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RÉSUMÉ 

Les prothèses visuelles corticales sont planifiées pour restaurer la vision chez les individus non-

voyants en appliquant du courant électrique à des sites discrets sur le cortex visuel. À ce jour, la 

qualité de la vision rapportée dans la littérature est celle d'un petit nombre de phosphènes (percept 

de spots lumineux spatialement localisés) sans organisation pour générer un percept significatif. 

Le principal défi consiste à développer des méthodes pour transférer les informations d'une scène 

visuelle dans un schéma de stimulation compréhensible pour le cerveau. Une connaissance clé pour 

résoudre ce défi est de comprendre comment les caractéristiques du phosphène (ou en général, les 

caractéristiques visuelles) sont représentées dans le modèle distribué d'activité neuronale. Une 

approche pour obtenir ces connaissances consiste à déterminer dans quelle mesure les réponses 

neuronales bien réparties peuvent détecter les changements dans une caractéristique visuelle 

spécifique des stimuli. Pour atteindre cet objectif, nous avons étudié la capacité de discrimination 

des zones corticales extrastriées V4 chez les singes macaques. Ces zones extrastriées ont de petites 

régions rétinotopiques qui offrent la possibilité d'échantillonner une grande région de l'espace 

visuel à l'aide de réseaux de microelectrodes standard telles que celles de l'Université d'Utah. Cela 

aide à construire des prothèses mini-invasives. 

Notre contribution concerne la résolution spatiale des potentiels de champs locaux (LFP) dans la 

zone V4 pour déterminer les limites de la capacité des prothèses visuelles à induire des phosphènes 

à plusieurs positions. Les LFP ont été utilisés car ils représentent une activité neuronale sur une 

échelle de 400 microns, ce qui est comparable à la propagation de l'effet de microstimulation dans 

le cortex. La zone visuelle extrastriée V4 contient également une carte rétinotopique de l'espace 

visuel et offre la possibilité de récupérer l'emplacement des stimuli statiques. Nous avons appliqué 

la méthode «Support vector machine» (SVM) pour déterminer la capacité des LFP (par rapport aux 

réponses à plusieurs unités - MUA) à discriminer les réponses (phosphènes) aux stimuli à 

différentes séparations spatiales. Nous avons constaté que malgré les grandes tailles de champs 

récepteurs dans V4, les réponses combinées de plusieurs sites étaient capables de discrimination 

fine et grossière des positions. Nous avons proposé une stratégie de sélection des électrodes basée 

sur les poids linéaires des décodeurs (en utilisant les valeurs de poids les plus élevées) qui a 

considérablement réduit le nombre d'électrodes requis pour la discrimination avec une 



vi 

 

 

augmentation des performances. L'application de cette stratégie présente l'avantage potentiel de 

réduire les dommages tissulaires dans les applications réelles. 

Nous avons conclu que pour un fonctionnement correct des prothèses, la microstimulation 

électrique devrait générer un schéma d'activité neuronale similaire à l'activité évoquée 

correspondant à un percept attendu. De plus, lors de la conception d'une prothèse visuelle, les 

limites de la capacité de discrimination des zones cérébrales implantées doivent être prises en 

compte. Ces limites peuvent différer pour MUA et LFP. 
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ABSTRACT 

Cortical visual prostheses are intended to restore vision to blind individuals by applying a pattern 

of electrical currents at discrete sites on the visual cortex. To date, the quality of vision reported in 

the literature is that of a small number of phosphenes (percept of spatially localized spots of light) 

with no organization to generate a meaningful percept. The main challenge consists of developing 

methods to transfer information of a visual scene into a pattern of stimulation that is understandable 

to the brain. The key to solving this challenge is understanding how phosphene characteristics (or 

in general, visual characteristics) are represented in a distributed pattern of neural activity. One 

approach is to determine how well neural responses can detect changes in a specific characteristic 

of stimuli. To this end, we have studied the discrimination capability of V4 extrastriate cortical 

area in macaque monkeys. Extrastriate cortical areas have small retinotopic maps that can provide 

an opportunity to sample a large region of visual space using standard devices such as Utah arrays.  

Thus, this helps to build minimally invasive prosthetic devices. 

Our contribution relates to the spatial resolution of local field potentials (LFPs) in area V4 to 

determine the limits in the capability of visual prosthetic devices in generation of phosphenes in 

multiple positions. LFPs were used because they represent neural activity over a scale of 400 

microns, which is comparable to the spread of microstimulation effects in the cortex. Extrastriate 

visual area V4 also contains a retinotopic map of visual space and offers an opportunity to recover 

the location of static stimuli. We applied support vector machines (SVM) to determine the 

capability of LFPs (compared to multi-unit responses) in discriminating responses to phosphene-

like stimuli (probes) located with different spatial separations. We found that despite large 

receptive field sizes in V4, combined responses from multiple sites were capable of fine and coarse 

discrimination of positions. We proposed an electrode selection strategy based on the linear weights 

of the decoder (using the highest weight values) that significantly reduced the number of electrodes 

required for discrimination, while at the same time, increased performance. Applying this strategy 

has the potential to reduce tissue damages in real applications. 

We concluded that for the correct operation of prosthetic devices, electrical microstimulation 

should generate a pattern of neural activity similar to the evoked activity corresponding to an 

expected percept. Moreover, in the design of visual prosthesis, limits in the discrimination 
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capability of the implanted brain areas should be taken into account. These limits may differ for 

MUA and LFP. 
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INTRODUCTION 

Based on global data on visual impairment in 2010, the number of visually impaired people was 

estimated to be 285 million (4.25% of world population in 2010), of whom 39 million were legally 

blind [1]. Visual prostheses are intended to restore vision in individuals with visual impairment by 

restoring their ability to recognize objects [2]. They apply direct electrical stimulation at some 

functioning points in the visual pathway located beyond the damaged site [3]. In normal vision, 

retina performs spatial, temporal, and chromatic processing on the visual input and transfers 

information via optic nerves to lateral geniculate nucleus (LGN). LGN then relays visual 

information to the primary visual cortex (V1) [4] and from there information transfers to the 

extrastriate areas where they apply more complex processing.  

Electrical stimulation can target several places on the visual pathway, such as the retina, optic 

nerve, LGN, or visual cortex. Some types of visual impairment can result in non-functional retina 

such as Age-related Macular Degeneration (AMD), Retinitis Pigmentosa (RP), and diabetic 

retinopathy [5]. In these cases, a retinal prosthesis will not be helpful. Moreover, the optic nerve 

and LGN are not easily accessible due to their anatomical locations in the head [6, 7]. Thus, cortical 

visual prostheses can be the solution. 

Applying electrical current stimulation at discrete sites in the visual pathway produces perception 

of punctate, isolated, and spatially localized spots of light called phosphenes [2, 8-11]. 

Multielectrode arrays provide the possibility of injecting a pattern of activity and thereby produce 

a pattern of phosphenes. Generating a meaningful percept requires having control over the 

characteristics of multiple phosphenes such as their spatial position, duration, size, brightness, and 

color. These characteristics depend on various factors including physical parameters of the 

implanted arrays, their location on the cortex, and the properties of applied stimulation currents, as 

well as behavioural and environmental factors. For example, with intracortical stimulating 

electrodes, increasing the current amplitude leads to an increase in the brightness [9]. 

To date, even in experiments that make use of many electrodes, the quality of vision reported in 

the literature is that of a small number of phosphenes with no organization to generate a meaningful 

percept [2, 9-12]. The main challenge is in developing a method to transfer information of a visual 

scene into a pattern of electrical stimulation that is understandable to the brain. The brain hardly 

detects unfamiliar patterns of neural activity. Thus, extensive training sessions will be required. 
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Because of the effect of neuroplasticity, training changes neural circuitry to support the detection 

of new activity patterns. Although this procedure makes the microstimulation detectable, it still 

introduces unfamiliar patterns of neural activity to the downstream neurons. This problem can be 

solved if the induced neural activity patterns are similar to the naturally-evoked responses to the 

visual stimuli. However, reaching this goal requires two research directions to progress in parallel, 

which explore: 1) how are phosphene characteristics (or in general, visual characteristics) 

represented in the distributed neural activity? 2) How can a pre-designed pattern of distributed 

neural activity be generated by applying a pattern of electrical microstimulation? For example, it 

is still unclear whether the position of an induced phosphene depends on the current amplitude. 

Moreover, electrical current stimulation may activate neurons that encode different positions in 

visual space. Therefore, it is important to control the extent of the induced neural activity.  

We published a review paper entitled "Cortical visual prostheses: from microstimulation to 

functional percept" [13] which comprehensively discussed the above challenges. The focus of this 

PhD project is toward the first direction (above): how are visual characteristics represented in the 

distributed neural activity? Specifically, we study the discrimination capability of distributed 

neural activity in the extrastriate cortical areas of macaque monkeys. In this thesis, we use the term 

“neural activity” to mean both spikes and local field potentials (LFPs). We used sighted macaque 

models to circumvent the complexities resulting from changes that occur in the organization of the 

visual cortex after the onset of blindness and challenges associated with human experiments. It is 

worth mentioning that macaques have a similar visual cortex anatomy and function as humans.  

Although most existing cortical visual prosthetic devices have targeted V1 because of the 

simplicity of encoding pixels as phosphenes in a retinotopic map and slightly lower current 

threshold [14], this area is quite large relative to standard recording arrays. Therefore, a 

multielectrode array in V1 can sample only a tiny region of visual space. In contrast, retinotopic 

maps in extrastriate visual areas (Figure 1.1) are physically smaller, while the receptive fields are 

much larger than those in V1 [15-17]. This provides the opportunity to sample a larger region of 

visual space, using standard devices such as Utah arrays [18, 19], and therefore, an extrastriate 

prosthetic could be minimally invasive. Thus, in this project, we focus on the extrastriate visual 

cortices. 
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Figure 1.1  Medial view of the visual cortical areas. Primary visual cortex (V1) is shown in 

yellow and extrastriate cortical areas are presented in different colors. 

 

Our contribution concerns the spatial resolution of extrastriate cortical area V4. The paper on this 

study, entitled “Spatial resolution of local field potential signals in macaque V4,”  was published 

in 2020 [20]. To generate a phosphenated percept, a pattern of spatially localized phosphenes must 

be induced. A preliminary step toward this goal is to determine how well responses to different 

spatial positions can be discriminated. This puts a limit on the capability of prosthetic devices to 

induce phosphenes at multiple positions. Area V4 contains a retinotopic map of visual space and 

offers an opportunity to recover the location of static stimuli. We analyzed the ability of local field 

potentials and Multiunit activity (MUA) from V4 in discriminating two-dimensional positions. 

Support vector machines (SVM) were used to discriminate responses associated with phosphene-

like stimuli presented (probes) at different separations. We proposed an electrode selection strategy 

using linear weights of classifier to find the minimum number of electrodes for fine 
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discriminations, which will be applicable in the design of compact prosthetic devices. We also 

determined the effect of removing trial-to-trial fluctuations in response (noise correlations) on the 

decoding performance from two different perspectives. 

1.1 Summary of hypotheses and contributions 

This section summarizes our hypotheses and contributions in this PhD project. The main hypothesis 

is that the local field potentials in V4 are capable of fine and coarse spatial discriminations. Our 

sub-hypotheses and related contributions for this project are as follows: 

Hypothesis 1: Local field potentials can precisely discriminate positions close enough to the fovea 

with 4° separations. 

Contribution 1: We presented discrimination performance as a function of cortical distance and 

eccentricity to examine this hypothesis (Chapter 4). 

Hypothesis 2: A smaller subset of electrodes, if selected correctly, can provide the same level of 

discrimination performance as the whole set of electrodes. In other words, they contain the same 

amount of information as the whole set of electrodes. 

Contribution 2: We compared two methods for selecting a smaller set of electrodes and presented 

the results of the decoding for each group (Chapter 4). 

Hypothesis 3: Information about the spatial positions are encoded in wideband LFPs rather than 

band-limited LFPs. 

Contribution 3: We determined and compared the spatial resolution of wideband LFPs and band-

limited LFPs (Chapter 4). 

Hypothesis 4: Correlated variability (noise correlations) in the neural responses plays role in the 

decoding. 

Contribution 4: We followed two perspectives introduced by Averbeck et al., 2006 (encoding and 

decoding perspectives). We trained our decoder on the correlation-removed responses but tested it 

once on the correlation-removed responses (encoding perspective in Chapter 5) and the other time 

on the original correlated responses (decoding perspective in Chapter 4). We compared the 

performance of each one to the original correlation-aware decoder. 
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Hypothesis 5: More important electrodes have a lower level of correlated variability. 

Contribution 5: We presented correlated variability as a function of importance values (Chapter 

4). 

 

The entire structure of this thesis is designed toward the main objective as mentioned above: 

understanding the discrimination capability of distributed neural activity in the extrastriate cortical 

areas and the potential applications for developing better prosthetic devices. Therefore, the 

remaining chapters are organized as follows. In chapter 2, we review the experimental progress 

toward generating phosphenes and modulating their associated perceptual characteristics. We will 

then discuss the key challenges facing the generation of meaningful functional percepts (the review 

paper). In chapter 3, we present the methodology that was used in this thesis. In chapter 4, we 

analyze the spatial resolution of LFPs (as well as MUA) in the extrastriate cortical area V4 and 

propose an electrode selection strategy intended to build more compact prosthetic devices. In 

chapter 5 we present the theory and results for the encoding perspective and will compare them to 

the results of the decoding perspective. In chapter 6, we discuss the findings presented in the 

previous chapters. Finally, in chapter 7, we will present the conclusions from all the work in this 

PhD project. 
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2.1.1 Abstract 

Cortical visual prostheses are intended to restore vision by targeted electrical stimulation of the 

visual cortex. The perception of spots of light, called phosphenes, resulting from microstimulation 

of the visual pathway, suggests the possibility of creating meaningful percept made of phosphenes. 

However, to date electrical stimulation of V1 has still not resulted in perception of phosphenated 

images that goes beyond punctate spots of light. In this review, we summarize the clinical and 

experimental progress that has been made in generating phosphenes and modulating their 

associated perceptual characteristics in human and macaque primary visual cortex (V1). We focus 

specifically on the effects of different microstimulation parameters on perception and we analyse 

key challenges facing the generation of meaningful artificial percepts. Finally, we propose 

solutions to these challenges based on the application of supervised learning of population codes 

for spatial stimulation of visual cortex. 

https://doi.org/10.1088/1741-2552/aaa904
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2.1.2 Introduction 

As of 2010, the number of people estimated to be living with a visual impairment was around 285 

million, and the number of legally blind people was around 39 million [1]. Visual prostheses are 

used to restore the function of vision in blind individuals by restoring their ability to recognize 

objects and to navigate in an unfamiliar environment [2]. Since blindness results from a dysfunction 

in the normal signal flow in the visual pathway, visual prostheses are frequently used to apply 

direct electrical stimulation to the visual pathways at some still functioning points located beyond 

the damaged site [3]. Employing electrical current stimulation to the functioning visual pathway at 

discrete sites evokes a perception of phosphenes; these are punctate, isolated, and spatially 

localized coloured or non-coloured spots of light appearing close to the center of the visual field 

[2, 8-11]. Electrical stimulation of the visual pathway through multielectrode arrays provides the 

possibility of injecting a spatiotemporal pattern of activity, thereby inducing a pattern of 

phosphenated perception (perception of images made of phosphenes). The aim is for the evoked 

visual percept to be a phosphenated version of the visual scene in the form of a score-board (bit-

mapped) image [6, 21].  

Electrical stimulation can target different areas of the visual pathway, such as the retina, optic 

nerve, lateral geniculate nucleus (LGN), optic radiations, and the visual cortex, depending on the 

impaired region of the visual pathway. In normal vision, the retina performs spatial, temporal, and 

chromatic processing on the visual input and produces sequences of spikes to transfer to the LGN. 

From the LGN signals project to V1, the primary visual cortex [4]. Region V1 is thought to be an 

ideal site for implanting electrode arrays for a number of reasons: it has uniform thickness and 

density of cells for central vision and peripheral vision and also has a well-organized mapping of 

visual space onto neurons (visuotopic map) [22]. In addition, it has enough area for implantation 

of electrodes [23] and is easy to access, compared to the retina, optic nerve or LGN [6, 7]. The 

primary visual cortex also has a large magnification factor [24, 25] which means that more cortical 

tissue is devoted to a given visual field angle and thus, the receptive field mapping on the cortex 

can be covered with more electrodes (if required) and higher resolution images can be evoked [26]. 

Furthermore, for patients with non-functional retinae or optic nerves, such as when complete 

blindness results from Age-related Macular Degeneration (AMD), Retinitis Pigmentosa (RP), 
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glaucoma, or diabetic retinopathy, a retinal prosthesis would not be helpful [5]. Figure 2.1 shows 

a simplified graphical illustration for a cortical visual prosthesis implanted in human V1. 

 

 

Figure 2.1  Graphical schematic of implanted electrode arrays in the primary visual cortex to 

electrically stimulate the brain, induce perception of phosphenes, and restore vision. 

 

2.1.2.1 Surface stimulation 

Prior to 1990, experiments with cortical visual prostheses were performed on humans and with 

surface electrode arrays. The first cortical visual prosthesis was made in 1968. It was capable of 

producing percepts of discrete, clustered, and diffuse points of light [11]. The prosthesis was based 

on a surface array of 80 electrodes implanted in the right occipital pole and could generate 32 

individual phosphenes from 39/80 of electrodes. While, this approach was not sufficient to produce 

a functional percept in blind subjects, it motivated further work on cortical visual prostheses [8, 

10, 12]. Using surface electrode arrays, Dobelle showed that phosphenes can be generated so as to 

help patients in reading Braille characters [12]. Using a camera and image processing algorithms, 

in 2000, Dobelle was able to provide a patient with very limited object recognition and independent 

mobility, using surface electrodes to generate up to 21 phosphenes [2]. 

2.1.2.2 Intracortical stimulation 

The first stimulation of visual cortex using intracortical microelectrode arrays in a human in 1990 

showed that discriminable phosphenes can be evoked by electrodes 700 µm apart and with 100 

times less current than was necessary with surface microstimulation [27]. In 1996, it was 

demonstrated that intracortical microstimulation can evoke phosphenes in a patient who could not 

perceive phosphenes from surface stimulation [9].  
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After 2000, research started to be performed more often on non-human primates, mainly on rhesus 

macaque monkeys using intracortical microelectrode arrays [6, 7, 28-30], because they had a 

similar visual cortex anatomy and function to humans but with central visual field representation 

on the V1 surface that made it easier to access with most electrode arrays. In 2005, monkeys trained 

in a memory saccade task were able to saccade to the phosphene location generated by intracortical 

electrical stimulation [7]. In 2011, the effects of different microstimulation factors on behavioural 

responses in macaque monkeys were documented [28]. Although working on monkeys is not as 

ethically complicated as working on humans, the identification of phosphene quality is necessarily 

more complicated because of the lack of effective communication. Monkey studies therefore rely 

on psychophysical measures to identify the percept [6, 7, 28-30].  

In parallel to the progress made in phosphene induction, different implantable electronic systems 

also were developed for the controllable microstimulation of the visual cortex in order to modulate 

phosphenes efficiently and with very low power consumption devices [31-34]. These systems are 

now are part of two products by Second Sight Medical Products that were published as US patents 

in 2016 [35, 36].   

The work of Dobelle (2000) showing very limited object recognition and mobility with only 21 

phosphenes [2] was a major advance, but to date even experiments with many electrodes have 

failed to approximate functional vision with inputs constructed from phosphenes [2, 9-12], and no 

cortical visual prosthesis has obtained regulatory approval to date [37]. The quality of vision 

reported in the literature is that of a small number of phosphenes with no organization sufficient to 

generate a meaningful percept. The most significant barrier is in developing a method to transfer 

information of a visual scene into a spatiotemporal stimulation pattern that is understandable to the 

brain. Here, in section 2 we first review how phosphene induction and perceptual characteristics 

can be influenced by the properties of electrical microstimulation. Section 3 concerns detailed 

analysis about the challenges facing the construction of functional visual percept from phosphenes 

and proposed solutions to overcome the difficulties of inducing meaningful percepts. Finally, the 

conclusions about the issues discussed in this paper will be presented. 
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2.1.3 Phosphene induction and the effect of microstimulation 

The quality of phosphenes is influenced by different factors, including the implanted electrodes 

and the applied stimuli, as well as behavioural and environmental factors, and the characteristics 

of the neural tissue interfacing the implanted electrodes. In the following section we review how 

different factors affect the generation, detection, duration, and characteristics of the phosphenes. A 

summary of the effects of different factors on phosphene induction is provided in Table 2.1. 

2.1.3.1 Phosphene generation 

To induce perception of a phosphene in a subject, a minimum amount of current, termed phosphene 

threshold or current threshold, is required. In human patients, phosphene threshold can be 

determined by various methods. For example, in the successive approximation convergence 

technique [9], the current is initialized to one-half of the maximum current and the perception of 

phosphenes is reported by the subject after each stimulation train. If the phosphene is perceived, 

the next current tested is half the difference between the present value and 0 µA or between the 

present value and the highest current for which a phosphene has not been perceived. If a phosphene 

was not perceived, the next stimulation current is half the difference between the present value and 

the lowest current value for which a phosphene was perceived (or the maximum current value for 

which phosphene was induced). This process continues until the change in current is less than 0.1 

µA, with the phosphene threshold as the lowest current for which a phosphene was perceived. 

The phosphene threshold depends on stimulation parameters such as frequency, pulse duration, and 

amplitude [9-11] and also depends on location and depth of the electrode tips in the cortical layers 

and the impedance of the electrodes [28]. In macaque monkeys after two years of implantation, 

electrical stimulation could still generate a visual percept [29], indicating that the functionality of 

electrodes for phosphene generation can persist for a long period of time. Here, we present the 

effect of different factors on phosphene generation. 

 

2.1.3.1.1 Electrode array parameters and tissue interface 
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Table 2.1  The effect of different factors on the phosphene threshold based on the summary of the 

literature. ↑: Increasing that factor increases the phosphene threshold; ↓: Increasing that factor 

decreases the phosphene threshold; N.E.: No Effect; N.R.: Not Relevant; N.K.: Not Known 

Electrode 

Depth 

Distance 

Between 

Electrodes 

Repeated 

Stimulation 

Pulse 

Amplitude 

Frequency Pulse 

Duration 

Train 

Length 

Number of 

stimulating 

electrodes 

Phosphene 

Threshold 

↓ ↓ ↑ N.R. ↓ 

Effective in 

100-200Hz

↓ 

Effective 

in 0.01-

1ms 

↓ ↓ 

Phosphene 

Duration 

N.K. N.K. N.K. High 

amplitudes 

increase the 

duration 

N.K. N.R. ↑ 

With 

limits 

on train 

length 

N.K. 

Phosphene 

Location 

Not known 

exactly 

Influences 

number of 

phosphenes 

N.E. N.E. N.E. N.E. N.E. Depends on 

the location of 

electrodes 

Phosphene 

Brightness 

↑ N.K. ↓ ↑ ↑ ↑ ↑ N.K. 

Phosphene 

Size 

↓ Depends on 

electrodes 

position & 

eccentricity 

N.K. ↑ 

But for 

intracortical 

electrodes 

depends on 

location 

N.K. N.K. ↑ N.K. 

Phosphene 

Colour 

Colourful 

phosphenes 

reported 

with 

intracortical 

stimulation 

N.K. N.K. Higher or 

lower than 

current 

threshold 

influence 

the colour 

N.K. N.K. N.K. N.K. 

Although Dobelle’s finding showed little effect of different electrode sizes on subjective perception 

[10], it is reported that lower currents coming from smaller electrodes are possibly able to generate 

smaller phosphenes [38]. The depth of electrode tips shows significant effects on phosphene 

generation. Increasing the  depth of the  electrode tips in the cortex from the surface decreases the 

threshold for phosphene elicitation [27, 39, 40], with the threshold becoming minimal in layers V 

and VI in the visual cortex [41]. This is the reason that intracortical electrodes need less current to 
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induce phosphenes compared to surface electrodes [9, 27]. Surface electrodes require current in the 

range of 1 mA-15 mA to elicit phosphenes [10, 11, 42] which is unsafe for simultaneous 

stimulation, increases the risk of seizure, and elicits pain [10]. In addition, they cannot evoke a 

high-resolution pattern of separated phosphenes, as they cause interactions between phosphenes. 

Intracortical microelectrodes positioned in the depth of 2 mm in human V1 region can elicit 

phosphenes with only 1.9-25 µA [9]. Thus, intracortical visual prostheses are already used as an 

alternative solution which need much lower power and higher microelectrode density to induce 

phosphenes [7, 9]. The first intracortical visual prosthesis used in humans showed that phosphenes 

were perceived with 100 times lower electrical current (20 µA) at depth of approximately 2.25 mm 

compared to what was necessary with surface electrodes [27]. In addition, blind patients who were 

unable to perceive phosphenes with surface electrode stimulation could perceive phosphenes with 

intracortical electrode arrays [9].            

Phosphene threshold is not a constant value; it can change over time after repeated stimulation. 

The distance between electrodes plays a role in the current thresholds of other electrodes after 

repeated stimulation. Repeated anodic-first (then cathodic) stimulation of an intracortical electrode 

results in a substantial increase in the phosphene threshold of the stimulating electrodes and a 

decrease in the phosphene threshold of an unstimulated electrode within 250 µm distance [9]. The 

results of this work for electrodes with 500 µm distance showed that repeated sub-threshold 

stimulation of one electrode also decreased the phosphene threshold. However, for electrodes with 

distance 750 µm, sub-threshold stimulation of one electrode did not affect the phosphene threshold 

of other electrodes. 

