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In surface mining, planning over the entire
mine life is called long-term planning or
strategic mine planning. It involves creating
mine designs and schedules on a strategic
scale, and provides a financial vision for a
project as well as an engineering guidance for
short-term production. One of the tasks of
strategic planning is to design pushbacks, also
referred as cutbacks, periods, or stages
(Hustrulid and Kuchta, 1995; Whittle, 2011).
Pushbacks (Figure 1) are essentially a series
of manageable exploitation phases for an open
pit mine. A pushback is ideally  composed of a
unique, spatially contiguous volume that can
be mined with available mining equipment and
that meets practical geometric mining
constraints. A pushback is typically excavated
in a continuous period of one to two years,
and the extracted material needs to be able to
feed the requirement of processing plants.
Sometimes, if mining capacity is available,
multiple pushbacks are mined concurrently, to
produce sufficient ore to meet production
schedules. Practical considerations result in
two categories of constraints on pushback
design: (i) geometric constraints; space is

required for haul road design and machine
access, and geotechnically controlled slope
angles must be honoured for safety, and (ii)
quality and overall size constraints on the
content of each pushback to meet  production
targets, required blends and mill processing
capacity etc. Recent literature has primarily
focussed on the second category of
constraints. Important, but commonly
neglected, geometric constraints include
minimum mining width, continuity and
smoothness. The minimum mining width
depends on the mining method and the
selected equipment. Smoothness and
continuity are critical (Hustrulid and Kuchta,
1995) for facilitating mining operations,
specifically by reducing costly movement of
equipment and fostering the design of even
low-gradient access ramps with the least
possible number of turns. Automated
pushback design methodologies that
implement these constraints are rarely reported
in the public domain. This paper seeks to fill
this gap.

Many publications on pushback generation
emphasize maximization of NPV under
resource constraints, with little attention paid
to geometric considerations (Consuegra and
Dimitrakopoulos, 2010; Goodfellow and
Dimitrakopoulos, 2013; Meagher,
Dimitrakopoulos, and Vida, 2015). Crucial
operational parameters  such as mining width,
pit smoothness, and continuity have been
neglected, resulting in impractical pushbacks.
Designs typically include narrow benches and

Automatic generation of feasible mining
pushbacks for open pit strategic
planning
by X. Bai*†, D. Marcotte*, M. Gamache†, D. Gregory‡, and 
A. Lapworth

The design of pushbacks in an open pit mine has a significant impact on the
mine’s profitability. Automatic generation of practical pushbacks is a highly
desirable feature, but current automatic solutions fail to sufficiently account
for complex geometric requirements of pushbacks, including slopes, phase
bench and bottom width, smoothness, and continuity. In this paper, we
present a tool to fill this gap. Our proposed algorithm is based on
modification of sets of blocks obtained by parametric optimization of the pit
using a maximum flow method. A set of geometric operators is developed to
modify the sets to present a feasible geometry for mining. The geometric
operators are essentially derived from mathematical morphological tools.
Case studies show that the proposed method generates practical pushback
designs that meet all geometric constraints. The algorithm can be used to
create a solution for medium-size pits in minutes. This significantly
improves the efficiency of designing pushbacks for open pit mines. 

pushbacks, geometric constraints, bench width, open pit planning, image
processing, mathematical morphology.

* Department of Civil, Geological and Mining
Engineering, Polytechnique Montréal, Canada.

† GERAD & Department of Mathematics and
Industrial Engineering, Polytechnique Montréal,
Canada.

‡ Datamine Software Ltd., Sudbury, Canada.
Datamine Software Ltd., Wells, UK.

© The Southern African Institute of Mining and
Metallurgy, 2018. ISSN 2225-6253. Paper received
Mar. 2017; revised paper received Feb. 2018.

515 �

http://dx.doi.org/10.17159/2411-9717/2018/v118n5a8



Automatic generation of feasible mining pushbacks for open pit strategic planning

pit bottom, irregular boundaries, and multiple separated
components. Post-modification of impractical pushbacks so
as to be mineable is a questionable matter. It requires lengthy
manual intervention, destroys value, and violates the
resource constraints used to obtain the initial design. It is
clear that the geometric problem must be dealt with prior to,
or simultaneously with, the resources constraints. This is the
main aim of this paper.

