycle performed by
a healthy subject, taken from [152].

Figueiredo et al. [152] developed an adaptive rule-based FSM for human gait event
detection in controlled and real-life situations that can operate at various gait speeds and relies
only on the angular velocity of the sagittal plane. The proposed method was proven to be an

accurate (ACC > 90.12%), time-effective (delay detection < 30.53 + 9.88 ms and advanced detections <
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15.31 £ 5,52 ms), low-cost, wearable, and with a low-computation power towards real-time gait analysis.
Therefore, it can be used either in rehabilitation tasks and gait assessment [152]. Based on curve tracing
techniques, threshold crossing, local extrema and signal derivatives evaluation, the authors established
decision rules for gait events transitions. The flowchart of the abovementioned algorithm is presented in

Figure 6.6.

Begin  — Signal I Low-Pass Derivative I Max/Min I Stride . FSM
en Acquisition ’—. Filtering Computation ’_. Detection ’—. Calculation

Figure 6.6: Flow chart of the proposed algorithm to detect the gait events

After the signal acquisition and respective filtration (First and second stages, Figure 6.6), the first
derivative is computed which enables the detection of velocity increases (positive signal), decreases
(negative signal) or constant velocity (approximately zero). To detect only the significant variations (that
usually are correlated with the local peaks), derivatives under a threshold (near zero) are fixed to zero,
reducing the signal noise (Stage 3 - Figure 6.6). The minimum/maximum calculation stage (Stage 4 -
Figure 6.6) is utilised to recognise HS, MMSW, FF, and TO, given their dependence to the local extrema.
The bth stage computes the given steps step calculation using the last three valid steps, which enables
the algorithm to be sensitive to changes in the pattern. The last stage implements the FSM that changes

states per defined decision rules.

6.4 Methods And Materials

6.4.1 General Overview

The proposed methodology used for recognition of cane's events during gait is comprised of
several steps. A schematic overview of the accomplished approach is highlighted in Figure 6.7. After the
experimental trials and manual segmentation per pre-defined conditions, this chapter is subdivided into
two sections. Firstly, the modification of an adaptive state-of-the-art FSM human gait event
detector to detect the six cane gait events was accomplished. Secondly, a machine learning study
was performed to find which are the best set of features and machine learning classifier to segment a
cane stride in six phases. In the following subsections, a full description of each module is given, together

with the explanation of the work developed.
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6.4.2 Experimental Protocol

To collect sensor data during locomotion, experimental procedures were conducted, following a
designed protocol. The system used to collect the data was part of the one described in Chapter 4. Since
the algorithm designed by Figueiredo et al. [152] used angular velocity from the foot, an IMU was also
placed in that same location.

Furthermore, to achieve a complete study of cane ambulation and to link the different gait phases
with the recorded angular velocity and acceleration, another inertial measurement system was coupled,

the MTw Awinda (Xsens Netherlands). The developed system (without Xsens) is depicted in Figure 6.8
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Figure 6.7: General Overview of the carried-out methodology for the detection of canes gait events

For the validation of the gait event detector, it was used repeated measures of healthy gait patterns
recorded in controlled and real-life situations, as portrayed in Figure 6.9. Fourteen subjects were included
in two protocols, one for each condition. The subjects approved to participate in this study and were
randomly distributed within the two protocols.

Considering the controlled walking situations, to validate cane event detection and to test the
effect of variations in the ground surface and gait speed it was included seven healthy volunteers (five
males and two females). The subjects presented an age which ranged from 22 to 25 years (23.29 £1.16
years), with a body mass between 52 and 81 kg (69.57 + 9.06 Kg) and a height of 1.51 to 1.81 m (1.70
+0.09m). The participants carried walking experiments on an instrumented split-belt treadmill at different

speeds (1.0 and 1.5 km/h) and slopes (0%, and 10%). Three gait trials were randomly conducted for the
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(2)

2

Figure 6.8: A) Subject equipped with all systems B) Developed system used during data acquisition (1) IMUs; (2)
FSRs.

following scenarios: 30 seconds walking without inclination and speed of 1.0 km/h and 30 seconds
walking with an inclination of 10° and speed of 1.0 km/h. Besides, the participants were told to carry
walking trials at changeable speeds to approximate a real-life environment. In this case, the subjects
walked for 60 seconds and changed gait speed every 20 seconds according to the provided instructions
(increasing from 1.0 km/h to 1.5 km/h and decreasing from 1.5 km/h to 1.0km/h). To give reliable
results, the acceleration period was not admitted in the detection of gait events, except for the trials where
the speed was variable.

Real-Life Walking Situations were also considered to assess human locomotion in various
conditions. For this matter, it was included seven healthy subjects (five males and two females), who
used their sports-shoes). The subjects presented an age which ranged from 23 to 25 years (24.14 +0.83
years), with a body mass between 61 and 75 kg (70.85 + 5.25 Kg) and a height of 1.70t0 1.81 m (1.75
+ 0.04m). Since human gait is very dynamic in the real-world frequently, including different gait speeds,
surfaces and surface inclinations, the recommended computational method was verified in uncontrolled
indoor and outdoor conditions. Three gait trials were randomly conducted for the following scenarios,

which are shown in Figure 6.9: forward level-ground walking on a 20 m flat surface; forward level-ground
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walking on a rough surface (urban ground) along 30 m; descending and ascending an inclined ground
(approximately 10°) and a 10 m rough surface, and climbing a staircase of 8 steps with standard
dimensions (a height of 17 cm, depth of 31 cm, and step width of 110 cm). For each condition, the

participants were asked to walk at a comfortable speed to achieve proper ambulation with a cane.

Level-ground walking in a
flat and rough surface

Walking in Inclined
Surface

Figure 6.9: Validation of the gait event detection system under controlled and real-life walking conditions (flat and
rough level-ground, inclined surfaces and staircases).

6.4.3 Data Labelling

The gait event detection algorithm developed by Figueiredo et al. [152] relies only on the foot
angular velocity. Comparing the mean and mean plus/minus standard deviation of the cane and foot
angular velocity of all collected strides (for controlled situations), as depicted in Figure 6.10, it is possible
to conclude that the waveform of the signals throughout the stride presents several key
differences. The two minimums, Figure 6.10 a) and c), which are used to detect the HS, MMSW, FF
and TO events, are not as significant (FGC, CMSW, FBC and FCO for the cane events, respectively). The
angular velocity reached by the ASCane, Figure 6.10 b) is not as steady at 0°/s as the one achieved by
the foot, which is part of the decision rules for FF and MMST detection. Furthermore, the peak value in
the gyroscope signal, which happens at the moment of MMSW, is also not as high as the one achieved
by the foot, Figure 6.10 d). Consequently, to accomplish precise data labelling, additional signals
and/or features are needed. To keep the segmentation as simple as possible, only the raw signals

collected from the ASCane were used.
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Figure 6.10: Cane angular velocity along the sensor’s z-axis (moves relatively to the sagittal plane) mean, and
plus/minus its standard deviation of all collected strides measured at controlled situations.

The Xsens company developed a robust software engine using a biomechanical model of the
human body to estimate human motion in real-time accurately. The biomechanical model, Figure 6.11,
is composed by 23 segments: pelvis, L5, L3, T12, T8, neck, head, right and left shoulder, upper arms,
forearms, hands, upper legs, lower legs, feet and toes. Moreover, for the segments where no sensor is
attached, the kinematics are determined based on the biomechanical model combining stiffness
parameters between connecting segments. In addition to the standard configuration abovementioned,

additional motion trackers can be added to items to be included in the trial, for example, a walking stick,

as shown in Figure 6.11.

FGC FBC MSM PCO FCO CMsSwW

»

Figure 6.11: Biomechanical model of human body ambulation with a cane through the different gait phases.
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To properly segment gait events, the algorithm must incorporate the acceleration and
FSR signals. In Figure 6.12 and 6.13 are portrayed the mean, and the mean plus/minus the standard
deviation of the ASCane FSR and acceleration (transverse plane) signal for the four different walking
situations assessed, respectively. It is verified that both acceleration and FSR signals present a

constant waveform on level-ground, inclined surfaces and staircases.

a) w b) w0
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—Mean +Standard Deviation of ASCane FSR

Figure 6.12: ASCane FSR reading along the sensor’s z-axis (moves relatively to the sagittal plane) mean, and
plus/minus its standard deviation of all collected strides measured at different ground facets: A) controlled
situations, B) level-ground, C) inclined surface (10°), D) staircase.
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——Acceleration Mean of ASCane Transverse Axis
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Figure 6.13: ASCane acceleration along the sensor’s Y-axis (moves relatively to the transverse plane) mean, and
plus/minus its standard deviation of all collected strides measured at different ground facets: A) controlled
situations, B) level-ground, C) inclined surface (10°), D) staircase.
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After an extensive analysis of all the seven signals acquired, it was possible to achieve the decision
rules for the ground truth of all the 1620 steps taken. More specifically, 962 controlled steps, 234 steps
on a flat surface, 161 steps on rough ground, 151 steps on inclined terrain, and 112 steps on staircases.

First, it was verified that the cane acceleration and angular velocity presented a constant
waveform on level-ground, inclined surfaces and staircases (Figure 6.14). Therefore, the same

heuristic rules can be established for all different scenarios.

a)

c) s

—Angular Velocity Mean of ASCane Sagital Axis

—Mean + Standard Deviation of ASCane Sagital Axis Angular Velocity
—Angular Velocity Mean of Foot Sagital Axis

——Mean % Standard Deviation of Foot Sagital Axis Angular Velocity

Figure 6.14: Cane angular velocity along the sensor’s Z-axis (moves relatively to the sagittal plane) mean, and plus/minus its
standard deviation of all collected strides measured at different ground facets: A) controlled situations, B) level-ground, C)
inclined surface (10°), D) staircase.

When the cane impacts with the ground, an intense polarity inversion of the acceleration vector
is detected as well as an increase in the FSR reading, which is used to determine the exact moment of
the FGC. FBC is set at the moment were the FSR reading stabilizes at is maximum. The ground truth for
the MSM event was set when the acceleration oscillates, and the data from the ASCane FSR remains at
is maximum, which corresponds to the moment where the subject transfers his bodyweight to the cane
and moves the unaffected leg. PCO and FCO events, the user is lifting the cane to move it along with the
affected leg. Therefore, for the PCO, the FSR signals starts decreasing. Concerning the FCO, the FSR
signal continues decreasing until zero and, the acceleration increases due to the cane is beginning to
swing. The CMSW is determined as the maximum angular velocity detected in the stride after the FCO

detection. A complete segmentation of a stride with all the features used is exposed in Figure 6.15.
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Figure 6.15: Acceleration (moves relatively to the transverse plane), angular velocity (moves relatively to the sagittal
plane) and FSR signals of a full cane stride with corresponding gait events manually segmented per pre-defined
conditions.

6.4.4 Finite-State-Machine Framework

As stated, the cane angular velocity throughout a stride is less prominent than the one from the
foot. Nevertheless, the algorithm was tested with the data acquired with the cane. However, after an
extensive inspection of the algorithm decision rules and signal processing techniques, two
modifications were accomplished.

Figueiredo et al.[152] use two distinct thresholds as a part of the decision rules to detect the TO
and MMSW event, MINthr and MAXthr, respectively. The M/Nthr corresponds to an adaptive
threshold used for the detection of the second minimum. Contrarily, the MAXthr is used to determine
the maximum angular velocity reached during the stride. In the original algorithm, both these thresholds
are defined as 60% of the mean value of the three previous detected minima and maxima, respectively.
Since the new signal is not as distinctive, the condition was updated for 40%. As asserted, the
algorithm also relies upon signal derivatives. A pre-processing technique in which if the signal first
derivative is lower than 0.01, the derivative is considered null was accomplished Figueiredo et al. [152].
To increase the efficiency of the algorithm, and since the FS of the ASCane signal is much higher, this

pre-processing technique was discarded.
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6.4.5 Machine Learning Framework

In this stage, the pre-processing techniques are applied to the unprocessed acquired data to
maximize model performance and decrease its training time. The pre-processing methods used involve
data normalization and feature selection.

The computation of features is not only required for the creation of machine learning models but
also for future online classification. In fact, after gathering all the sensor data from the ASCane, it is
essential to create a vector of features for every time window of the measured signals. They should be
significant and representative of the data to have the needed information for correct classification, which
is disclosed in chapter 2. All the computed features are listed in Table XXIV — Appendix 3. This module

converts the input data to an output feature vector containing 288 features (Figure 6.16).

Inertial Data Calculation of
' | p—) )88 Features
FSR Features

Figure 6.16: Inputs and outputs of the feature computing module

Throughout data normalization, features are treated using the min-max scaling method, as
illustrated in Figure 6.17. This process intends to convert all metrics to a standard range such that
features with a higher value range do not decrease the significance of features with smaller ranges. It

changes the values of each feature, which means that the data is centered in 0.5 and is limited to vary

between 0 and 1.
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Figure 6.17: Feature normalization method used.

The selection of an optimal subset of features is an essential step in every classification challenge.
Often, a considerable number of features are computed to represent the target concept better. Given this

set of 288 features, the problem is to select the subset of size x (with x being the number of features)
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that maximizes a scoring function of a given classifier. Since the classification of six different gait phases
of a cane was never accomplished, the best subset of features is yet to be uncovered. Thus, 8 feature
selection methods were used: Correlation Based Feature Selection (CFS), Relief, Unsupervised
Discriminative Feature Selection (UDFS), Principal Component Analysis (PCA), Least Absolute Shrinkage
and Selection Operator (LASSO), Laplacian Score, Unsupervised Feature Selection with Ordinal Locality
(UFSOL) and Local Learning-Based Clustering Feature Selection (LLCFS), as seen in Fig 6.18.