2.1.3.1.2 Stimulation parameters and phosphene threshold 

Stimulation parameters concern the current stimulation waveform given to the cortical tissue from 

each electrode. These parameters are amplitude, which is the intensity of the stimuli, pulse polarity, 

which can be cathodic-first or anodic-first, frequency, which is the inverse of time between pulses, 

pulse duration, which is the duration of a phase of the pulse, train length, which is the duration of 

the pulse burst, and inter-train interval, which is the time between two successive trains [9]. 

Phosphene threshold is a function of all these parameters. Changing stimulation parameters affects 

the phosphene threshold but does not produce different phosphenes [10]. For a patient with 22 
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years of blindness implanted with intracortical electrodes, satisfactory phosphenes were generated 

with a frequency of 200 Hz, pulse duration 200 µs, inter-phase interval 0, train length 125 ms; the 

measured phosphene thresholds for most of the electrodes were less than 25 µA [9]. 

The pulse amplitude required to generate a phosphene is distinct for every electrode and for 

different subjects. The probability of phosphene perception increases with increasing the stimulus 

current amplitude (Figure 2.2), as tested on two monkeys implanted with intracortical 

microelectrodes [28]. In this regard, it was found that repeated electrical stimulation (higher or 

lower than phosphene threshold) reduced the ability to detect the phosphene and increased the level 

of stimulation required to produce a behavioural response [28, 41]. However, increasing the time 

between the stimulations could avoid this issue. 

The leading phase of biphasic stimulation pulse or pulse polarity can affect the phosphene 

threshold. It has been reported that for surface macroelectrodes there is no difference in phosphene 

threshold between cathodic-first and anodic-first pulses [10]. However, for intracortical 

microelectrodes, cathodic-first pulses are more effective than anodic-first pulses in generating 

phosphenes [9]. As illustrated in Figure 2.3, with intracortical electrodes, a lower threshold is 

required for cathodic-first compared to anodic-first stimulation. 

Frequencies above 30 Hz can produce steady phosphene [9-11, 27], but the most effective 

frequencies to generate phosphenes in humans are in the range of 100-200 Hz [9, 10]. Decreasing 

pulse frequency was shown to increase the phosphene threshold [9, 10]. It was reported that using 

intracortical stimulation with frequencies in the range 150-200 Hz, the threshold current was 

constant but increased by 50% for a frequency of 75 Hz [9].  

The effective pulse duration to evoke phosphenes has been reported to be 0.01-1 ms [9-11], with 

pulse durations longer than 1ms failing to generate phosphenes. Results on human subjects showed 

that the threshold decreased with increased pulse duration [9-11]. An interesting result was that the 

subject preferred the wider pulse duration (≥400 µs) [9], which was in contrast to the results 

obtained with surface electrodes [10]. This work ([9]) also reported a current threshold increase of 

52% as the experiment progressed, but this increase reached 20% when pulse duration became two 

times more. Thus, to decrease the current threshold, pulse duration can be increased over the course 

of experiment which is also less unpleasant for the subject. This increase can continue to the point 
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that variations in the phosphene threshold are reduced, so that at higher pulse durations the 

threshold becomes nearly stable [9]. The relationship between pulse duration and current threshold 

when four contiguous electrodes were stimulated could be fitted to a hyperbolic function specifying 

Chronaxie and rheobase [29] by the mathematical expression: 𝐼 ∗ 𝑡 = 𝐼𝑟ℎ ∗ (𝑡 + 𝜏𝑆𝐷). In this 

expression 𝐼 was the threshold current, 𝐼𝑟ℎ was the rheobase current, 𝑡 was the pulse duration, and 

𝜏𝑆𝐷 was the chronaxie. 

 

 

Figure 2.2  Behavioural responses to various microstimulation current values from a single 

electrode for two Non-Human Primates (monkeys) NHP 1 and NHP 2. The stimulation 

parameters were: 40 cathodic-first pulses, 200 µs pulse width, and 200 Hz frequency. The results 

show increase in probability of behavioural response by increasing current amplitude. Used with 

permission from [28]. 
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Figure 2.3 How anodal and cathodal stimulations affect the threshold. Cathodal-first stimulation 

that is shown in black needs less current to attain the phosphene comparing to the anodal first 

stimulation that is shown in white. Adapted from [9]. 

 

 

Figure 2.4 Relationship between threshold current and pulse duration for stimulating four 

contiguous stimulating electrodes. The stimulation current was 40 symmetric biphasic cathodic-

first pulses with 200 Hz frequency. Chronaxie and rheobase were calculated to be 0.16±0.06 ms 

and 102±13 µA. Used with permission from [29].  
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The relationship between current threshold and pulse duration for four contiguous electrodes with 

40 biphasic cathodic-first pulses at frequency 200 Hz is illustrated in Figure 2.4 [29]. Train length 

also exerts an influence on the phosphene threshold: At fixed frequencies, decreasing the train 

length from 250 ms to 125 ms increased the phosphene threshold 20%, but at a train length of 250 

ms, the phosphene was more recognizable and with longer duration [9]. 

2.1.3.1.3 Spatial characteristics of stimulation 

The number of stimulating electrodes is an important parameter in evoking phosphene perception 

and induction of a desirable percept. By stimulating through single intracortical electrodes 

implanted in a monkey, only 8/82 resulted in behavioural responses [28]. However, increasing the 

number of stimulating electrodes increased the probability of evoking a visual percept and reduced 

the required phosphene threshold for generating behavioural responses [29]. With systematic 

stimulation through individual electrodes with currents up to 200 µA, only 19 out of 96 electrodes 

could evoke behavioural responses. When two contiguous electrodes were used for stimulation, 

only two of eight groups of electrodes with 300 µA per electrode could produce behavioural 

responses. By increasing the number of electrodes in a group to four, 26 out of 32 groups generated 

consistent responses, and psychometric curves generated with 204±49 µA current per electrode. 

When the number of contiguous electrodes reached nine, all eight groups could induce behavioural 

responses with 91±25 µA per electrodes (Figure 2.5) [29]. These results showed that increasing the 

number of simultaneously stimulated electrodes decreases the current threshold per electrode 

required to produce a behavioural response and increases the probability of generating a visual 

percept. It was also shown that increase in the current threshold over time is less for nine contiguous 

electrodes than for four contiguous electrodes. Although these results show lower threshold and 

higher probability of phosphene generation, there is no evidence that more electrodes produce 

better performance on a visual task. In addition to electrodes that are able to generate phosphenes, 

performance depends on the area of the visual cortex that is stimulated by the electrode array and 

the spatial distance between electrodes [37]. 

2.1.3.2 Training to detect electrically-induced phosphenes 
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Training is an important factor in performance of prosthesis. Without training sessions, subjects 

could not detect even intense stimulation, presumably because they were unable to register an 

artificial spatial and temporal distribution of activity. However, following training, behavioural 

thresholds improve [43]. In one experiment [9], a blind patient was unable to detect the phosphene 

in the first experimental trial, but after eight stimulation sessions she could detect phosphenes 

reliably. The patient was also able to detect the onset of stimulation with lower current levels and 

shorter latencies than the offset of stimulation [9]. 

 

 

Figure 2.5  The relationship between number of contiguous stimulating electrodes and the current 

threshold per electrode required to induce behavioural response. These curves are Weibull 

functions fitted to psychometric data for stimulating with four and nine contiguous electrodes. 
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Current threshold for four contiguous electrodes is 204±49 µA while for nine electrodes it is 

91±25 µA. Used with permission from [29]. 

 

To measure the effect of training on the ability of animals to detect intracortical microstimulation 

at different sites in V1, rhesus monkeys were trained on a two interval forced-choice detection task 

[44] with visual stimuli. When the threshold for detecting visual stimuli became stable (after around 

4 months) the visual stimulation was replaced with a 250 ms anodal-first, biphasic pulse train 

microstimulation with frequency 200 Hz and amplitude of no more than 50 µA (weak stimulation). 

Each site was defined as a 3 mm ×3 mm region with 5mm distance from the other sites. For each 

site, training reduced the current threshold. Initially monkeys were unable to detect the phosphenes, 

but after 2-4 weeks of training, thresholds converged to a stable asymptote (around 6.2-6.6 µA). 

Training to detect microstimulation in one site is very specific to the trained location, as further 

training is required to achieve asymptotic thresholds at an untrained site [44]. However, the effects 

of training are long-lasting: Retesting a previously trained site after one year showed that the 

threshold remained stable without practice. Interestingly, at a specific cortical site, training to detect 

electrical stimulation elevated detection threshold of the visual stimuli by factor of 1.5-7 and 

retraining to detect visual stimuli elevated the detection threshold of electrical stimulation 3-fold 

at each site. However, both changes in threshold were reversible [45].  

On the other hand, the effect of training in a memory saccade task to detect phosphene location in 

monkeys showed that after a period of training with some stimulating electrodes they were able to 

detect the phosphenes induced by other electrodes that had not been used before [7]. Following 

training, they were able to detect a 5% change in frequency [41] and 5-10% change in current. 

They were also able to detect 20 ms or more of delay between stimulations delivered through 

separate electrodes [41]. In general, monkeys can detect stimulation of every site throughout the 

visual cortex, possibly as a consequence of extensive training [14]. 

Microstimulation changes neuronal response properties, and thus during the training sessions the 

neuronal connections likely change to support them [46]. It appears that after training, the 

microstimulation signals are processed as if they were generated naturally, and in some situations 

subject cannot distinguish between natural and artificial neuronal stimulation [47]. This suggests 
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that adult cortex has enough plasticity to learn to process new neural activity patterns [48]. For 

future prostheses with a large number of stimulating electrodes (e.g. more than 100), detection of 

multiple phosphenes will likely require extensive training and more advanced psychophysical 

techniques. 

2.1.3.3 Phosphene duration 

The duration that a phosphene is perceptible depends on the stimulation onset and cessation. 

Phosphenes typically appear immediately after the onset of stimulation and disappear immediately 

after stimulus cessation (Figure 2.6 a) [9-11]. There is also a reaction time for the onset of 

phosphene detection and cessation that differs for different electrodes and is influenced by 

stimulation frequency [9]. Strong stimulation, however, can result in persistence of phosphenes 

beyond the stimulation offset (Figure 2.6 b) [10, 11]. Increasing the stimulation train length initially 

yields phosphenes of slightly longer duration than the train length. However, larger increases cause 

phosphenes to disappear before the termination of stimulation. This occurs when the stimulation 

train length is greater than 10-15 s for surface microelectrodes [10] or 1 s for intracortical 

microstimulation (Figure 2.6  c) [9]. To increase the duration of phosphene perception when a long 

stimulation train is used, brief interruption should be applied during the stimulation train [9]. In 

particular, it was shown that stimulation with 12 trains of length 125 ms with inter-train intervals 

of 50 ms can produce perception of multiple phosphenes appearing close together in time. 

However, decreasing the inter-train interval to 25 ms produces a percept of a single phosphene 

perceived throughout the period of stimulation, which disappears shortly after the cessation of 

stimulation. It has been shown that the neural elements of V1 that mediate phosphene induction 

are mainly pyramidal fibres [10, 11, 39, 41, 42], while GABAergic fibres mediate phosphene 

termination [49]. 

2.1.3.4 Phosphene characteristics 

According to studies of phosphene induction in blind patients [2, 10-12], the perceptual 

characteristics associated with phosphenes are shape, size, brightness, colour, flicker, spatial 

location, multiplicity, and edge. It has been observed that the shapes of cortical phosphenes are 

spot-like, round, and diffuse [11]. The sizes of most phosphenes are in the range of 0.5-2º of visual 
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Figure 2.6 Phosphene onset, duration, and extinction depend on the microstimulation pulse 

amplitude, and pulse duration. (a) phosphene appears with the stimulus onset and disappears with 

stimulation offset. (b) With an increase in current stimulation amplitude, the phosphene stays 

longer and does not disappear immediately with the offset of stimulus. (c) When a stimulus pulse 

duration is longer than 1 s for intracortical electrodes or 10-15 s for surface electrodes, the 

phosphene disappears before the offset of stimulus. 

 

angle [8-11, 50]. In colour, they are most likely to be colourless (white) [2, 10], yellow [42], and 

gray. However, blue [42], red, green [9], brown, and orange [10] phosphenes are also observed. 

The flicker of phosphenes is variable, and depending on the microstimulation factors, they can 

flicker or not [9]. The spatial location of phosphenes is pseudo-corticotopic and only roughly 

follows the visuotopic map [10, 11, 28]; phosphenes usually appear around the horizontal and 

vertical meridians. A single stimulation site sometimes may produce multiple phosphenes [9-11]. 



21 

 

 

The edges of phosphenes are sharper in the foveal and parafoveal visual field and are more fuzzy 

at higher eccentricities [11]. Here, we present the effects of different microstimulation factors on 

the main phosphene characteristics, according to the experimental results obtained on human and 

monkey. 

2.1.3.4.1 Phosphene location 

The location of phosphenes and the effectiveness of electrical stimulation in producing a percept 

depend on the location and extent of the electrodes across the visual cortex. With implantation of 

intracortical electrodes near the right occipital pole [51, 52], all the phosphenes were generated in 

a small area of the visual field in the left hemi-field with the majority above the horizontal meridian 

and at an eccentricity of 22° [9]. A phosphene map is the ensemble of locations of the induced 

phosphenes associated with all the stimulating electrodes. Figure 2.7 a is an example of a two-

dimensional phosphene map from a human subject implanted with an electrode array on the top 

side of the right occipital lobe (Figure 2.7 b) [2]. For human subjects, two mapping methods were 

presented in [9]. The first method used a dart board with five radial and five concentric annular 

segments (to represent the fovea and visual periphery); for each phosphene the subject placed a 

dart in the corresponding board location via tactile localization (Figure 2.8 a). The second method 

used computer mapping of each phosphene by having subjects indicate the direction between two 

phosphenes induced by activating two electrodes when one phosphene was a reference phosphene 

(previously mapped) and the second phosphene was the one to be mapped. The subject indicated 

the direction vector between two phosphenes using a joystick with 16 different directions (Figure 

2.8 b). The results showed fairly good correspondence between the location of electrodes in the 

visual cortex and the computer-based phosphene map. Phosphene mapping in animals is more 

difficult and entails the initial step of training them to provide information about what they have 

perceived. The memory saccade task can be used for this purpose [6, 7, 29]. In the memory saccade 

task, the animal fixates on a spot for around 1-1.5 s, and during this fixation time a small spot 

flashes for around 100 ms in a random location within the receptive field (as previously mapped) 

of the neurons. After a delay, the animal is required to saccade to the remembered location of the 

flashed spot (stimulus) to receive a reward. In the next step, the fixation point is presented visually, 

and then the electrical stimulation is applied. It is expected that the animal will treat the phosphene 
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Figure 2.7 Phosphene map in the visual space of a blind subject reported by Dobelle (2000). (a) 

Location of phosphenes mapped in the visual field of the blind subject. Each number corresponds 

to an electrode number as shown on the right. The phosphenes are induced on the left visual field 

in the 8 inch×3 inch area (b) the electrode array numbering used for stimulation. The array is 

implanted on the top side of the right occipital lobe. Used with permission from [2]. 

 

similarly to the visual stimulus and perform a saccade to the location of the phosphene in the 

receptive field. Saccade endpoints can then be considered a readout of the location of the induced 

phosphene. The reason that saccade should be made to the remembered location is that when the 

eyes move, the phosphenes move with the eye, as reported in human experiments [9]. An important 

point that is usually considered in the experiments is interleaving visual and electrical stimulation, 

so that the animals are motivated to perform the saccade for both types of stimuli. Although this 

memory saccade task works for sighted monkeys, it may not be applicable for blind human subjects 

where the eye muscles do not function in a normal way. The results of studying phosphene location 

in monkeys showed a significant correlation between saccade endpoint and receptive field location 
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for each electrode [6, 7, 53, 54], and significant increases in this correlation were observed after 

several months of training. 

 

Figure 2.8 Different methods of phosphene mapping as used in [9]: (a) dart board map, which 

refers to the subjective center of gaze and (b) computer-coupled joystick mapping. The circles 

show the perceived location of phosphenes in the visual space (showed by the number of 

phosphenes). Used with permission from [9]. 

 

Stimulating with new electrodes that were not used for training the monkey on the saccade-to-

phosphene task also showed a high correlation between receptive field centers and the saccade end 

points [7]. This suggests that the monkeys had not simply learned to perform the saccade based on 

the stimulation per se, but rather had learned to respond to the evoked phosphene. On the other 

hand, the results of stimulating V1 with higher than 5 mm distance showed that stimulation with 

new electrodes that were not used for training cannot be detected without further training session 

[45]. Comparing saccade endpoints and visual targets that were presented in eccentricity equal to 

zero, showed 2.5 times higher standard deviation (SD) for saccade endpoints and an increase in 

their SD with increases in eccentricity [7]. Thus, a saccade to a visual target is more precise. 

Performance of the memory saccade task in concert with electrical stimulation of three groups of 

nine contiguous electrodes implanted anterior to the Calcarine sulcus and lateral to the sagittal 
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fissure showed that the animal could discriminate percepts induced by different groups (Figure 2.9) 

[29]. However, these results did not indicate whether the monkey had perceived more than one 

phosphene. 

 

Figure 2.9 Saccade end points of three different percepts induced by electrical stimulation of 

three groups of nine contiguous electrodes as represented by three different colours. This shows 

that the monkey can discriminate between different stimulation groups. The distance between 

these groups of electrodes was 16±0.3 mm on the array and 1°±0.2° on the electrodes. Used with 

permission from [29]. 
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The visuotopic (or retinotopic) map is a well-organized map of the visual (retinal) coordinate 

system onto points (neurons) in the visual cortex (Figure 2.10) [55]. To compare the visuotopic 

map with the phosphene map in macaque monkeys, the receptive fields of both Local Field 

Potential (LFP) and Multiunit Activity (MUA) signals for several electrodes were measured [28]. 

Then, applying electrical stimulation through the same electrodes, it was observed that the spatial 

locations of evoked phosphenes were similar to the spatial location of the receptive fields for the 

corresponding neurons but do not follow a conformal map [28]. Based on this observation and 

other experimental studies, it was concluded that the phosphene map is not very regular and only 

roughly follows the receptive field properties of the V1 visuotopic map [2, 10-12]. The relationship 

between the phosphene map and the V1 visuotopic map is thus somewhat unclear [28]. 

 

Figure 2.10 Visuotopic map of the primary visual cortex. Different locations in the visual field 

are mapped onto the activity of neurons in different regions of V1 as shown by numbers and gray 

colors. 

2.1.3.4.2 Phosphene brightness  

Electrical stimulation can modulate the perceived brightness of phosphenes. It generates 

phosphenes brighter than the background [2, 9-11]. It was reported by one subject that at least 12 

brightness levels could be distinguished [42]. With surface macroelectrodes, increasing the current 
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initially yielded an increase in the brightness of the phosphene. With further increase in current, 

the size of the phosphenes expands [10, 42]. It is not known if brightness can change independently 

of the phosphene size [56]. The depth of the implanted electrodes also has a direct relationship with 

the brightness of the phosphenes. For intracortical stimulating electrodes, increasing current 

amplitude was reported to increase the brightness [9]. Increasing pulse duration or train length 

using either intracortical electrodes [9] or surface electrodes [10, 11] increases the brightness of 

evoked phosphene [9-11]. Increasing pulse frequency from 100 to 200 Hz increased the brightness 

of phosphenes [9, 10]. Unlike human, in monkeys, the phosphene brightness was reported to be 

2.6%-10% (contrast), and most of the times darker than the background (Figure 2.11 a) [30]. Small 

changes were observed with variation in the current levels. 

Brightness accommodates to repeated bouts of electrical stimulation for both surface and 

intracortical electrodes and for both blind and sighted subjects [9, 10, 42]. In other words, by 

repeating stimulation for periods of minutes, the phosphene brightness dropped gradually. Fifty 

repetitions of a pulse train of 125 ms with 0.1 ms pulse duration and frequency of 200 Hz led to a 

decrease in phosphene brightness of 80% (Figure 2.12) [9]. In this work, increasing pulse duration 

to 0.2 ms decreased the rate of change in the brightness accommodation, and increasing it to 0.4 or 

0.8 ms resulted in a brightness decrease for the first 25 trials and relatively no change for the next 

trials. The effect of brightness accommodation should therefore be considered in the design of 

visual prostheses.  

 

2.1.3.4.3 Phosphene size 

The size of phosphenes ranges from that of a pin point to that of a 20 mm diameter coin (around 

0.5-2° and less than 3° visual angle) at arm’s length [9, 10]. It differs from subject to subject and 

from trial to trial. For rhesus macaque monkeys, the sizes of phosphenes were reported to be in the 

range of 9-26 min of arc in diameter (Figure 2.11 b) [30], which overlaps with values reported for 

phosphenes induced by stimulation of the human foveal representation [9, 11]. It was observed that 

the phosphenes produced by intracortical microelectrodes are smaller in size than phosphenes 

induced by surface electrodes [9]. When surface electrodes were used, increasing the current 

increased the size of the resulting phosphene [10, 11, 42]. However, when intracortical 



27 

 

 

microelectrode arrays were used, the effect of an increase in current amplitude on size depended 

on the location of electrode in the cortex [42]. 

 

 

Figure 2.11 The (a) contrast and (b) size of phosphenes induced by electrical stimulation using a 

paired target task on a rhesus macaque monkey. The above figures show the percentage of the 

performing saccade to the location of the receptive field of the electrically stimulated neuron as a 

function of the contrast and size of visual stimulus for different current levels. The 50% crossover 

shows the equivalence in visual target and percept made by electrical stimulation. Used with 

permission from [30]. 
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Figure 2.12 Reduction in relative phosphene brightness resulted from accommodation to stimulus 

repeated for 50 times as tested for three different intracortical electrodes implanted on a blind 

subject. Stimulation parameters are: pulse train 125 ms, pulse duration 0.1 ms, and frequency 200 

Hz. Used with permission from [9]. 

 

Depending on the site of stimulation, increased current could lead to increased or decreased 

phosphene size, or in some cases a size increase followed by a decrease [9, 42]. Stimulation with 

intracortical electrodes showed that increasing the train length (200 ms-500 ms) increased the 

phosphene size [9]. 

For rhesus monkeys, determining phosphene characteristics, such as size, contrast, and colour, can 

be challenging. To address this problem, the two-target task has been proposed as a method to 

determine the contrast or size of the visual percept induced by electrical stimulation of V1 [30]. In 

this task, the animal is presented with two visual targets on the monitor, one with constant size and 

contrast, and the other with variable size or contrast. The monkey is trained to saccade to the one 
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with higher contrast or larger size. Electrical stimulation with fixed parameters is then delivered, 

and it is paired with a single visual target whose contrast or size changes systematically. In this 

way, the contrast or size of the phosphene can be determined by comparison to the visual target. 

Phosphene size estimated in this way can be seen in Figure 2.11 b. 

The sizes of evoked phosphenes also depend on the eccentricity. By increasing the distance of the 

microstimulating site from the foveal representation of V1, the sizes of evoked phosphenes increase 

from fraction of a degree to around three degrees [9, 11]. Thus, given a fixed stimulation current, 

increasing the eccentricity increases the size of the phosphenes (Figure 2.13) [57]. The 

eccentricities of phosphenes also differ from subject to subject and trial to trial. For example, for 

Dobelle (2000) it was 20° [2], and for Brindley (1968) it was about 35° [11]. In the same 

eccentricities however, current stimulation parameters influence the size of phosphene. For 

example, at eccentricity 4° from the fovea, currents of 25 µA, 50 µA, and 100 µA affect 0.31°, 

0.39°, and 0.58° of the visual field [57]. 

2.1.3.4.4 Phosphene colour 

Previous attempts to control phosphene colour using electrical stimulation in humans have not been 

successful [10]. Specifically, manipulating the current pulse leads to changes in the colour of the 

phosphenes that cannot be disentangled from changes in luminance. In a subject who had been 

blind for 22 years and subsequently implanted with intracortical microelectrodes, for stimulation 

levels near the threshold (current less than 10 µA), phosphenes with distinct colours (yellow, red, 

blue) were induced, but increasing the current beyond 12.5 µA evoked white, greyish, or yellowish 

phosphenes [9]. The reason for this result can be activation of neurons in more cortical columns 

with different color preferences by high current stimulation well above the threshold (e.g. 80 µA). 

Surface electrodes in blind patients failed to produce coloured phosphenes [10, 11]. In the work of 

Dobelle in 2000 with cortical surface electrodes, the patient reported colourless phosphenes [2]. 

This was in contrast to sighted patients implanted with intracortical electrodes near the occipital 

pole, who reported blue and yellow phosphenes [27].  

To determine the colour of phosphenes perceived by rhesus monkeys, a shifted background task 

was used [30]. In this task, the luminance or colour of the background was shifted before the 

presentation of the visual or electrical stimulation. The background colour and contrast then 
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changed up to the point that the monkey was unable to perceive a visual stimulus or phosphene 

percept. From this work it was concluded that the background colour and luminance are the same 

as those of the perceived phosphene. The results showed that electrical stimulation produces 

coloured phosphenes with relatively unsaturated colours in a macaque monkey with full block on 

CIE (International Commission on Illumination [58]) 0.304/0.206 [30]. 

 

 

Figure 2.13 By increasing the eccentricity in the visual field and for stimulations with the same 

current levels, the sizes of phosphenes (white circles) increase. In other words, by increasing the 

distance of microstimulation site from foveal representation the size of phosphenes induced by 

the same current level will increase. Theoretically, if phosphenes follow the visuotopic map at the 

same distance from the centre of visual field, they should be approximately the same size [57]. 
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2.1.3.4.5 Flicker 

Depending on the experimental setting, phosphenes may appear to flicker [8, 11, 50] or not [9, 27]. 