A few practical pushback generation tools that aimed at
creating practical geometries have appeared in the commercial
field. GEOVIA Whittle has a Mining Width Module that allows
mining width templates to be specified in the X and Y
directions and is applied to modify a set of pit shells to fulfil
width requirements on benches and at pit bottoms (Whittle,
1998). It can also tolerate benches tapering towards
highwalls. NPV Scheduler also includes a pushback generator
that modifies nested pits to cater for mining width (Datamine,
2014). BHP Billiton’s in-house software ‘Blasor’ incorporates
a tool that can assist manual pushback modification (Stone et
al., 2004). More recently, DeepMine software reported a
solution that can create the cohesive pushbacks and follows
basic operational constraints (Juárez et al., 2014). The tool
uses an approximate dynamic programming method for
searching the solution space of possible phase configurations.
The technical description of these commercial tools is not
publicly accessible, and very little detailed information is
revealed on the critical functions of controlling pushback
geometries. 

A few attempts to automatically include geometric
constraints are found in the underground mining literature
(Bai, Marcotte, and Simon, 2014, 2013a, 2013b; Deraisme,
Fouquet, and Fraisse, 1984; Nelis et al., 2016). In particular,
Deraisme, Fouquet, and Fraisse (1984) used mathematical
morphology operators to produce mineable underground
stopes. We exploit this idea in the more challenging context
of open pit mining.

In this paper, we focus on the satisfaction of geometric
constraints while maintaining a global NPV close to the one
obtained using parametric nested pits that do not consider the
geometric constraints of minimum width, smoothness, and
continuity. We present a new tool to automatically generate
pushbacks with all the geometrical constraints fulfilled. The
tool is based on a series of new and existing geometric
operators that automatically modify an initial parametric
pushback to be practical. The geometric operators are based
on image processing tools, mainly the mathematical
morphological techniques. The tools are embedded in a
strategy ensuring that: (i) the resulting NPV remains close to
the one obtained with parametric nested pits, and (ii) the ore
tonnage available at each period stays within specified
bounds. 

The paper is structured as follows. We first review the
concepts of block model, ultimate pit, and parametric pit.
Then, we define the three new geometric constraints
(minimum size, smoothness, and continuity) that we want to
impose. The notations and the basic mathematical
morphological (MM) tools are described. Then, we present
step-by-step the new algorithm based on MM to modify a
pushback so as to satisfy the new constraints. We then
compare the method to the pushbacks based on parametric
nested pits that are available in some of the most popular
commercial software. We test the algorithm on a simulated
deposit and a real copper deposit and discuss its performance.
We briefly discuss the computational aspect before
concluding.

In this section, we review the main stages of pushback
generation, the notation, and the MM operators used in our
approach. 

The pushback generation involves three main components: 
� The resource model
� The ultimate pit (UPit) and 
� The generation of pushbacks.

The geological resource is usually represented by a 3D block
model. Each block has associated values of attributes such as
grade, mineral content (valuable mineral or gangue
minerals), processing recovery factors, grindability, etc. The
block model is generated using exploration sample data and
geostatistical modelling to estimate the block variables at
unsampled locations (Chilès and Delfiner, 1999). The block
model can be either deterministic, which reflects the best
estimates, or stochastic, which provides possible alternative
scenarios that reflect the uncertain geological and economic
conditions (Marcotte and Caron, 2013).

�
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The ultimate pit is the pit that yields the maximum
(undiscounted) profit for the given resource model. It
comprises a subset of blocks that represent the volume
within which the pushbacks should ideally be designed. The
pit slope angle requirements are defined by precedence
relationships between blocks and can vary at different
locations in the mine or along different directions. A simple
precedence pattern is shown in Figure 2.