Various classification algorithms in machine learning have been used to predict and classify
different human gait phases in recent research. Yet, none of them is applied to canes. Building an
accurate classifier is challenging for several reasons. If the training set is small, then it is less feasible to
understand the underlying distribution of the data.

Another problem is the complexity of the model and its generalizing abilities. If the classifier is
too dull, it may fail to seize the underlying structure of the data. However, if the classifier is too elaborate
and there are too many free parameters, it may include noise in the model, which leads to overfitting
performing poorly on test samples. The 9 machine learning classifiers used were the KNN, with an
equal, inverse and squared inverse distance weighting function; Discriminant Analysis Classification with
linear and quadratic discriminant function; Ensemble Learning; Decision Tree and Regression Model with

linear and pure quadratic terms.
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Figure 6.18: Inputs, outputs and the different feature selection methods used in the feature
selection module.

To cover all possible scenarios, a 3-stage process was achieved. With the first stage, an

incremental feature method combining all feature selection methods and machine learning
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classifier scenarios was performed. For example, with PCA as the feature selection method, and
ensemble learning as the classifier, the machine learning model was built and tested with one up to the
120 most discriminate features. For the second stage, the two most suitable combinations were tested
once again, this time with increased j-k-fold CV. The machine learning models presented in this work
were built and tested offline using Matlab® (2018b, The Mathworks, Natick, USA). Nevertheless, their

implementation in a microcontroller will be discussed in future challenges. Both studies are depicted in
Figure 6.19.
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Figure 6.19: The different combinations of feature selection methods, number of features and classifier tested for
the first and second stage.

The third and last stage involved an online post-processing algorithm of the machine
learning classifier results (Figure 6.20). Firstly, the classifier was tested with unseen data to test its
predictive power, more specifically, 9 full trials (3 of controlled situations and 2 of each remaining walking

condition). Secondly, a post-processing algorithm was applied to the same results and benchmarked

against the classifier results.

Evaluation Evaluation
Performance Performance
Unseen Data Module Module
r 3
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Figure 6.20: Completed methodology for the third stage.
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Firstly, all the gait event transitions are found. The algorithm starts by detection the first transition
from first ground contact (phase 1) and will iteratively find the next ones. In case a transition is not found,
the algorithm will try to find a transition overleaping the one not detected. It will always verify if the new
found transition occurs after the last one identified. In the end, a gait event detection transition list is
exhibited, and the signal samples between them are set. Which means, for example, that the samples
between the transition MSM (phase 3) to PCO (phase 4) and PCO (phase 4) to FCO (phase 5) are set as
PCO. The algorithms flowchart is presented in Figure 6.21.
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Figure 6.21: Flowchart of the post-processing algorithm developed for increasing the performance of gait event detection.

After the model building, its performance is evaluated utilising CV. The evaluation
procedure is used for analysing models with varying input parameters such as their hyperparameters or
feature combinations. The evaluation is especially essential to conclude the classification performance of
unseen data, to use a limited number of samples to estimate how the model is expected to perform when
used to make predictions of unseen data through its training. In the first stage, only 5-fold CV was
performed due to the high number of combinations to evaluate. In the second stage, each model’s
performance is evaluated using 10-5-fold CV. To assess the classification results, nine different metrics

were used previously described in Chapter 2, namely, MCC, ACC, SENS, SPEC, PREC and F1S.
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6.5 Results

6.5.1 Finite-State Machine Algorithm

It was examined the ACC, the percentage of occurrence and duration of delays and advances in
controlled and reallife scenarios to evaluate the versatility and time-effectiveness of the algorithm.
Furthermore, the time-effectiveness was just inspected for accurate detections. A misdetection was
considered for timing error higher than 100ms, which is considered a critical duration for motor
rehabilitation purposes.

By analysing Table | in Appendix 1, it is verified that the CMS and FGC events exhibited the
highest ACC (98.51% and 83.92%, respectively). On the other hand, the MSM event and PCO were
not detected (0.74% and 0.96%, respectively). The findings of the controlled situations also indicate that
the FBC and FCO have a higher occurrence of delayed detections (43.25% and 34.91%), being
detected with a mean delay of 55.32+27.90ms and 51.42+16.85ms, respectively. Advanced
detections were mainly observed for the PCO (77.78ms) and MSM (71.43).

The results throughout the different gait phases for the remaining walking situations are consistent
with the ones achieved for controlled situations, although with lower accuracies Tables Il to IV in Appendix
1. The FGC was the most accurately detected gait event (ACC > 52.78%) while the MSM was
the least detected phase (ACC < 11.11%). Delayed detections were more common than advanced
ones ranging between 0% to 32.43% and 0% to 95.41%.

In controlled situations, the algorithm did not detect, on average, 1.11% of each gait event, followed
by 4.52%, 8.96% and 27.38% for level-ground surfaces, inclined surfaces and stairs, sequentially. It is
crucial to disclose that the timing errors revealed in Tables |, II, [ll and VI do not comprehend the algorithm

latency of 10ms due to the filtering process.

6.5.2 Machine Learning Framework

To determine which are the best set of features and machine learning classifier for the ASCane
gait event recognition, three studies were conducted. The first stage aimed to evaluate which were the
two combinations of classifier and feature selection method that provided the best overall results. It is
crucial to disclose that the evaluation metrics presented in this first stage are the mean between the six
different classes.

The results comparing the different feature selection methods and classifiers are presented from

Tables Vto Xl in Appendix 1. Through direct observation, it is possible to acknowledge that the ensemble
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learning classifier is the one that achieved the best results amongst all feature selection methods
(ACC > 93.17%, SENS > 92.86 %, SPEC > 98.62%, PREC> 93.26%, MCC > 91.68%, F1S > 93.03%). On
the other hand, both regression models tested (linear and pure quadratic) presented the lowest
performance (ACC > 40.60%, SENS > 40.02%, SPEC > 88.61%, PREC > 44.28%, MCC > 28.69%, F1S
> 37.06%). It is also verified that the number of features used to train the classifier, which results in the
best overall performance, relates to the feature selection method used. For each feature selection method
tested, curiously, the three KNN classifiers performed the same, even with different distance weight
functions (Squared Inverse, Equal and Inverse). The two best combinations were chosen based on two
criteria: the classifier must be different and have the best overall performance amongst all computed
evaluation metrics. Consequently, two combinations resulted from these criteria. LLCFS with
Ensemble Learning and UDFS with KNN (Squared Inverse as distance weight function), which results

are exposed in Table 6.1.

Table 6.1: Overall ACC, SENS, SPEC, PREC, MCC and F1S of the two best combinations of feature selection methods,
classifiers and number of features in the first stage.

Feature Number Overall Performance
Selection Classifier of
Method Features ACC SENS SPEC PREC mMccC F1S
KNN Squared
UDFS 20 94.49 94.51 98.90 94.24 93.26 94.36
Inverse

Ensemble

LLCFS 118 96.10 96.03 99.22 96..06 95.26 96.02
Learning

The second stage intended to estimate the real performance of the selected machine learning
classifiers and choose the one who performed the best. Consequently, the chosen combinations were
tested once again with a 10-5-fold CV, instead of 1-5-fold CV. For both combinations, all the evaluation
metrics increased, as seen in Table XIII from Appendix 1. Moreover, in Figure 6.22 is represented the
evaluation performance of the KNN model with UDFS as feature selection method trained with 1 up to
120 features. Contrarily, in Figure 6.23 is represented the evaluation performance of the ensemble

learning model with LLCFS as feature selection method trained with 1 up to 120 features.
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Figure 6.22: Overall ACC, SENS, F1S and MCC obtained with the KNN model trained from 1 up to the 120 most
significant features computed by the UDFS feature selection method.
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Figure 6.23: Overall ACC, SENS, F1S and MCC obtained with the ensemble learning model trained from 1 up to
the 120 most significant features computed by the LLCFS feature selection method.

For the KNN classifier, the ACC increased by 3.73% (reaching 98.22%), the SENS improved by
2.83% (97.34%), and the SPEC, PREC, MCC and F1S reached 99.63%, 97.33 %, 97.33% and 96.97%,
respectively. Regarding the Ensemble Learning model, the results improved similarly. The resultant ACC
raised 2.36% (matching 98.46%), the SENS increased 1.60% (97.63%), and the SPEC, PREC, MCC and
F1S reached 99.68%, 97.87%, 97.75% and 97.43%, respectively.

The classifier was chosen considering the existing trade-off between the evaluation metrics,
computational power and number of features needed. Therefore, the combination of the 20 most
significant features through the UDFS method with the KNN algorithm as classifier was chosen. In
Table XIV from Appendix 1, the different evaluation performance metrics for each gait event are presented.
The PCO was the gait event that presented the lowest detection with an ACC and SENS of 92.87% and
92.86% while the FBC presented the highest with 98.88% and 98.87%, respectively. The 20 most

significant features (through the UDFS) for cane event classification are listed in Table 6.2.
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Table 6.2: The 20 most significant features by the feature selection method UDFS for the detection of six cane

gait events
Feature
Feature Description
Ranking
Acceleration along the X-axis plane High-Pass filtered
1 ‘High_Pass_Filter_Acc_X'
with cut-off frequency of 0.1Hz
Acceleration along the Z-axis plane High-Pass filtered
2 'High_Pass_Filter_Acc_Z'
with cut-off frequency of 0.1Hz
3 '‘Acc_Z_Raw' Raw acceleration along the Z axis
4 'Acc_X_Raw' Raw acceleration along the X axis
5 'GC_Acc_X' Gravity Component along the X-axis
6 'GC_Acc_Z' Gravity Component along the Z-axis
7 'Displacement_X' Displacement along the X axis
8 'Velocity_Y' Velocity along the Y axis
9 'Velocity_Z' Velocity along the Z axis
10 'Quaternion4' Fourth element of quaternion vector
11 'Pitch’ Euler Angle - Pitch
12 'Quaternion3' Third element of quaternion vector
13 Yaw' Euler Angle - Yaw
Sum Vector Magnitude of the angular velocity Band-
14 'SVM_Gyr_Band_Pass' Pass filtered with cut-off frequencies of 0.1Hz and
90Hz
Sum Vector Magnitude of the angular velocity High-
15 'SVM_Gyr_High_Pass'
Pass filtered with a cut-off frequency of 0.1Hz
16 'GC_Acc_Y' Gravity Component along the Y-axis
Angular Velocity along the Z-axis plane High-Pass
17 'High_Pass_Filter_Gyr_Z'
filtered with cut-off frequency of 0.1Hz
18 'Gyr_Z_Raw' Raw Angular velocity along the Z axis
19 'Quaternion?2! Second element of quaternion vector
20 'Roll' Euler Angle - Roll

The use of a post-processing algorithm intended to increase the performance metrics and

remove outliers from the resultant signal. The comparison between the use and non-use of the
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algorithm is represented in Table 6.3. It is verified that all evaluation metrics slightly increase apart of the
SENS, SPEC and F1S in staircase climbing, which decreased by 0.71% (90.29%), 0.03% (98.66%), and
0.61% (90.46%), respectively. The ACC increased by 0.16% (98.32%), 0.24% (94.02%), 0.42% (96.72%)
and 0.13% (93.72%) in controlled situations, inclined surfaces, level ground and staircase walking,

accordingly.

Table 6.3: Comparison between the ACC, SENS, SPEC and PREC before and after the application of the post-
processing algorithm in the four different walking scenarios.

ACC SENS SPEC PREC

Walking Situations
Before After Before After Before After Before After

Controlled Situations 98.16 9832 97.78 97.90 99.63 99.66 97.61 97.92

Inclined Surfaces 93.78 94.02 9190 919 98.75 9881 9093 91.19

Level Ground It is 96.30 96.72 90.33 90.81 99.28 99.37 9355 9472

Stairs 9359 93.72 91.00 90.29 98,69 9866 89.43 9l.16

In Figure 6.24 is depicted a comparison between the ground truth with the output of the best
machine learning model with unseen data. Following, in Figure 6.25 is portrayed a comparison between
the output of the best machine learning model with unseen data and the post-processing algorithm
results. Finally, to contrast the use and non-use of the post-processing algorithm, in Figure 6.26 is pictured
the comparison between the output of the post-processing algorithm and the output of the best machine

learning model with unseen data.

6.6 Discussion

A realtime and adaptive computational method for assessing human gait events in controlled
and real-life walking situations using repeated measures of healthy gait patterns was modified to account
for the cane angular velocity signal differences of the sagittal plane.