The flicker fusion frequency at low stimulation frequencies is around 50 Hz [2], which is higher 

than what is found in normal vision (typically around 20Hz). The reported rate of flicker for both 

of Brindley’s subjects was 10 s-1 [11, 50] regardless of stimulation parameters. It was reported by 

Dobelle (2000) that the flicker frequency was independent of pulse, repetition frequency, or any 

other physiological function such as cardiac pulse [2]. Using intracortical electrodes, static 

phosphenes (not flickering) were induced [9, 27].  

2.1.3.5 Multiple Phosphenes 

Depending on the depth of cortical stimulation, using implanted electrodes that are on the cortical 

surface [11] or intracortical [27], and depending on the distance between the electrodes, electrical 

stimulation from multiple electrodes can produce multiple phosphenes. Intracortical electrodes 

with ≥500 µm inter-electrodes distances can generate separate phosphenes, with a minimal 

interaction when a maximum of 30 µA current is applied [9, 27]. This 500 µm inter-electrodes 

distance is five times smaller than the distance (~3 mm) between surface electrodes used to evoke 

separate phosphenes [10, 11]. These reports show that intracortical electrodes have a much greater 

resolution in producing phosphene perception. Stimulating multiple electrodes can produce 

patterned percept but the interaction between stimulated currents can produce overlapped 

phosphenes and interfere with perception [9, 12].  

Patterns of four phosphenes were generated with four electrodes but sometimes with complex 

interactions [10]. Two electrodes situated 4.4 mm apart were reported to produce two phosphenes 

in close proximity, with characteristics depending on stimulation parameters [9]. While each of 

those electrodes stimulated separately evoked phosphenes with different sizes and colours, 

stimulating them alternately with different inter-train-interval values ≥1 s resulted in a loss of the 

individual characteristics of the phosphenes. A reduction of the inter-train-interval when alternately 

stimulating those two electrodes rendered the two phosphenes more distinct, while maintaining the 

perceived distance between them [9].  

Stimulation from some electrodes can produce a second phosphene that has a higher threshold [10]. 

These phosphenes can appear to have different colours and different sizes. Thus, two different 
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maps, one for low-threshold and one for high-threshold phosphenes, can be generated [11]. Using 

cortical surface electrodes, Dobelle (2000) reported that each electrode can create 1-4 closely 

spaced cluster of phosphenes, each up to the diameter of a pencil at arm’s length [2]. By increasing 

the current of an intracortical electrode, the second closely spaced phosphene was described as 

‘fuzzy’ [9]. In this work, stimulation with a single stimulation train, regardless of train length or 

multiple stimulation trains, with inter-train interval shorter than 25 ms, generated a static 

phosphene, while multiple stimulation trains with inter-train intervals longer than 25 ms produced 

two temporally separate phosphenes. In addition, when two or more phosphenes appeared 

simultaneously at different distances from the subject, their distances changed to make them appear 

at the same distance or in the same plane. 

2.1.3.6 Computer Vision 

In addition to training programs, using computer vision and image processing algorithms such as 

edge detection can help patients to improve shape and letter recognition gradually by extracting 

and converting specific image features into patterned stimulation [2]. Increasing the number of 

phosphenes would call for an additional preprocessing step to extract some image features prior to 

reconstruction of the image through the stimulation. The work of Dobelle (2000) was the only 

clinical study that used image processing algorithms on a cortically implanted subject [2]. 

Development of future cortical visual prostheses necessitates advanced algorithms for compression 

and transfer of particular features of an image into a specific area of the visual cortex. 

2.1.3.7 Phosphenes move with eye movement 

Phosphenes move proportionally with voluntary eye movements [2, 8-11]. When up to six 

phosphenes were simultaneously generated, they moved along with the eye movement [9]. This 

complicates generation of a consistent phosphene map. Therefore, eye tracking technology is 

required to ensure the stability of images during the eye movement. More detailed reviews on this 

topic can be found in Tehovnik et al. (2005) and Tehovnik et al. (2009) [57, 59]. 

2.1.3.8 Clinical Outcomes 

The functional performance of a cortical implant must be verified quantitatively. This assessment 

should encompass the capacity of the cortical implant to create useful perception across different 
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tasks, such as motion perception, light perception, and obstacle avoidance [60, 61]. For example, 

in [12] the performance of the implant was tested by the ability of the subject to read Braille 

characters and conventional letters, while in [2] it was tested by the ability of the patient to 

recognize shapes using Landolt rings and Snellen charts. Additionally, the visual acuity of the 

implant recipient - achieved via head scanning - was estimated to be 20/1200. Since publication of 

[2], no further report of visual acuity in cortical visual prosthesis recipients has been published 

[37]. One of the main concerns in this area is the absence of standard methods and scoring systems 

to assess functional performance [62]. 

2.1.4 Major challenges and suggested solutions 

There are challenges associated with different aspects of cortical visual prosthesis, such as surgical 

aspects, postoperative care, stability of the electrode–brain interface, seizure risks, chronic 

inflammation, and neurodegeneration as explained and discussed in [37]. However, in this review 

we focus on those challenges that exist in controlling phosphene characteristics by applying 

electrical stimulation and discuss the main difficulties facing image-to-electrical stimulation 

pattern transformation.  

A phosphenated image is the downsampled grayscale version of the original image with different 

pixel count, density, size, brightness, and overlap [21, 63]. As discussed above, the goal of many 

cortical visual prostheses is to induce a meaningful percept made of phosphenes by applying 

electrical stimulation to the visual cortex. Most of the studies presented in the previous sections 

have focused on the experimental and/or clinical generation and characteristics of phosphenes as a 

function of changing stimulation parameters or the physical properties of the electrodes (such as 

their depth). Among these studies, there has been no report of systematic control over the location, 

brightness [6], colour, or size of the phosphenes. No study has been able to induce phosphenated 

perception by converting images into spatiotemporal electrical stimulation patterns in V1 region. 

A hypothetical (theoretical) topography for electrode positioning in V1 was presented in [64], and 

argued to be likely the generated percept made of phosphenes.  

Using feature extraction algorithms and a blinking phosphene in a simulated prosthetic vision 

environment resulted in attention of the subject to the relevant parts of an image and thus, 

improvement in object avoidance [65]. One study using a psychophysical experiment with a 
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portable phosphene simulation device on a normally sighted human subject showed that 625 pixels 

were sufficient to support text reading and navigation [21]. However, one criticism of this work is 

that the 625 pixels provided to the subjects were still processed by the retina, LGN, and visual 

cortex, so that direct electrical stimulation of the cortex still might not be sufficient to produce 

useful visual percepts, even if 625 electrodes could be implanted and operated effectively [66]. In 

addition, these simulations were performed using a monitor masked by an opaque perforated film 

of varying density and pixel count to provide the likely percept experienced by a prosthesis 

recipient. However, these simulated studies were not experimentally validated using implanted 

microelectrodes. To date there have been no experimental demonstrations of meaningful visual 

perception using phosphenes generated with spatiotemporal microstimulation patterns [6]. 

Using spatiotemporal electrical stimulation to control phosphene characteristics and creating 

meaningful perception poses diverse challenges which can be classified into two major categories: 

1) challenges related to generation and detection of phosphenes; and 2) challenges related to the 

quality of the induced percept. Solving these challenges requires an understanding of all aspects of 

visual prosthesis such as encoding different visual features into distinct neuronal population 

activity, transducing a desired population activity into microstimulation parameters, monitoring 

dynamic variation of visuotopic organization from the onset of blindness, selecting specific cortical 

areas for implantation of the visual prosthesis, and adaptively updating stimulation parameters 

based on recorded neural responses. 

2.1.4.1 Challenges related to generation and detection of phosphenes 

Neuroplasticity plays a key role in the detection and generation of phosphenes. Weak electrical 

microstimulation is not easily detectable without training, because the neural activity produced by 

microstimulation is unfamiliar to the brain. On the other hand, after the onset of blindness, 

neuroplasticity causes the visual cortex to begin to process other sensory inputs. The positive and 

negative effects of neuroplasticity are very important consideration for the development and 

operation of a cortical visual prosthesis. 

2.1.4.1.1 Training to detect phosphenes 
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Microstimulation changes neural circuitry during training to support detection of new neuronal 

activity patterns. However, we don’t know if after training those neuronal activity patterns change 

and associate with different percept. Thus, further clinical assessment is required to track the 

dynamic changes in perception as subjects are trained to detect microstimulation. In addition to 

this plasticity during training, each electrode site may require a separate training session that may 

take up to 4 weeks. Therefore, for future visual prosthesis applications with many electrodes, 

extensive training will likely be needed. Fortunately, such plasticity is long lasting, so that trained 

sites typically do not retraining, even many months after the initial training [44]. 

2.1.4.1.2 Neuroplasticity and changes in visuotopic map of V1 after onset of blindness 

Understanding the cortical plasticity that follows the onset of blindness is also important for the 

success of cortical visual prostheses [3]. Some studies show little change in V1 organization after 

retinal damage, so that a phosphene can be perceived by electrical stimulation for a decade after 

the onset of blindness [12, 67]. Indeed, it is likely that V1 shows relatively little plasticity beyond 

the critical period during early development [68, 69]. Thus, when blindness starts after the period 

of normal development, such as in the case of AMD and RP, visuotopically organized visual cues 

should be able to be evoked using electrical stimulation, even decades after the onset of blindness 

[26]. Thus, for cases in which blindness occurs after the critical period of normal development, 

there remains the possibility of reconstructing normal visual activity based on knowledge of the 

distribution of current achieved by artificial brain stimulation and the encoding strategies used by 

the normal visual system. Absent this knowledge, training is unlikely to be sufficient for subjects 

to interpret artificially-induced neuronal activity patterns.   

On the other hand, some studies show a significant change in the architecture and connectivity of 

V1 after retinal damage (sensory deprivation) resulting from preserved neuroplasticity in adults 

[70-76]. Following the onset of blindness, visual cortex areas that are normally involved in vision 

begin to process inputs from other sensory modalities (Figure 2.14) [77-80], such as 

somatosensation [78, 81, 82]. An interesting example of this cross-modality adaptation has been 

shown with the inactivation of the occipital cortex, either experimentally with Transcranial 

Magnetic Stimulation (TMS) in early and late blind subjects [83-85] or following a stroke [86]. In 
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either case, blind subjects are impaired in Braille reading following occipital inactivation, 

suggesting that this region has been co-opted for tactile processing. 

 

 

Figure 2.14 The effect of neuroplasticity in the visual cortex after onset of blindness (a) In normal 

sensory perception visual cortex processes mainly the visual information (b) after onset of 

blindness and visual deprivation since visual cortex is not employed for processing the visual 

information it will be adapted to process other modalities including auditory and tactile 

processing. Used with permission from [3]. 

 

The occipital cortex can also be employed for processing auditory information [87] and speech 

comprehension [88] in blind subjects. Further evidence for the neural reorganization of V1 after 

the onset of blindness is that sighted subjects can perceive both light and dark phosphenes and can 

discriminate 2000 levels of illumination, while dark phosphenes can very rarely be perceived by 

blind subjects, and they can only discriminate around 10 levels of phosphene brightness [9-11, 42]. 

This suggests that changes have occurred in the V1 after onset of blindness. It has been reported 

that coloured phosphenes are also less likely to be perceived by blind subjects than sighted subjects 

[2, 8, 10], and a patient who had been blind for 57 years from the age of 5 was unable to experience 
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phosphenes by stimulation of V1 [2]. Thus, the amount of information that can be transferred to 

V1 through microstimulation can be significantly reduced because of reorganization in V1. This is 

the negative effect of the neuroplasticity on visual prosthesis development. Although 

neuroplasticity can have a positive effect on the operation of the cortical visual prosthesis by 

helping the neuronal networks adapt to the new situation during the training period after 

implantation, it can also limit the degree of adaptation, in favour of processing other modalities 

[89, 90]. For example, when cross-modal plasticity changes the auditory cortex to restore auditory 

function, the auditory cortex can fail to respond to cochlear stimulation appropriately [91] or as 

mentioned above stimulation with TMS could impair accuracy of the Braille reading [84] that may 

occur for the case of intracortical stimulation too. Thus, there remains the possibility that a cortical 

visual prosthesis may not generate meaningful and interpretable vision, as a consequence of cross-

modality adaptation. The extent and magnitude of neuroplastic changes are influenced by the cause, 

onset, and duration of blindness. As microstimulation changes the neural circuitry, coupling it with 

extensive training sessions may reverse these cross-modal effects. In addition, the dynamic changes 

in the neural responses of visual cortex after onset of blindness should be studied, so that 

microstimulation can be applied optimally. 

2.1.4.2 Challenges related to controlling the phosphene characteristics 

After generation and detection of phosphene, methods to control the characteristics of the induced 

percept are needed. For this purpose, it is required to have control over the location, brightness, 

size, colour, and duration of multiple phosphenes. Based on different studies on the phosphene 

location and map in V1, it is still unclear if the location of the induced phosphene depends only on 

the location of current stimulation site in the visual cortex or if it can depend on the stimulation 

parameters or physical properties of the electrodes (such as their depth) as well. For example, there 

is no study that deals with the relationship between current amplitude and the location of the 

induced phosphene. Variation in the current stimulation parameters may activate neurons that 

encode a different location in the visual space than the closest neurons to the electrode site. This 

may be the reason for this difference between the phosphene map and the visuotopic map. 

Furthermore, the visuotopic map of the visual cortex varies from subject to subject, depending on 

innate variability and visual experience. Therefore, the success of a visual cortical prosthesis 

depends on the ability to selectively stimulate groups of neurons that control the appropriate 
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phosphene characteristics, the different neuronal ensembles that encode those characteristics, 

together with knowledge of individual differences in visual cortex organization. 

At the same time, it is difficult to fully deliver phosphene stimulation in humans, as the anterior 

and medial parts of V1 are located deep within the calcarine sulcus, leaving some parts of the 

visuotopic map largely inaccessible. To overcome this limit, stimulation of area V2 could be used 

to elicit phosphenes in the remaining parts of the visual field because it is more accessible and 

complements the stimulation of inaccessible areas in the V1. In addition, recently a patent was 

presented that developed a surface electrode array for implantation within the human V1 Calcarine 

fissure [36]. However, no clinical stimulation result has been reported. A high-density 3D pyramid-

shaped microelectrode array was also developed that has the ability to be used in various 

intracortical areas [76]. 

To create a percept, multiple phosphenes at different locations are required to be induced. As 

reported in [9], when multiple phosphenes were generated they appeared to have equal distances 

from the subject. In addition, train length affected the simultaneous appearance of phosphenes 

organized in a vertical line. It was also reported that increasing current from multiple stimulating 

electrodes can produce more complex shapes than single phosphenes such as ‘I’ or ‘M’. Limited 

object recognition and mobility were also reported with only 21 phosphenes, using surface 

electrodes in one of the subjects [2]. However, systematic control over phosphene organization has 

not been accomplished yet. 

The effects of electrode depth, current amplitude, eccentricity, and train length on phosphene size 

have been studied. However, the effects of frequency and pulse duration have not to our knowledge 

been studied. Moreover, there has been no study of the sizes of phosphenes perceived during 

simultaneous stimulation at multiple sites.  

There are still many unanswered questions regarding the modulation of colour with electrical 

stimulation. Since the perception of colour is different from subject to subject, it is difficult to 

determine what a subject has perceived. In addition, changes in perceived colour depend on the 

visual experience of the subject, as well as the duration of blindness. The effects of electrode size 

and depth are not known completely. The effect of stimulation parameters such as pulse duration, 

amplitude, and frequency, and the influence of stimulation parameters in other simultaneously 
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stimulating electrodes and their interaction also require further study. In addition, the brightness 

accommodation, when multiple electrodes are stimulated and have overlap in their stimulating 

current, is not known. More effort is required to study the effect of stimulation of multiple 

electrodes on phosphene brightness. 

As discussed above in section 2, pulse duration is affected by train length and amplitude. However, 

there are still unanswered questions about the phosphene appearance and cessation. How do 

electrode size and depth influence the duration of phosphenes? If the stimulus is repeated several 

times will the phosphene duration change? How do the frequency and duration of pulses influence 

the duration of the phosphene? If we stimulate with more than one electrode, is there any correlation 

between the durations of the phosphenes? Will there be any change in the duration of phosphenes 

when more than one electrode is stimulated? These are all open questions to be studied. 

2.1.4.2.1 Encoding of visual features in neuronal population activities 

To generate a spatiotemporal pattern of electrical stimulation corresponding to a given visual scene 

and to transfer relevant information to the neural tissue, we need to know how visual features are 

represented in neuronal responses in different locations of V1. This is a key challenge in designing 

a cortical visual prosthesis [3]. In normal sight, when a visual input is presented, a set of neurons 

becomes active in the visual cortex. The responses of these cells encode one or more features of 

the image, such as colour, contrast, or location in space. Since the perception of phosphenes is 

similar to spots of light, it follows that knowledge of neural encoding of spatial locations, size, 

brightness, and colour would provide key constraints for the necessary spatial and temporal pattern 

of activation required for the production of a specific phosphenated percept. For example, to 

systematically control the brightness, we should know how changes in brightness influence 

neuronal activity in the primary visual cortex. Then, based on this information, we can electrically 

stimulate the neurons with an appropriate spatiotemporal pattern. Therefore, one of the main 

challenges of constructing a visual prosthesis is to design a system that mimics the transfer function 

of the corresponding biological module from visual input (e.g. data coming from a camera or a 

photosensor array) to the spatiotemporal pattern of electrical stimulation at the location of the 

electrodes [92]. 
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A theoretical framework for generating a spatiotemporal electrical stimulation pattern from an 

arbitrary image is the bioinspired retina-like encoder/stimulator [93]. It is based on mimicking 

retinal function by considering how knowledge of the visual input is encoded into the spike trains 

of retinal cells. This framework performs spatiotemporal filtering to extract salient features of the 

visual scene and transforms them into electrical stimulation patterns [93]. To generate the electrical 

stimulation pattern, each electrode is associated with a pixel. The image input is transformed 

through a set of parameterized filters, and the ensemble of them is transformed into an output map 

called the ‘information figure’. The filters are designed based on the distribution of photoreceptors 

in the human retina, so that in the central area, there is a higher density of pixels with smaller 

receptive field sizes than in the periphery. Each channel of an electrode then has a gain factor. The 

information figure array is reduced to the resolution of the electrode matrix, called an ‘activity 

matrix’, with the option to specify receptive field shapes and sizes. Finally, components of the 

activity matrix are converted into neuromorphic pulse-coded signals generated based on the 

function of retinal ganglion cells (Figure 2.15) [92]. 

The retina-like encoder has several problems. First, although V1 in blind people shows some 

plasticity, particularly in adapting to inputs from other sensory modalities, this level of plasticity is 

likely not sufficient [68] to learn a new code relating visual input to neuronal responses [26], and 

training sessions are required in order to be adapted. Second, visuotopic organization is different 

from subject to subject, depending on their visual experience. Thus, the same stimulation pattern 

cannot be applied for everyone [26]. Third, the retina-like encoder is designed based on retinal 

functions, without considering the architecture of the LGN, optic nerves, and V1. Fourth, the retina-

like encoder can generate different percepts in different V1 locations or depths, and therefore it 

needs to be flexible depending on the location in the visual cortex. Fifth, trial-to-trial variability in 

neural responses [94] and the effects of neural adaptation [95] are ignored. A stimulation generator 

requires adaptive learning of stimulus-response patterns regarding response variability, while a 

retina-like encoder has a fixed encoding rule and does not generate an adaptive stimulation pattern. 

Sixth, the phosphene map only roughly follows the visuotopic organization of V1, and stimulating 

based on the visuotopic map is not enough to create the corresponding percept [28]. Seventh, the 

phosphene threshold changes over time [29], and accommodation in phosphene brightness results 

in a reduction of brightness in response to bouts of current stimulation. Eighth, because of 



41 

 

 

progression of disease and the effect of the plasticity and learning, new associations can be formed 

between perceived visual patterns and the electrical stimulation patterns, and thus modification in 

the stimulation parameters for each electrode would be required [92]. Ninth, limiting the receptive 

fields to a small region of the visual field covered by the implanted electrodes in the lateral occipital 

cortex limits the coverage area of the visual field [7]. Thus, an array with a higher number of 

electrodes is needed to cover a larger cortical area. Indeed, any encoder with a fixed rule for the 

generation of the stimulation pattern from the visual input will likely be unable to induce a 

phosphenated percept. Thus, adaptive algorithms are required to update the stimulation parameters 

and spatiotemporal pattern of activity for different situations. 

 

Figure 2.15 Function of a retina-like encoder to transform the visual information into a 

spatiotemporal pattern of electrical stimulation [93, 96]. 
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2.1.4.2.2 Selective activation of neuronal population using microstimulation 

Electrical microstimulation at different locations and depths and with different parameters perturbs 

the activity of subsets of neurons with high precision. To interpret the experimental results of 

microstimulation, we must understand the spatial and temporal distribution of neural activity 

resulting from microstimulation. Microstimulation can activate neurons directly or indirectly. 

Direct activation arises from changes in membrane potential when current flows from the electrode 

tips. This change in membrane potential depends on the distance between the electrode tip and the 

neuron as well as on the time derivative of stimulation intensity [97]. In direct activation, the 

stimulus depolarizes the neurons and make them spike [98, 99]. Microstimulation can also directly 

influence synaptic release in different ways. Microstimulation produces widespread subthreshold 

activity across the brain [100, 101] via synaptic transmission and therefore, indirectly affects 

neuronal activity through activation of many connected postsynaptic neurons [48]. Direct 

activation of a single action potential can produce many spikes indirectly that extend broadly in 

space and time. The behavioural consequences of microstimulation depend on the spread of indirect 

activity produced by direct activation of neurons. However, it can be said that any specific percept 

is produced by directly activated neurons [48]. 

In early studies it was considered that current stimulation activates neurons (soma and axons) 

directly in a sphere around the electrode tip such that an increase in the stimulating current increases 

the radius of the effective activation sphere. Excitation of neurons then depends on the effective 

activation sphere and the excitability of the neurons. Excitability of neurons varies between 100 

and 4000 µA/mm2 using 0.2 ms duration of cathodal stimulating pulse and for estimation of current 

spread in V1 usually 1000 µA/mm2 is assumed [57]. Stimulation activates the initial segment of a 

neuron that has the lowest current threshold at the cell body [22]. The effective current spread is 

expressed as  

                                             𝑟 = (
𝐼

𝐾
)

0.5

                                        (2.1) 

where 𝐼 is current level [µA], 𝑟 is the distance between the neuron and the electrode tip [mm], and 

𝐾 is the excitability constant [µA/mm2] [102-106]. An increase in the excitability constant leads to 

a decrease in the conduction velocity of an axonal element [107]. 
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Despite the conclusion in early studies that whole neurons in a sphere around the electrode tip 

(within 80-90 µm) are activated [22, 103, 108-110] with an amplitude of 10 µA, calcium imaging 

suggested that low-current microstimulation of 10 µA or lower activates populations of neurons 

around the electrodes sparsely (tens to hundreds) and sometimes activates neurons millimetres 

away [99]. Therefore, a much smaller volume of neural processes was activated by electrical 

stimulation compared to what was proposed earlier. The reason for this conclusion in early studies 

was the effect of stimulation current on the recording electrode in nearby sites and sampling of 

small number of neurons by a single electrode [99]. The observations indicated that increasing 

current instead of increasing the radius of the sphere of activated neurons fills in a large sphere of 

activated neurons, suggesting that a larger volume of neural processes (e.g. axons) around the tip 

are activated. Moving the electrode position by 15 µm yielded a different set of activated neurons 

(including common cells) and moving the position of electrode by 30 µm almost completely 

changed the pattern of activated cells. Thus, based on these results it is impossible to activate 

neurons in a restricted volume. By blocking synaptic transmission (to prevent indirect activation) 

and using calcium imaging it was shown that most of the directly activated neurons are located in 

the immediate vicinity of the stimulating electrodes (at a distance of hundreds of microns from the 

electrode tip), and those neurons that were activated directly millimetres away from the electrode 

tip were activated through direct activation of their axons passing in the vicinity of the electrode 

tip (tens of microns) [99]. Thus, the effect of microstimulation is dominated by activation of 

localized neurons immediately around the stimulating electrode tip. Similarly, microstimulation in 

middle temporal visual cortical area (MT) does not affect neurons that are located 1 mm away from 

the stimulation site [111]. It was experimentally shown that moving the electrode a few hundred 

microns to a location with a different direction preference had a different effect on direction 

discrimination [47, 112]. Functional Magnetic Resonance Imaging (fMRI) studies showed that 

microstimulation in macaque V1 can activate neurons indirectly in other functionally distant areas 

connected to the stimulated region including extrastriate visual areas [110]. Indirect effects can 

increase or suppress activity in distant downstream sites, depending on the number and frequency 

of stimulation pulses [113]. After the stimulation pulse immediately a short excitatory response 

occurs that is followed by a long-lasting inhibition. 
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This current spread beyond the electrodes perimeter that increase the activation area and activate 

indiscriminately neurons that encode different properties of the visual scene is one of the main 

reasons for underperformance of the visual prosthesis [114]. According to the above results, one 

of the challenges in selectively activating a neuronal population is the axons from distant neurons 

that pass near cell bodies that are the target of direct stimulation [115, 116]. Thus, microstimulation 

activates those axons extensively directly, while activating cell bodies through indirect activation. 