In operations research, the UPit problem is defined as
finding a set of blocks that follows precedence constraints
and that yields maximum profit, which is a type of maximum
closure problems. The Lerchs-Grossmann (LG) algorithm
provides the optimal solution for such a problem (Lerchs and
Grossmann, 1965). The equivalent problem can be solved
much more efficiently with maximum flow (max-flow)
algorithms such as the push-relabel method (Goldberg and
Tarjan, 1988) and pseudo-flow method (Chandran and
Hochbaum, 2009; Hochbaum, 2008). It is worth noting that
the common UPit optimization methods do not consider the
minimum mining width of the pit bottom or benches, nor the
required smoothness and continuity. Consequently, they
usually generate an impractical UPit with areas too narrow to
mine or with too many satellite groups of blocks. The UPit,
therefore, needs to be modified to ensure feasibility from a
mining point of view. The tools developed in this paper can
obviously be used for this purpose.

This step creates spatially connected sets of blocks within the
ultimate pit that meet the practical requirements for mining.
Common commercial packages use the nested shells method to
lead pushbacks generation. Block values can be parameterized
by applying revenue factors or cost factors (Whittle, 1988),
while running LG or maximum flow on the parameterized
models give a series of parametrical pits. As the parameter
increases, a series of nested pits can be generated. Each pit
only obeys slope constraint and is optimal for the particular
economic parameter. Also, inner pits contain higher value per
block and are mined before outer pits, therefore optimizing the
NPV in a heuristic way. The created pit shells are then selected
and modified to form pushbacks that cater for mining width
and resources requirements. The great advantage of the
nested shell method is that it delivers a range of pit shells for
modification very quickly. The efficiency of the method allows
large problems to be dealt with. 

The procedure for nested pits method can be flexible. A
simple way is to use an arbitrary set of revenue parameters
and obtain a range of nested pits for further selection and
modification, which is adopted by the Whittle tool. A standard
optimization-based method is the parametric maximum flow
method (Hochbaum and Chen, 2000). Another alternative is
to optimize the parameter selection to find pits that best meet
the resource constraints. Specifically, the procedure is to
iteratively vary the parameter and run max-flow, then check
the satisfaction of resource constraints. A satisfied phase is
adopted and the procedure moves forward to create following
phases. We name this procedure the ‘successive max-flow’
method. Since our proposed method shares similar workflow,
we describe the details of the successive max-flow in
Algorithm [11], together with our proposed high-level
algorithm. 

The slope angle is usually controlled by the precedence
relation of blocks. This is a well-documented technique and
will not be addressed here. Three other important geometric
constraints for pushbacks are: (1) width constraints, (2)
smoothness, and (3) continuity. 

Sufficient width (typically 100 m) is required on pushback
benches (the horizontal sections of one pushback) and pit
bottoms, to allow large equipment to work efficiently
(Hustrulid and Kuchta, 1995). On the other hand, narrow
benches may be mineable with smaller equipment that has a
higher cost and lower productivity. Narrow benches should
be avoided except in some cases, for example at the edges of
pushbacks that are adjacent to a previously mined pit,
required to create smooth pit contours. Therefore, the
practical requirement of width can be described as two
conditions: an area with sufficient target width (TW), or a
sub-wide area adjacent to the wide area and to previously
mined portions. 

The boundaries of pushbacks are preferably designed to be
smooth. Irregular shapes can result in operational difficulties.
Irregular shapes can be caused by either small cavities or
protuberances at pushback boundaries. The smoothness can
be expressed by two conditions: (1) a pit must consist of at
least NS consecutively adjacent blocks in both the x and y
directions; and (2) if a block is outside the current pushback,
it should also have at least NS consecutive adjacent blocks, in
both the x and y directions, which are also outside the
current pushback. The NS here is the parameter to control the
smoothness. The first condition is to eliminate the
protuberances of the current pushback, as in case I in Figure
3. The second conditions remove the cavities inside the
current pushback, as in case II in Figure 3. 

Another requirement of pushbacks is their continuity. The
haulage network is a consequence of the pushback design. A
pushback comprising multiple disconnected parts would
result in separate road access points. This should be avoided
because equipment would need to be relocated more
frequently within a given period of time, which increases the
ramp development and mining costs and the complexity of
the operation.