Even though the angular velocity signal in the sagittal plane of a cane presents similar shape as
the one recorded for the foot, it is not as distinctive. Therefore, the segmentation of gait events becomes
more challenging. In Figure 6.14, is portrayed the mean, and the mean plus/minus the standard deviation
of the foot and cane angular velocity on the sagittal plane for the four different walking situations assessed
throughout a gait cycle. In all four cases, the amplitude of the foot signal is much higher, both in the

maximum, first and the second minimum, which is used to identify the MMSW, FF and TO events.
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Figure 6.24: Comparison between the ground truth (orange) with the output of the best machine learning model
with unseen data (blue) for a full trial.
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Figure 6.25: Comparison between the use (red) and non-use (blue) of the post-processing algorithm for a full trial.
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Figure 6.26: Comparison between the output of the post-processing algorithm (red) and the ground truth
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The FGC was the second most detected event with ACC ranging between 52.78% and
83.92% for climbing stairs and controlled situations, respectively. Advanced detections were highly
observed (between 69.36% and 96.94%). Even with trial and error thresholds adjustments after an
empirical analysis, both the ACC and time advance in detection did not improve significantly.

Throughout the different walking conditions, the MSM was the least detected event inside
the time range, with ACC between 0.74% and 11.11%. In the algorithm, human MMST was established
as n samples after FF occurred, where n corresponds to the duration of the last valid MMST. In contrast,
the cane MSM is the moment where the subjects transfer his weight to the cane, which can occur at a
different time throughout several strides and the angular velocity signal cannot represent that moment,
while the acceleration values can.

The average human foot area is much larger than the base area of a cane. Thus, the time interval
between PCO and FCO is much smaller than the one between HO and TO, happening almost
instantaneously, as seen in Figure 6.14. Consequently, the segmentation of the phases can be
challenging for a finite-state-machine algorithm, with ACC lower than 46.54% and a high number of

advanced and delayed detections.
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Moreover, the CMSW was the most accurately detected event (ACC > 77.36%). The
highest time advance and delay percentages were 1.50% and 0.95%, respectively. Hence, if the algorithm
identified the CMSW event, it would accurately be segmented with sample PREC 98.50% of the times.
The algorithm decision rules depend on stride time, which sets adaptative periods where the events shall
occur, and the stride time calculation considers rising or declining periods (which are not as significant
in data acquired through the ASCane. Consequently, the stride time is easily miscomputed, decreasing
the detection rate of all gait events

The results prove that the modified algorithm cannot be directly applied to the detection
of cane events without further modifications. The single axis of a gyroscope located on the top of
the cane does not provide enough information for the segmentation of a cane gait events at these
conditions. The implementation of the ground truth decision rules into the literature algorithm is discussed
in future work.

To estimate the real performance of machine learning classifiers, J-K-fold CV was performed in
all studies and combinations. In the first stage, due to time constraints, only a 1-5-K-fold CV was
accomplished. According to [153] if K > 3, to guarantee overlapping training sets, it is possible to have
comparable variance across K. Meaning that the only reliable reason to increase K is to reduce bias.

In contrast, increasing J does not affect bias but does significantly decrease the internal variability.
The authors also concluded that the ACC of the model tuned by 1-10-fold CV is not stable enough to
enable the comparison with other models of close performance. To be capable of distinguishing between
the trained models with close performance differing, it requires higher choices of J. Also, based on a
study by Kohavi et al. [154], using K=5 or k=10 produces a reasonable trade-off between bias and
variance. Consequently, a 10-5—fold CV was chosen for the second stage.

From Figure 6.22, which represents the evaluation performance of the KNN model with UDFS
as feature selection method from 1 to 120 features in the training dataset, the model, with only 10
features, already presents overall performance above 90%, contrarily to the ensemble learning model with
LLCFS as a feature selection method, Figure 6.23. The highest overall performance of the KNN classifier
was with only 20 features, which was the model chosen to the third stage. With the same number of
features, the ensemble learning model presents lower performance, 5.51% in ACC, 7.84% in SENS, 1.27%
in SPEC and 4.77%, 6.42%, 7.52% in PREC, F1S and MCC, respectively. Moreover, the computational
power required for an ensemble learning model is much higher than the one needed for a KNN model.

After testing the model with unseen data, even though the performance was high, occasionally

the model misclassified samples, resulting in outliers, as seen in Figure 6.24 (orange boxes).
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Furthermore, the model misclassified samples right after a gait event transition, as also seen in Figure
6.24 (blue boxes). The developed algorithm aimed only at removing the outliers of the signal, since
there is not possible, with a pre-processing technique, to suppress the advanced of delayed detections in
gait event transitions. The algorithm result for a full trial is depicted in Figure 6.25, as seen, all the
outliers for the trial were removed and replaced with the correct gait event. Only a small increase
in performance was expected since the presence of outliers was low when compared to the
number of times the model considered a transition delayed or advanced in time. Lastly, in
Figure 6.26 it is possible to compare the true labels with the algorithm results, as seen, the only
difference between both signals is the sample in which the transition between the gait

event happens (Figure 6.26 (red boxes)).

7. ASCANE PRE-FALL STEP DETECTION SYSTEM

One of the primary goals of this thesis was to be capable of estimating a fall through an ordinary
cane system. According to the literature, fall and pre-fall states are considered relevant to be
detected. Subsequently, this chapter aims at developing a classifier fitted of distinguishing normal
gait and PFS situations, using ASCane gait parameters through an IMU-based system throughout
ADLs. This chapter will be divided into three major arts: i) System setup, data collection from sensing
devices through trials in healthy young people, and computation of metrics; ii) Selection of the most
relevant metrics through several feature selection methods; iii) Training and testing of different machine
learning classifiers with the most suitable set of metrics.

The scientific literature regarding fall-related systems installed into a cane is very focused on FD
systems which employ threshold or multi-threshold algorithms. FD systems are often based on impact
detection [94], [95], [105], [155]. Nevertheless, some canes embed systems which try to avoid falls or
imbalances, but they are embedded in a robotic system with a wheele based [100]-[103], [156]. Besides
up to our knowledge, there is still no cane system proposed regarding PFS detection using
IMUs. Hence it is necessary to establish a framework that takes advantage of the perceptual information
to monitor the subject movement execution and, in the most undesirable case, use it to prevent fall
situations.

Ribeiro et al. [157] developed a strategy to predict a fall only using wearable sensors attached to
the subjects’ lower back, thighs and feet. It was considered four different locomotion modes to be

classified: fall, pre-fall (Gait cycle before the fall’s situation), walk forward, and global (including walking
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in circle and walk forward, bypassing an obstacle). Using convolutional neural networks based on deep
learning, PFS were identified with a success rate of 88.24%, whereas fall and walk forward plus global
locomotion modes presented accuracies of 100% and 93.26%, respectively. Consequently, the pre-fall
step presents key differences from normal steps. Based on these achieved results, it is possible to
establish the hypothesis that the inertial data acquired from a cane from the last step before

a fall might be different from data of standard steps.

7.1 Methods and Materials

7.1.1 General Overview

The proposed methodology used for detecting PFS situations is very similar to the one achieved in
Chapter 6. A schematic overview of the completed strategy is highlighted in Figure 7.1. After the
experimental trials and segmentation of the last complete valid step before a fall, a machine learning
study was performed to find which are the best set of features and machine learning classifier to identify
PFS situations. In the following subchapters, a brief description of each module is given, together with

the explanation of the work developed.
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Figure 7.1: General Overview of the carried-out methodology for the detection of pre-fall situations.
7.1.2 Experimental Protocol

All trials were performed at the gymnasium and data from four different fall directions were
collected (front, backward, right and left), as portrayed in Figure. 7.2. The falls were executed by ten
volunteers which ranged from 22 to 25 years (23.6 + 1.02 years), with a body mass between 52 and 80
kg (67.80 + 7.88 Kg) and a height of 1.51 to 1.81 m (1.71 = 0.83 m). All participants provided their

written consent, and each fall direction was performed a total three times per subject with a total of 120
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simulated falls. Figure 7.3 a) depicts the ASCane and Figure 7.3b) illustrates the ASCane system with the

sensors location and their corresponding orientation.

b)

a) X —

Figure 7.2: a) Fall scenarios mimicked - Subjects starts walking (green arrow) and Falls (red X) to the red arrow
direction; b) Example of a fall to the right in the gymnasium.

a) b)

(2)

Figure 7.3: a) ASCane; b) ASCane system during data acquisition (1) IMU; (2) FSR.
7.1.3 Machine Learning Framework

Since the data acquired was equal as Chapter 6 (ASCane acceleration, angular velocity and FSR),

the computed features were the same (Table XXIV — Appendix 3). Consequently, feature computation and
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normalization were equal for both sections, resulting in 288 features normalized between O and 1.
Regarding feature selection methods, the same ones were used to rank the features for the
predictive model, with exception of PCA, which was not able to rank the features. Therefore, the feature
selection methods used were: CFS, Relieff, UDFS, LASSO, Laplacian Score, UFSOL and LLC.

Considering this is a binary classification, support vector machines can be directly applied to the
dataset. For PFS detection, it was used support vector machines using three different kernels: linear,
gaussian and polynomial. Moreover, the machine learning classifiers previously used were also
implemented for PFS detection, namely: KNN, with an equal, inverse and squared inverse distance
weighting function; DA with linear and quadratic discriminant function; Ensemble Learning; Decision
Trees and Regression Model with linear and pure quadratic terms. The support vector machines were
only built and tested with up to 60 most discriminative features (instead of the 120) due to time-constrains
since, for each model, the computation time was approximately 1 hour.

The goal was to find the beast combination of classifier and features to maximize performance. To
do so, a three-stage study was accomplished. Similar to the previous chapter, all possible combination of
machine learning classifiers and features resulting from several feature selection methods were tested
and evaluated. Secondly, the two most suitable combinations were tested once again, this time with
increased j-k-fold CV, both stages are depicted in Figure 7.4.

The third and last stage involved the development of an online post-processing filtering to
reduce the false-positive rate. The classifier was tested with unseen data to test its predictive power, more
precisely, 6 full trials from different subjects with random fall direction and 9 full trials of ADLs (the same
walking activities tested in Chapter 6). Subsequently, the developed post-processing online filter was
applied to the same results and benchmarked against the classifier results. The algorithms flowchart is
presented in Figure 7.5. Initially, all the samples inside the pre-defined window of the sample (i) with
length (window_size) are selected, and the number of positive detections (N) is calculated. A positive

detection is considered a sample of a PFS. At this point, four different scenarios are possible:

> The number of positive detections (N) can be equal or superior to the number of positive
detections threshold (sample_thr), and the sample (/) is classified as a normal step, in
which the sample (/) remains a normal step.

> The number of positive detections (N) can be equal or superior to the number of positive
detections threshold (sample_thr), and the sample (i) is classified as a PFS. Consequently,

the sample (/) remains classified as a PFS.
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Figure 7.4: The different combinations of feature selection methods, number of features and classifier tested for
the first and second stage.

> The number of positive detections (N) can be inferior to the number of positive detections
threshold (sample_thr), and the sample (i) is classified as a PFS. Thus, the sample (/) is
overridden as a normal step.

> The number of positive detections (N) can be inferior to the number of positive detections
threshold (sample_thr), and the sample (i) is classified as a normal step. Hence, the

sample (/) remains classified as a normal step.

This decision process continues for each sample (i) until the end of the given trial. It is crucial to
disclose that N is independent of i, meaning that instead of modifying the original results of the machine
learning model, the post-processing algorithm creates a new result vector. To achieve the
highest performance, this filter was iteratively tested with every combination of sample_thr and
window_size from 1 up to 100, which performs a total of 10 000 different combinations. Lastly, a
study regarding the detection time was conducted with the filtered classification to uncover how
much time in delay the cane detects the PFS as well as the time difference between the PFS detection
and the impact with the ground/end of the PFS. To evaluate all possible combinations, six metrics were

computed, specifically: MCC, ACC, SENS; SPEC, PREC and F1S, the same as Chapter 6.
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Figure 7.5: Flowchart of the post-processing filter developed for increasing the performance of PFS detection and
elimination of PF detections.

7.2 Results

The first stage conducted for PFS detection intended at assessing which were the two best
combinations of machine learning classifiers and feature selection methods that provided the best overall
performance, with the least number of features. The results comparing the best combinations of
performances are presented from Tables XV to XXI in Appendix 2. The number of features selected was
the one that achieved the best ACC. The Laplacian Score and Relieff feature selection methods
produced the best overall performance. While the Relief method performed slightly better,
considering the trade-off within performance, number of features required and model size, the Laplacian
Score is the most fitting feature selection method (ACC> 89.89%, SENS>91.92%, SPEC>80.97%,
PREC>95.43%, MCC>67.74%, F15>93.66%). Concerning the application of the different classifiers with
the Laplacian Score, it is possible to acknowledge that the KNN classifier and support vector
machines with a polynomial kernel attained the best outcomes (ACC> 98.85%, SENS>99.29%,
SPEC>96.97%, PREC>99.30%, MCC>96.25%, F15>99.29%). On the other hand, both DA tested (linear
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and quadratic) presented the lowest performance (ACC> 80.97%%, SENS>91.92%, SPEC> 80.97%,
PREC> 95.43%, MCC > 67.74%, F1S > 93.66%).

The two best combinations were chosen based on two criteria: the classifier must be different and
needs to have the best trade-off between performance and number of features necessary. Consequently,
two combinations resulted from these criteria: Laplacian Score with support vector machines
(polynomial kernel) and KNN (squared inverse as distance weight function), which results are

exposed in Table 7.1.