Thus, precise spatial control is difficult to achieve and it is important to study the contribution of 

different neural elements and indirect effects on the spatiotemporal spread of neural activity. By 

near-threshold single pulse stimulation in anaesthetized rat somatosensory cortex, the 

spatiotemporal extent of indirect activation of neurons was determined to be 1350 µm of horizontal 

spread; neural effects consisted of a sequence of fast excitatory response followed by an inhibitory 

response [116]. In this experiment, stimulation with frequencies of 20 and 40 Hz produced 

repetitive excitatory responses that persisted against a continuous inhibitory background, while 

stimulation with 5 and 10 Hz produced a complex interaction of inhibitory responses. In addition, 

stimulation with intensities of 1-4 µA with 0.1 ms pulses did not elicit visible responses, while 

higher intensities increased a fraction of responses and elicited excitatory and/or inhibitory 

responses. 

Since the activation of a single neuron can change the activity of large networks [117, 118], it is 

important to have precise control over the activation of neural pools by microstimulation. However, 

such fine control is extremely difficult to achieve, given the abovementioned challenges of 

understanding the responses of neurons to electrical stimulation and controlling the spatial extent 

of stimulation. To address these challenges, some studies have used computer modeling to estimate 

how microstimulation activates neurons. Modeling of the electric potential field generated by 

stimulation, the response of a neuron to the field, and optimal electrode configuration for selective 

activation of neuronal pools near the stimulating electrode tip are reviewed in [119]. To identify 

spike initiation sites, a model was developed based on the densities of high-threshold sodium 

channels Nav1.2 in dendrites and soma and low-threshold sodium channels Nav1.6 in axons [120]. 

It was shown that axon initial segments, Ranvier nodes, and also thin axons and dendrites close to 

the electrodes are the most excitable sites for spike initiation. The cathodic excitation threshold of 

thin axons/dendrites depends on fibre diameter, distance from the electrode tip, and amplitude and 



45 

 

 

width of pulses. The results showed that the spike initiation site for dendrites for low current 

stimulation should be close to the electrode. A two-stage volume conductor model studied how 

cellular composition of tissue affects the electrical stimulation [121]. A modeling study showed 

that in somatosensory cortex the activation pattern of interneurons was dense around the electrodes, 

while in pyramidal cells the activation pattern was sparse near the electrode, extending up to several 

millimetres [122]. Compartmental neuron models of human motor cortex showed that anodal 

stimulation excites neuronal elements perpendicular to the surface of electrodes, while cathodal 

stimulation excites neuronal elements parallel to the surface of electrodes, and bipolar stimulation 

excites neuronal elements parallel to the dipole axis [123]. For a selectively targeted neuronal 

population, using cable modeling of mammalian motoneurons showed that monophasic cathodal 

or anodic first cathodic second asymmetric biphasic stimulation, selected fibres over cells, while 

anodal or cathodic first anodic second asymmetric biphasic stimulation selected cells over fibres 

[124]. However, stimulus with a symmetric balance of charge, i.e. the shape of cathode pulse is the 

same as the shape of anode pulse, was unselective and caused sparse and diffuse activation of 

neurons [99, 116]. Experimental results also showed that asymmetrical stimulation resulted in more 

spatially focused and controlled cortical activation than symmetric current pulses [125] but with 

higher current threshold than symmetric stimulation [126]. Methods proposed to increase the 

effective stimulation resolution by using local return electrode surrounding the stimulating 

electrode [127-131]. However, this solution can limit the penetration depth of the electric field and 

increase the phosphene threshold [132]. This issue could be overcome with a quasi-monopolar 

strategy [128, 130]. It was shown that electrodes with small diameters (9-15µm) can be used to 

activate individual ganglion cells [133, 134], and when multiple neurons were activated, current 

steering methods could be applied to target specific neuron preferentially [133]. 

Electrical stimulation usually consists of trains of constant current pulses delivered through 

extracellular electrodes [48]. However, with conventional pulsatile stimulation, activating specific 

neuronal elements with different activation thresholds may not be possible. Therefore, in a few 

studies the effects of other shapes of stimulation waveforms were investigated. Sinusoidal 

stimulation at specific frequencies was shown to activate certain types of retinal cells: at 5 Hz 

photoreceptor cells, at 25 Hz bipolar cells, and at 100 Hz ganglion cells were activated [115]. Low 

frequency stimulation (≤ 25 Hz) did not activate axons nearby to the electrodes but produced 
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responses in ganglion cells throughout the synaptical transmission. In this work, sinusoidal 

stimulation of 10 Hz or 25 Hz elicited strong responses when the electrode was located near the 

soma, but produced no spike when it was located near distal axons, even at the highest amplitude. 

However, stimulation with 100 Hz frequency elicited strong responses when electrodes were 

located both near the soma or distal axons. Higher frequency sinusoidal stimulations required lower 

threshold compared to low frequency sinusoidal stimulation to elicit responses. Using 

pharmacological blockers, it was shown that response of neurons to 10 Hz, 25 Hz, and 100 Hz 

stimulation were affected through synaptic activity, direct and synaptic activation, and direct 

activation respectively [115]. In this way, it may be possible to control the spatial pattern of neural 

activity, to target individual classes of neurons, or even to replicate normal signalling. Using 

computer simulations it was shown that for all non-rectangular stimulation waveforms, the 

chronaxie time was longer than rectangular stimulation and linear decrease, exponential decrease, 

and Gaussian waveforms were the most efficient waveforms in maximizing charge injection 

capacity and minimizing the threshold for neural activation [135]. The optimal stimulation current 

waveform of excitable neural tissue to prevent tissue damage was determined using a computer 

simulation based on the Least-Action Principle [136]. In this work, it was shown that long 

stimulation pulses are more sensitive to the shape of the pulse, and a rectangular pulse is optimal 

for short stimulation pulses.    

Microstimulation can also change plasticity in the brain. Using spike-triggered stimulation, plastic 

changes in rat and monkey sensorimotor cortex were induced [137, 138]. These changes were 

inferred using functional connectivity statistical measures, which depended on the latency between 

trigger spike and stimulation [137] or using mutual information measure [138]. 

In the future prosthesis a one-to-one electrode-neuron interface can provide the highest possible 

stimulation resolution with making any spatiotemporal pattern. It can be possible with penetrating 

electrodes having multiple stimulation sites and also using more complex stimulation paradigms 

to evoke specific group of cells [139]. For example, it was shown that using sinusoidal waves with 

different phases can activate ON and OFF retinal ganglion cells preferentially [140]. 

From the above review it can be concluded that current stimulation even at very low levels (1.9 µA 

according to [9]) can activate several dozen neurons, each of which encodes a different stimulus 
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feature and carries different information. Therefore, having control over the spatiotemporal pattern 

of activity induced by electrical stimulation of visual cortex, and presumably, reproducing neuronal 

population responses that match the responses evoked by a specific visual input, are important 

requirements for developing a cortical prosthesis. In addition, we should note that since V1 neurons 

naturally encode contrast, orientation, depth, and spatial frequency, restricting the stimulation 

strategy to a phosphenated bit-mapped images can limit the capability of a cortical visual prosthesis 

to induce meaningful percepts [6]. 

2.1.4.3 An initial experimental step: Learning population codes in the visual cortex of 

sighted animals and spatial stimulation 

As discussed earlier [47] when animals are trained to detect microstimulation, neuronal circuitry 

changes so facilitate task performance. However, we still do not know what they perceive after 

training [48]. One way to solve this problem is to assume that we can reconstruct the natural pattern 

of activity induced by visual stimuli. In this way training is not required, because the spatiotemporal 

pattern of neuronal activity is known to the subject and we can recreate it. For this purpose, it 

required is to know the population coding of natural stimuli and to find a way to reconstruct the 

natural pattern of activity in the brain by targeting population of neurons using electrode arrays. 

So, sighted animal models should be used to initially circumvent the complexities resulting from 

changes in the organization of V1 after the onset of blindness and the challenges associated with 

human experiments.  

Figure 2.16 shows an example framework for this study. A macaque monkey is implanted with 

microelectrode arrays in area V1, and after recovery from surgery it is ready to start experimental 

sessions. The monkey is trained to fixate on a point in the visual field and to receive a 

phosphenated-like stimulus (photic stimulus) made of multiple spots during the period of fixation. 

Different phosphenated stimuli should be presented and the resulting extracellular neural responses 

(made of spikes and LFP) would be recorded. A supervised learning algorithm such as a Deep 

Convolutional Neural Network is used as an encoder that learns the neuronal representation of 

different stimulus-response relations. Based on the learned encoding rule and according to the 

knowledge of targeting populations of neurons with current microstimulation in the primary visual 

cortex, a set of electrical stimulation spatial patterns are generated in order to generate a percept 
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corresponding to the induced population activity. Using psychophysical tests, the trained monkey 

provides information about what is perceived from the electrical stimulation. The difference 

between the expected and observed percepts from the psychophysical tests is then used to update 

learning rules of the encoder. 

 

 

Figure 2.16 The basic framework for studying the adaptive generation of phosphenated image on 

sighted animals. In this framework a monkey that is implanted with intracortical microelectrode 

arrays receives visual stimuli in different phosphene-shaped patterns and the resulting large-scale 

activity of neurons is recorded. The responses are then decoded to generate the required pattern 

of electrical activity to produce the same percept as the visual stimulus. 
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2.1.4.4 Alternative solution: Stimulation of extrastriate cortical areas 

To date, all existing visual prosthetic devices and prototypes have targeted the early visual system 

(the retina, LGN, or V1). The logic of targeting these areas is based on the apparent simplicity of 

encoding pixels as phosphenes in a visuotopic map and slightly lower current threshold in early 

visual system [14]. However, given the challenges summarized above, one might consider 

alternative possibilities. The human visual cortex contains many discrete regions beyond V1, each 

of which represents the visual input and can contribute to visual perception. Stimulation in these 

extrastriate cortical areas could serve as an alternative or complementary strategy to the V1 

prosthetic, as typically conceived. 

Although the properties of the extrastriate cortex have been reviewed elsewhere [141], we mention 

a few of its basic properties here. First, areas in the extrastriate cortex exhibit functional 

specialization; broadly speaking, each area is located along one of two pathways, dedicated to the 

encoding of either motion (the dorsal brain pathway) or shape (the ventral brain pathway) [142]. 

Second, individual neurons in these areas tend to be selective for complex stimulus patterns, with 

nearby neurons preferring similar stimuli. We consider here some of the advantages afforded by 

these properties. 

 

1) Selectivity. Extrastriate neurons exhibit invariant selectivity similar to that of human visual 

perception. For example, within limits, our ability to recognize a face is unaffected by variations 

in distance, retinal position, rotation, and lighting, all of which dramatically affect the composition 

of the pixels in the input image. The same is true for recognizing other objects, and this perceptual 

invariance is even greater for interpreting motion signals during navigation. Indeed, it is now 

recognized that a fundamental function of high-level visual processing is to discard details about 

local features, such as pixels, in favour of a sparse representation of more complex image features 

[143]. Thus, it might not be necessary or even desirable to recreate the precise spatial arrangement 

of image pixels in the input image. 

The fact that complex image features are represented locally in the extrastriate cortex provides a 

possible solution to the aforementioned problems of concurrent electrode activation. In essence, a 

feature that activates a large, distributed population of V1 neurons might activate a small, local 

cluster of neurons in extrastriate cortex [144]. In that case, the same visual percept could be 
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generated with far fewer electrodes. Indeed, previous work in the extrastriate cortex has shown that 

stimulation of even a single column is sufficient to yield complex stimulus percepts [145]. This 

could be quite important, as the number of V1 electrodes necessary to restore even modest vision 

is enormous: current estimates are that the restoration of 20/200 vision would require 15,000 

electrodes in a 7 mm2 area, and it is unclear whether such a transducer could be operated safely 

and effectively [5]. For full 20/20 vision, the number of necessary electrodes is estimated at 1.44 

million [5].  

 

2) Plasticity. Studies of perceptual learning in adult animals have shown greater plasticity in the 

extrastriate cortex than in V1 [146]. This suggests that the brain would more readily learn to 

interpret artificial stimulation that targeted higher-level cortical areas. 

 

3) Specialization. Whereas the retina and area V1 are necessarily involved in representing all 

possible visual stimuli, extrastriate areas are functionally specialized. Consequently, an extrastriate 

prosthetic could be optimized according to the needs of the recipient: Patients with macular 

degeneration could receive ventral-stream devices, which would restore foveal vision for object 

recognition. Patients with peripheral vision loss due to glaucoma would receive dorsal-stream 

devices, which would restore peripheral vision for navigation. And those with traumatic injury or 

complete structural enucleation would receive both. Thus, an extrastriate prosthetic could be 

minimally invasive. 

 

4) Multimodality. Neurons in the retina and V1 respond almost exclusively to visual signals. 

Consequently, in a blind patient, these neurons could only be activated with artificial stimulation, 

which would complicate the development and refinement of an encoder. In contrast, neurons in 

extrastriate areas receive weak but reliable non-visual inputs that have stimulus selectivity similar 

to that of the visual inputs. Thus, for example, extrastriate neurons in the dorsal stream respond to 

visual motion patterns but also to congruent vestibular inputs [147], so that neuronal selectivity 

could be estimated coarsely, but objectively, in a blind patient, by simply asking him to make head 

movements. However, the non-visual representations found in extrastriate cortex also carry the 

downside that the electrical stimulation would presumably cause some non-visual sensation. 
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Although such effects are likely quite small [148], they might complicate the transduction of 

sensory signals. 

Of course, there is a cost associated with this approach, in the form of increased complexity of 

visual encoding. In general, there appears to be a trade-off between the complexity of encoding 

and the complexity of stimulating in the brain. While an encoding system based on pixels is simple, 

it requires stimulating in complex and dense patterns, which complicates the transduction process. 

On the other hand, an encoding system based on the properties of the extrastriate cortex is more 

complex [149], but would likely simplify the transduction of the signals by reducing the number 

of electrodes necessary to create a meaningful percept. An analogous approach in the motor system 

has recently shown great promise, by using cortical areas outside of the primary motor cortex to 

decode movement goals [150]. 

2.1.5 Conclusion 

Although the idea of a phosphenated image generated with a cortical visual prosthesis has an 

appealing simplicity, it has not yet been achieved. Phosphene characteristics are affected by 

different stimulation parameters, such as the frequency of stimulation, pulse duration, pulse 

amplitude, etc. However, the perception of a phosphenated image requires activation of multiple 

phosphenes with specific spatial topography and brightness. This requires activation of different 

neuronal ensembles with a predefined pattern. Reaching this goal requires a deeper understanding 

of various issues including the encoding of location, size, brightness, and colour of multiple spots 

of light in populations of V1 neurons; electrical current spread in V1 neural circuits at different 

spatial and temporal scales; and dynamic changes of the visuotopic map after the onset of the 

blindness and sensory deprivation in the visual system. The advent of machine learning techniques 

might provide a means of optimizing the transformation of visual images into stimulation patterns. 

They may be used to create a phosphene map that represents not only phosphene topographical 

features but also other non-topographical attributes such as size, brightness, and colour of 

phosphenes. Stimulation of higher level (extrastriate) cortical areas is an alternative scheme for 

cortical visual prosthesis that can be considered in future research. 
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2.2 Opinion on a recently published paper 

In this section we present our opinion about a recently published paper [151] in May 2020 in the 

field of cortical visual prosthesis.  

This is the first report presenting a meaningful relationship between the spatiotemporal 

microstimulation pattern and induced visual percept. Shape generation via applying a pre-designed 

stimulation pattern was a challenge for years. So, it is a significant scientific achievement. 

Although still preliminary, it will pave the road for future clinical applications to provide sight for 

the blind individuals. Future efforts can focus on transforming more complex shapes and even 

videos into dynamic and real time stimulation patterns. Needless to say that to test the 

generalizability of their findings, in the future works, larger population of patients should be used.  

This will confirm the scalability and reliability of their technique. 

Although this is a great leap in the development of visual cortical prosthesis, the neural mechanisms 

underlying their findings are not explained well in the paper. We know that V1 has a clear 

retinotopic map and the position of the receptive field is correlated with the induced phosphene 

position. In line with that, they reported that a stimulation pattern following the "z" shape in the 

visual cortex generates a visual percept with the same shape. However, a single microstimulation 

pulse can activate neurons in an uncontrolled manner. These neurons encode different visual 

features. In addition, microstimulation can significantly affect the subthreshold activity which 

carries visual information. It should be clarified that how perturbing neurons and subthreshold 

activity have produced this level of similarity in the percept. 
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 METHODOLOGY 

 

In this chapter, we describe the methodology and experimental procedures used in this thesis. 

3.1 Electrophysiological recordings 

We used recorded data from two adult rhesus macaque monkeys. A standard sterile surgical 

procedure was performed under general anesthesia to implant a headpost (Hybex Innovations, 

Montreal, Canada) and a 10×10 Utah Microelectrode Array (Utah array; Blackrock Microsystems) 

with 1 mm electrodes and 400 µm inter-electrode spacing into the dorsal V4 of macaque monkeys. 

After recovery, they were familiarized with the laboratory environment and the behavioral task.  

The wideband extracellular signals were recorded simultaneously from the arrays using a standard 

data acquisition system with sampling rate of 10 kHz. LFPs and MUA were extracted offline in 

MATLAB (The MathWorks, Natick, USA) using fourth-order two-pass Butterworth filter. MUA 

was extracted by high-pass filtering the wideband signals and thresholding the results. LFPs were 

extracted by low-pass filtering the raw wideband signals and down-sampling the results. 

3.2 Experimental paradigm 

Visual stimuli were back-projected at a 78 cm viewing distance onto a semi-transparent screen, by 

a cathode ray tube video projector, with refresh frequency 75 Hz. The screen covered 80×50° of 

visual angle. All visual stimuli were white square probes with 2° width and luminance of 22.5 cd 

m-2 presented on a dark background with less than 0.01 cd m-2 luminance. Each probe was chosen 

among 100 locations on a 10×10 grid, with 4° center-to-center distance from each probe to its 

neighbours in both vertical and horizontal directions. 

In each trial, the monkey fixed its gaze on a small red dot of 0.5° diameter on the top right of the 

grid. After 500 ms of fixation, a probe stimulus was flashed at a randomly chosen location on the 

grid for 25 ms separated by a 500 ms blank screen. After a variable delay (500-1000 ms), the 

fixation point jumped to a new position at the top middle of the grid and the monkey was required 

to make a visually guided saccade to the new fixation point and fixate there for another 500 ms. 

Another probe stimulus was then flashed for 25 ms, and the monkey was required to maintain its 
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fixation for another 500-1000 ms delay. Each successful trial ended with a liquid reward to the 

monkey. If the monkey could not maintain its gaze within 2.5° of the fixation point, the trial was 

aborted. In each session, each probe location on the grid was repeated at least 10-15 trials for each 

fixation point in a pseudorandom order. For each monkey, at least 10-20 sessions were performed. 

The data were recorded on non-consecutive days. 

3.3 Data analysis 

All of the analyses were performed in Python 3.6. 

3.3.1 LFP and MUA responses 

In each trial, LFP and MUA data were evaluated following the stimulus onset. The LFP response 

of each electrode on each trial was calculated as the mean amplitude of the broadband LFP signal 

over a specific time-window bin. The evoked MUA response was also calculated as the spike count 

over the same window bin. For each time-window, we created independent response datasets for 

LFP and MUA. Then for each dataset, we z-scored the data across all the trials for each electrode, 

to ensure that the decoding algorithm would be influenced by all electrodes rather than those with 

high response values. We concatenated the responses of all electrodes together to create the 

response datasets. 

3.3.2 Spatial receptive field map  

A spatial receptive field map of each recording site was determined over the probe grid by 

averaging the z-scored responses of trials with the same probe positions. We fitted a two-

dimensional Gaussian model to the receptive field maps separately through least-squares 

minimization:  

𝐺(𝐴, µ𝑋 , µ𝑌, 𝜎𝑋 , 𝜎𝑌, 𝑑)~𝐺(𝑋, 𝑌) = 𝐴𝑒
−(

(𝑋−µ𝑋)
2

2𝜎𝑋
2 +

(𝑌−µ𝑌)
2

2𝜎𝑌
2 )

+ 𝑑                  (3.1) 

 

The Gaussian model had six parameters: maximum response 𝐴, centre position (µ𝑋 , µ𝑌), SD 

(𝜎𝑋 , 𝜎𝑌), and bias 𝑑. We used the X-Y positions of each probe on the grid (taking the fixation point 

position as the reference) as the input to the model and the mean response to each probe as the 
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output. The Gaussian model was then fitted, and the receptive fields were presented as the ellipses 

of full width at half height of the fitted Gaussians. The diameter of each receptive field was reported 

as the average of 𝐷𝑋 and 𝐷𝑌:  

𝐷𝑋 = 2𝜎𝑋√−2 ln(
1

2
−

𝑑

2𝐴
)                  (3.2) 

and 

𝐷𝑌 = 2𝜎𝑌√−2 ln(
1

2
−

𝑑

2𝐴
)  .                 (3.3) 

 

The center of each receptive field was calculated as the center of its fitted Gaussian (µ𝑋 , µ𝑌). We 

defined the eccentricity of each receptive field as the Euclidean distance between the center of the 

receptive field and the position of the fixation point. 

3.3.3 Selecting informative electrodes  

To interpret discrimination performance for pairs of positions and to have an unbiased sample for 

the subsequent analysis, we removed recording electrodes that were not informative about the 

probe positions on the grid. We applied univariate feature selection to each dataset (MUA or LFP 

and for each window) by computing ANOVA F-values. Electrodes showing p<0.05 were 

considered informative and were selected for the subsequent analyses. Separate analyses including 

all the electrodes resulted in poorer discrimination performance (not shown). 

3.3.4 Discrimination analysis 

We used population decoding tools to estimate discrimination performance by combining 

responses of multiple electrodes [152-154]. Discrimination analysis was performed by classifying 

responses corresponding to pairs of stimuli. In each discrimination, we used Support vector 

machines (SVMs) for the MUA and LFP responses containing all the trials in which one of the two 

stimuli were presented. 
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SVM builds a classification hyperplane by maximizing the distance (margin) to the nearest data 

points of any class (called support vectors). Given training vectors 𝑥𝑖 ∈ ℝ𝑝, 𝑖 = 1, … , 𝑛 and targets 

𝑦 ∈ {1, −1}𝑛, SVM solves: 

min
𝑤,𝑏,𝜉

1

2
𝑤𝑇𝑤 +

𝐶

2
∑ 𝜉𝑖

2𝑛
𝑖=1                  (3.4) 

Subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,  𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛               

 

where, 𝐶 > 0 is the upper bound, function 𝜑 maps the training samples into a higher dimensional 

space [155], and 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) is the kernel function. We separately applied linear 

SVM and SVM with Radial Basis Function (RBF) kernel. RBF kernel is defined as 𝐾(𝑥𝑖 , 𝑥𝑗) =

𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

. In this setting, the hyperparameter 𝐶 trades off correct classification of training 

samples against maximization of the margin (i.e. complexity of the decision function) and thus, it 

behaves as a regularization parameter. Hyperparameter 𝛾 in the RBF kernel, determines the 

influence of a single training sample. 

We randomly changed the order of trials in the training set to make sure that the resulting set was 

representative of the overall distribution of the data. We used a stratified 5-fold cross validation 

procedure which preserved the relative class frequencies in each training and validation fold [156]. 

Validation score was determined as the mean of the 5 scores. We also applied Grid Search [157] 

to tune hyperparameters. The highest stratified 5-fold cross validation score was reported as the 

validation performance for the discrimination of a pair. Because of an imbalance in the number of 

trials with the same stimulus, we used the area under the Receiver Operating Characteristic (ROC) 

curve to measure the decoding performance [158]. ROC curve shows the true positive rate (TPR) 

or sensitivity versus a false positive rate (FPR) or one minus specificity for all possible threshold 

values. It plots cumulative distribution function (of discrimination threshold) for TPR on y-axis 

versus cumulative distribution function for FPR on x-axis. In scikit-learn roc_curve takes as input 

y_true and y_score and calculates TPRs and FPRs of the ROC curve for varying threshold values. 

In binary classification which is our case, y_true are true labels (0 or 1) for each test sample and 

y_score are the probabilities calculated by the classifier for assigning a sample to class 1. For each 

value of the threshold, probabilities in y_score that are smaller than the threshold are assigned to 
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label 0 and those bigger than it will be assigned to 1. Therefore, each threshold produces a pair of 

TPR and FPR which is represented as a point in the ROC curve. The ROC curve is depicted by 

decreasing the threshold from values where no instances being predicted to small values when all 

instances being predicted. TPR defines the number of correctly predicted samples to be in class 1 

among all test samples with label 1. FPR defines the number of incorrectly predicted samples to be 

in class 1 among all test samples with label 0. So, ROC curve shows relative trade-off between 

TPR (benefits) and FPR (costs). The best possible prediction is when TPR = 1 and FPR = 0 which 

is a point in upper left corner. A random guess is a point along a 45° diagonal line. For the best 

classification, the area under the curve is 1 while for the random guess it is 0.5. Wrong classification 

will give a point under the diagonal and for ROC curve under this diagonal, the area under the 

curve is between 0 and 0.5. 

The meaning of area under ROC curve (ROC AUC) is how well positive classes are predicted as 

positive and at the same time how well the negative classes are predicted as negative. Since the 

effect of both positive and negative classes are regarded in ROC AUC, it can be interpreted as how 

well two classes are discriminated (distinguished). Therefore, it represents the degree of 

separability. On the other hand, since ROC considers multiple threshold values it handles 

imbalance in the classes. Thus, it is applicable for discriminating imbalanced data. 

3.3.5 Analysis of decoding weights 

In each discrimination, the decoder assigns a weight to each electrode based on its importance. 