Automatic generation of feasible mining pushbacks for open pit strategic planning
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i, j, and k Coordinates of a block where k is the level 
and Coordinates of a block where is the level 

t A phase or pushback 

nPB The number of pushbacks 
Tore

t Tonnage of ore of the phase t 
TW The number of blocks to form a wide area

for efficient mining operation 
AW Auxiliary width parameter to control

tolerable sub-wide areas
SE Structural element for morphological

operations 
SES(w) Structural element of square with width w 
NS The parameter to control smoothness 

xi,j,k A block located at (i, j, k) 
s , A block located at ( ) 
B A set of blocks 
Bk A set of blocks on level k 
Bk

1 t A set of blocks on level k extracted during
phases 1 to t 

Bk
t A set of blocks that have been extracted

during phase t, i.e. Bk
1 t \ Bk

1 t–1

where Bk
1 0= and Bk

1 =Bk
1 t

Bk
t,new Duplicated or modified Bk

t

Bk
1 t,new

Bk
1 t,new0,Bk

1 t,new1 Duplicated or modified Bk
1 t

Bwide A set of blocks in a temporarily accepted
wide area in the iteration of width
controlling algorithm (Algorithm [5]) 

Bk
unsettled A set of blocks on level k that are

repetitively shifted from modifying
pushback and unplanned pushbacks. This is
a specific set used in Algorithm [10]. 

Bk
unsettled,new A duplicated or modified Bk

unsettled

Bk
unsettled,large Dilated (enlarged) set Bk

unsettled

pred(Bk) The set of predecessors of blocks Bk, i.e. the
blocks that must be extracted if Bk is
extracted 

succ(Bk) The set of successors of blocks Bk, i.e. the
blocks that have Bk among their
predecessors 

succ(Bk)
t The set of successors of blocks Bk in tth

pushback 

From an image processing point of view, a pushback design
is a 3D greyscale object where each voxel is valued by the
period in which it is mined. A pushback t is a subset of
blocks with voxel value t. It can also be represented as a
binary image: the voxels in the pushback are indicated by
values of unity; others by zeros. Since the width constraints
concerns only the horizontal planes, when modifying the
width of a pushback, one can focus on the 2D ‘1-0’ image on
each level k, where we note Bk is the set of ‘unities’ .

Mathematical morphological methods are common tools
to modify the geometry of images (Serra, 1982) . They are
simple and efficient and are very useful for modifying the
geometry of objects reflected in the object in an image. The
methods are widely applied in image enhancement for the
purpose of sharpening, smoothing, edge detection, etc. The
characters of the methods are suitable for processing a
pushback geometry in our context. The basic morphological
tools operate on a binary image, or equivalently a set Bk,
with a structural element (SE). The structural element, as a
parameter, is a small binary image of a certain shape, like a
square, diamond, or other simple shapes. A few basic
functions include: (1) dilating, (2) eroding, (3) opening, and
(4) closing. 

�
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The dilation consists of placing the centre of SE on each
element of the set Bk and adding the elements located on SE
to the dilated set (see Algorithm [1]). As a result, it returns
an extension of the area of ‘1’s in the original image. The
dimension and shape of SE defines how the area is enlarged.
For example, Figures 4b and 4f show the effect of dilation on
the image in Figure 4a respectively with SE of 3 × 3 square
and 5 × 5 square.

The erosion operation (described in Algorithm [2]) has the
opposite effect of dilation, i.e. shrinkage of the set Bk. It is
also a dual operation of dilation, as eroding a set is
equivalent to dilating its complementary set. Similarly, the SE
controls the magnitude of erosion. The effect is shown in
Figures 4c and 4g. 

The opening operation comprises first eroding then dilating
(Algorithm [3]). It behaves like matching the pattern of a
structural element in the image, and returning only the
matched elements. For example, opening with an element of
3 × 3 square on the image of Figure 4a generates the image
in Figure 4d, where the parts smaller than 3 × 3 blocks are
removed. Similarly, opening with SE of 5 × 5 square returns
areas with a minimum width of 5 blocks (Figure 4h). It can
be seen that the opening is very useful to measure and
control the width, as it removes the clusters of blocks that are
smaller than the structural element, and keeps the wide areas
unaltered. 