Table 7.1: Overall ACC, SENS, SPEC, PREC, MCC and F1S of the two best combinations of feature selection
method, classifiers and number of features in the first stage accomplished for PFS detection

Feature Number Overall Performance
Selection Classifier of
Method Features ACC SENS SPEC PREC MCC F1S
KNN Squared
12 98.85 99.29 96.97 99.30 99.29 96.25
Inverse
Laplacian Support Vector
Machines - 51 99.89 99.92 99.78 99.95 99.93 99.67

Polynomial

The second stage was designed to estimate the real performance of the selected machine learning
classifiers and choose the one who performed the best. Consequently, the chosen combinations were
tested once again with a 10-5-fold CV, instead of 1-5-fold CV. With increased J-K-fold, the training
time of the classifier increases proportionally. Since for each iteration, the support vector machines
training time was approximately 39 hours, due to time constraints, only the first 30 iterations of both
classifiers were conducted for their comparison.

Regarding the KNN classifier, all the evaluation metrics increased, as seen in Table XXII from
Appendix 2. The ACC increased by 0.23% (reaching 99.08%), the SENS improved by 0.1% (99.39%), and
the SPEC, PREC, MCC and F1S reached 97.72%, 99.47%, 99.43%, 97.00, respectively. The comparison
between the results from the first and second stage are exhibited in Table 7.2 and the evaluation
performance of the KNN classifier trained with 1 up to the 30 most significant features is represented in

Figure 7.6.
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Table 7.2: Comparison between the first and second stage results (ACC, SENS, SPEC, F1S and MCC) of the KNN
model (Squared Inverse as distance weight function) trained with the 12 most significant features resulted from
the Laplacian Score Feature Selection method

ACC SENS SPEC PREC F1S McCC
1= 2m 1= 2nd 1« 2nd 1« p L 1« p L 1= 2m

98.85 99.08 99.29 99.39 9697 97.72 9930 99.47 99.29 9943 96.25 97.00
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Figure 7.6: Overall ACC, SENS, F1S and MCC obtained with the KNN model trained from 1 up to the 30 most
significant features computed by the Laplacian Score feature selection method.

Concerning the application of support vector machines, the results decreased slightly. The
resultant ACC lowered 0.8% (matching 99.09%), the SENS dropped 1.00% (98.92%), and the SPEC,
PREC, MCC and F1S reached 98.63%, 99.91%, 99.92% and 99.58%, respectively. The comparison
between the results from the first and second stage are exhibited in Table 7.3. and the evaluation
performance of the support vector machines trained with 1 up to the 30 most significant features is

represented in Figure 7.7.

Table 7.3: Comparison between the first and second stage results (ACC, SENS, SPEC, F1S and MCC) of the
support vector machines model (polynomial kernel) trained with the 12 most significant features resulted from
the Laplacian Score Feature Selection method

ACC SENS SPEC PREC F1S MCC
1= 2nd 1= 2 1= 2 1= 2 1= 2 1= p L

99.89 99.09 99.92 9892 99.78 9863 9995 9991 99.93 9992 99.67 99.58
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Figure 7.7: Overall ACC, SENS, F1S and MCC obtained with support vector machines (polynomial kernel) model
trained from 1 up to the 30 most significant features computed by the Laplacian Score feature selection method.

Once again, the classifier was chosen considering the existing trade-off between the evaluation
metrics, computational power and number of features needed. The KNN classifier performance
was superior to the one reached by the support vector machines, and the difference between the
number of features is significantly (approximately 40). Therefore, the combination of the 12 most
significant features through the Laplacian Score method with the KNN algorithm as classifier was chosen

to continue to the next and final stage, the 12 most significant features are listed in Table 7.4.

Table 7.4: The 12 most significant features by the Laplacian Score for the detection of PFSs in a cane.

Feature Ranking Feature Description

1 'FSR' ASCane FSR
2 'Quaternionl' First element of quaternion vector

Correlation Between Angular Velocity
3 ‘Correlation - Gyr X - Z'

X and Z axis
4 'MAD' Magnitude of Angular Displacement
5 ‘Quaternion2’ Second element of quaternion vector
Roll (Madgwick Sensor-Fusion
6 'Roll'
Algorithm)

7 'Max_Gyr_Z"' Maximum Angular Velocity (Z axis)
8 'Displacement_Y' Displacement (Y axis)

Resultant of Average Acceleration (Y
9 'RAC -Y'

axis)
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Feature Ranking Feature Description

Yaw (Madgwick Sensor-Fusion

10 Yaw'
Algorithm)
SVM of Resultant of Average
11 'RAC SVM!
Acceleration
Resultant of Average Acceleration (X
12 'RAC - X'

axis)

The use of a post-processing algorithm intended to increase the performance metrics and
remove PF from the resultant signal. The comparison between the use and non-use of the algorithm
for different windows sizes and sample numbers are presented in Table XXIII in Appendix 2. It is verified
that ACC, SENS F1S and MCC increase while SPEC and PREC decreased. As we increase window_size,
the ACC rises until it peaks (ACC = 99.76%) with a window_size of 20 and sample_thr of 20 (Figure
7.8 - grey X). Yet, PF detections are still detected (SENS = 99.93%). With a window_size of 39 and
sample_thr of 39 (Figure 7.8 - blue X), all the PF are eliminated, resulting in an ACC of 99.65%
(1.5% increase), SENS of 100% (1.89% increase), SPEC of 84.44% (decrease of 15.56%), PREC of
99.64%(decrease of 0.39%) and F1S and MCC of 99.82% and 91.73% (increase of 0.78% and 18.58%)
respectively. Increasing the window_size to 100, PF detections start to appear again (SENS = 99.73%).
The comparison between the use and non-use of the post-processing algorithm with a window_size of

39 and sample_thr of 39 for all tested trials is depicted in Figure 7.9.
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Figure 7.8: ACC of all tested combinations (sample_thr and window_size) from 1 up to 100 (each) of the post-
processing algorithm where the combination with the highest achieved ACC is marked with grey and the chosen
combination market at blue.

113



Class

—Predicted Labels|
| —Real Labels
3 4 5 6

Sample Number %10

—Predicted Labels
| | | —Real Labels

0 1 2 3 4 5 6 7

Sample Number «10*

o
[S]

4

b) ——

Class

Figure 7.9: Comparison between the non-use (a) and use (b) of the post-processing filter with sampl/e_thr and
window_size of 39.

With the use of the post-processing filter, the detection of a PFS is delayed 0.191+0.011s (Table
7.5), detected 1.019+0.11s (Table 7.6) before the end of the respective step and 2.009+0.628s
(Table 7.7) before the impact with the ground. Without the use of the filter, the PFS is detected
1.22+0.11s (Table 7.6) before the end of the respective step and 2.107+0.635s (Table 7.7) before
the impact with the ground. The use of the post-processing filter results in a delayed impact detection of

0.098s.

Table 7.5: Comparison between the Mean and Standard Deviation of the time difference between the detection of
the PFS (with and without the use of the post-processing filter) and the real labels

Without Filter With Filter: Window Size / Number of Samples

20/20 39/39 100/33
Samples Time(s) Samples Time(s) Samples Time(s) Samples  Time(s)
Mean -0.333 0,002 18.83 0,094 38.33 0,191 31.83 0,159
Standard Deviation 0.516 0,003 0.752 0,003 2.338 0,011 0.752 0,003

114



Table 7.6: Comparison between the Mean and Standard Deviation of the time difference between the detection of
the PFS (with and without the use of the post-processing filter) and the end of the PFS

With Filter: Wi i N f I
Without Filter i ilter: Window Size / Number of Samples

20/20 39/39 100/33
Samples Time(s) Samples Time(s) Samples Time(s) Samples  Time(s)
Mean 242.5 1.215 223.33 1,117 203.83 1,019 210.33 1,052
Standard Deviation 21.95 0.109 22.214 0,111 22.0410 0,110 21.805 0,109

Table 7.7: Comparison between the Mean and Standard Deviation of the time difference between the detection of
the PFS (with and without the use of the post-processing filter) and the impact with the ground

) ) With Filter: Window Size / Number of Samples
Without Filter

20/20 39/39 100/33
Samples Time(s) Samples Time(s) Samples Time(s) Samples Time(s)
Mean 440.5 2.20 421.33 2,107 401.83 2,009 408.33 2,042
Standard Deviation  126.92 0.63 127.19 0,636 125.57 0,628 126.98 0,635

For example, in Figure 7.10, a fall trial is depicted with all events marker with an X. The beginning
of the PFS is marked at orange, the detection of the PFS with the post-processing algorithm
window_size of 39 and sample_thr of 39) labelled at green (1.675s and 1.025 before impact and

end of the PFS, respectively), the end of the PFS indicated at grey and the impact at yellow.
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Figure 7.10: PFS detection of a trial with all events marker with an X, PFS (marked at orange), detection of the PFS
with the post-processing algorithm (window_size of 39 and sample_thr of 39 marked at green), the end of the PFS
(marked at grey) and the impact (marked at yellow).
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7.3 Discussion

From Figure 7.6, which represents the evaluation performance of the KNN model with Laplacian
Score as feature selection method from 1 to 30 features in the training dataset, the model, with only 10
features, already presents overall performance above 98%. Contrarily, the support vector machines
model, Figure 7.7, demands more than 25 features to achieve performance above 90%.

Moreover, starting at 12 features until 30, the performance of the model prevails constant, and
slightly decreasing at some iterations. The highest overall performance of the KNN classifier was
with 12 features, which was the model chosen to the third stage. With the same number of features,
the support vector machines present much lower performance, 45.66% in ACC, 45.98% in SENS, 32.98%
in SPEC and 12.66%, 33.32%, 82.88% in PREC, F1S and MCC, respectively.

After testing the model with unseen data, even though the performance was high, occasionally the
model misclassified samples, resulting in false positive detections, as seen in Figure 7.9 a). The
elimination of PF was imperative admitting that if a PFS system was installed into the ASCane, it
would be activated several times during ADLs.

The developed post-processing filter aimed only at excluding the false positives of the signal. In
Figure 7.9 b) it is possible to observe that the post-processing filter in the unseen data eliminated
all PF detections. However, by applying a sample_thr of 39, the PFS will be detected with a delay of
39 samples, which translated to a 0.195s mean delay, as seen in Figure 7.9 b) (zoomed area). To
guarantee that a fall is prevented, the system needs to act during PFS. By Table 7.6, with the use of a
window_size of 39 and sample_thr of 39, the PFS is detected 1.019s before the end of the
corresponding PFS and 2.009s before impact, Table 7.7, which is a significant amount of time for

an actuator.

8. CONCLUSIONS

Throughout this master thesis, the author realized that the occurrence of falls amongst the elderly
is a significant risk that can lead to fatal or non-fatal falls, and present high costs. As a result, it is
imperative to achieve efficient methodologies to counteract the stated problem, and any attempt to avoid
or prevent a fall can save multiple lives. According to the state-of-the-art, research groups and commercial
brands are more focused on fall detection systems embedding IMUs. Nevertheless, only detecting falls is
not enough to prevent or save lives. Thus, PFS detection systems are crucial devices that can save lives

by detecting a fall before it happens, giving more time to actuate.
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Although several steps have already been taken in this direction, one of the conclusions reached
is that wearable systems, even with their advantages, still are rejected by patients since the proposed
systems required to be attached to the subject's body, which weighs on the individual and constrains his
movements. Therefore, embedding sensors into a cane can be the best choice since these assistive
devices are widely used amongst the geriatric community and the number of prescriptions is increasing
due to gait/balance disorders and lower limbs weakness. Furthermore, an evaluation of the canes gait
can be capable of enhancing the ability of cane usage, also reducing the possibility of possible falls
amongst them. The work carried out in this dissertation addresses the use of a cane system not only for
fall and pre-fall detection but also for the segmentation of a cane stride into six different gait phases.

Chapter 4 addresses the development of the ASCane system. The result is a light and small
system, that is easily installed into any ordinary cane. The use of the IMU for the acquisition of kinematics
and the FSR limits the number of sensors embedded into the cane, increasing the system simplicity,
which facilitates its setup.

Concerning the detection of falls in Chapter 5, typically, FD strategies can be divided into three
categories: fixed threshold, adaptive threshold and machine learning. With the application of support
vector machines, it was achieved good results (SENS = 83.47%), (SPEC = 96.60%) and (MCC = 82.11%).
However, the best performance was achieved with a single lower threshold of 0.2g, (SENS = 96.90%),
(SPEC = 98.98%) and (MCC = 95.59%) which decreases the computational power required by the
microprocessor used.

Regarding machine learning in this dissertation, the classification of PFS and cane events was
established using a min-max scaling procedure [0,1] to normalize the data features, followed by a
combination of different machine learning classifiers and feature selection methods. The selected
classification algorithm for building the final machine learning model was then optimized with post-
processing algorithms and filters.

For the classification of cane events, which is disclosed in Chapter 6, detailed comparisons were
evaluated due to the implementation of two different approaches: a finite-state-machine algorithm present
in the literature, and a machine learning study to uncover which set of features and classifier better
distinguish the six different gait phases of a cane. From these results, it was concluded that, for the time
being, the machine learning approach with a post-processing algorithm is more suitable to be embedded
into the cane system while the state-of-the-art algorithm is not improved to account for the inertial

differences of data acquired in the cane. For the different walking scenarios tested, it was achieved an
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overall high performance (ACC = 95.70%, SENS =92.74 %, SPEC =99.13%, PREC = 93.74%) considering
the misdetections existed only in the gait event transitions.