Positive weights support the hypothesis that the classification label is 1, while negative weights 

support the hypothesis that the label is 0. We independently normalized the weights corresponding 

to each discrimination. We defined the importance of each electrode in each discrimination as the 

square of its weights. The overall importance of each electrode was then calculated as the mean 

importance over certain discriminations. We sorted the electrodes based on their overall importance 

to find the best and the worst electrodes (overall). This algorithm selects the best k electrodes 

available in combination and in a non-greedy fashion. 
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3.3.6 Probes separation distances, eccentricity, and cortical magnification 

factor  

As the probes are placed at different eccentricities, discrimination of pairs with the same separation 

distance on the grid will not lead to the same level of performance. Therefore, it is important to 

present discrimination performance in the context of the retinal eccentricity of the probes, taking 

into account cortical the magnification factor. Cortical magnification factor is the ratio of distance 

between two points on the cortex (in millimeters) divided by distance between their corresponding 

points in the visual field (in degrees) [159]. As previously shown by Gattass et al., cortical 

magnification in cortical area V4 (𝑀) is related to eccentricity (𝐸) in the visual field by 𝑀 =

3.01𝐸−0.9 [160]. We used this equation to estimate the cortical magnification factor at specific 

eccentricities and then used its results to convert the separation distance on the grid to their 

corresponding distances on the cortex. 

Separation distance for a pair of probes was calculated as their Euclidean distance on the grid in 

degrees of visual angle. The retinal eccentricity of a probe was calculated as the Euclidean distance 

between its position and the position of the fixation point (in degrees of visual angle). For every 

pair of probes, eccentricity was calculated as their mean eccentricity. The magnification factor for 

each eccentricity (of the pair) was then multiplied by their separation distance to give the cortical 

distance in mm. 

We plotted the discrimination performance as a function of cortical distance. To make these plots, 

we sorted and grouped cortical distance values into 0.5 mm bins, and averaged performance values 

for the pairs whose cortical distances were within a bin. Similarly, discrimination performance was 

presented as a function of probe pair eccentricity for a fixed separation distance. Values of the 

probe pair eccentricities were sorted and divided into 3° bins and the discrimination performance 

values were averaged for eccentricities within a bin.  

3.3.7 Selecting similar receptive fields  

Inspection of the receptive fields indicated a level of similarity. We applied k-means clustering to 

systematically group similar receptive fields. k-means algorithm clusters 𝑛 samples into 𝑘 disjoint 
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clusters 𝐶, each described by a mean 𝜇𝑗 for the samples in the cluster (called the centroid). The 

centroids are chosen to minimize the within-cluster sum of squared criterion: 

∑ min
𝜇𝑗∈𝐶

(‖𝑥𝑖 − 𝜇𝑗‖
2

)𝑛
𝑖=0                   (3.5) 

The algorithm has three steps: 1) initializing the centroids (e.g. by choosing 𝑘 samples from the 

dataset). 2) assigning each sample to its nearest centroid, and 3) updating the location of the 

centroids by taking mean value of all the samples assigned to their previous locations. The 

algorithm repeats the second and third steps until the difference between the old and the updated 

location of a centroid becomes less than a threshold. 

We selected 1-3 representative electrodes from each group and repeated the discrimination analysis 

using the total representatives from all of the groups. 

3.3.8 Influence of noise correlations 

The magnitude of response to presentations of the same stimulus differs from trial to trial. These 

trial-to-trial fluctuations are correlated between pairs of neuronal elements (henceforth noise 

correlations) [161, 162]. In order to determine the effect of noise correlations on decoding, we 

destroyed their structure in the training set by shuffling the order of trials corresponding to the 

same stimulus for each electrode site separately. The decoder was trained on the correlation-free 

training set, but was evaluated on the left-out unshuffled test set (henceforth correlation-blind 

decoding). The performance of the correlation-blind decoder was compared with the previous 

decoding results (henceforth correlation-aware decoding). Differences between the performance of 

these two decoding schemes reflects the impact of noise correlations from a decoding perspective. 

Then, we followed encoding perspective and trained the decoder on the uncorrelated data and 

evaluated its performance on the uncorrelated data. 

The detailed procedure for removing the noise correlation in the data is as follows: 

We collected the response data from all the trials associated to a particular probe and randomly 

shuffled the order of these values for each electrode. This breaks the inter-electrode correlations. 

For example, if a probe position on the visual field has been presented 15 times, we will have a 

matrix of size 15 × (number of recording electrodes). So, for each column, i.e. each electrode, the 
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order of values is randomly shuffled. We repeated the same procedure for all the probes to make 

correlation-free responses.  

In our study, the number of electrodes was bigger than the number of trials with the same probe. 

This led the correlation-free dataset to be actually partially correlation-free. In other words, the 

average of Pearson’s correlation for all electrode pairs was not perfectly r = 0. The consequence 

will be that a lower effect of correlation might be observed on decoding. The only solution for this 

problem is to have many more trials in each session for each probe. However, it will be hard 

because of the experimental limit in performing very long sessions with monkey. 

We also calculated pair-wise correlated variability (noise correlation), as the Pearson correlation 

coefficient for the responses of two electrodes to repeated presentation of a particular stimulus 

[161]. We removed trials in which the response of either electrode was >3SD [163]. 
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4.1 Abstract 

Objective. An important challenge for the development of cortical visual prostheses is to generate 

spatially localized percepts of light, using artificial stimulation. Such percepts are called 

phosphenes, and the goal of prosthetic applications is to generate a pattern of phosphenes that 

matches the structure of the retinal image. A preliminary step in this process is to understand how 

the spatial positions of phosphene-like visual stimuli are encoded in the distributed activity of 

https://doi.org/10.1088/1741-2552/ab7321
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cortical neurons. The spatial resolution with which the distributed responses discriminate positions 

puts a limit on the capability of visual prosthesis devices to induce phosphenes at multiple 

positions. While most previous prosthetic devices have targeted the primary visual cortex, the 

extrastriate cortex has the advantage of covering a large part of the visual field with a smaller 

amount of cortical tissue, providing the possibility of a more compact implant. Here, we studied 

how well ensembles of Local Field Potentials (LFPs) and Multiunit activity (MUA) responses from 

extrastriate cortical visual area V4 of a behaving macaque monkey can discriminate between two-

dimensional spatial positions. Approach. We used support vector machines (SVM) to determine 

the capabilities of LFPs and MUA to discriminate responses to phosphene-like stimuli (probes) at 

different spatial separations. We proposed a selection strategy based on the combined responses of 

multiple electrodes and used the linear learning weights to find the minimum number of electrodes 

for fine and coarse discriminations. We also measured the contribution of correlated trial-to-trial 

variability in the responses to the discrimination performance for MUA and LFP. Main results. We 

found that despite the large receptive field sizes in V4, the combined responses from multiple sites, 

whether MUA or LFP, are capable of fine and coarse discrimination of positions. Our electrode 

selection procedure significantly increased discrimination performance while reducing the required 

number of electrodes. Analysis of noise correlations in MUA and LFP responses showed that noise 

correlations in LFPs carry more information about spatial positions. Significance. This study 

determined the coding strategy for fine discrimination, suggesting that spatial positions could be 

well localized with patterned stimulation in extrastriate area V4. It also provides a novel approach 

to build a compact prosthesis with relatively few electrodes, which has the potential advantage of 

reducing tissue damage in real applications. 

Keywords: spatial discrimination, local field potential, V4, neural coding, support vector machines, 

correlation, cortical visual prosthesis 

4.2 Introduction 

A significant challenge for the development of cortical visual prostheses is to generate spatially 

localized spots of light, called phosphenes, to restore perception of visual scenes [13, 164, 165]. In 

practice, the spatial position of these phosphenes depend on the location and stimulation parameters 

of the implanted electrodes in the visual cortex [166-171]. Although much progress has been made 
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in generating and modulating individual phosphenes, no experimental study has reported 

systematic control over the spatial positions of multiple phosphenes to restore a visual scene. 

Previous studies however, showed that the phosphene positions are correlated with the receptive 

field positions of the electrodes at the microstimulated site [170, 172-174]. However, dealing with 

multiple phosphenes requires involvement of multiple electrodes, each contributing partly to the 

generation of spatial positions. This suggests that controlling the spatial position of phosphenes 

requires patterns of microstimulation sufficient to reconstruct the responses that encode the 

positions of phosphene-like visual stimuli. Determining this microstimulation strategy requires 

knowing how the spatial positions of phosphene-like visual stimuli are encoded in the distributed 

activity over the electrodes. The key characteristic of such a system is to be able to discriminate 

between these positions. Therefore, the spatial resolution with which the distributed responses 

discriminate positions puts a limit on the capability of visual prosthetic devices to induce 

phosphenes at multiple positions. 

Multielectrode recordings are necessary to obtain both the spatial and temporal sampling properties 

of distributed activity required for the representation of position [175, 176]. However, the majority 

of previous multielectrode recordings and stimulation studies in the visual cortex of monkeys have 

been performed in V1 [168, 170, 177-185], which is quite large relative to standard recording 

arrays. Therefore, a multielectrode array in V1 can often sample only a tiny region of visual space. 

In contrast, extrastriate visual areas generally contain retinotopic maps that are physically smaller, 

while the receptive fields are much larger than those in the primary visual cortex (V1) [15-17]. 

This provides the opportunity to sample a larger region of visual space, albeit with reduced spatial 

resolution, using standard devices such as Utah arrays [18, 19]. In particular, extrastriate area V4 

offers an opportunity to recover the location of static visual stimuli, as it contains a retinotopic map 

of visual space [19, 160] and responds well to stimuli of low to moderate complexity [186, 187]. 

However, the potential capability of V4 in discrimination of different positions in the visual space 

is remained to be discovered.  

While chronically implanted recording arrays could provide the necessary information for stimulus 

localization, it is well known that the ability to resolve individual neurons with these devices 

declines over time [188]. However, local field potentials (LFPs) are more durable and can often be 

measured reliably for years after the implantation of multi-electrode arrays [189, 190]. They are 
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low frequency fluctuations [191, 192] generated by the synaptic current flow in neural ensembles 

[193-195]. They reflect subthreshold activity at larger spatial and temporal scales than single unit 

recording [196, 197], and they can be modulated by microstimulation [198-201]. Importantly, 

previous work has shown that the LFPs represent neural activity over a scale of about 400 microns 

[19], which is comparable to the spread of microstimulation effects in cortex, for reasonable 

parameter choices. 

Since the receptive fields in V4 are large and have extensive spatial overlap, each position in visual 

space projects onto a large population of neurons. The capability of these receptive fields in 

discriminating fixed positions in the visual space, however, has not been addressed. Chen et al. 

showed that overlapping receptive fields provide sufficient spatial precision in area MT [18]. 

However, these results were obtained using the multiunit spiking activity (MUA). Here, we 

chronically implanted Utah electrode arrays with 96 electrodes to study the spatial discrimination 

in area V4. We recorded both LFP and MUA activity from area V4 while individual probe stimuli 

were presented to the macaque monkey. The probes were squares of 2° visual angle with similar 

characteristics to the phosphenes [166, 202-205]. We determined the spatial precision with which 

these signals could discriminate fixed positions in the visual field. We proposed and compared two 

selection strategies to reduce the number of electrodes used for fine and coarse discriminations. 

Then, we characterized the coding strategy by which the decoder discriminated positions with 

different spatial separations. We also examined the spatial resolution of band passed LFPs 

compared to that of the broad band LFPs. As a source of information about the spatial positions, 

we identified the structure of noise correlations, and showed their strengths as a function of cortical 

distances. 

4.3 Materials and Methods 

4.3.1 Electrophysiological recordings and signal pre-processing 

All aspects of the experiment were approved by the Animal Care Committee of the Montreal 

Neurological Institute and were conducted in agreement with regulations of Canadian Council of 

Animal Care. The recording procedure has been described before [19, 206]. Briefly, a sterile 

surgical procedure was performed under general anesthesia to implant a headpost and a 10×10 Utah 
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Microelectrode Array (Utah array; Blackrock Microsystems) with 1 mm electrodes and 400 µm 

inter-electrode spacing into dorsal V4 of two macaque monkeys (Macaca fascicularis; monkey N: 

female, 8 years old and monkey C: male 10 years old). The impedance of the electrodes was in the 

range of 100 KΩ-800 KΩ. The arrays were placed to cover sizeable portion of the parafoveal visual 

representation. Area V4 was identified based on its anatomical landmarks and stereotactic 

coordinates [207] and the physiological properties of the neurons [160]. After recovering from the 

surgery, the monkey was seated in a primate chair (Crist Instruments) and trained to maintain 

fixation and to make visually guided saccades.  

The data were collected by simultaneously recording wideband extracellular signals using a 

standard data acquisition system (Plexon Multichannel Acquisition Processor System) with a 

sampling rate of 10 kHz over all 96 channels of Utah Microelectrode Array. Preliminary signal-

processing and custom setting of preamplifier were performed as explained previously [206]. The 

same recording equipment was used for both monkeys with the electrical ground being embedded 

on the skull 2-3 cm away from the array. The power of the wideband signals was monitored daily 

to minimize line noise and other artifacts. The remaining 60 Hz power noise was removed using a 

method introduced previously [208]. LFP and MUA were extracted offline in MATLAB 

(Mathworks). The raw signals were band-pass filtered between 500 and 4000 Hz and then the 

spikes were detected using established methods [209] to form the MUA activity. LFP signals were 

obtained by removing action potential signals from the raw signal using a Bayesian spike removal 

algorithm [208], band-pass filtering of the resulting signal between 0.2-150 Hz, and then down-

sampling it to 500 Hz [210]. All the digital filtering was performed with a fourth-order two-pass 

Butterworth filter. 

4.3.2 Experimental paradigm 

The experimental procedure has been described previously [210]. Briefly, visual stimuli were back-

projected at a 78 cm viewing distance onto a semi-transparent screen, by a cathode ray tube video 

projector, with refresh frequency 75 Hz. The screen covered 80×50° of visual angle. All visual 

stimuli were white square probes with 2° width and luminance of 22.5 cd m-2 presented on a dark 

background with less than 0.01 cd m-2 luminance. Each probe was chosen from among 100 

locations on a 10×10 grid, with 4° center-to-center distance from each probe to its neighbours in 
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both vertical and horizontal directions. The grid was placed in the lower left quadrant of the visual 

field and its size and location were determined to cover the retinal eccentricity of the receptive 

fields of all the recorded neurons; these were centered within the central 40° of the lower left visual 

hemifield (see Figure 4.1 (a)).  

On each trial, the monkey fixated its gaze on a small red dot of 0.5° diameter on the top right of 

the grid. After 500 ms of fixation, a probe stimulus was flashed at a randomly chosen location on 

the grid for 25 ms separated by a 500 ms blank screen. After a variable delay (500-1000 ms), the 

fixation point jumped to a new position at the top middle of the grid and the monkey was required 

to make a visually guided saccade to the new fixation point and fixate there for another 500 ms 

(see Figure 4.1 (a)). Another probe stimulus was then flashed for 25 ms, and the monkey was 

required to keep its fixation for another delay 500-1000 ms. Each successful trial ended with a 

liquid reward to the monkey. If the monkey could not maintain its gaze within 2.5° of the dot, the 

trial was aborted. In each session, each probe location on the grid was repeated at least 10-15 trials 

for each fixation point in a pseudorandom order. For each monkey at least 10-20 sessions were 

performed. The data were recorded on non-consecutive days.  

Eye movements were monitored at 1000 Hz using an infrared eye tracker (Eyelink; SR Research). 

Trials that contained blink, double step, or catch-up saccades were discarded. 

4.3.3 LFP and MUA analysis 

All the analyses were performed in Python 3.6. The recorded activity for presentation of each probe 

was analyzed starting 350 ms before and ending 350 ms after probe onset. All of the analyses here 

and in the subsequent sections were performed separately for each fixation point. Multiunit activity 

(MUA) data at each electrode site was presented as spike counts computed in nonoverlapping time 

windows of width 25 ms. The evoked MUA response of each electrode to the presentation of each 

probe was defined as the total spike count over a certain time window. We defined three time 

windows, all beginning 50 ms after the stimulus onset; wide (150 ms), medium (50 ms), and narrow 

(25 ms). We created separate response datasets based on each measure for each window. For each 

dataset, the responses then were z-scored across all the trials, for each electrode independently. 
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Given previous results [19], we assume that the broadband LFP amplitude (0.2-150 Hz) has better 

localization than the instantaneous LFP power in area V4. Therefore, we defined the LFP response 

as the mean amplitude of the broadband LFP signal over the same time windows as those defined 

for MUA. As in the MUA analysis, the responses for each dataset were z-scored across all the trials 

and for each electrode separately.  

To confirm that the information about the position was not restricted to certain frequency band, we 

applied fourth order Butterworth FIR filter to the broadband LFPs recorded 350 ms before to 350 

ms after the probe onset. We filtered these signals over five frequency bands: theta (4-8 Hz), alpha 

(8-12 Hz), beta (12-30 Hz), gamma (30-50 Hz), and high gamma (50-80 Hz) independently. The 

delta frequency band (0.5-4 Hz) was not considered in the analysis, as it could not capture the 

responses over each of the three windows. We then calculated the responses and created datasets 

for each band passed LFP signal. 

4.3.4 Spatial receptive field map 

The spatial receptive field map of each recording site was determined over the probe grid by 

averaging the z-scored responses of trials with the same probe positions. We fitted a two-

dimensional Gaussian model to the receptive field maps separately through least-squares 

minimization:  

𝐺(𝐴, µ𝑋 , µ𝑌, 𝜎𝑋 , 𝜎𝑌, 𝑑)~𝐺(𝑋, 𝑌) = 𝐴𝑒
−(

(𝑋−µ𝑋)
2

2𝜎𝑋
2 +

(𝑌−µ𝑌)
2

2𝜎𝑌
2 )

+ 𝑑                  (4.1) 

 

The Gaussian model had six parameters: maximum response 𝐴, centre position (µ𝑋 , µ𝑌), SD 

(𝜎𝑋 , 𝜎𝑌), and bias 𝑑. We used the X-Y positions of each probe on the grid (taking the fixation point 

position as the reference) as the input to the model and the mean response to each probe as the 

output. The Gaussian model was then fitted, and the receptive fields were presented as the ellipses 

of full width at half height of the fitted Gaussians, where the diameter of each receptive field was 

reported as the average of 𝐷𝑋 and 𝐷𝑌, for which  

𝐷𝑋 = 2𝜎𝑋√−2 ln(
1

2
−

𝑑

2𝐴
)                  (4.2) 
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and 

𝐷𝑌 = 2𝜎𝑌√−2 ln(
1

2
−

𝑑

2𝐴
)  .                 (4.3) 

 

The center of each receptive field was calculated as the center of its fitted Gaussian (µ𝑋 , µ𝑌). We 

defined the eccentricity of each receptive field as the Euclidean distance between the center of the 

receptive field and the position of the fixation point. 

4.3.5 Selecting informative electrodes 

To interpret the discrimination performance between pairs of positions and have an unbiased 

sample for the subsequent analysis, we removed recording electrodes that were not informative 

about the probe positions on the grid. We applied univariate feature selection to each dataset (MUA 

or LFP and for each window) by computing ANOVA F-values. Electrodes showing p<0.05, were 

considered informative and were selected for the subsequent analyses. Separate analyses including 

all the electrodes resulted in poorer discrimination performances (not shown). 

4.3.6 Discrimination analysis 

Discrimination analysis was performed by classifying ensemble responses for every pairs of probe 

positions on the grid. Discrimination between pairs of probes when at least one was not within the 

receptive field of the responsive electrodes was difficult to interpret. Thus, to collect probes that 

elicited responses, we calculated the mean z-score across electrodes and trials at each probe 

position [18]. For MUA, positions for which this value was positive and for LFP, positions for 

which it was negative were included in the discrimination analysis. 

Support vector machines (SVMs) have frequently been used in previous studies to quantify the 

discriminability of population activity for pairs of stimuli [18, 152, 211, 212]. SVMs are effective 

in high dimensional spaces and in cases where the number of dimensions is greater than the number 

of samples. In addition, compared to other algorithms such as logistic regression, they are less 

sensitive to outliers. We therefore used SVMs on the MUA and LFP responses separately to 

discriminate pairs of probe positions. In each analysis (i.e. in each figure), we used all the trials of 
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a single session with a single fixation point. The dataset used for the discrimination of each pair 

contained all the trials in which one of the two probes were presented. Support vector machines 

build a classification hyperplane by maximizing the distance (margin) to the nearest data points of 

any class (called support vectors). Given training vectors 𝑥𝑖 ∈ ℝ𝑝, 𝑖 = 1, … , 𝑛 and targets 𝑦 ∈

{1, −1}𝑛, SVM solves: 

min
𝑤,𝑏,𝜉

1

2
𝑤𝑇𝑤 +

𝐶

2
∑ 𝜉𝑖

2𝑛
𝑖=1                  (4.4) 

Subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,  𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛               

 

where, 𝐶 > 0 is the upper bound, function 𝜑 maps the training samples into higher dimensional 

space [155], and 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) is the kernel function. We separately applied linear 

SVM and SVM with Radial Basis Function (RBF) kernel defined as 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

. In 

this setting, the hyperparameter 𝐶 trades off correct classification of training samples against 

maximization of the margin (i.e. complexity of the decision function) and thus, behaves as a 

regularization parameter. The hyperparameter 𝛾 in the RBF kernel, determines the influence of a 

single training sample. 

We randomly changed the order of the trials in the training set to make sure that the training set 

was representative of the overall distribution of the data. Since the number of repetitions differed 

across the probe positions, we adjusted the SVM weights in inverse proportion to the class 

frequencies in the input data to keep the balance of the learned weights. We used a 5-fold cross 

validation procedure to prevent overfitting: all the trials were divided into 5 groups of trials, called 

folds, of equal sizes (if possible). The training was performed using 4 folds, and the remaining fold 

was used for validation. This procedure was repeated 5 times by using each of the folds once as the 

left-out fold. The validation score was determined as the mean of the 5 scores. Because of the 

imbalance in the number of repetitions of probes, we used stratified mode of 5-fold cross validation 

which preserved the relative class frequencies in each training and validation fold [156]. Similar 

results were obtained with 10-fold stratified cross validation (not shown). 

Not every pair of probes can be discriminated with the same values of the hyperparameters. 

Discrimination between each pair of probes required a new adjustment in the hyperparameters to 
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prevent overfitting. To this end, we applied Grid Search [157] over 𝐶 and 𝛾 to determine values 

with the highest stratified 5-fold cross-validation score. This score was reported as the validation 

performance for discrimination of each probe pair. 

Because of the imbalance in the number of repetitions of the probes and also because two probes 

(negative and positive targets) were equally important in each single discrimination, we used the 

area under the Receiver Operating Characteristic (ROC) curve to measure the classification 

performance [158]. ROC curve plots true positive rate (TPR) or sensitivity versus false positive 

rate (FPR) or one minus specificity. Each prediction result represents one point in the ROC space. 

The area under this curve (AUC) is a measure of performance (in classification) that ranges in 

value from 0 to 1. 

In discrimination of two positions, Linear SVM assigns a weight to each electrode based on its 

importance. The positive weights support the hypothesis that the stimulus is at a target position, 

while the negative weights support the hypothesis that the stimulus is at another position. We 

independently normalized the SVM weights corresponding to each discrimination. Since the L2 

norm was used in the formulation of the SVM here, we defined the importance of each site in each 

discrimination as the square of its weight [213]. The overall importance of each electrode was 

calculated as the mean of the importance values over all the discriminations (here, we only 

considered probe pairs with separations <15°). We sorted the recording sites based on their 

importance to find the most and least important sites over all the discriminations. We also 

calculated the mean of the importance values over discriminations whose probes were separated 

by 4° and positioned at ≤8° eccentricity. Sorting electrodes over these importance values helped 

us to select only those electrodes that played a key role in discriminating close spatial positions at 

small eccentricities. 

4.3.7 Probes separation distances, eccentricity, and cortical magnification 

factor 

As the probes are placed at different eccentricities, discrimination of pairs with the same separation 

distance on the grid will not have the same level of performance. Therefore, it is important to 

present discrimination performance in the context of the retinal eccentricity of the probes, taking 

into account cortical magnification factor. Cortical magnification factor is the ratio of distance 
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between two points on the cortex (in millimeters) divided by distance between their corresponding 

points in the visual field (in degrees) [159]. As previously shown by Gattass et al., cortical 

magnification in cortical area V4 (𝑀) is related to eccentricity (𝐸) in the visual field by 𝑀 =

3.01𝐸−0.9 [160]. We used this equation to estimate cortical magnification factor in V4 and applied 

it to convert the probes separation to their corresponding distances on the cortex. 

Separation distance for a pair of probes was calculated as their Euclidean distance on the grid in 

degrees of visual angle. The retinal eccentricity of a probe was calculated as the Euclidean distance 

between its position on the grid and the position of the fixation point (in degrees of visual angle). 

For every pair of probes, the magnification factor was calculated using the above equation by 

Gattass et al., where the eccentricity was calculated as the mean eccentricity of the pair of probes 

(we call it probe pair eccentricity). The magnification factor for each pair was then multiplied by 

their separation distance to give the cortical distance in mm. 

We plotted the discrimination performance as a function of cortical distance. To make these plots, 

we sorted and divided the cortical distance values into 0.5 mm bins, and then averaged performance 

of pairs with cortical distance values within each bin. Similarly, discrimination performance was 

presented as a function of probe pair eccentricities for those with the same separation distances. 

The values of probe pairs eccentricities were sorted and divided into 3° bins and the discrimination 

performances for pairs with eccentricity within each bin were averaged. To investigate the 

relationship between eccentricity and performance, we calculated the Pearson correlation. 

4.3.8 Selecting similar receptive fields 

Inspection of the receptive fields, indicated a level of similarity to stimuli at different positions. 