The closing operation is done by first dilating and then
eroding the image (Algorithm [4]). The effect is to join the
isolated components that are close to one another, as shown
in Figures 4e and 4i. 

Globally, our algorithm defines feasible pushbacks
sequentially from the first period to the last. Each pushback
is created by modifying the optimal pit obtained by max-flow

optimization with a specific price parameter. The parameter
value is selected such that the capacity constraints are
reached within specified bounds after the enforcement of the
geometric constraints. The modification of each pushback
proceeds level-by-level, from bottom to top. On each level,
the morphological algorithms enforce the constraints of
width, smoothness, and continuity, which is the core
component of the algorithm. Any modification to a given
level implies additional reallocation of blocks on upper or
lower levels so as to maintain the slope (or precedence)
constraints. Hence, a block added to a given level must come
with all its predecessors on upper levels not yet mined in
previous pushbacks. Similarly, all the successors of a block
removed from a level must also be removed from the current
pushback. Once a pushback is obtained, it is considered
mined and the max-flow parametric optimization and
geometric modifications are rerun on the remaining deposit.
This ensures that the new pushback fully accounts for the
effect of the geometric constraints applied on the previous
pushback.

In next sections, we present the details of algorithms
from a low level to high level. We first introduce the 2D
geometric operations to control the new geometric
constraints. The algorithm to generate a single 3D pushback
is then presented. Finally, the main algorithm to create
sequentially all pushbacks is discussed. 

We describe in detail the three main new geometric operators
used to impose minimal width, smoothness, and continuity. 

Obtaining the acceptable width of a pushback bench requires
two conditions to be controlled: (1) the wide area has a width
at least equal to target width (TW), and (2) a small sub-wide
area can be mined only if it is adjacent to a wide area and is
not too elongated. The first condition is easy to control by the
opening operation. For the second condition, the sub-wide
area is defined to be acceptable when its shape is roughly a
triangle of base length AW, as shown in Figure 5. In this
case, the width varies linearly over AW from TW to a single
block. The control parameter AW corresponds to the
maximum distance a single block can be from the adjacent

Automatic generation of feasible mining pushbacks for open pit strategic planning
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wide area. Clearly, increasing AW creates a sharper and
longer sub-wide zone.

To modify a pushback to have a practical width, we
propose a new compound operator based on opening, named
‘adaptive opening’. The idea is to first find a set of blocks
that satisfy the first width condition, i with minimum width
TW. This is done by operating opening on the pushback
binary image with a square structural element of size TW
(note as SES(w = TW)). This step keeps the blocks that
constitute the areas wider than or equal to w, in a set noted
as Bwide, and removes the others blocks. We then check the
abandoned blocks in the original pushback set. If an
acceptable sub-wide area adjacent to the wide area can be
found, it is added to the wide area Bwide. For this, we repeat
AW times the following procedure: dilate the area of Bwide

within the original pushback set, reduce the width
requirement w, check if the reduced width can be satisfied on
the dilated set, and update the Bwide with the newly fulfilled
area. The procedure of the adaptive opening is described in
Algorithm [5]. A step-by-step evolution of the image during
adaptive opening is illustrated in Figure. 6.

To create smooth pushback boundaries, both opening and
closing operations are used. Closing can fill the small cave on
the edge of pushback, as is shown in Figure 4d. The opening

operation cuts the small bumps on the edge of pushback. It
should be noted that performing opening on one pushback
can also remove the sub-wide transition area created by the
adaptive opening. To avoid this side-effect and perform
purely smoothing, the opening is operated on the combined
set of current and earlier pushbacks, instead of only the
current pushback. This procedure is described in Algorithm
[6], and is noted as OpenSmoothing. The smoothing factor
NS should be smaller than TW, otherwise the smoothing can
over-reduce the PB blocks in the area wider than TW. Figure
7 illustrates the effect of OpenSmoothing with factor NS = 3.
In Figure 7a, a series of pushbacks is obtained after applying
adaptive opening, which is not smooth. In Figure 7b, the
yellow blocks represent the union of the current PB and
previous PB. We then apply opening with SES(3) on the union
of both sets, and obtain Figure 7c. After that, we exclude the
previous PB from Figure 7c, and get the new current PB,
shown in Figure 7d. These two steps remove the small bumps
on the boundary of the current PB, and also avoid removing
accepted sub-wide area created during the previous adaptive
opening. The result of smoothed pushbacks is displayed in
Figure 7e.