The results for PFS detection, the same machine learning approach was conducted, and it was
concluded that the combination of the 12 most relevant features from the Laplacian score feature
selection methods combined with the KNN (Squared Inverse) as the machine learning classifier provided
the best results, followed by an online post-processing filter to remove false positive detections. It was
achieved great performance (ACC = 99.65%, SENS =100 %, SPEC =84.44%, PREC = 99.64%) detecting
the PFS 1.019s + 0.110 before its end and 2.009 + 0.628 before impact.

The work herein presented enables to answer the RQs outlined in Chapter 1.

» RQ1: Which is the best fall detection strategy to be implemented in a cane? This RQ is
addressed in Chapter 5
The best fall detection strategy that can be implemented into a cane is a single lower
threshold of 0.2g. However, for increased robustness, the use of another threshold, wres

is indicated.

» RQ2: Which are the features and machine learning classifier with greater potential to
distinguish between the different human gait events in the implemented classifiers? This
RQ is addressed in Chapter 6.

The 20 most significant features resulting from the UDFS combined with the KNN
machine learning classifier (followed by and post-processing algorithm) achieved the
highest overall performance amongst all combinations tested (Table 6.2). More
specifically the Acceleration along the X-axis plane High-Pass filtered with cut-off
frequency of 0.1Hz; Acceleration along the Z-axis plane High-Pass filtered with cut-off
frequency of 0.1Hz; Raw acceleration along the Z axis; Raw acceleration along the X axis;
Gravity Component along the X-axis; Gravity Component along the Z-axis; Displacement
along the X axis; Velocity along the Y axis; Velocity along the Z axis; Fourth element of
quaternion vector; Euler Angle - Pitch; Third element of quaternion vector; Euler Angle -
Yaw; SVM of the angular velocity Band-Pass filtered with cut-off frequencies of 0.1Hz and
90Hz; SVM of the angular velocity High-Pass filtered with a cut-off frequency of 0.1Hz ;
Gravity Component along the Y-axis; Angular Velocity along the Z-axis plane High-Pass
filtered with cut-off frequency of 0.1Hz; Raw Angular velocity along the Z axis; Second

element of quaternion vector and the Euler Angle — Roll. With a 10-5-Fold CV it was

118



achieved 99.08%, 99.39%, 97.72%, 99.47%, 99.43%, and 97.00% for ACC, SENS,
SPEC, PREC, F1S and MCC, respectively. When testing the trained model with unseen
data it was achieved an ACC, SENS, SPEC, PREC, F1S and MCC of 99.65%, 100%,
84.44%,99.64%, 99.82% and 91.73%, sequentially.

RQ3: Which are the features and machine learning classifier with greater potential to
distinguish between normal gait and pre-fall situations in data acquired from a cane?
This RQ is addressed in Chapter 7.

The 12 most significant features resulting from the Laplacian Score feature selection
methods combined with the KNN machine learning classifier (followed by and post-
processing filter) achieved the highest overall performance amongst all combinations
tested (Table XXII = Appendix 2). More specifically the ASCane FSR; First element of
quaternion vector; Correlation Between Angular Velocity X and Z axis; Magnitude of
Angular Displacement; Second element of quaternion vector; Roll (Madgwick Sensor-
Fusion Algorithm); Maximum Angular Velocity (Z axis); Displacement (Y axis); Resultant
of Average Acceleration (Y axis); Yaw (Madgwick Sensor-Fusion Algorithm); SVM of
Resultant of Average Acceleration; Resultant of Average Acceleration (X axis); With a 10-
5-Fold CV it was achieved 98.85%, 99.29%, 96.97%, 99.30%, 99.29% and 96.25% for
ACC, SENS, SPEC, PREC, F1S, and MCC, respectively. When testing the trained model
with unseen data it was achieved an ACC, SENS, SPEC, PREC, F1S and MCC of 98.15%,
98.11%, 100%, 100%, 99.04% and 73.15%, sequentially.

8.1 Future Work

As future work, the ASCane system should be improved with some changes at the hardware level.

Firstly, the system implementation should be accomplished in a printed circuit board instead of a

breadboard since the cane is continuously subjected to falls, the internal circuits can be jeopardised.

Secondly, a rechargeable battery should be installed since the ASCane must be connected to a USB

power supply (e.g. computer) to operate. Furthermore, interoperability is a subject that needs to be

studied regarding the developed system in order to different information systems (e.g. desktop and mobile

apps) be able to access, exchange, integrate and cooperatively use data in a coordinated manner. Thus,

providing timely and seamless portability of information regarding the health of individuals and

populations globally.
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Regarding the developed FD strategies (Chapter 5), the addition of the wres feature into the single

LFT algorithm must be tested to perceive if the extra feature increases the overall performance of the

developed algorithm. Moreover, it would improve its robustness since it was proved that wres presents

significant differences between fall and ADL situations. Moreover, different labelling methods should be
studied regarding the machine learning approach taken since the used method (CVFast) may not be the
most suitable for a cane.

The implementation of the newly discovered conditions in the finite-state-machine algorithm for
cane event segmentation is mandatory (Chapter 6). Subsequently, a comparison with the attained results
from the most suited machine learning model needs to be completed to decide which methodology should
be implemented into the microcontroller of the ASCane, enabling real-time testing.

It is also critical to study feature redundancy, both in Chapter 6 and 7, since some of the selected
features are highly correlated, offering small training "value" considering that the presence/state of one
value (e.g. filtered signal) can always (or almost always) be used to determine the presence/state of the
other (e.g. raw signal). Performing a hyperparameter optimisation in the best obtained model is essential
since all models in this thesis were trained with the default parameters. Additionally, the construction and
use of associative skill memories and convolutional neural networks based on deep learning as tools for
locomotion mode recognition (standard steps, PFS and falls) and cane event recognition (FGC, FBC,
MSM, PCO, FCO, CMSW) should be completed since are innovative concepts used within the context of
human fall prediction and gait analysis. Applying the results from the cane event machine learning model
(Chapter 6) as input for the machine learning model, which predicts PFS is also proposed.

In addition, it is required to surmount the considerable small number of samples acquired in
Chapters 5, 6 and 7. It would be crucial building such a database with relevant gait parameters obtained
from not only healthy but also elderly and impaired subjects during walking over different conditions of
speed and ground, using the ASCane system. Consequently, it would be possible to determine if the

ASCane is capable of accurately detecting its gait phases, as well as fall and PFS situations.
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APPENDICES

Appendix 1

In this appendix it is represented the complete results regarding chapter 6.

Table I: Algorithm performance in controlled situations with ground truth the manual segmentation

Gait Delay Advance ND within  ND by
ACC
Event % ms % ms range Cane
FGC 83.92 14.37 19.25+10.61 69.36 45.34+25.31 14.92 1.16
FBC 46.34 4325 553242790 8.47 43.92+30.44 52.49 1.16
MSM 0.74 28,57 35.00+0.00 71.43 58.00+30.33 98.09 1.16
PCO 0.96 11.11  90.00+0.00 77.78 78.57+21.74 97.87 1.17
FCO 22.60 3491 51.42+16.85 57.08 53.06+28.32 76.33 1.01
CMsw 98.51 0.95 6.67+4.08 0.76  19.29+29.50 0.42 1.01

Table II: Algorithm performance in Real-Life situations (Level-ground Surfaces) with ground the manual

segmentation
Gait Delay Advance ND within  ND by
ACC
Event % ms % ms range Cane
FGC 72.38 0.76 15.00+0.00  96.94 54.13+23.87 22.65 4.97
FBC 49.45  29.61 35.19+23.31 30.17 44.07+26.74 45.58 4.97
MSM 8.84 1563 43.00+16.81 68.75 62.27+28.52 86.19 4.97
PCO 12.98 851 38.75+31.98 85.10 67.50+24.62 82.59 4.41
FCO 46.54 2.38 10.00+4.08 74.40 42.60+23.98 49.58 3.88
CMsw 93.54 0.60 5.00+0.00 150 7.60+4.2.52 2.52 3.93

Table IlI: Algorithm performance in Real-Life situations (Inclined Surfaces) with ground the manual segmentation

Advance

Gait Delay ND within  ND by
ACC

Event % ms % ms range Cane

FGC 7219  1.83 12504354 9541 51.68+24.98  19.21 8.61

FBC 5695  18.60 47.50+28.87 29.07 53.00+28.46  34.44 8.61

MSM 7.28 0 0.00£0.00 81.81 77.22¢19.22  84.11 8.61

PCO 1060 1875 13.33+1041 75.00 77.92+20.05  78.80 10.60
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Gait Delay Advance ND within  ND by

ACC
Event % ms % ms range Cane
FCO 38.93 5.17 16.67+10.41 77.59 42.89+25.79 52.35 8.72
CMSw 87.42 0 0.00+0.00 0.76 5.00+0.00 3.97 8.61

Table 1V: Algorithm performance in Real-Life situations (Stairs) with ground the manual segmentation

Gait Delay Advance ND within  ND by
ACC
Event % ms % ms range Cane
FGC 52.78 1754 18.50+11.07 75.43 54.30+22.00 17.59 29.63
FBC 34.26 32.43 34.17+21.30 29.73 30.00+22.36 36.11 29.63
MSM 11.11 16.67 80.00+21.21 41.67 52.00+38.01 59.26 29.63
PCO 17.59 26.32 30.00+27.16 68.42 78.46+23.66 52.77 29.63
FCO 34.26 24.32 69.44+36.70 4595 46.76+26.34 42.59 23.15
CMsw 77.36 0 0.00+0.00 0 0.00+0.00 0 22.65

Table V: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the CFS feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
77.67 77.90 95.50 77.93 77.87 73.41 120
Inverse
KNN Equal 77.67 77.90 95.50 77.93 77.87 73.41 120
KNN Inverse 77.67 77.90 95.50 77.93 77.87 73.41 120
DA Linear 77.07 76.42 95.39 78.83 76.77 72.79 75
DA Quadratic 70.13 68.71 93.99 71.20 68.23 63.54 75
Ensemble Learning 94.35 94.29 98.86 94.38 94.32 93.13 113
Decision Tree 90.04 90.00 98.00 89.96 89.90 87.97 117
Regression Model -
46.88 46.48 89.24 54.09 45.67 38.21 120
Linear
Regression Model -
58.17 57.38 91.54 64.07 57.03 51.24 120

Pure Quadratic
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Table VI: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the Laplacian Score
feature selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
86.27 86.61 97.23 86.45 86.45 83.74 60
Inverse
KNN Equal 86.27 86.61 97.23 86.45 86.45 83.74 60
KNN Inverse 86.27 86.61 97.23 86.45 86.45 83.74 60
DA Linear 69.40 69.18 93.90 70.58 68.71 63.44 102
DA Quadratic 65.32 64.03 93.09 66.60 63.82 58.01 95
Ensemble Learning 95.72 95.63 99.14 95.70 95.65 94.80 111
Decision Tree 90.95 90.79 98.18 90.80 90.79 88.97 110
Regression Model -
57.49 56.23 91.41 62.80 55.36 49.75 120
Linear
Regression Model -
61.78 60.80 92.28 66.14 60.61 54.98 120

Pure Quadratic

Table VII: Comparison of the best classification results ((ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the LASSO feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S McCC Features
KNN Squared
90.86 90.85 98.16 90.72 90.75 88.94 34
Inverse
KNN Equal 90.86 90.85 98.16 90.72 90.75 88.94 34
KNN Inverse 90.86 90.85 98.16 90.72 90.75 88.94 34
DA Linear 69.41 69.14 93.88 71.61 69.20 63.95 117
DA Quadratic 64.20 61.69 92.80 64.39 60.88 55.33 118
Ensemble Learning 93.17 92.86 98.62 93.26 93.03 91.68 119
Decision Tree 86.89 86.54 97.37 86.50 86.52 83.89 117
Regression Model -
43.37 43.83 88.61 47.40 40.54 32.30 119
Linear
Regression Model -
50.76 50.15 90.10 53.96 4871 41.16 120

Pure Quadratic
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Table VIII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the LLCFS feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
84.39 84.59 96.86 84.49 84.43 81.37 120
Inverse
KNN Equal 84.39 84.59 96.86 84.49 84.43 81.37 120
KNN Inverse 84.39 84.59 96.86 84.49 84.43 81.37 120
DA Linear 75.91 75.68 95.20 76.42 75.46 71.05 116
DA Quadratic 72.87 72.25 94.57 73.85 72.10 67.39 31
Ensemble Learning 96.10 96.03 99.22 96..06 96.02 95.26 118
Decision Tree 91.83 91.73 98.36 91.74 91.73 90.09 120
Regression Model -
60.51 59.36 92.02 65.22 59.32 53.50 120
Linear
Regression Model -
63.96 62.93 92.72 67.83 63.03 57.48 120

Pure Quadratic

Table IX: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the PCA feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
92.38 92.51 98.47 92.36 92.40 90.89 62
Inverse
KNN Equal 92.38 92.51 98.47 92.36 92.40 90.89 62
KNN Inverse 92.38 92.51 98.47 92.36 92.40 90.89 62
DA Linear 68.12 67.66 93.63 69.72 67.24 61.94 120
DA Quadratic 62.86 61.16 92.61 64.35 60.72 54.81 106
Ensemble Learning 95.08 94.95 99.01 95.06 94.98 94.01 103
Decision Tree 91.11 90.95 98.21 90.95 90.95 89.17 104
Regression Model -
58.17 57.20 91.54 63.78 57.05 51.04 120
Linear
Regression Model -
61.62 60.70 62.24 63.31 60.69 54.97 119