These electrodes had receptive fields with similar shape, location, or diameter. We applied k-means 

clustering to systematically group these similar receptive fields. The k-means algorithm clusters 𝑛 

samples into 𝑘 disjoint clusters 𝐶, each described by a mean 𝜇𝑗 for the samples in the cluster (called 

the centroid). The centroids are chosen to minimize the within-cluster sum of squared criterion: 

∑ min
𝜇𝑗∈𝐶

(‖𝑥𝑖 − 𝜇𝑗‖
2

)𝑛
𝑖=0                   (4.5) 
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The algorithm has three steps: 1) it initializes the centroids (e.g. by choosing 𝑘 samples from the 

dataset). 2) assigns each sample to its nearest centroid, and 3) updates the location of the centroid 

by taking the mean value of all the samples assigned to its previous location. The algorithm repeats 

the second and third steps until the difference between the old and the updated location of the 

centroid is less than a threshold. In this implementation we used the k-means++ initialization in 

scikit-learn to initialize the centroids to be distant from each other, and prevent convergence to a 

local minimum [214]. 

When similar receptive fields were identified, we selected 1-3 representative electrodes from each 

group and repeated the discrimination analysis using the total representative electrodes obtained 

from all the groups. 

4.3.9 Influence of noise correlations on spatial discrimination 

Most of the recording sites have correlated trial-to-trial variability in response to the same stimulus 

(called noise correlation). To determine whether these correlations have an impact on 

discrimination performance, we repeated the analyses above but after destroying the noise 

correlations in the training set. As before, the SVM cross validation score was computed on the 

left-out raw unshuffled data (one- fold), but for each electrode site, the order of trials with the same 

stimulus in the training set was shuffled and the SVM was trained on a correlation-free training set. 

This procedure destroyed the correlation between pairs of recording sites without changing the 

response statistics at site. Training on a shuffled dataset made the decoder blind to noise 

correlations, so that changes in discrimination performance then reflected the contribution of noise 

correlation to the subsequent computations. 

We then calculated the noise correlation values as the Pearson correlation coefficient of the 

responses of two electrodes to repeated presentations of a particular stimulus [161]. This value is -

1 for perfect negative correlation, +1 for perfect positive correlation, and 0 for no correlation. For 

each probe position, we standardized (z-score) the responses of each electrode independently and 

then calculated the noise correlation. We removed trials on which the response of either electrode 

was >3SD different from its mean [163]. The noise correlation was computed for all the electrode 

pairs and for all the probes included in the analysis. 
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4.3.10 Correcting the probe positions for the eye movement 

Since the eye position can vary from trial to trial, we corrected the probe positions by subtracting 

the amount of eye dispersion from the fixation point. The correction was made by determining a 

new position for each probe presentation using the eye movement data and then we calculating the 

closest probe position on the grid to that new position. In this way the impact of eye movement 

will be reduced to lower than 1°. 

4.4 Results 

In this section, we first characterized the precision of spatial discrimination in area V4. Indeed, we 

analyzed LFPs and MUA recorded thorough a 96-channel multielectrode array implanted into 

behaving macaque monkeys. Then, we proposed two procedures to significantly reduce the number 

of electrodes for discrimination. Next, we presented the decoding strategy used by the decoder to 

discriminate positions at smaller and larger distances. Later, we investigated the capability of band-

passed LFPs in discriminating positions. Finally, we identified the structure of noise correlations 

as a source of information about spatial position. 

The results presented in Figure 4.1 to 4.9 are based on the recorded data from monkey N in a single 

session. Further results using the data from other sessions or from another monkey are presented 

in the Supplementary information. 

4.4.1 Preliminary analysis 

Neural responses were studied with white square probes presented for 25 ms at random locations 

on a 10×10 grid while the monkey maintained its fixation on the red point (Figure 4.1 (a); 

Methods). Figure 4.1 (a, left) shows a representative signal’s sample. Figure 4.1 (c) left shows five 

example probes presented at different positions on the grid for the fixation point in the upper right 

of the grid. Presentation of each probe started at time 0 and lasted for 25 ms. We selected a group 

of 28 electrodes that responded well to the probe presentation for both LFP and MUA data (see 

Material and Methods – Selecting informative electrodes). The trial-averaged MUA and LFP 

signals from these electrodes, for each probe position (on its left) has been illustrated in Figure 4.1 

(c), middle. The traces of neural activity are plotted from 100 ms before until 300 ms after stimulus 

onset. The red traces represent the MUA spike counts obtained over 25 ms time bins. The blue 
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traces are the corresponding LFP signals. The modulation of neural activity is observable in a 

period of 50 to 125 ms after stimulus onset for both the MUA and LFP traces. MUA modulation 

appeared in the form of an increase in the spike counts, while modulation in the LFP occurred in 

the form of biphasic or triphasic fluctuations, often with a clear increase in the signal’s negative 

amplitude. The modulation intensities depended on the position of the stimulus on the grid and 

differed across recording sites. 

We calculated the evoked responses using narrow, medium, and wide windows separately, 

transformed them into z-scores, and averaged them for each probe position. These values were then 

color-coded separately and displayed at the location of the recording electrodes within the electrode 

array. We then visually compared the results for the three time-windows (Figure 4.1 (c), right). 

From the graphs, different spatial patterns of electrodes activation can be observed for LFP versus 

MUA in response to the same probe positions. This suggests that MUA and LFP may encode the 

positions with different strategies and by involvement of different set of electrodes. These results 

also show a difference in the spatial pattern of responses between different time windows for 

presentation of the same probes. This difference suggests that the amount of information about the 

spatial positions may differ over time windows and latency after stimulus onset. In the next section 

we compare the precision of spatial discrimination, for these three response windows, using LFPs 

and MUA activities. 

The MUA (red) and LFP (blue) receptive fields of the same group of electrodes (28 selected 

electrodes) are presented for each time window in Figure 4.1 (b). These receptive fields were 

extensively overlapping and many of them were similar in size and position for the LFP and MUA 

except for a number of MUA receptive fields that appeared around the upper left area of the grid. 

Further analysis showed that these few receptive fields had small response peaks. Using the 

medium time window, the estimated MUA receptive field diameter (the mean of x-diameter and 

y-diameter of an ellipse) ranged from 4.64º to 29.53º (13.1º±7.1º), while for the LFPs it ranged 

from 12.06º to 31.73º (20.7º±4.4º). Using the wide time window, it changed to range 4.64º to 36.30º 

(12.3º±7.7º) for MUA and 6.15º to 35.00º (21.2º±6.9º) for the LFP. 

We presented the receptive fields mean diameters as a function of receptive fields eccentricity for 

the three response windows (for both MUA and LFP activity) (Figure 4.2-scatter plots). As 

expected, by increasing the eccentricity, receptive fields sizes increased, except for the narrow  
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Figure 4.1 Responses of neural ensemble to different stimulus positions in visual cortical area 

V4. (a) (left) Samples of recorded activity with time in ms and signal amplitude in micro-volts 

(right) all possible probe positions on the 10×10 grid spanning 40º×40º of visual space. The red 

dots show the fixation points used in this experiment. One was in the upper right of the grid and 

the other in the upper middle of the grid. (b) Estimated receptive fields of a selected group of 28 

recording sites in V4 obtained during fixation on the upper right red dot. MUA (red) and LFP 

(blue). Receptive fields were determined for three different time windows as labeled on their top. 

The x-y positions in (visual degrees) with the upper right red dot as the reference. (c) (left) 

Presentation of probes at five different positions on the grid and the fixation point at the upper 

right. (middle) time course of MUA and LFP activity from multiple sites. The blue traces are LFP 

activity and the red traces are the MUA spike counts (sampled over 25 ms bins). Each trace is the 

trial-averaged activity of an electrode over trials with the same probe positions. The traces of 

activity are illustrated between 100 ms before to 300 ms after the stimulus onset. (right) 

Responses of electrodes on the array to probe positions illustrated on the left. For the LFP, since 

the responses mostly appeared as negative values, we changed the polarity of responses to present 

more negative values as the higher responses. The responses are calculated for each window 

separately. Values on the array are color-coded between -0.27 to 0.27 for MUA and -0.34 to 0.34 

for the LFP. The blue color corresponds to small response values and yellow color represent 

higher values. The white cells on the array show electrically grounded sites. 
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Figure 4.2 Relationship between receptive fields and their eccentricity. The scatter plots show the 

relationship between mean diameter of the receptive fields and the eccentricity of their centers for 

three response windows narrow (top), medium (middle), and wide (bottom) for the MUA (red) 

and LFP (blue) activities. On the right side of each scatter plot, the eccentricity values are 

presented for each of the selected 28 electrodes at their location on the array. Yellower values 

indicate higher eccentricities while the darker values show closer electrodes to the foveal 

presentation on the cortex. The color bar shows values between 0-40° eccentricity. 

 

windows. This suggests that the content of information in the neural responses in V4 has not been 

captured using the narrow window. We also presented the receptive fields’ eccentricities for each 

electrode at its location on the electrode array (right side of each scatter plot). The results 

demonstrated that upper and middle right of the array were corresponding to the peripheral 

representations while the bottom left included electrodes that recorded from foveal representations. 

These observations suggest that as individual stimulus is presented across the grid, it evokes 
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reliable responses in multiple recording sites, at each spatial position. This distributed response is 

a potentially rich source of information for position judgements when it is measured over a right 

window. 

4.4.2 Spatial precision of MUA and LFP in area V4 

In this subsection we characterized the spatial precision of the MUA and LFP responses in V4. To 

have an unbiased sample, for each time window independently, we excluded electrodes that were 

not informative about the stimulus positions on the grid (see Methods). This left 28 electrodes for 

MUA and 91 electrodes for the LFP, using the wide response window. For the medium window, 

for MUA, 29 electrodes were left, and for the LFP, 87 electrodes. Using the narrow window, left 4 

electrodes for MUA and 82 electrodes for the LFP. We included these electrodes in the 

discrimination analysis. 

We separately trained linear SVMs and Radial Basis Function (RBF) SVMs on MUA and LFP 

response datasets to discriminate differences in spatial position of the probes presented on the grid. 

For each response window then, we selected a separate set of probes that elicited responses in the 

electrodes. Since the electrodes’ receptive fields were mostly located in the closer eccentricities, 

most of the probes in far eccentricities (>35°) were removed. Application of the linear and RBF 

SVMs showed that both MUA and LFP responses were capable of discriminating the positions of 

individual probes (Figure 4.3). The results showed that the discrimination performances (cross 

validation score) depended on the separation distances and eccentricities of the probe pairs. 

As the probes were not all placed in the same eccentricities, discriminating probe positions with 

the same separation distances on the grid did not give the same level of performance. Therefore, 

we used the cortical magnification factor in V4 and converted their visual distances on the grid to 

distances on the cortex (see Methods). The discrimination performances of pairs of probes versus 

their cortical distances are presented in Figure 4.3 (a), (c) for each window ((a) linear SVM and (c) 

RBF SVM). In most of the cases, performance increased with cortical distance. For example, using 

the responses for fixation on the upper right dot, applying linear SVM, at 0.75 mm cortical distance, 

the average MUA performance for the narrow, medium, and wide windows were 64.7%, 65.2%, 

and 67.5%, which were increased to 73.4%, 84.1%, and 93.8% for 3.75 mm distance respectively 

(Figure 4.3 (a), left). For LFP with 0.75 mm cortical distance, for narrow, medium, and wide 
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windows, the discrimination performances were 56.5%, 60.8%, and 59.6% that reached 81.5%, 

87.0%, and 87.0% for 3.75 mm distance (Figure 4.3 (a), right). These results were predictive for 

eccentricities and separation distances that were not used in the experiment. Assuming two probe 

positions with a 1° separation distance at 1° eccentricity, their V4 cortical distance (using 𝑀 =

3.01𝐸−0.9) is 3.01 mm. At this cortical distance, the MUA discrimination performance with a wide 

window is around 92% and for LFP it is around 82%. 

We performed additional analyses to determine the effect of eccentricity on discrimination 

performance for probes with the same separation distances. We selected probe pairs with 4° and 8° 

separations and plotted their performance versus their eccentricity. Figure 4.3 (b) shows the results 

of MUA and LFP, for each distance, and for each window. The results demonstrated that 

eccentricity plays an important role in the spatial resolution: the performance was higher for probe 

pairs located near the fovea and decreased by increasing the eccentricity. Exceptions occurred 

(p>0.05) when we used MUA with medium and narrow windows to discriminate 4° separation and 

a narrow window to discriminate 8° separation and also for LFP with narrow window for the both 

separations (Figure A.1 (b)). This indicated that the content of information in time windows shorter 

than 50 ms for MUA and 25 ms for LFP were not sufficient to discriminate between the positions. 

Using the wide window, with MUA, at 4.5° eccentricity and for 4° separation, the performance 

was 83.1%, while using medium and wide windows with LFP, this performance was 82.6% and 

76.8% respectively. For 8° separation, at the same eccentricity, performance with both MUA and 

LFP were much higher: 95.5% for MUA with the wide window and 85.7% and 95% for LFP with 

medium and wide windows respectively. 

Similar results were obtained using the data recorded on the other sessions (Figure A.5) and using 

the data recorded from the other monkey (Figure A.10 (a)). We repeated the above analysis with a 

RBF SVM (Figure 4.3 (c), (d)). The results of using the RBF SVM were similar to the linear SVM, 

with slightly higher performance (1-4% higher). Although the RBF SVM yields slightly better 

discrimination performances, it does not directly assign weights to the recording sites. Instead it 

transforms the data into a new space and classifies the transformed data. In contrast, linear SVM 

assigns linear weights to each electrode in the discrimination of each pair of positions, which 

provides more interpretability. Furthermore, linear SVM is faster than RBF SVM, which makes it 
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more practical when the number of discriminations is high. Taken the above factors into 

considerations, subsequent analyses were performed using linear SVM. 

 

Figure 4.3 V4 ensemble response allows spatial discrimination. Darker colors correspond to the 

wider response windows. The performances are validation scores of 5-fold cross validation 

measured as the area under the ROC curve. (a) Discrimination performance versus cortical 

distance (in mm) for MUA (left) and LFP (right) using wide, medium, and narrow windows. The 

cortical distance values are divided into 0.5 mm bins and the discrimination performances of 

pairs with cortical distances within each bin were averaged. (b) Discrimination performances of 

pairs with 4° and 8° separation distances as a function of eccentricity (in deg) of the pairs for both 

MUA (left) and LFP (right) for responses defined over wide, medium, and narrow windows. 

Significance (p-values) of correlations between performance and eccentricity for each response 

window is presented for each plot. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricities within each bin were averaged. (c) Same 

analysis as section (a), applying RBF SVM. (d) Same analysis as section b, applying RBF SVM. 
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Comparing the discrimination performance of response windows showed that for both MUA and 

LFP, narrow time window led to lower performance, while medium and wide windows resulted in 

much higher performances. These results suggest that capturing the content of information about 

the spatial precision requires response window of at least 50 ms. For MUA, the wide window 

obtained better performance over the medium window. For LFP, medium and wide windows had 

close performances with a mean difference of only 3.1% for the wide versus the medium window. 

This suggests that the information content for the spatial discrimination is mainly accumulated 

between 50-100 ms after the stimulus onset. This property makes the medium size window more 

practical for the use of LFP when temporal resolution is important. Therefore, for the subsequent 

analysis we used medium response window for LFPs and the wide window for MUA. 

Although the animals were required to maintain fixation within 2.5°, in the experiment, for 92% of 

the trials, dispersion from the fixation point was less than 2° with a mean of 1.32° and standard 

deviation of 0.43° over all the trials. The distribution of eye positions was not different for different 

probe positions, so the eye movements just add variability to the neural responses. To determine 

the effect of this dispersion, we repeated our analysis after correcting for changes in fixation on 

each probe presentation. Results before and after the correction were almost similar. A reason is 

that, since the distribution of eye positions were not different, and since we averaged the 

discriminations for cortical distances within the same range, final results fell around the same level. 

Dispersion increases separation distance of some probe pairs while decreases it for the others. 

Therefore, it makes some pairs easier while some harder to discriminate. However, the overall 

result would stay around the same value. We have presented the discrimination performance versus 

cortical distance before correction in Figure A.11 (a) and after correction in Figure A.11 (b) for 

MUA and LFP. As we can see, the results are very close and the same conclusion can be reached. 

In practical applications, we are interested in smaller probe separations with high spatial precision. 

As we showed above, if we present the probes in smaller eccentricities, the discrimination 

performance will be much higher. This is the result of larger area of the visual cortex that is 

dedicated to the fovea representation. Therefore, if we implant the same array in the foveal region 

of V4, it will yield far better resolution. In the next subsection, we present new strategies to select 

a smaller population of electrodes systematically while at the same time increases the performance 

for a particular value of the separation distance. 
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4.4.3 Minimizing the number of electrodes 

In this subsection we proposed and compared two strategies to reduce the number of electrodes in 

the discrimination analysis. In the first method, we clustered the electrodes whose receptive fields 

were similar while in the second method we used linear SVM weights to select minimum number 

of the best electrodes. 

4.4.3.1 Clustering electrodes with similar receptive fields 

Comparing the receptive fields of individual electrodes showed some level of similarity in their 

shapes and locations that made it possible to group them into a few classes. Using k-means 

clustering we grouped the receptive fields of the informative electrodes, and found that 3 clusters 

gave the best results for both MUA and LFP. Figure 4.4 (b), bottom, shows the receptive fields that 

fell into the same group. To select a smaller population for discrimination, from each group, we 

selected 1-3 representative electrodes with the highest receptive fields peak and repeated the above 

analysis. Figure 4.4 (a) compares the performance as a function of cortical distance using 

representative versus using all the informative electrodes. The performances were calculated with 

the 8 representative electrodes for MUA and with 9 electrodes for LFP. Using the representative 

electrodes, the average MUA performance decreased by 3.2% while for LFP it decreased by 3.9%. 

These results suggest that performance was marginally affected by removing redundant electrodes 

from the analysis. 

Next, we presented the discrimination performance of MUA and LFP as a function of eccentricity 

for 4° and 8° separations (Figure 4.4 (b)). With 4° separation and <8° eccentricities, for MUA, 

using the representative electrodes, the performance was increased by 6% compared to using all 

the electrodes while in LFP, it decreased by 0.8%. For the 8° separation, the average performance 

of MUA and LFP decreased by 4.6% and 4.7% respectively. Moreover, in all cases, the correlation 

between performance and eccentricity was significant (p<0.05). Clustering of similar electrodes, 

thus could help to reduce the number of electrodes used in the analysis to less than 10 while 

reasonable spatial precision is still maintained. 
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Figure 4.4 Spatial discrimination with a smaller subset of electrodes selected using clustering. 

Similar receptive fields were clustered into 3 groups and 1-3 representative electrodes with the 

highest receptive field peaks were selected from each group for use in the discrimination analysis. 

Three (k=3) groups for MUA (left) and three for LFP (right) were obtained (bottom contours). 

Dark red and blue colors show the results for MUA and LFP respectively, when all the 
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informative electrodes were used. Orange and purple colors show MUA and LFP when only 

representative electrodes were used. (a) Spatial discrimination as a function of cortical distance 

when all the informative electrodes were used versus when only representative electrodes were 

used. The cortical distance values are divided into 0.5 mm bins and the discrimination 

performances of pairs with cortical distances within each bin were averaged. (b) Spatial 

discrimination versus eccentricity for probes with 4° and 8° separations. Significance of Pearson 

correlation (p-values) are presented on the plots for each curve. Eccentricity values are divided 

into 3° bins and the discrimination performances of pairs with eccentricity within each bin were 

averaged. (bottom) The contours of similar receptive fields over the grid coordinate system with 

fovea location as the reference. 

 

4.4.3.2 Selecting electrodes with the highest importance values 

We sorted the electrodes based on their overall importance and selected the 4, 6, 8, 10, and 12 most 

important (best) electrodes, and for each set separately we performed the discrimination analysis 

as above. Figure 4.5 (a) and Figure A.2 (a) illustrates discrimination performance versus cortical 

distance for each set of the selected electrodes, as compared to the performance when the full set 

of the informative electrodes were used. For both MUA and LFP, the full set of electrodes (black 

curves), gave slightly higher or lower performances over all the discriminations, compared to using 

the other smaller sets of electrodes. The exception was with 4 electrodes that gave the lowest 

performances of all. As before we also illustrated discrimination performance versus eccentricity 

for 4° and 8° separations (Figure 4.5 (b) and Figure A.2 (b)). For the MUA, for 4° separation in 

closer eccentricities, with 4 and 6 electrodes, performance was in average 3.5% higher than with 

the full set of electrodes. For LFP also, 1.8% lower performance was obtained with 8 electrodes, 

for 4° separation in the closer eccentricities. Overall, in all cases, the averaged performance 

differences did not exceed 10%. Comparing the overall performance of MUA and LFP, we 

concluded that the minimum number of electrodes for fine discriminations (4°) without impairing 

performance (and also achieving p<0.05) for LFP was 10, while for MUA was 6. Similar results 

were obtained using the data recorded on the other sessions (Figure A.6) and using the data 

recorded from the other monkey (Figure A.10 (b)). 



84 

 

 

 

Figure 4.5 Results of discrimination analysis with the best (most important) 4 (blue), 6 (green), 8 

(yellow), 10 (purple), and 12 (red) electrodes. Discrimination using all the electrodes is shown in 

black. (a) Discrimination performance versus cortical distance (in millimeters) for MUA (left) 

and LFP (right) with different sets of the best electrodes. The cortical distance values are divided 

into 0.5 mm bins and the discrimination performances of pairs with cortical distances within each 

bin were averaged. (b) Discrimination of probes with 4° (top) and 8° (bottom) separation versus 

the mean eccentricity of the pairs in visual degrees using the same sets of the best electrodes as 

(a). MUA results are presented on the left and LFP on the right. Pearson correlation significance 

(p-values) are presented on each plot associated to the results obtained with each electrode set. 

Eccentricity values are divided into 3° bins and the discrimination performances of pairs with 
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eccentricity within each bin were averaged. (c) Selecting the best electrodes using importance 

values obtained by averaging over discriminations with 4° probe separation and <8° pairs 

eccentricity. The electrodes were sorted by these new importance values. As only the closer 

eccentricities were important, the plots are illustrated for smaller range of eccentricities. At the 

bottom of each plot the locations of the best electrodes are presented on the electrode array. 

These best 6 electrodes for MUA and 16 electrodes for LFP can achieve better performance than 

using all the electrodes for 4° probe separations. 

 

Although the above results showed that systematic selection of electrodes could significantly 

reduce the number of electrodes without damaging the discrimination performance, the selection 

strategy was based on all the discriminations with <15° separations. Since the goal of cortical visual 

prosthetic devices is to discriminate stimuli of small separations (high spatial resolution), and in 

closer eccentricities, we repeated the above analysis only for the probe pairs with 4° separation and 

eccentricities closer than 8°. We sorted the electrodes based on these new importance values and 

again selected the best 4, 6, 8, 10, and 12 electrodes. We repeated the discrimination analysis as 

before and illustrated the performance as the function of eccentricity for the 4° separation (Figure 

4.5 (c) and Figure A.2 (c)). For MUA, at 4.5° eccentricities, with all the smaller groups of 

electrodes, the performance was more than 10% higher than the performance obtained with all the 

informative electrodes. For LFP, at 4.5° eccentricities, using 8, 10, and 12 electrodes, performance 

were in average 12%, 13.5%, and 13.7% higher than the performance obtained with all the 

electrodes. Further analysis (not shown) on LFP with more than 12 electrodes showed that 

performance reached its maximum value (>90%) with 16 electrodes. However, this maximum was 

slightly (<1%) better than using 10 electrodes. To obtain insight about the distribution of these best 

electrodes on the cortex, we plotted the location of the 6 best electrodes for MUA and 16 best 

electrodes for LFP (Figure 4.5 (c), at the bottom of the curves). 

According to the cortical magnification factor in V4 [160], 4° separation at 4.5° eccentricity 

subtends a distance of 3.11 mm on the cortex. This amount of distance in a square (3.11×3.11 mm2) 

can cover 64 electrodes of the Utah array. However, the results of this analysis showed that precise 

discrimination can be made with a much sparser distribution of electrodes. This result would be 
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useful for the prosthetic applications, as it suggests that a lower number of electrodes can be used, 

thereby limiting damage to the cortex without considerable reduction in performance.  

We used two different methods to minimize the number of the electrodes for discrimination of 

spatial positions. Comparing the two methods showed that selecting electrodes based on their 

importance values provided a more systematic strategy and at the same time minimized the number 

of electrodes and increased the performance for both MUA and LFP. For the subsequent analysis 

in which we need to select the best electrodes, we use the second method. 

4.4.4 Coding strategies 

We next analyzed the coding strategy for position discrimination by examining the weights 

recovered by the SVM. This analysis shows the utility of the assigned weights in discriminating 

positions at a specific distance and their relation to the spatial tuning of the underlying electrodes. 

To determine this information, the weights were first normalized for each discrimination. For each 

probe position included in the analysis, we selected discriminations made between that probe and 

the other probes located at a particular separation distance from it and averaged the weights for 

these discriminations. We then presented these values for all the probes at their location on the 

grid. We investigated the coding strategy for 4°, 8°, and 12° separations for MUA and LFP 

independently. Examining individual electrodes suggested that, for small separations (4°) the peak 

of the receptive fields of more informative sites was offset from the target, such that the target 

position was situated on the flanks of the receptive field (Figure 4.6 and Figure A.3). In contrast, 

for large position separations (12°), sites were more likely to be informative if one of the targets 

was near the centre of the receptive fields. We observed a transition in the distribution of the 

weights between the two coding schemes over a range of target separations (8°). This pattern was 

observed for both MUA and LFP. As MUA responds by positive increase in the spike count, from 

4° to 12° separation, the more yellow regions move from the flank of receptive fields to the centre 

of receptive fields. However, since LFP responses appeared in the negative amplitude of the signal, 

negative weight values followed this pattern (Figure 4.6 (b), right). These results are in agreement 

with the coding schemes for spatial position discrimination previously reported in area MT [18]. 