To control the continuity of a pushback, an algorithm to
detect connected components (Conn-Comp) is used (Hopcroft
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and Tarjan, 1973) . Two cubic blocks can be considered to be
connected if they have a shared face. The Conn-Comp
identifies the isolated components. The largest connected
component is kept; the smaller ones are postponed to later
pushbacks. The continuity should be examined not only in
3D, but also in 2D on each level, to avoid an isolated set of
blocks on the same level being allocated to the same
pushback. The procedure to maintain continuity
(KeepLargeConnComp) is described in Algorithm [7]. 

The geometric tools described above control the constraints of
width, smoothness, and continuity respectively for one bench
of one single pushback. The following sequence of operations
is adopted: (1) control the width; (2) smooth (by
OpenSmoothing) the pushback edge; (3) keep the largest
connected component. The sequence is selected so as to avoid
posterior operations altering the previously fulfilled
constraints. The three procedures generally remove blocks
from the PB. Hence, the ‘KeepLargeConnComp’ simply
removes the disconnected components, and does not change
the established width and smoothness. Also, the opening
operator in smoothing usually removes the clusters narrower
than NS that are not adjacent to previous pushbacks, like the
case shown in Figures 7b to 7e. This does not modify the
width constraints. The procedure is described in Algorithm
[8], and is noted as ModifyMultiConstr.

The method to control the geometric constraints for multiple
pushbacks is described. Recall that in our algorithm the
pushbacks are sequentially generated. When modifying one
specific pushback t, the blocks in the ultimate pit 

(B1 nPB) can be clustered into three groups: previous
pushbacks (B1 t–1), which include the earlier pushbacks;
current pushback (Bt); and future pushback (Bt+1 nPB), i.e.
the unplanned pushbacks in the ultimate pit. Obviously, the
previous pushbacks are already treated and are feasible. For
the current PB, modifications should ensure all the
geometrical constraints are fulfilled. Also, it should not be
ignored that the future PB, the unplanned part, needs also to
fulfill the width constraint. Otherwise it can happen that
when treating later phases, no valid geometry can be found. 

Algorithm [9], noted as ‘ModifyBenchGeometry’,
describes the procedure on a 2D phase bench image. The flow
chart is shown in Figure 8. The algorithm includes first a
closing operation, in order to join isolated clusters and form a
solid area. The closing also has a smoothing effect on the
current PB. Then, we apply the geometric functions iteratively
on current and future pushbacks, until both of them satisfy
all the constraints. For current and future pushbacks,
different operations are used. First, the function
ModifyMultiConstr (Algorithm [8]) is performed on the
current pushback, to make it satisfy the constraints of width,
smoothness, and continuity. Then, for future phases, the
adaptive opening is operated, because only the width
constraint needs to be maintained for the future phase. The
iteration essentially shifts blocks repetitively between current
and future pushbacks. When operating on current pushbacks,
excessive blocks are removed and postponed to future
pushbacks, leaving the the current pushback feasible.
Similarly, when modifying the future pushback, the removed
blocks are moved to constitute the current one. Sometimes,
the shifting may not find feasible configuration for both sets
of current and future pushbacks, i.e. a cluster of blocks (note 

�
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as Bk
unsettled

) is shifted back and forth, and cannot be accepted
by either set. This is because the repeated operations change
shapes in the same fashion and lack flexibility. In this case,
two choices are available: (1) enlarge such cluster and
append it to the current pushback, or (2) aggregate
neighbouring blocks from the current pushback to enlarge
the future pushbacks. The second choice is selected if any of
Bk

unsettled is forbidden from appearing in the current pushback
t, otherwise the first choice is applied. The reason a block is
banned from pushback t is that some of its predecessors are
excluded at upper levels. 