Pure Quadratic
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Table X: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the Relieff feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
86.44 86.63 97.27 86.45 86.49 83.80 119
Inverse
KNN Equal 86.44 86.63 97.27 86.45 86.49 83.80 119
KNN Inverse 86.44 86.63 97.27 86.45 86.49 83.80 119
DA Linear 77.99 77.14 95.57 73.93 77.35 73.80 37
DA Quadratic 77.18 76.70 95.43 78.31 76.62 72.72 31
Ensemble Learning 94.26 94.09 98.84 94.27 94.17 93.02 120
Decision Tree 90.76 90.61 98.14 90.62 90.62 88.76 119
Regression Model -
56.43 55.54 91.19 62.61 55.40 49.21 110
Linear
Regression Model -
60.63 59.68 92.03 65.84 59.83 53.99 120

Pure Quadratic

Table XI: Comparison of the best classification results ((ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the UDFS feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
94.49 94.51 98.90 94.24 94.36 93.26 20
Inverse
KNN Equal 94.49 94.51 98.90 94.24 94.36 93.26 20
KNN Inverse 94.49 94.51 98.90 94.24 94.36 93.26 20
DA Linear 76.04 75.77 95.22 76.67 75.62 71.26 70
DA Quadratic 71.11 70.25 94.24 71.74 70.12 65.01 108
Ensemble Learning 94.71 94.65 98.93 94.75 94.68 93.63 118
Decision Tree 89.86 89.84 97.96 89.79 89.81 87.78 118
Regression Model -
52.88 52.05 90.46 58.45 51.74 44.72 120
Linear
Regression Model -
59.59 58.66 91.83 64.45 58.66 52.60 119

Pure Quadratic
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Table XII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S, MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the UFSOL feature
selection method (fist stage)

Overall Performance Number of
Classifiers
ACC SENS SPEC PREC F1S MCC Features
KNN Squared
92.08 92.12 98.41 92.01 92.04 90.47 30
Inverse
KNN Equal 92.08 92.12 98.41 92.01 92.04 90.47 30
KNN Inverse 92.08 92.12 98.41 92.01 92.04 90.47 30
DA Linear 67.11 66.82 93.39 70.96 67.10 67.85 82
DA Quadratic 53.89 52.10 90.70 55.58 49.24 43.40 84
Ensemble Learning 93.88 93.66 98.77 93.91 93.77 92.55 88
Decision Tree 88.49 88.25 97.69 88.24 88.24 85.93 93
Regression Model -
40.60 40.02 88.09 4428 37.06 28.69 120
Linear
Regression Model -
45.22 44.56 89.00 48.02 4198 33.97 119

Pure Quadratic
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Table XlIl: Comparison of the classification results (ACC, SENS, SPEC, PREC, F1S, MCC),), of the machine learning models, KNN and Ensemble Leaning, trained with the
features ranked by the UDFS and LLCFS method, respectively and validated with a 10-5-Fold CV (second stage)

Feature Selection Overall Performance Number of
Classifiers
Melhod ACC SENS SPEC PREC F1S McC Features
98.22 97.34 99.63 97.33 97.33 96.97 20
KNN
UDFS 97.27 96.01 99.42 96.21 96.11 95.54 10
Squaredinverse
97.75 96.72 99.53 96.78 96.74 96.28 15
98.46 97.63 99.68 97.87 97.75 97.43 118
92.71 89.50 98.36 92.56 90.91 89.45 20
LLCFS Emsemble Learning 95.38 93.30 98.97 95.11 94.16 93.21 30
97.86 96.69 99.54 97.13 96.91 96.47 35
98.18 97.17 99.62 97.46 97.31 96.94 40

Table XIV: Performance Metrics for each gait event (ACC, SENS, SPEC, PREC, F1S, MCC) with the combination of the 20 most significant
features through the UDFS feature selection method with the KNN algorithm as classifier (second stage)

Gait Event ACC SENS SPEC PREC F1S Mcc
FGC 93.59 93.59 99.50 96.51 95.02 94.33
FBC 98.88 98.87 99.13 98.59 98.73 97.96
MSM 96.34 96.33 99.56 96.34 96.34 95.90
PCO 92.87 92.86 99.66 91.90 92.38 92.07
FCO 98.39 98.39 99.74 98.68 98.52 98.25
CMS 98.40 98.40 99.29 96.90 97.64 97.11
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Appendix 2

In this appendix it is represented the complete results regarding Chapter 7.

Table XV: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the Relief feature
selection method for PFS detection (first stage)

Number of
Classifiers ACC SENS SPEC PREC F1S MccC
Features
Support Vector
95.84 97.80 87.74 97.04 97.42 86.62 53
Machines - Linear
Support Vector
99.89 99.92 99.74 99.94 99.93 99.65 60
Machines - Polynomial
Support Vector
99.02 99.43 99.34 99.35 99.39 96.89 58
Machines - Gaussian
KNN Squared Inverse 99.95 99.96 99.96 99.98 99.97 99.84 106
KNN Equal 99.95 99.96 99.96 99.98 99.97 99.84 106
KNN Inverse 99.95 99.96 99.96 99.98 99.97 99.84 106
DA Linear 92.22 94.29 83.30 96.05 95.16 75.39 5
DA Quadratic 92.14 95.31 78.50 95.02 95.17 74.18 5
Ensemble Learning 99.93 99.96 99.84 99.96 99.96 99.78 30
Decision Tree 99.78 99.87 99.39 99.86 99.87 99.28 34
Regression Model -
95.07 98.21 81.49 95.82 97.00 83.35 118
Linear
Regression Model -
95.40 98.23 83.22 96.19 97.20 84.55 119

Pure Quadratic
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Table XVI: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the Laplacian Score
for PFS detection (first stage)

Number of
Classifiers ACC SENS SPEC PREC F1S MccC
Features
Support Vector 96.24 97.94 89.26 97.40 97.67 87.96 55
Machines - Linear
Support Vector 99.89 99.92 99.78 99.95 99.93 99.67 51
Machines - Polynomial
Support Vector 99.35 99.52 98.63 99.67 99.59 97.93 60
Machines - Gaussian
KNN Squared Inverse 98.85 99.29 96.97 99.30 99.29 96.25 12
KNN Equal 98.85 99.29 96.97 99.30 99.29 96.25 12
KNN Inverse 98.85 99.29 96.97 99.30 99.29 96.25 12
DA Linear 80.97 91.92 81.16 95.46 93.66 69.15 8
DA Quadratic 90.17 92.30 80.97 95.43 93.84 67.74 11
Ensemble Learning 99.94 99.94 99.90 99.98 99.96 99.79 67
Decision Tree 99.71 99.82 99.25 99.83 99.82 99.06 118
Regression Model - 95.19 98.21 82.17 95.96 97.09 83.81 119
Linear
Regression Model - 95.66 98.32 84.22 96.41 97.35 85.46 118

Pure Quadratic
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Table XVII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the UDFS for PFS

detection (first stage)

Number of
Classifiers ACC SENS SPEC PREC F1S MCC
Features
Support Vector
80.47 99.91 0.51 80.51 89.17 3.93 41
Machines - Linear
Support Vector
80.45 100 0.01 80.45 89.16 0.91 1
Machines - Polynomial
Support Vector
82.02 99.92 461 81.91 90.02 19.07 60
Machines - Gaussian
KNN Squared Inverse 95.92 97.74 88.06 97.24 97.49 86.55 120
KNN Equal 95.92 97.74 88.06 97.24 97.49 86.55 120
KNN Inverse 95.92 97.74 88.06 97.24 97.49 86.55 120
DA Linear 81.17 100 0.06 81.17 89.61 2.28 4
DA Quadratic 81.16 100 0.00 81.16 89.60 NaN 1
Ensemble Learning 94.73 99.98 72.10 93.92 96.85 82.23 120
Decision Tree 90.57 94.31 74.48 94.09 94.02 69.05 120
Regression Model -
82.80 99.51 10.66 82.78 90.38 25.98 116
linear
Regression Model - pure
83.39 99.06 15.81 83.53 90.64 30.66 119

quadratic
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Table XVIII: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by
the highest ACC, for the different machine learning classifiers trained with the features ranked by the LLC feature
selection method for PFS detection (first stage)

Number of
Classifier ACC SENS SPEC PREC F1S MCC
Features
Support Vector
95.75 97.84 88.64 97.24 97.36 86.44 55
Machines - Linear
Support Vector
99.26 99.51 98.21 99.56 99.54 97.64 58
Machines - Polynomial
Support Vector
97.89 99.11 92.87 98.28 98.69 93.21 59
Machines - Gaussian
KNN Squared Inverse 97.82 98.83 93.46 98.49 98.66 92.82 120
KNN Equal 97.82 98.83 93.46 98.49 98.66 92.82 120
KNN Inverse 97.82 98.83 93.46 98.49 98.66 92.82 120
DA Linear 91.38 93.53 82.10 95.75 94.62 72.97 14
DA Quadratic 90.78 93.57 78.79 95.00 94.28 70.65 17
Ensemble Learning 99.94 99.95 99.89 99.97 99.96 99.80 84
Decision Tree 99.72 99.83 99.25 99.83 99.83 99.08 78
Regression Model -
95.20 98.27 81.82 95.91 97.08 83.79 116
linear
Regression Model -
95.69 98.33 84.33 96.43 97.37 85.57 117

Pure Quadratic
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Table XIX: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the CFS for PFS
detection (first stage)

Number of
Classifier ACC SENS SPEC PREC F1S MCC
Features
Support Vector
85.12 98.07 31.83 85.54 91.38 44.29 55
Machines - Linear
Support Vector
96.09 97.95 88.41 97.20 97.58 87.43 58
Machines - Polynomial
Support Vector
90.67 97.81 61.31 91.23 94.40 68.07 60
Machines - Gaussian
KNN Squared Inverse 95.09 97.43 85.01 96.55 96.99 83.71 120
KNN Equal 95.09 97.43 85.01 96.55 96.99 83.71 120
KNN Inverse 95.09 97.43 85.01 96.55 96.99 83.71 120
DA Linear 87.41 88.77 81.58 95.40 91.97 63.97 101
DA Quadratic 81.16 100 0.00 81.16 89.60 NaN 1
Ensemble Learning 99.92 99.95 99.8 99.95 99.95 99.73 85
Decision Tree 99.66 99.8 99.06 99.78 99.79 98.89 96
Regression Model -
94.86 97.84 81.99 95.91 96.87 82.72 118
Linear
Regression Model -
95.26 97.88 83.96 96.34 97.10 84.15 113

pure quadratic
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Table XX: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the UFSOL feature
selection method for PFS detection (first stage)

Number of
Classifier ACC SENS SPEC PREC F1S MCC
Features
Support Vector
81.23 99.88 0.87 81.28 89.63 5.83 15
Machines - Linear
Support Vector
81.20 99.92 0.58 81.24 89.62 4.65 2
Machines - Polynomial
Support Vector
84.63 99.69 22.72 84.14 91.26 42.01 59
Machines - Gaussian
KNN Squared Inverse 99.14 99.56 97.34 99.38 99.47 97.18 118
KNN Equal 99.14 99.56 97.34 99.38 99.47 97.18 118
KNN Inverse 99.14 99.56 97.34 99.38 99.47 97.18 118
DA Linear 80.80 98.88 291 81.44 89.32 5.86 1
DA Quadratic 79.23 96.44 5.1 81.41 88.29 3.13 1
Ensemble Learning 99.36 99.89 97.05 99.32 99.61 97.89 114
Decision Tree 99.35 99.64 98.11 99.56 99.60 97.87 118
Regression Model -
86.52 97.92 37.42 87.09 92.18 48.92 120
Linear
Regression Model -
89.99 98.96 51.02 89.77 94.14 63.86 120

Pure Quadratic
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Table XXI: Comparison of the best classification results (ACC, SENS, SPEC, PREC, F1S and MCC), selected by the
highest ACC, for the different machine learning classifiers trained with the features ranked by the Lasso feature
selection method for PFS detection (first stage)

Number of
Classifier ACC SENS SPEC PREC F1S MCC
Features
Support Vector
90.71 98.09 58.93 91.14 94.49 67.07 46
Machines - Linear
Support Vector
98.12 98.63 95.92 99.05 98.84 93.89 53
Machines - Polynomial
Support Vector
94.92 99.27 76.19 94.73 96.94 82.75 51
Machines - Gaussian
KNN Squared Inverse 99.58 99.77 98.76 99.71 99.74 98.61 51
KNN Equal 99.58 99.77 98.76 99.71 99.74 98.61 51
KNN Inverse 99.58 99.77 98.76 99.71 99.74 98.61 51
DA Linear 82.28 93.81 32.60 85.71 89.58 32.79 39
DA Quadratic 81.11 93.26 28.75 84.94 88.91 27.64 20
Ensemble Learning 99.91 99.95 99.77 99.95 99.95 99.72 50
Decision Tree 99.68 99.81 99.12 99.79 99.80 98.96 50
Regression Model -
92.42 98.48 66.20 92.65 95.48 73.54 119
linear
Regression Model -
94.76 98.33 79.32 95.36 96.82 82.21 120

Pure Quadratic
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Table XXII: Comparison of the classification results (ACC, SENS, SPEC, Precision, F1S and MCC), of the machine learning models, KNN and Support Vector Machines, trained
with the features ranked by the Laplacian Score and validated with a 10-5-Fold CV (second stage)

Feature Selection Classifier ACC SENS SPEC PREC F1S MCC Number of
Method Features
60.78 58.33 71.32 89.76 70.71 23.22 10
53.42 53.41 64.74 86.81 66.11 17.23 12
Support Vector
Machines - 59.99 59.08 63.89 87.58 70.56 18.05 20
Polynomial 97.11 97.88 93.81 98.55 98.22 90.68 30
Laplacian
99.09 98.92 98.63 99.91 99.92 99.58 51
98.84 99.24 97.12 99.33 99.28 96.21 10
KNN Squared
99.08 99.39 97.72 99.47 99.43 97.00 12
Inverse
98.22 98.98 94.97 98.83 98.90 94.18 20

Table XXIII: Comparison the post-processing filter results (ACC, SENS, SPEC, Precision, F1S and MCC) with different windows size and sample number with the non-use of the
filter (third stage)

. . Number of
With/Without : ; ACC SENS SPEC PREC F1S MccC
; Window Size

Filter Samples
Without NA 98.15 98.11 100. 100 99.04 73.15
20 20 99.76 99.93 92.29 99.82 99.88 94.51
With 39 39 99.65 100 84.44 99.64 99.82 91.73
100 33 99.45 99.73 86.92 99.70 99.71 87.27
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Appendix 3

In this appendix it is represented the complete list of features computed for chapter 6 and 7.