Similar results were obtained using the data recorded on the other sessions (Figure A.7). 
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Figure 4.6 The coding strategy of individual sites for position discrimination of small and large 

separations. The degree of color lightness indicates polarity of values; lighter colors show more 

positive and darker blue colors show more negative values. Spatial receptive field profile is 

shown for each electrode on the left. The spatial distribution of the weights assigned to each site 

for discrimination of a probe from the other ones with a fixed distance. This value is calculated 
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for each probe and is presented at its location on the grid. The change in the coding strategy can 

be observed from 4° to 12° separation in the visual field (left to right). The values of the 

discrimination weights are visualized over the ranges between their maximum and minimum to 

capture the weight variations specific to each separation distance. (a) MUA results: The range of 

response values for the receptive fields are set to -0.27 to 0.27. The best three electrodes for 

MUA are selected for this analysis. (b) LFP results: The range of response values for the 

receptive fields are set to -0.34 to 0.34. The best three electrodes for LFP are selected for this 

analysis. As the LFP respond by negative peaks, the darker colors indicate the higher values of 

the weights. 

 

We then assessed the relationship between the weights and the cortical distances. Using the 

Pearson’s correlation we found that there was no significant correlation between the weights 

assigned to a particular electrode and the cortical distances of the included pairs of probes for both 

MUA and LFP (p>0.05). The same analysis on the averaged importance values for the four best 

electrodes and the cortical distances showed similar results.  

4.4.5 Spatial precision of LFP at different frequency bands 

We next sought to determine whether specific LFP frequency bands carry different amounts of 

information about stimulus positions. For each band-limited LFP, we calculated the responses 

using the medium time window. We used the same full set of responsive electrodes, as used for the 

broadband LFP with the medium window, and repeated the SVM discrimination analysis. 

Figure 4.7 compared the discrimination performances obtained for each frequency band. Plotting 

performance versus cortical distance (Figure 4.7 (a)) showed that for no frequency band the 

performances exceeded 70%. This suggests that the information about stimulus position is 

distributed across frequencies. To study the relationship between band limited performance and 

eccentricity, we repeated the above analysis for 4° and 8° separations (Figure 4.7 (b)). Although 

there was a correlation between performance and eccentricity, with 4° separation using theta 

frequency bands and with 8° separations using the gamma frequency band, no overall significant 

relation to eccentricity was found as a source of information about spatial position. These findings  
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Figure 4.7 Discrimination performance of band passed LFPs. Responses for each band passed 

signal were calculated using the medium window. (a) The band passed LFP performance versus 

cortical distance for theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-50 Hz), and 

high gamma (50-80 Hz) frequency bands. The cortical distance values are divided into 0.5 mm 

bins and the discrimination performances of pairs with cortical distances within each bin were 

averaged. (b) Discrimination performances of the same band passed LFPs (as A) as a function of 

eccentricity for 4° and 8° separations. The significance (p-values) of each band is presented on 

the plots. Eccentricity values are divided into 3° bins and the discrimination performances of 

pairs with eccentricity within each bin were averaged. 

 

indicated the necessity of using broadband LFP in extracting information about the spatial 

positions. Similar results were obtained using the data recorded on the other sessions (Figure A.9). 

4.4.6 Influence of noise correlations on spatial discriminations 

The receptive fields in V4 are highly overlapping, and therefore the neurons are likely to receive 

input from similar groups of afferent neurons. Thus, some of their responses will be shared with 

other neurons and consequently, correlated [162, 177]. These interneuronal correlations in the 

responses might be used by decoding algorithms [152]. Noise correlations, which are the shared 

trial-to-trial variability in responses, are critical for understanding the representation of stimuli in 

neural ensembles [215] and have been shown to be related to the amount of information in a 

neuronal population [163]. 

To assess whether in our analyses, SVM uses noise correlations, we trained it on datasets in which 

the correlation structure was destroyed and cross validated it on the real unshuffled data (Figure 

4.8 (a)). The removal of noise correlations from the training set impaired the ability of the decoder 

to interpret real neural activity and reduced the decoder performance (Figure 4.8 (b) and Figure 

A.4 (a)). Averaging the performance over all the discriminations showed that this reduction was 

around 4.3% for MUA and 14.0% for the LFP. This reduction was around the same level over all 

cortical distances. This suggest that the change in the computational performance was independent 

of cortical distances. We also illustrated the performance as a function of eccentricity for 4° and 8°  
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Figure 4.8 Effect of noise correlations on spatial discrimination. Dark red and orange colors 

represent correlation-aware and correlation-blind performances of MUA respectively, while blue 

and purple colors are representative of the same measures in the LFP. The correlation-blind 

performances are the cross-validation scores when SVM is trained on the shuffled data but 

validated on the unshuffled data. (a) (left) Training decoder on shuffled data with noise 

correlations removed. 𝒉𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏−𝒃𝒍𝒊𝒏𝒅 shows the hyperplane optimized on the correlation-blind 

data. (right) original unshuffled data are discriminated with 𝒉𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏−𝒃𝒍𝒊𝒏𝒅 and compared to 
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the discrimination with 𝒉𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏−𝒂𝒘𝒂𝒓𝒆 that is optimized on the original unshuffled data. (b) 

Discrimination performance versus cortical distance for correlation-blind versus correlation-

aware responses. (left) MUA (right) LFP. The cortical distance values are divided into 0.5 mm 

bins and the discrimination performances of pairs with cortical distances within each bin were 

averaged. (c) Discrimination performance as a function of eccentricity for 4° (top) and 8° 

(bottom) separations comparing correlation-blind and correlation-aware response data (left) 

MUA (right) LFP. Pearson correlation p-values are shown on each plot indicating the 

significance of the relationship. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. (d) Same 

as (a) when the best six electrodes for MUA and the best six electrodes for LFP are selected for 

the discrimination. 

 

separations (Figure 4.8 (c) and Figure A.4 (b)). With MUA, the effect of noise correlation was 

more pronounced in discriminations with 4° separation with 5.6% reduction compared to 8° 

separation with 2.7% reduction in the performance. This pattern was different for LFP with 12.2% 

reduction for 4° separation and 14.65% reduction for 8° separation. These results indicate the 

importance of noise correlations in finer discriminations when MUA is used and in coarser 

discriminations when LFP is used. In addition, it suggests that LFP performance highly depends 

on the noise correlations. Altogether, findings suggest that the interneuronal correlations contain 

information that could in principle be extracted by downstream regions. 

To study the effect of noise correlation in smaller population of electrodes with comparable results, 

we selected the best six electrodes over all the discriminations for both MUA and LFP separately. 

Repeating the analysis for this population showed that the average reduction in the MUA 

performance was 4.6% and for LFP it was 12.1% (Figure 4.8 (d)). In other word, by reducing the 

number of electrodes, the effect of noise correlation on performance stayed around the same level. 

This suggests that using smaller number of electrodes still requires the same considerations about 

the noise correlation. Similar results were obtained using the data recorded on the other sessions 

(Figure A.8) and using the data recorded from the other monkey (Figure A.10 (c)). Repeating the 

noise correlation analysis after correcting for the eye movement during probe presentation showed 
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no particular difference in the results (Figure A.12). This confirms that the results are robust to 

small eye dispersions. 

We next measured the noise correlations. To understand the dependence of noise correlation on the 

stimulus position, we selected the best two electrodes for LFP and MUA separately and calculated 

their noise correlation for the probes included in the analysis. We then plotted the resulting values 

at the location of probes on the grid (Figure 4.9 (a)). Comparing the results to the response profiles 

of the electrodes indicated that the stimulus can induce higher or lower levels of correlation 

depending on the receptive field location. For both MUA and LFP, the magnitudes of noise 

correlations were increased when the probe was in the receptive field of both sites or in the 

receptive field of neither of the sites. This pattern has been observed before for spiking activity 

[161, 177, 216, 217]. Correlations were relatively low when the stimulus was in the receptive field 

of one site and not in the receptive field of the other site. This pattern has also been observed in 

area MT [18]. 

To understand how noise correlations change over cortical distances, we calculated the noise 

correlations for all the electrode pairs included in the analysis and sorted the values by the inter-

electrode distances on the cortex. Figure 4.9 (b) shows noise correlation values versus inter- 

electrode distances for six different probes for both MUA and LFP. These six probes were selected 

from three independent ranges of eccentricities with two probes in each range that were presented 

with the same colors. The results showed that for MUA, overall noise correlation dropped slightly 

(<0.1) with increasing the inter-electrode distances, which was in agreement with [215]. This 

decline in the noise correlations for LFP was much bigger and for some probe locations it was >0.2 

for 4 mm increase in inter-electrode distances. This level of dependence of LFP on the noise 

correlation can explain the high drop in discrimination performance of the correlation-blind versus 

the correlation-aware responses. As we found before, discrimination performance increases with 

increasing cortical distance. The results here suggest that more distant points on the cortex have 

lower levels of noise correlation, and thus will be easier for the decoder to discriminate. In addition, 

since LFP produces highly correlated responses, even in more distant points on the cortex, 

responses will be more difficult than MUA to discriminate. Success in discrimination with LFP 

signals then, can be achieved by selecting electrodes optimally and as far as possible on the cortex 

and presenting stimuli at smaller eccentricities. The curves for probes at different eccentricities  
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Figure 4.9 Dependence of noise correlation on probe position, electrodes distances, and 

electrodes importance. Noise correlation values are the Pearson correlation coefficients and are 

between -1 to 1. (a) Noise correlation of the best two electrodes (independently for MUA and 

LFP) in response to different probe positions on the grid. The range of noise correlation values is 

presented on the grid (on the right) and compared to the receptive fields of the two electrodes (on 

the left). We limited the range of the receptive field values on the graph between -0.27 to 0.27 for 

MUA and -0.34 to 0.34 for the LFP. The noise correlation values for both MUA (top) and LFP 

(bottom) are limited between Mean±1.5SD of the values on the graph. The degree of color 

lightness indicates polarity of values; lighter colors show more positive and darker blue colors 

show lower (more negative) values. The positions on the graphs are shown with the fovea center 

as the reference. (b) Noise correlation versus distances of the electrode pairs for responses to six 

different probe positions placed at three separate eccentricity ranges- with two probes in each 

range. Purple color for the eccentricities less than 5° from the fovea, brown color for 

eccentricities between 8° and 12°, and green color for eccentricities between 16° and 20°. (top) 

MUA (bottom) LFP. (c) Noise correlation versus mean importance of the electrode pairs. The 

importance value of each electrode is obtained as the mean of the squared weights calculated over 
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all the discriminations (with <15° probe pair separations). The same probe positions and color 

codes as b are used. (left) MUA (right) LFP. 

 

also showed no particular relationship between eccentricities and noise correlation. As we can see 

in the figures, the correlations for probes at the same eccentricity ranges had different levels of 

noise correlation for both MUA and LFP signals.   

We also investigated the relationship between the mean importance of pairs of electrodes and their 

noise correlations (Figure 4.9 (c)). The results showed that noise correlation drops with increased 

overall importance of the electrodes, and this drop is more pronounced in LFP. This suggests that 

electrodes that are important in discrimination of two positions are less correlated. In addition, no 

significant relationship was observed between the eccentricity of probes and their noise correlation 

as a function of electrodes importance. As we could select the minimum number of electrodes 

optimally, we actually selected less correlated electrodes in the discrimination analysis. Therefore, 

we minimized the redundant information but still kept important information that exists in the noise 

correlations for the discrimination. 

4.5 Discussion 

While most of the previous cortical visual prosthesis studies have been performed in V1, 

extrastriate visual areas offer sampling of a much larger region of visual space with the same 

coverage of electrode implants. Receptive fields in extrastriate areas are large and have extensive 

spatial overlap and therefore, spatial precision is unlikely to match the maximum precision in area 

V1. However, previous analysis have shown that the interaction between multiple receptive fields 

can provide relatively high precision that is behaviorally relevant [18]. Here, we studied the two-

dimensional spatial precision of V4 as an intermediate extrastriate region in the visual processing 

hierarchy. We chronically implanted Utah electrode arrays in area V4 of macaque monkeys and 

recorded LFP and MUA activity, while individual stimuli at different positions were presented. 

The MUA and LFP receptive fields were highly overlapping, but differed in size and spatial 

position of their centers across different electrodes. Discrimination of visual features has been 

previously shown to rely on ensembles of neurons with broad tuning curves [18, 152, 218]. Our 
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results used a similar representation for the spatial positions in two dimensions. We found that 

despite wide difference in the receptive fields of the electrodes, both LFP and MUA were able to 

discriminate spatial positions. 

4.5.1 Spatial discrimination of MUA and LFP 

We found that both MUA and LFP responses were capable of precisely discriminating spatial 

positions and that this precision increased with increasing the distance between the corresponding 

representation of the positions on the cortex. The performance levels for MUA and LFP were 

comparable with that for MUA being an average of 6.3% higher. The results showed that the 

discrimination performance was highest at smaller eccentricities <°8. Probes that were presented 

closer to the fovea location then, had more distant positions on the cortex and could be 

discriminated more easily. Therefore, for prosthetic applications in which high spatial resolution is 

required, implanting electrodes in the fovea representation on the V4 cortex would give higher 

performances even for very small spatial separations. 

Comparing linear and RBF decoders showed that neural responses in V4 corresponding to spatial 

different positions were linearly separable. SVMs are appropriate when the number of samples is 

less than the number of features. Here, we had at least 10-15 samples for each probe while the 

number of features was a subpopulation of electrodes and most of the times, it was larger than the 

number of samples. If the number of trials that a probe position was presented, was more than 50 

times we could use even simpler decoders such as a Linear Discriminant analysis (LDA) [219]. An 

increase in the number of trials then, can provide a better estimate of the linear decision boundary 

for discriminating spatial positions. For cortical visual prosthesis applications in which a precise 

use of current stimulation is needed, having an accurate estimation of the decision boundary will 

be important. 

There are two advantages of using LFP instead of MUA: 1) LFPs are more durable: they can often 

be measured reliably for years after the implantation of the multi-electrode arrays [189, 190]. 

Therefore, for the prosthesis applications in which both recording and microstimulation are 

important, they are more applicable. 2) LFP responses can be captured over the medium window 

50-100 ms while for MUA the wide window 50-200 ms is required to achieve maximum 

performance. For real-time applications where the system needs to maintain temporal resolution, 
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using the LFP will be more applicable. However, to have a good precision with LFPs, implantation 

of the electrode arrays needs to be made in the fovea representation. 

4.5.2 Minimizing the number of electrodes 

One of the main challenges in the development of clinical prosthesis is the potential tissue damages. 

This damage can result from the insertion and chronic presence of the intracortical electrode [220-

223], excess charge delivery [224, 225], chronic electrical stimulation [226-228], or thermal effect 

[229]. In all these cases, reducing the number of electrodes can reduce the risk of tissue injury. 

Reduction in the number of electrodes is obtained by selecting V4 instead of V1 as fewer electrodes 

are needed to cover the same extent of the visual field. For V4 itself, we also showed that we can 

further reduce the number of required electrodes without impairing the performance. We found 

that the minimum number of electrodes required for high spatial precision for both MUA and LFP 

was much lower than all the electrodes on the array (6-10 for MUA and 8-12 for LFP). Although 

previous literature has shown that using fewer randomly selected electrodes for decoding decreases 

the performance [18], we showed that if those electrodes are selected systematically, we can obtain 

higher performance for fine discriminations. For applications in which multiple cortical areas are 

implanted with electrodes, this could significantly reduce the number of recording (or stimulating) 

electrodes. 

We proposed and compared two methods for selecting the best electrodes: clustering of electrodes 

with similar tuning and selecting electrodes based on the linear SVM weights. There are several 

advantages of using SVM weights over clustering analysis: 1) In applications where finding the 

receptive field map of the electrodes is difficult or impossible, SVM weights can be used. 2) 

Calculation of the performance and weights are integrated within the same algorithm, while 

clustering is a separate procedure for the electrode selection. 3) Using SVM weights is a systematic 

procedure, as we can sort the electrodes for an arbitrary set of discriminations. 4) Using SVM 

weights yielded significantly better discrimination for both MUA and LFP. 5) Depending on the 

nature of experiment, k-means clustering may not always give the best grouping of electrodes and 

more complicated clustering algorithms will be required to overcome complexities in the 

responses. But, SVM weights are computed linearly as part of the discrimination process. 
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Furthermore, selection of the electrodes based on the weights considers the effect of electrodes in 

combination and not separately. 

4.5.3 Preprocessing steps 

Preparing LFP signals for use in spatial discrimination analysis requires a number of preprocessing 

steps. The initial and the most important one is to extract the stimulus-modulated responses from 

the neural activity. The appropriate response measure is found under some assumptions about the 

signal and verification of the ability of the response in discriminating fine or coarse differences in 

the visual features. Defining the response measure is a features extraction step that has been 

obtained partly through trial-and-error. Such approaches can bias the results, as they entail 

assumptions on the response measures. For example, in the LFP analysis, we defined the responses 

as the mean amplitude over a specific time window. One assumption is that the information about 

the stimulus is encoded in the LFP amplitude. The other one is that the relevant information about 

the stimulus are accumulated, for example between 50-100 ms after the stimulus onset. Although 

these assumptions provide relatively precise discrimination results, they are not used as part of the 

classification algorithm (here SVM). There are set of techniques called feature learning that can 

replace manual selection of features by learning them to perform specific tasks [230]. For examples 

convolutional neural networks [231] can be used to learn response features and classify the LFP 

signals directly without the need to define the responses manually. However, using these 

techniques require many training examples (trials) to work accurately. 

In our analyses, we investigated the need for filtering the LFP signals to specific frequency bands 

in order to extract more precise spatial information. Our analysis then showed that the information 

about the position was encoded in the broadband LFP. The performance thus dropped significantly 

by limiting the LFPs to specific frequency bands. This suggests that for spatial discrimination in 

V4, there would be no need for additional preprocessing step to filter LFP. 

4.5.4 Microstimulation pattern to generate a phosphenated percept 

Cortical visual prostheses offer the promise of restoring vision in patients with acquired blindness 

resulting from damaged eyes or optic nerves [13, 37]. The functionality of these devices relies on 

the hope to localize multiple phosphenes in the visual field by electrically stimulating multiple 
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implanted electrodes in the visual cortex [166-171]. Most previous studies have used concurrent 

electrical pulse stimulations from single or multiple electrodes to generate phosphenes and control 

their characteristics. However, there is no report of restoring a visual scene by localizing multiple 

phosphenes experimentally. One explanation for these failures is that the neural activity patterns 

induced by current pulses are not similar to the natural patterns, and so the downstream circuits 

cannot easily interpret them. In contrast to visual stimuli that activate neurons selectively, electrical 

stimulations activate random set of neurons in a close vicinity of the stimulating electrodes [99]. 

Electrical stimulation of early visual areas (V1/V2/V3) can generate simple percepts, but non-

selective activation of neurons may not effectively propagate to higher visual areas to produce 

natural vision [48]. This explains the observation that electrical stimulation of late visual areas (e.g. 

IT) sometimes fails to induces a percept [232], as they require generation of complex activation 

patterns. This also explains the need for extensive training sessions before patients are able to detect 

percepts induced by electrical stimulation in both early and higher visual areas [232]. With training, 

as a result of brain plasticity in the adult brain, new activity patterns can be learned and electrical 

stimulation of any part of the cortex can be detectable [48]. However, the induced perception is 

still distinct from the natural activation patterns. 

Imitating natural activity patterns generated in response to phosphene-like stimuli, provides a 

systematic way to control the positions of multiple phosphenes. Since those activity patterns are 

familiar to the cortex, they may easily become detectable and be interpreted by downstream 

circuits. To imitate a natural activity pattern, a novel stimulation paradigm, called dynamic current 

steering, was suggested [233]. However, this paradigm still did not imitate natural responses but 

instead was inspired by the V1 responses.  

To be able to localize multiple percepts at different positions, their corresponding imitated activity 

patterns should be discriminable. As our results showed, spatial positions were discriminable using 

both MUA and LFP responses in V4. The precision of this discrimination depends on the distance 

between their representations on the cortex. As the magnification factor increases with decreases 

in eccentricity, the positions located at smaller eccentricities will be placed at farther distances on 

the cortex, and thus can be discriminated more precisely. By implanting electrodes in the foveal 

representation of V4, we can precisely discriminate probes that are located at very small distances. 

As we calculated earlier in the results section, probes with 1° separation at 1° eccentricity are 
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located with 3.01 mm distance from each other on the cortex. At this cortical distance, 7-8 

electrodes of Utah electrode array, similar to what was used in this study, can be embedded. We 

can conclude that for prosthetic applications, electrodes should be implanted in the foveal 

representation and the spatiotemporal patterns of electrical stimulations should be able to 

reconstruct discriminable natural responses to stimuli at different positions.  

To generate such patterns of electrical stimulation, the stimulation parameters need to be tuned. As 

we found in our results, discrimination of spatial positions in V4 requires the recruitment of 

multiple receptive fields that each contribute to varying degree in each discrimination. This 

contribution was determined by the weights that the decoder assigned to each electrode. The 

weighting strategy (coding strategy at Figure 4.6) used by the decoder determines how the 

stimulation parameters can be tuned. In the prosthetic applications with the need for higher 

precision, a coding strategy for fine discriminations should be applied: Localizing phosphenes at 

specific position requires stimulating electrodes whose receptive fields’ flanks are at the position 

of the phosphene. The stimulating electrodes should be weighted according to the weight values 

obtained for each spatial position in the coding strategy.  

In addition to the coding strategy, tuning the stimulation parameters depends on the responses of 

local and non-local brain circuits to the electrical stimulation patterns. As we found in our results, 

noise correlation carries information about the stimulus. Noise correlations are the result of shared 

trial-to-trial variability in response whose structure and extent depends on the distances on the 

cortex [161]. Correlations arise from shared inhibitory and excitatory inputs [234, 235], either from 

ongoing activity or from other neurons that were activated by stimulus [236-238]. When we are 

performing electrical stimulation, these sources of correlations may affect the induced activity 

pattern, especially when LFP signals are used. This may happen by altering the natural contribution 

of these sources or interrupting their influence on the stimulated ensemble. On way to solve this 

issue is to build statistical model of the implanted area using injected current as the input and the 

induced ensemble activity as the output. Then, this model can be used to determine current 

stimulation for a specific neural activity pattern.  

To apply these results to real visual prosthesis (i.e. blind people), the above analyses need to be 

tested on human subjects. Our results here, are based on the responses of macaque V4 neurons. 

However, to be applicable to human, the SVM decoder needs to be trained on data recorded from 
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several human subjects and be tested on data from new unseen subjects. This will be a subject-wise 

classification problem to generalize the results over the subjects (and not over the samples). As for 

blind people there is no way to measure the receptive fields, area V4 should be identified based on 

its anatomical landmarks and stereotactic coordinates. The implantation should be performed as 

soon as possible after the onset of blindness to prevent cross-modality adaptation. Human verbal 

reports then should be used to evaluate the performances of the stimulation strategy that is trained 

on the sighted subjects but is tested on the blind subjects. 

4.6 Conclusion 

Our findings showed that the combined responses from multiple sites, whether MUA or LFP, has 

the capability for fine and coarse discrimination of positions. Moreover, we presented the decoding 

schemes used by the decoder for discriminating the spatial positions. This is appropriate for cortical 

visual prostheses applications in extrastriate cortical areas to localize phosphenes accurately. 

Building this kind of prostheses, however, require future investigation to design electrical 

stimulation pattern that reconstructs specific natural patterns of responses in neural ensembles. We 

proposed a procedure for electrode selection that can be used in similar decoding studies to reduce 

the number of electrodes while increasing the discrimination performance. This is crucial for 

prosthetic applications to minimize the amount of physical, electrical, and thermal damages to the 

brain tissues. Future work is needed to shed a light on the nature of input connections to the 

implanted area. This will help to design an appropriate pattern of electrical stimulation to 

reconstruct natural neural responses. 
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 THE EFFECT OF NOISE CORRELATIONS FROM 

ENCODING PERSPECTIVE  

 

5.1 Introduction 

The idea that the correlated noise impacts decoding performance has been shown in several studies 

[18, 239, 240]. However, all of our analyses in the previous chapter about the effect of noise 

correlations were focused on the decoding perspective. In this chapter, we focus on the encoding 

perspective and compare it to our previous results. 

Neural responses are noisy, meaning that even when the same stimulus is presented, the same 

pattern of activity never occurs. So, the brain must compute an estimate of a stimulus. According 

to [239], two questions are raised related to the impact of correlated noise on the population coding: 

How accurately can stimulus variables be represented in population responses? What is the effect 

of noise on computations? To answer these questions, two complementary perspectives have been 

studied: 1) Encoding perspective: will adding correlation to a population of neurons without 

modifying single neuron responses increase or decrease the population coding performance? 2) 

Decoding perspective: how well can decoding strategies that ignore correlations compare with 

optimal strategies that take into account the correlations? In other words, how much do downstream 

neurons have to know about correlations to extract all of the available information? [3]. 

It should be noted that there is a difference between 1) the value of noise correlations (also called 

correlated variability) and 2) the effect of removing noise correlations on population coding. For 

example, spatial noise correlation is reduced by half after stimulus onset compared to spontaneous 

activity [161]. However, it does not mean that removing noise correlations reduces the decoding 

performance. 