Table XXIV:Complete list of features used both in Chapter 6 and 7 with feature label, its description and

the corresponding reference.

Feature
Feature Label Feature Description Reference
Number
1 Raw - Acc X Raw acceleration (X axis) [82]
2 Raw - Acc Y Raw acceleration (Y axis) [82]
3 Raw - Acc Z Raw acceleration (Z axis) [82]
4 Raw - Gyr X Raw angular velocity (X axis) NA
5 Raw - Gyr Y Raw angular velocity (Y axis) NA
6 Raw - Gyr Z Raw angular velocity (Z axis) NA
7 BP Filter - Acc X Band-pass filtered acceleration (X axis) NA
8 BP Filter - Acc Y Band-pass filtered acceleration (Y axis) NA
9 BP Filter - Acc Z Band-pass filtered acceleration (Z axis) NA
10 BP Filter - Gyr X Band-pass filtered angular velocity (X axis) NA
11 BP Filter - Gyr Y Band-pass filtered angular velocity (Y axis) NA
12 BP Filter - Gyr Z Band-pass filtered angular velocity (Z axis) NA
13 HP Filter - Acc X High-pass filtered acceleration (X axis) NA
14 HP Filter - Acc Y High-pass filtered acceleration (Y axis) NA
15 HP Filter - Acc Z High-pass filtered acceleration (Z axis) NA
16 HP Filter - Gyr X High-pass filtered angular velocity (X axis) NA
17 HP Filter - Gyr Y High-pass filtered angular velocity (Y axis) NA
18 HP Filter - Gyr Z High-pass filtered angular velocity (Z axis) NA
19 SVM Acc High Pass SVM of High-pass filtered acceleration [58]
20 SVM Acc Band Pass SVM of Band-pass filtered acceleration [58]
21 SVM Acc RAW SVM of Raw acceleration [58]
22 SVM Gyr High Pass SVM of High-pass filtered Angular Velocity [19]
23 SVM Gyr Band Pass SVM of Band-pass filtered Angular Velocity [19]
24 SVM Gyr RAW SVM of Raw Angular Velocity [19]
25 CHA Cumulative Horizontal Acceleration [81]
26 Velocity X Velocity (X axis) [81]
27 Velocity Y Velocity (Y axis) [81]
28 Velocity Z Velocity (Z axis) [81]
29 Displacement X Displacement (X Axis) [81]
30 Displacement Y Displacement (Y Axis) [81]
31 Displacement Z Displacement (Z Axis) [81]
32 CHD Cumulative Horizontal Displacement [81]
33 Cumulative horizontal SL - X Sway Length of Cumulative Horizontal acceleration (X axis) [81]
34 Cumulative horizontal SL - Y Sway Length of Cumulative Horizontal acceleration (Y axis) [81]
35 Cumulative horizontal SL - Z Sway Length of Cumulative Horizontal acceleration (Z axis) [81]
36 Mean sway velocity - X Mean sway velocity (X Axis) [81]
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Feature

Feature Label Feature Description Reference
Number
37 Mean sway velocity - Y Mean sway velocity (Y Axis) [81]
38 Mean sway velocity - Z Mean sway velocity (Z Axis) [81]
39 Displacement range - X Displacement range (X axis) [81]
40 Displacement range - Y Displacement range (Y axis) [81]
41 Displacement range - Z Displacement range (Z axis) [81]
42 Skewness - Acc X Skewness of acceleration (X axis) [67]
43 Skewness - Acc Y Skewness of acceleration (Y axis) [67]
44 Skewness - Acc Z Skewness of acceleration (Z axis) [67]
45 Skewness SVM - Acc BP Skewness of band-pass filtered SVM acceleration [67]
46 Skewness - Gyr X Skewness of angular velocity (X axis) [67]
47 Skewness - Gyr Y Skewness of angular velocity (Y axis) [67]
48 Skewness - Gyr Z Skewness of angular velocity (Z axis) [67]
49 Skewness SVM -Gyr BP Skewness of band-pass filtered SVM angular velocity [67]
50 Kurtosis - Acc X Kurtosis of acceleration (X axis) [67]
51 Kurtosis - Acc Y Kurtosis of acceleration (Y axis) [67]
52 Kurtosis - Acc Z Kurtosis of acceleration (Z axis) [67]
53 Kurtosis SVM - Acc BP Kurtosis of band-pass filtered SVM acceleration [67]
54 Kurtosis - Gyr X Kurtosis of angular velocity (X axis) [67]
55 Kurtosis - Gyr Y Kurtosis of angular velocity (Y axis) [67]
56 Kurtosis - Gyr Z Kurtosis of angular velocity (Z axis) [67]
57 Kurtosis SVM - Gyr BP Kurtosis of band-pass filtered SVM angular velocity [67]
58 Kurtosis - Acc X SMF Kurtosis of smooth-median filter acceleration (X axis) [67]
59 Kurtosis - Acc Y SMF Kurtosis of smooth-median filter acceleration (Y axis) [67]
60 Kurtosis - Acc Z SMF Kurtosis of smooth-median filter acceleration (Z axis) [67]
61 Kurtosis SVYM - Acc BP SMF Kurtosis of SVM acceleration band-pass and smooth-median [67]
filtered
62 Kurtosis - Gyr X SMF Kurtosis of smooth-median filter angular velocity (X axis) [67]
63 Kurtosis - Gyr Y SMF Kurtosis of smooth-median filter angular velocity (Y axis) [67]
64 Kurtosis - Gyr Z SMF Kurtosis of smooth-median filter angular velocity (Z axis) [67]
65 Kurtosis SVM - Gyr BP SMF Kurtosis of SYM Angular Velocity band-pass and smooth- [67]
median filtered
66 Min - Acc X Minimum Acceleration (X axis) [65]
67 Min - Acc Y Minimum Acceleration (Y axis) [65]
68 Min - Acc Z Minimum Acceleration (Z axis) [65]
69 Min - Gyr X Minimum Angular Velocity (X axis) [65]
70 Min - Gyr Y Minimum Angular Velocity (Y axis) [65]
71 Min - Gyr Z Minimum Angular Velocity (Z axis) [65]
72 Min SVM - Acc Minimum SVM of Acceleration [65]
73 Min SVYM - Gyr Minimum SVM of Angular Velocity [65]
74 Max - Acc X Maximum Acceleration (X axis) [65]
75 Max - Acc Y Maximum Acceleration (Y axis) [65]
76 Max - Acc Z Maximum Acceleration (Z axis) [65]
77 Max - Gyr X Maximum Angular Velocity (X axis) [65]
78 Max - Gyr Y Maximum Angular Velocity (Y axis) [65]
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Feature

Feature Label Feature Description Reference
Number
79 Max - Gyr Z Maximum Angular Velocity (Z axis) [65]
80 Max SVM - Acc Maximum SVM of Acceleration [65]
81 Max SVM - Gyr Maximum SVM of Angular Velocity [65]
82 Mean - Acc X Mean Acceleration (X axis) [67]
83 Mean - Acc Y Mean Acceleration (Y axis) [67]
84 Mean - Acc Z Mean Acceleration (Z axis) [67]
85 Mean - Gyr X Mean Angular Velocity (X axis) [67]
86 Mean - Gyr Y Mean Angular Velocity (Y axis) [67]
87 Mean - Gyr Z Mean Angular Velocity (Z axis) [67]
88 Mean SVM - Acc Mean SVM of Acceleration [67]
89 Mean SVM - Gyr Mean SVM of Angular Velocity [67]
20 Variance - Acc X Variance of Acceleration (X axis) [67]
91 Variance - Acc Y Variance of Acceleration (Y axis) [67]
92 Variance - Acc Z Variance of Acceleration (Z axis) [67]
93 Variance - Gyr X Variance of Angular Velocity (X axis) [67]
94 Variance - Gyr Y Variance of Angular Velocity (Y axis) [67]
95 Variance - Gyr Z Variance of Angular Velocity (Z axis) [67]
96 Variance - SVM Acc Variance of SVM of Acceleration [67]
97 Variance - SVM Gyr Variance of SVM of Angular Velocity [67]
98 Std - Acc X Standard Deviation of Acceleration (X Axis) NA
929 Std - Acc Y Standard Deviation of Acceleration (Y Axis) NA
100 Std - Acc Z Standard Deviation of Acceleration (Z Axis) NA
101 Std - Gyr X Standard Deviation of Angular Velocity (X Axis) NA
102 Std - Gyr Y Standard Deviation of Angular Velocity (Y Axis) NA
103 Std - GyrZ Standard Deviation of Angular Velocity (Z Axis) NA
104 Std SVM - Acc Standard Deviation of Acceleration SVM NA
105 Std SVM - Gyr Standard Deviation of Angular Velocity SYM NA
106 Min SVM - Acc LP Minimum of SVM Acceleration Low-Pass Filtered NA
107 Max SVM - Acc LP Maximum of SVM Acceleration Low-Pass Filtered NA
108 Mean SVM - Acc LP Mean of SVM Acceleration Low-Pass Filtered NA
109 Var SVM - Acc LP Variance of SVM Acceleration Low-Pass Filtered NA
110 Std SVM - Acc LP Standard Deviation of SVM Acceleration Low-Pass Filtered NA
111 Min SVM - Gyr LP Minimum of SVM Angular Velocity Low-Pass Filtered NA
112 Max SVM - Gyr LP Maximum of SVM Angular Velocity Low-Pass Filtered NA
113 Mean SVM - Gyr LP Mean of SVM Angular Velocity Low-Pass Filtered NA
114 Var SVM - Gyr LP Variance of SVM Angular Velocity Low-Pass Filtered NA
115 Std SVM - Gyr LP Standard Deviation of SVM Angular Velocity Low-Pass Filtered NA
116 Correlation - Acc X - Y Correlation Between Accelerantion X and Y axis [84]
117 Correlation - Acc X - Z Correlation Between Accelerantion X and Z axis [84]
118 Correlation - Acc Y - Z Correlation Between Accelerantion Y and Z axis [84]
119 Correlation - Gyr X - Y Correlation Between Angular Velocity X and Y axis [84]
120 Correlation - Gyr X - Z Correlation Between Angular Velocity X and Z axis [84]
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Feature

Feature Label Feature Description Reference
Number
121 Correlation - Gyr Y - Z Correlation Between Angular Velocity Y and Z axis [84]
122 Energy Acc X Acceleration Energy (X axis) [83]
123 Energy Acc Y Acceleration Energy (Y axis) [83]
124 Energy Acc Z Acceleration Energy (Z axis) [83]
125 Total Energy - Acc SVM BP Total Energy of Band-Pass Filtered SVM acceleration [83]
126 Dynamic Sum Vector Dynamic Sum Vector [58]
127 72 Vertical Acceleration [58]
128 Total angular change Total angular change [19]
129 Resultant angular acceleration Resultant angular acceleration [19]
130 % of window where the LP Acc Percentage of Low-Pass Filtered Acceleration SVYM lower than [84]
SVMis < 0.9 0.9
131 ASMA Activity Signal Magnitude Area [60]
132 SMA Signal Magnitude Are [61]
133 PP Values - Acc X Peak-to-peak values of Acceleration (X axis) [87]
134 PP Values - Acc Y Peak-to-peak values of Acceleration (Y axis) [87]
135 PP Values - Acc Z Peak-to-peak values of Acceleration (Z axis) [87]
136 PP Values - Gyr X Peak-to-peak values of Angular Velocity (X axis) [87]
137 PP Values - Gyr Y Peak-to-peak values of Angular Velocity (Y axis) [87]
138 PP Values - Gyr Z Peak-to-peak values of Angular Velocity (Z axis) [87]
139 PP Values - SVM Acc BP Peak-to-peak Values of Band-Pass filtered Acceleration SYM [87]
140 PP Values - SVM Gyr BP Peak-to-peak Values of Band-Pass filtered Angular Velocity [87]
SVM
141 RMS -Acc X Root Mean Square of Acceleration (X axis) [87]
142 RMS - Acc Y Root Mean Square of Acceleration (Y axis) [87]
143 RMS - Acc Z Root Mean Square of Acceleration (Z axis) [87]
144 RMS - Gyr X Root Mean Square of Angular Velocity (X axis) [87]
145 RMS - Gyr Y Root Mean Square of Angular Velocity (Y axis) [87]
146 RMS - Gyr Z Root Mean Square of Angular Velocity (Z axis) [87]
147 RMS - SVM Acc Root Mean Square of Acceleration SYM [87]
148 RMS - SVM Gyr Root Mean Square of Angular Velocity SYM [87]
149 RI - Acc X Ration Index of Acceleration (X axis) [87]
150 Rl -AccY Ration Index of Acceleration (Y axis) [87]
151 RI-AccZ Ration Index of Acceleration (Z axis) [87]
152 RI - SVM Acc Ratio Index of Acceleration SVM [87]
153 RI - Gyr X Ration Index of Angular Velocity (X axis) [87]
154 RI-GyrY Ration Index of Angular Velocity (Y axis) [87]
155 RI- Gyr Z Ration Index of Angular Velocity (Z axis) [87]
156 RI - SVM Gyr Ratio Index of Angular Velocity SVM [87]
157 RI - Acc X PP Ration Index of Peak-to-peak of Acceleration (X axis) [87]
158 RI-Acc Y PP Ration Index of Peak-to-peak of Acceleration (Y axis) [87]
159 RI - Acc Z PP Ration Index of Peak-to-peak of Acceleration (Z axis) [87]
160 RI - Gyr X PP Ration Index of Peak-to-peak of Angular Velocity (X axis) [87]
161 RI - Gyr Y PP Ration Index of Peak-to-peak of Angular Velocity (Y axis) [87]
162 RI- Gyr Z PP Ration Index of Peak-to-peak of Angular Velocity (Z axis) [87]
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Feature

Feature Label Feature Description Reference
Number
163 GC - Acc X Gravity component of Acceleration (X Axis) NA
164 GC-AccY Gravity component of Acceleration (Y Axis) NA
165 GC-Acc Z Gravity component of Acceleration (Z Axis) NA
166 Quaternion First element of quaternion vector [57]
167 Quaternion Second element of quaternion vector [57]
168 Quaternion Third element of quaternion vector [57]
169 Quaternion Fourth element of quaternion vector [57]
170 Roll Roll (Madgwick Sensor-Fusion Algorithm) [57]
171 Pitch Pitch (Madgwick Sensor-Fusion Algorithm) [57]
172 Yaw Yaw (Madgwick Sensor-Fusion Algorithm) [57]
173 Acc of absolute vertical Absolute vertical acceleration [11]
direction
174 RAC SVM SVM of Resultant angle change [70]
175 RAC - X Resultant angle change (X axis) [70]
176 RAC -Y Resultant angle change (Y axis) [70]
177 RAC -Y Resultant angle change (Z axis) [70]
178 MRAA Maximum resultant angular acceleration [70]
179 FF Sum of Fluctuation Frequency of all axis [70]
180 FF DX Fluctuation Frequency (X axis) [70]
181 FF DY Fluctuation Frequency (Y axis) [70]
182 FF DZ Fluctuation Frequency (Z axis) [70]
183 Transf - X Trapz of the Fast Fourier Transform of Acceleration (X axis) [86]
184 Transf-Y Trapz of the Fast Fourier Transform of Acceleration (Y axis) [86]
185 Transf-Z Trapz of the Fast Fourier Transform of Acceleration (Z axis) [86]
186 HR X Harmonic Ratio (X axis) [87]
187 HRY Harmonic Ratio (Y axis) [87]
188 HRZ Harmonic Ratio (Z axis) [87]
189 HR - SYM SVM of Harmonic Ratio [87]
190 Wavelet_STD 2 - Gyr X Standard deviations of the angular velocity (X axis) at level 2 [86]
191 Wavelet_STD 3 - Gyr X Standard deviations of the angular velocity (X axis) at level 3 [86]
192 Wavelet_STD 4 - Gyr X Standard deviations of the angular velocity (X axis) at level 4 [86]
193 Wavelet_STD 5 - Gyr X Standard deviations of the angular velocity (X axis) at level 5 [86]
194 Wavelet_RMS 2 - Gyr X Root Mean Square of the angular velocity (X axis) at level 2 [86]
195 Wavelet_RMS 3 - Gyr X Root Mean Square of the angular velocity (X axis) at level 3 [86]
196 Wavelet_RMS 4 - Gyr X Root Mean Square of the angular velocity (X axis) at level 4 [86]
197 Wavelet_RMS 5 - Gyr X Root Mean Square of the angular velocity (X axis) at level 5 [86]
198 SumSquaredWavelet - Gyr X Sum of squared wavelet coefficients from level 2 to 6 from [86]
the Angular velocity (X axis)
199 Wavelet_STD 2 -GyrY Standard deviations of the angular velocity (Y axis) at level 2 [86]
200 Wavelet_STD 3-GyrY Standard deviations of the angular velocity (Y axis) at level 3 [86]
201 Wavelet_STD 4-GyrY Standard deviations of the angular velocity (Y axis) at level 4 [86]
202 Wavelet_STD 5-GyrY Standard deviations of the angular velocity (Y axis) at level 5 [86]
203 Wavelet_ RMS 2 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 2 [86]
204 Wavelet_RMS 3 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 3 [86]

148



Feature

Feature Label Feature Description Reference
Number
205 Wavelet_RMS 4 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 4 [86]
206 Wavelet_RMS 5 - Gyr Y Root Mean Square of the angular velocity (Y axis) at level 5 [86]
207 SumSquaredWavelet - Gyr Y Sum of squared wavelet coefficients from level 2 to 6 from [86]
the Angular velocity (Y axis)
208 Wavelet_STD 2 -Gyr Z Standard deviations of the angular velocity (Z axis) at level 2 [86]
209 Wavelet_STD 3-GyrZ Standard deviations of the angular velocity (Z axis) at level 3 [86]
210 Wavelet_STD 4 - Gyr Z Standard deviations of the angular velocity (Z axis) at level 4 [86]
211 Wavelet_STD 5 - Gyr Z Standard deviations of the angular velocity (Z axis) at level 5 [86]
212 Wavelet_RMS 2 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 2 [86]
213 Wavelet_RMS 3 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 3 [86]
214 Wavelet_RMS 4 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 4 [86]
215 Wavelet_RMS 5 - Gyr Z Root Mean Square of the angular velocity (Z axis) at level 5 [86]
216 SumSquaredWavelet - Gyr Z Sum of squared wavelet coefficients from level 2 to 6 from [86]
the Angular velocity (Z axis)
217 Wavelet_STD 2 - Gyr SVM SVM of the Standard deviations of the angular velocity at level [86]
218 Wavelet_STD 3 - Gyr SVM EVM of the Standard deviations of the angular velocity at level [86]
219 Wavelet_STD 4 - Gyr SYM gVM of the Standard deviations of the angular velocity at level [86]
220 Wavelet_STD 5 - Gyr SVM gVM of the Standard deviations of the angular velocity at level [86]
221 Wavelet_RMS 2 - Gyr SYM gVM of the Root Mean Square of the angular velocity at level [86]
222 Wavelet_RMS 3 - Gyr SYM éVM of the Root Mean Square of the angular velocity at level [86]
223 Wavelet_RMS 4 - Gyr SYM gVM of the Root Mean Square of the angular velocity at level [86]
224 Wavelet_RMS 5 - Gyr SYM gVM of the Root Mean Square of the angular velocity at level [86]
225 SumSquaredWavelet - Gyr SVM ZVM of the Sum of squared wavelet coefficients from level 2 [86]
to 6 from the Angular velocity
226 Wavelet_STD 2 - Acc X Standard deviations of the Acceleration (X axis) at level 2 [86]
227 Wavelet_STD 3 - Acc X Standard deviations of the Acceleration (X axis) at level 3 [86]
228 Wavelet_STD 4 - Acc X Standard deviations of the Acceleration (X axis) at level 4 [86]
229 Wavelet_STD 5 - Acc X Standard deviations of the Acceleration (X axis) at level 5 [86]
230 Wavelet_RMS 2 - Acc X Root Mean Square of the Acceleration (X axis) at level 2 [86]
231 Wavelet_RMS 3 - Acc X Root Mean Square of the Acceleration (X axis) at level 3 [86]
232 Wavelet_RMS 4 - Acc X Root Mean Square of the Acceleration (X axis) at level 4 [86]
233 Wavelet_RMS 5 - Acc X Root Mean Square of the Acceleration (X axis) at level 5 [86]
234 SumSquaredWavelet - Acc X Sum of squared wavelet coefficients from level 2 to 6 from [86]
the Acceleration (X axis)
235 Wavelet_STD 2 -AccY Standard deviations of the Acceleration (Y axis) at level 2 [86]
236 Wavelet_STD 3-AccY Standard deviations of the Acceleration (Y axis) at level 3 [86]
237 Wavelet_STD 4-AccY Standard deviations of the Acceleration (Y axis) at level 4 [86]
238 Wavelet_STD 5-AccY Standard deviations of the Acceleration (Y axis) at level 5 [86]
239 Wavelet_RMS 2 -AccY Root Mean Square of the Acceleration (Y axis) at level 2 [86]
240 Wavelet_RMS 3 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 3 [86]
241 Wavelet_RMS 4 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 4 [86]
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Number
242 Wavelet_RMS 5 - Acc Y Root Mean Square of the Acceleration (Y axis) at level 5 [86]
243 SumSquaredWavelet - Acc Y Sum of squared wavelet coefficients from level 2 to 6 from [86]
the Acceleration (Y axis)
244 Wavelet_STD 2 -AccZ Standard deviations of the Acceleration (Z axis) at level 2 [86]
245 Wavelet_STD 3-AccZ Standard deviations of the Acceleration (Z axis) at level 3 [86]
246 Wavelet_STD 4 -AccZ Standard deviations of the Acceleration (Z axis) at level 4 [86]
247 Wavelet_STD 5-AccZ Standard deviations of the Acceleration (Z axis) at level 5 [86]
248 Wavelet_RMS 2 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 2 [86]
249 Wavelet_RMS 3 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 3 [86]
250 Wavelet_RMS 4 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 4 [86]
251 Wavelet_RMS 5 - Acc Z Root Mean Square of the Acceleration (Z axis) at level 5 [86]
252 SumSquaredWavelet - Acc Z Sum of squared wavelet coefficients from level 2 to 6 from [86]
the Acceleration (Z axis)

253 Wavelet_STD 2 - Acc SVM SVM of the Standard deviations of the Acceleration at level 2 [86]
254 Wavelet_STD 3 - Acc SVM SVM of the Standard deviations of the Acceleration at level 3 [86]
255 Wavelet_STD 4 - Acc SVM SVM of the Standard deviations of the Acceleration at level 4 [86]
256 Wavelet_STD 5 - Acc SVM SVM of the Standard deviations of the Acceleration at level 5 [86]
257 Wavelet_RMS 2 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 2 [86]
258 Wavelet_RMS 3 - Acc SYM SVM of the Root Mean Square of the Acceleration at level 3 [86]
259 Wavelet_RMS 4 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 4 [86]
260 Wavelet_RMS 5 - Acc SVM SVM of the Root Mean Square of the Acceleration at level 5 [86]
261 Sum Squared Wavelet - Acc SVM of the Sum of squared wavelet coefficients from level 2 [86]

SVM to 6 from the Acceleration
262 RAC - SVM SVM of Resultant of Average Acceleration (X axis) [62]
263 RAC - X Resultant of Average Acceleration (X axis) [62]
264 RAC -Y Resultant of Average Acceleration (Y axis) [62]
265 RAC -Z Resultant of Average Acceleration (Z axis) [62]
266 RSD - SVM SVM of Resultant of Standard Deviation [62]
267 RSD - X Resultant of Standard Deviation (X axis) [62]
268 RSD-Y Resultant of Standard Deviation (Y axis) [62]
269 RSD-Z Resultant of Standard Deviation (Z axis) [62]
270 Slope Slope [64]
271 Fast Change Vector Fast Change Vector [66]
272 Acceleration in the horizontal SVM of Acceleration in the horizontal Plane [64]

Plane
273 EMA Acceleration exponential moving average [65]
274 Rotational Angle - SVM Acc Rotational Angle of Acceleration SYM [64]
275 Z-score Z-Score [62]
276 entropy - Acc X Acceleration Entropy (X axis) [85]
277 entropy - Acc Y Acceleration Entropy (Y axis) [85]
278 entropy - Acc Z Acceleration Entropy (Z axis) [85]
279 entropy - Gyr X Angular Velocity Entropy (X axis) [85]
280 entropy - Gyr Y Angular Velocity Entropy (Y axis) [85]
281 entropy - Gyr Z Angular Velocity Entropy (Z axis) [85]
282 entropy - SVM Acc Acceleration SVM Entropy [85]
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283 entropy - SVM Gyr Angular Velocity SVM Entropy [85]
284 MAD Magnitude of Angular Displacement [57]
285 Rotational Angle - SVM LP Acc Rotational Angle of Low-Pass filtered Acceleration SVM [64]
286 Resultant of Delta Changes - Acceleration Resultant of Delta Changes [62]
Acc
287 Resultant of Delta Changes - Angular Velocity Resultant of Delta Changes [62]
Gyr
288 FSR ASCane FSR NA
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