5.2 Methods 

In the encoding perspective, the effect of noise correlations on coding is measured by subtracting 

the decoding performance obtained using the uncorrelated responses from decoding performance 

obtained using the correlated responses (both train and test). There are three possibilities for the 
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outcome in this perspective: 1) performance with correlated responses is lower than uncorrelated 

responses, 2) performance with correlated responses is bigger than uncorrelated responses, or 3) 

both performance values are the same. So, if we know only the individual responses of neurons 

and not their correlational structure, we cannot say how much the real performance is. 

In the decoding perspective, we measure the effect of correlations by calculating the difference 

between the decoding performance obtained with the original correlated responses, and the 

decoding performance of a decoder optimized on the uncorrelated data but evaluated on the raw 

correlated data. In this perspective there are two possibilities: 1) removing correlations does not 

cause change in the decoding performance 2) removing correlations leads to a sub-optimal decoder 

with lower performance.  

 

 

Figure 5.1 Training and test sets related to encoding and decoding perspectives. In the encoding 

perspective, a model which is trained on the correlation-blind (shuffled) set is tested on a test set 

which is also uncorrelated. In the decoding perspective, the model is instead tested on unseen 
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correlated original data. Correlation-aware training set which contains original correlated data is 

converted to uncorrelated set by randomly shuffling the order of trials in each column. 

Figure 5.1, shows the method used in each perspective. In this diagram, single-label data is shown, 

but in practice, the training and test sets contain data from other labels, too. This shuffling 

procedure is performed separately for each stimulus (label). Each column in the resulting 

uncorrelated training/test set will have the same mean and variance as the correlated set, but only 

the order of trails differs for each electrode. Therefore, it will remove the trial-to-trial variability 

or noise correlations. In both perspectives, the model is built on the uncorrelated set. In the 

encoding perspective, it is tested on the uncorrelated data while in the decoding perspective it is 

tested on the original correlated data. 

5.3 Results 

We repeated our analyses according to the encoding perspective and compared the results with the 

correlation-aware and correlation-blind results. According to Figure 5.2, performance reduced by 

removing the correlations in all the data related to the LFPs. Thus, for any value of cortical distance 

or eccentricity, removing correlations yields a reduction in performance with the LFPs. The level 

of this reduction, however, is bigger for lower cortical distances (20-30%).  

For MUA, the effect of removing noise correlations depends on the cortical distance or eccentricity. 

For cortical distances less than 3 mm, performance is slightly lower, while for bigger distances it 

is slightly higher than correlated-aware performance. With 8° separation, performance increases 

for lower eccentricities and decreases for bigger eccentricities. 

5.4 Discussion 

Although encoding and decoding perspectives are related [240], they are not tightly coupled. For 

example, the difference between correlation-aware and correlation-blind performance (ΔIdiag) can 

be zero, while the difference between correlation-aware and correlation-shuffled performance 

(ΔIshuffled) is non-zero. The opposite is also possible: ΔIshuffled=0 and ΔIdiag>0. 
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Figure 5.2  Discrimination performance results from the encoding perspective (correlation-

shuffled). These results are compared with our previous results of correlation-aware and 
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correlation-blind performance. For the MUA data, brown, orange, and light green colors and for 

the LFP data, dark blue, purple, and light blue represent correlation-aware, correlation-blind, and 

correlation-shuffled performance respectively. Discrimination performance versus cortical 

distance for (a) MUA and (b) LFP. Discrimination performance versus mean eccentricity for (c) 

MUA and (d) LFP. 

 

In the decoding perspective, correlation-blind decoder can never obtain higher level of performance 

than correlation-aware decoder. In other words, ΔIdiag can never be negative, because no decoder 

can extract more knowledge than a decoder with full knowledge of correlations. If performance of 

correlation-blind decoder is equal to the performance of correlation-aware decoder, knowledge of 

the noise correlations is not important for the decoding. But if we observe reduction in the 

performance, knowledge of correlations is important for the decoding. 

In summary, these two quantities/perspectives address different questions, but together, both 

provide deeper knowledge about population codes.  
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 GENERAL DISCUSSION 

 

The idea of generating a meaningful phosphenated image with cortical visual prosthetic devices 

has not yet truly been achieved. The main difficulty is in the activation of multiple phosphenes 

with specific properties.  Designing a correct electrical stimulation strategy requires knowledge of 

how visual features are encoded in the combined neural activity. 

Although most previous cortical visual prosthesis experiments have been performed in the primary 

visual cortex (V1), extrastriate visual areas offer sampling of a much larger region of visual space 

with the same coverage of the electrodes. In this project, we studied the discrimination capability 

of MUA and LFPs recorded from extrastriate cortical areas as key knowledge for the development 

of prosthetic devices.  

We found that the combined responses from multiple sites in area V4, as an intermediate region in 

the visual processing hierarchy, has the capability for fine and coarse discrimination of positions. 

As we expected, cortical representation of spatial positions closer to the fovea were easier to 

discriminate. Therefore, for the prosthetic applications, electrodes must be implanted in the fovea 

representation of V4. The coding schemes used by the decoder have the potential to be used in 

extrastriate visual prostheses to localize phosphenes. Our electrode selection strategy was able to 

minimize the number of electrodes for the discrimination, and at the same time, could increase 

performance. The reason for this increase in the performance is that the electrode selection reduces 

the noise from the data by selecting the most useful features for training. This helps the model to 

become less overfit to the noises from the training data and to have a better generalization ability 

when tested with unseen data points. An interesting point about the distribution of the most 

important electrodes on the array is that they are not concentrated in a particular area (Error! 

Reference source not found.) of the array. It makes sense because closer electrodes have more 

correlated responses and the electrode selection algorithm removes redundant information by 

keeping one or few electrodes among a group of the close electrodes.  

Reducing the number of implanted electrodes can reduce the risk of tissue injury and can help 

design minimally invasive prosthesis with lower physical, electrical, and thermal damage to the 

brain. In clinical applications with the prosthetic devices, if minimizing the number of electrodes 
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for microstimulation would first need information from full extent of the electrodes, we can not 

prevent the damage resulting from the insertion and chronic presence of the intracortical electrodes 

[220, 221]. However, we can prevent the damages resulting from excess charge delivery [224], 

chronic electrical stimulation [227, 228], and thermal effect [229] by stimulating through a much 

smaller set of electrodes. The set of the best electrodes may vary depending on the complexity of 

the task. For example, discrimination of spatial positions and discrimination of orientations might 

require a different set of (the best) electrodes. Therefore, we need to consider a bigger set to have 

a device that is applicable in various levels of perceptual complexity. We can use the same 

technique for stimuli of categorical nature with low to moderate complexity. For example, V4 

encodes contour-based shapes [241]. Given visual stimuli with different shapes we can select 

electrodes that are more important in discriminating shapes. As we found from further analysis of 

our data, a set of 96 electrodes carries a considerable amount of redundant information. In other 

words, if we remove the set of the best electrodes and repeat the decoding/discrimination analysis 

using the remaining electrodes, the performance will still be larger than 50% (Figure A.13). An 

important conclusion about this result is that even if we randomly select a smaller set of electrodes, 

we can discriminate with an acceptable level of performance. This conclusion can help in clinical 

application for late blind people (acquired blindness) when determining the receptive fields is not 

possible. 

If we can further find the set the best electrodes ahead of implantation without need to access to all 

electrodes, we will significantly reduce the damage resulting from the insertion and chronic 

presence of the intracortical electrodes. However, this needs further study, which possibly will be 

an unsupervised approach, to find a specific pattern in the anatomical location of the best electrodes 

on the cortex. Moreover, a general conclusion requires testing on several subjects. For visual 

prosthetic devices specifically, foveal representation is an acceptable target. Further reduction in 

the number of electrodes is made through the choice of implantation in the extrastriate areas.  

We also found that information about position is encoded in the broadband LFP, suggesting that 

no band-pass filtering of LFP is required as a preprocessing step to extract spatial information. 

Although several challenges need to be solved in order to build practical cortical visual prostheses, 

these results suggest that the discrimination capability of the implanted brain area should be 

considered a limiting factor. This limit differs for MUA and LFP and also for fine versus coarse 
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discriminations. This is specifically important when electrodes are implanted into the extrastriate 

cortical areas, as they introduce more restricted upper bounds in the discrimination. 

Given the neural activation pattern corresponding to a percept, the development of a basic visual 

prosthesis also requires the following challenges to be addressed: 

1) Finding mapping between microstimulation pattern and activity pattern. In other words, we 

need to find a function that takes as input the activity pattern and returns as output the 

electrical stimulation pattern. Several factors may be involved in the operation of this 

mapping, such as local circuitry of the implanted area, as well as feedback connections. 

2) Stimulation patterns would reach larger subsets of relevant sources than natural pattern of 

neural signals. 

3) Challenges related to blindness, such as cross-modality adaptation, change in the plasticity 

of visual cortex, and inability to find receptive fields. 

Some suggested solutions are:  

1) Preparing a comprehensive dataset by giving many different microstimulation patterns and 

recording induced output activity from local and distant brain regions on many subjects. 

Predictive models (e.g. deep neural networks) can be developed using this dataset to learn 

the input-output relationship. 

2) As microstimulation may activate relevant and several irrelevant sources, one might need 

to implant electrodes in the other brain areas to control the activation pattern or might use 

complementary non-invasive brain stimulation such as tDCS. 
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 CONCLUSION AND RECOMMENDATIONS 

In this PhD project, we first reviewed the challenges in creating a meaningful functional percept 

using cortical visual prosthetic devices and mentioned the advantages of targeting extrastriate 

cortical areas. Our published  paper entitled, "Cortical visual prostheses: from microstimulation to 

functional percept" [13] covered this part. Next, we determined the spatial resolution of extrastriate 

cortical area V4 to find resolution limits that this area introduces for phosphene induction. This 

work was published as a paper entitled, “Spatial resolution of local field potential signals in 

macaque V4” [20]. 

7.1 Summary of the contributions 

Our achievements in this PhD project are summarized as follows.  

The capability of V4 will be higher in discriminating a pair of visual positions whose 

representations on the cortex is more separated. Thus, for the prosthetic devices where small 

separations is desirable, if close enough to the fovea center, even positions with 1° distance can be 

discriminated precisely. Whether we use MUA or LFP, with a small number of electrodes <10 we 

can achieve the same level of spatial resolution as using the whole set of the electrodes. If they are 

selected correctly, higher level of resolution can also be achieved. Analysis of the decoding weights 

showed that each electrode can precisely discriminate positions located on its receptive field flank. 

We found that wide band LFPs contain more information about spatial positions than the band-

passed LFPs. For noise correlations, we showed that their effect was higher for LFPs than MUA. 

We also found that for the LFPs with uncorrelated responses, a lower level of performance is 

obtained. The value of noise correlations in LFPs was higher than MUA, and in both cases, 

decreased by increasing the distance between the electrodes. 

7.2 Recommendations 

The final use of visual prosthesis products is for human subjects with visual impairments. This 

requires comprehensive recording from human subjects, developing predictive models, and testing 

the model on many samples from new unseen subjects. This scheme will be a subject-wise 

classification that can generalize the results across the subjects. For blind people, there is no way 

to measure the receptive fields. Therefore, visual cortical areas should be identified based on their 



111 

 

 

anatomical landmarks and stereotactic coordinates. If the onset of blindness is after the critical 

period, implantation must be performed as soon as possible to prevent cross-modality adaptation. 

And finally, a human verbal report is needed to evaluate the performance. 

An important point to be noted is that decoding frameworks usually involves determining the 

response from the evoked neural activity. A response measure is obtained under some assumptions 

about the signal and the verification of the response’s ability to discriminate. However, this can 

introduce bias to the results, as they entail assumptions on the response measures. One way to 

overcome this challenge is to use all of the temporal samples of neural activity to train the decoder 

instead of only a single response value. This will be a more accurate approach, but needs more data 

and complicated models (e.g. convolutional neural networks) to accurately determine the decision 

boundary. 

In almost all of the cortical visual prosthetic reports, the generation of phosphenated percepts is 

made by electrical current pulse stimulations regardless of whether an expected neural activity 

pattern is generated. These stimulation waveforms introduce unfamiliar neural activity to the brain 

that might not be processed by the subsequent brain circuits, and consequently extensive training 

sessions will be required to detect these unnatural activity patterns. Therefore, a significant effort 

is required to invent stimulation strategies that can generate pre-designed neural activity patterns 

corresponding to meaningful percepts.  

7.3 Limitations and recommendations for improving the approach 

Limitations of this work together with their recommended solutions are listed below: 

- Although LFPs are more durable than MUA, they have lower spatial resolution which 

makes them less applicable when electrodes are implanted in the peripheral and even 

parafoveal areas. To obtain precise resolution with LFPs, the electrodes must be implanted 

in the foveal representation. 

- To have a precise prediction with minimum level of overfitting many more trials must be 

recorded for each probe in each session. However, this is difficult for monkey to perform 

many more than 2000 trials (of this kind) in a session. A solution to this is to put together 

trials from multiple sessions. However, it will produce unreliable results with MUA as they 
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are not stable over sessions with a long time between them (e.g. sessions recorded in 

different weeks). As LFPs are more durable, trials from multiple sessions can be merged to 

produce better results. 

- The strategy to minimize the number of electrodes was particularly reported for probe 

stimuli. However, for other stimuli, a different set of electrodes may be selected. Thus, for 

each task and stimulus type we need to repeat our analysis and select a new set. But it still 

can benefit from minimizing the excessive charge, thermal, and electrical damages to the 

tissue in microstimulation tasks. The coding strategy presented here was for the 

discrimination purpose. For localization, weights should be calculated by discriminating 

each probe from the rest of the positions. 

- Existence of noise correlations improves the discrimination performance. For the prosthesis 

applications, some electrode arrays might be required to be implanted in other brain areas 

to control the effect of noise correlations. These electrodes can also be used to provide 

information for converting retinal coordinate to body-centered coordinate.   

7.4 Future works 

In this work we determined spatial resolution of MUA and LFPs in V4 and presented strategies to 

use less electrodes with potential benefit for microstimulation applications. However, creating a 

real cortical visual prosthesis still requires several further studies. The future of this work should 

first focus on the probe localization by discriminating each probe from the rest of probes. This 

provides an important knowledge for inducing a phosphene at a particular position in the visual 

fields. Next, a new experimental paradigm should be designed for simultaneous presentation of 

multiple probes each time. For example, a visual stimulus can be a pair of probes shown together 

and the whole experiment is designed to present every possible pair (e.g. (100
2

) = 4950) several 

times in random order. This will elucidate spatiotemporal pattern of recorded neural activity 

required for simultaneous presentation of multiple probes which helps for creating a phosphenated 

image using the future prosthetic devices. Since the number of trials is big, LFPs will be more 

applicable because they allow combining data from many sessions each including part of the trials.  
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In addition to the above, generating a specific pattern of neural activity by applying a 

spatiotemporal pattern of microstimulation is not an easy task because activation of neurons can be 

distributed in an uncontrolled manner. This activation pattern depends on multiple factors such as 

the structure of neural circuits in the implanted brain area. Therefore, the future of this project will 

also need to focus on creating a predictive model to estimate microstimulation pattern for a given 

neural activity pattern. However, this itself requires an experimental paradigm for collecting a lot 

of data.
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APPENDIX A   SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

In this section we have presented supplementary material for chapter 4 which includes further 

analysis results. 

Results of Fixation on Upper Middle Dot 

 

Figure A.1 V4 ensemble response allows spatial discrimination. Darker colors correspond to the 

wider response windows. The linear SVM was used for classification of the response data. The 

performances are validation scores of 5-fold cross validation measured as the area under the ROC 

curve. (a) Discrimination performance versus cortical distance (in mm) for MUA in red (left) and 

LFP in blue (right) based on responses defined on wide, medium, and narrow windows (darker to 

lighter). The cortical distance values are divided into 0.5 mm bins and the discrimination 

performances of pairs with cortical distances within each bin were averaged. (b) Discrimination 
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performances of pairs with 4° and 8° separation distances as a function of pairs’ eccentricity (in 

deg) for MUA (left) and LFP (right) for responses defined over wide, medium, and narrow 

windows. Significance (p-values) of correlation between performance and eccentricity for each 

response window is presented in the plot. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. 

 

 

Figure A.2 Results of discrimination analysis with the best (most important) 4 (blue), 6 (green), 8 

(yellow), 10 (purple), and 12 (red) electrodes. Discrimination performance using all the 
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electrodes is shown in black. (a) Discrimination performance versus cortical distance (in 

millimeters) for MUA (left) and LFP (right) with different sets of the best electrodes. The cortical 

distance values are divided into 0.5 mm bins and the discrimination performances of pairs with 

cortical distances within each bin were averaged. (b) Discrimination of probes with 4° (top) and 

8° (bottom) separation versus the mean eccentricity of the pairs in visual degrees using the same 

sets of the best electrodes as (a). MUA results are presented on the left and LFP on the right. 

Pearson correlation significance (p-values) are presented on each plot associated to the results 

obtained with each electrode set. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. (c) 

Selecting the best electrodes using importance values obtained by averaging over discriminations 

with 4° probe separation and <8° pairs eccentricity. The electrodes were sorted by these new 

importance values. As only the closer eccentricities were important, the plots are illustrated for 

smaller range of eccentricities. 
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Figure A.3 The coding strategy of individual sites for position discrimination of small and large 

separations. The degree of color lightness indicates polarity of values; lighter colors show more 

positive and darker blue colors show more negative values. Spatial receptive field profile is 

shown for each electrode on the left. The spatial distribution of the weights assigned to each site 

for discrimination of a probe from the other ones with a fixed distance. This value is calculated 

for each probe and is presented at its location on the grid. The change in the coding strategy can 
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be observed from 4° to 12° separation in the visual field (left to right). The values of the 

discrimination weights are visualized over the ranges between their maximum and minimum to 

capture the weight variations specific to each separation distance. (a) MUA results: The range of 

response values for the receptive fields are set to -0.27 to 0.27. The best three electrodes for 

MUA are selected for this analysis. (b) LFP results. The range of response values for the 

receptive fields are set to -0.34 to 0.34. The best three electrodes for LFP are selected for this 

analysis. As the LFP respond by negative peaks, the darker colors are the representative of targets 

in the weight distribution. 
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Figure A.4 Effect of noise correlations on spatial discrimination. Dark red and orange colors 

represent correlation-aware and correlation-blind performances of MUA respectively, while blue 

and purple colors are representative of the same measures in the LFP. The correlation-blind 

performances are the cross-validation scores when SVM is trained on the shuffled data but 

validated on the unshuffled data. (a) Discrimination performance versus cortical distance for 

correlation-blind versus correlation-aware responses. (left) MUA (right) LFP. The cortical 
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distance values are divided into 0.5 mm bins and the discrimination performances of pairs with 

cortical distances within each bin were averaged. (b) Discrimination performance as a function of 

eccentricity for 4° (top) and 8° (bottom) separations comparing correlation-blind and correlation-

aware response data (left) MUA (right) LFP. Pearson correlation p-values are shown on each plot 

indicating the significance of the relationship. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. 
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Results Using Another Session 

 

Figure A.5 V4 ensemble response allows spatial discrimination. Darker colors correspond to the 

wider response windows. The linear SVM was used for classification of the response data. The 

performances are validation scores of 5-fold cross validation measured as the area under the ROC 

curve. (a) Discrimination performance versus cortical distance (in mm) for MUA in red (left) and 

LFP in blue (right) based on responses defined on wide, medium, and narrow windows (darker to 

lighter). The cortical distance values are divided into 0.5 mm bins and the discrimination 

performances of pairs with cortical distances within each bin were averaged. (b) Discrimination 

performances of pairs with 4° and 8° separation distances as a function of pairs’ eccentricity (in 

deg) for MUA (left) and LFP (right) for responses defined over wide, medium, and narrow 
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windows. Significance (p-values) of correlation between performance and eccentricity for each 

response window is presented in the plot. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. 

 

 

 

Figure A.6 Results of discrimination analysis with the best (most important) 4 (blue), 6 (green), 8 

(yellow), 10 (purple), and 12 (red) electrodes. Discrimination performance using all the 

electrodes is shown in black. (a) Discrimination performance versus cortical distance (in 
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millimeters) for MUA (left) and LFP (right) with different sets of the best electrodes. The cortical 

distance values are divided into 0.5 mm bins and the discrimination performances of pairs with 

cortical distances within each bin were averaged. (b) Discrimination of probes with 4° (top) and 

8° (bottom) separation versus the mean eccentricity of the pairs in visual degrees using the same 

sets of the best electrodes as (a). MUA results are presented on the left and LFP on the right. 

Pearson correlation significance (p-values) are presented on each plot associated to the results 

obtained with each electrode set. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. (c) 

Selecting the best electrodes using importance values obtained by averaging over discriminations 

with 4° probe separation and <8° pairs eccentricity. The electrodes were sorted by these new 

importance values. As only the closer eccentricities were important, the plots are illustrated for 

smaller range of eccentricities. 
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Figure A.7 The coding strategy of individual sites for position discrimination of small and large 

separations. The degree of color lightness indicates polarity of values; lighter colors show more 

positive and darker blue colors show more negative values. Spatial receptive field profile is 

shown for each electrode on the left. The spatial distribution of the weights assigned to each site 

for discrimination of a probe from the other ones with a fixed distance. This value is calculated 

for each probe and is presented at its location on the grid. The change in the coding strategy can 

be observed from 4° to 12° separation in the visual field (left to right). The values of the 

discrimination weights are visualized over the ranges between their maximum and minimum to 

capture the weight variations specific to each separation distance. (a) MUA results: The range of 

response values for the receptive fields are set to -0.27 to 0.27. A good electrode for MUA is 

selected for this analysis. (b) LFP results. The range of response values for the receptive fields 

are set to -0.34 to 0.34. A good electrode for LFP is selected for this analysis. As the LFP 

respond by negative peaks, the darker colors are the representative of targets in the weight 

distribution. 
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Figure A.8 Effect of noise correlations on spatial discrimination. Dark red and orange colors 

represent correlation-aware and correlation-blind performances of MUA respectively, while blue 

and purple colors are representative of the same measures in the LFP. The correlation-blind 

performances are the cross-validation scores when SVM is trained on the shuffled data but 

validated on the unshuffled data. (a) Discrimination performance versus cortical distance for 

correlation-blind versus correlation-aware responses. (left) MUA (right) LFP. The cortical 
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distance values are divided into 0.5 mm bins and the discrimination performances of pairs with 

cortical distances within each bin were averaged. (b) Discrimination performance as a function of 

eccentricity for 4° (top) and 8° (bottom) separations comparing correlation-blind and correlation-

aware response data (left) MUA (right) LFP. Pearson correlation p-values are shown on each plot 

indicating the significance of the relationship. Eccentricity values are divided into 3° bins and the 

discrimination performances of pairs with eccentricity within each bin were averaged. 

 

 

Figure A.9 Discrimination performance of band passed LFPs. Responses for each band passed 

signal were calculated using the medium window. The band passed LFP performance versus 

cortical distance for theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-50 Hz), and 

high gamma (50-80 Hz) frequency bands. The cortical distance values are divided into 0.5 mm 
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bins and the discrimination performances of pairs with cortical distances within each bin were 

averaged. 

 

Results Using Another Monkey 

 

 

Figure A.10 Discrimination performance versus cortical distance (in mm) for LFP responses in 

V4. The cortical distance values are divided into 0.5 mm bins and the discrimination 

performances of pairs with cortical distances within each bin were averaged. (a) Comparing the 

results obtained using wide, medium, and narrow windows. Darker blue corresponds to the wider 

response window. The linear SVM was used for classification of the response data. The 

performances are validation scores of 5-fold cross validation measured as the area under the ROC 

curve. (b) Spatial discrimination with the best 4, 6, 8, 10, and 12 electrodes in blue, green, 

yellow, purple, and red colors respectively. Discrimination with all the electrodes is shown in 

black. (c) Effect of noise correlations on spatial discrimination. Blue and purple colors represent 

correlation-aware and correlation-blind performances respectively. The correlation-blind 

performances are the cross-validation scores when SVM is trained on the shuffled data but 

validated on the unshuffled data. 
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Comparing the Results Before and After Correction for the Eye Movement 

 

 

Figure A.11 Comparing the spatial discrimination before and after correction for the eye 

dispersion. Darker colors correspond to the wider response windows. The linear SVM was used 

for classification of the response data. The performances are validation scores of 5-fold cross 

validation measured as the area under the ROC curve. Discrimination performance versus cortical 

distance (in mm) for MUA in red (top) and LFP in blue (bottom). The cortical distance values are 

divided into 0.5 mm bins and the discrimination performances of pairs with cortical distances 

within each bin were averaged. (a) before correction for the eye dispersion (b) after correction for 

the eye dispersion. 
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Figure A.12 Comparing the effect of noise correlation on spatial discrimination before and after 

correction for the eye dispersion. Dark red and orange colors represent correlation-aware and 

correlation-blind performances of MUA respectively, while blue and purple colors are 

representative of the same measures in the LFP. The correlation-blind performances are the 

cross-validation scores when SVM is trained on the shuffled data but validated on the unshuffled 

data. Discrimination performance versus cortical distance for correlation-blind versus correlation-

aware responses. (top) MUA (bottom) LFP. The cortical distance values are divided into 0.5 mm 

bins and the discrimination performances of pairs with cortical distances within each bin were 

averaged. (a) before correction for the eye dispersion (b) after correction for the eye dispersion. 
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Figure A.13. Spatial discrimination performance versus cortical distance using all the electrodes 

except the best 12 electrodes (i.e. 84 electrodes): red color for MUA and blue for LFPs. These 

curves show that the electrodes contain redundant and highly correlated information. 

Figure A.14. Distribution of importance values on the electrode array. Yellower electrodes are 

the most important ones. 