Figure 9 illustrates a step-by-step evolution of the
pushback bench in Algorithm [9]. Figure 9a shows the
original pushbacks, where green blocks stand for the current
PB, the white ones for the previous PB, and the grey ones for
the future PB. First, we run closing on the current PB, and
the isolated blocks are joined (Figure 9b). Next, apply
procedure ModifyMultiConstr (Algorithm [8]) on the current
PB to make it feasible (see Figure 9c). Then, use adaptive
opening on the future PB, to make it wide enough, and move
the narrow clusters (grey blocks at left-bottom of Figure 9c)
to the current PB. This obtains the result in Figure 9d. After
that, repeatedly applying geometrical operations on the
current and future PB, obtains Figures 9e and 9f,
respectively. It can be seen that a block marked as ‘O’ is
shifted back and forth and cannot be settled. So, we dilate the
blocks ‘O’ inside the union of current and future PBs, then

move the dilated block set (block ‘O’ and ‘+’) to the current
PB, and obtain Figure 9g. The procedure ends up with current
and future PB both satisfying the geometric constraints. 

To create a pushback satisfying the three new geometrical
constraints at all levels and keeping the slope constraints, we
propose Algorithm [10], with the flow chart shown in Figure
10. The procedure essentially repeats the
‘ModifyBenchGeometry’ procedure (Algorithm [9]) level by
level, from bottom to top. When generating the tth pushback,
these operations result in two effects: (1) delaying some
blocks from pushback t to later, and (2) bringing some blocks
forward to pushback t. Therefore, after the morphological
operations, the precedence relationship should be accounted
for. Specifically, if a block is brought forward to pushback t,
its predecessors in future pushbacks should be moved to
pushback t as well, in order to ensure the accessibility of the
block (Figure 11a). Otherwise, if a block is delayed, its
successors should also be delayed (Figure 11b), as the blocks
at lower levels are no longer accessible. If any of its
successors are delayed, the procedure will go back to the
lowest level of the delayed block, and redo Algorithm [9].
Sometimes, the delayed successors may be recovered by the
geometrical operations at these lower levels, thus a cycle can
occur. When a cycle is detected, the delayed blocks are dilated
and added back to pushback t. The dilation is repeated a few

Automatic generation of feasible mining pushbacks for open pit strategic planning
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times if necessary to try to break the cycle. If after a few
dilations the cycle remains, the blocks in question are
expelled from pushback t and added to a Tabu list, which is
sent to the geometric operators so as to prohibit appending
these blocks again to pushback t. 

To achieve our goal of generating practical pushbacks with all
geometrical constraints fulfilled, we need a high-level
algorithm that utilizes Algorithm [10] to create multiple
feasible pushbacks. We introduce Algorithm [11] for doing
this. Since the structure of Algorithm [10] requires a
pushback at earlier stages to be feasible, applying it on
several nested pits simultaneously will not necessarily create
multiple pushbacks with feasible geometry, nor guarantee
satisfaction of resource constraints. Therefore, Algorithm
[11] is designed to create pushbacks sequentially, from the
first to last. When generating a new pushback, previous
pushbacks are considered to be mined, so that modification
only works on unplanned blocks. We use max-flow to create
a parametric pit as an initial pit to be modified by Algorithm
[10]. The modified pushback is then checked to assure the
fulfillment of the production capacity constraints. A pushback
that satisfied the constraints will be accepted; otherwise, it
will be abandoned, then the price parameter will be adjusted
and the max-flow and modification procedure repeated until
the capacity requirement is met. The definition of resource
constraints here can be very flexible, and the selection can
depend on the specific application case. Here, for simplicity of
description, we use only the ore tonnage constraint.

Algorithm [11] without geometrical modification (step 9)
outlines a variant of the nested shells method, which is
referred as ‘successive max-flow’ in the text above. This is
similar to Whittle’s nested shell solution in terms of selecting
pit shells to match resource constraints. but works in an
automatic way. We use it as a comparative method in
following case studies. 

The proposed algorithm is tested with two deposit models,
one synthetic and one real. The goals of the test are to (1)
evaluate the fulfillment of the new geometrical constraints in
the created pushbacks, (2) analyse the variation of tonnage
and size of pushbacks before and after geometrical
modification, (3) assess the change of profit due to imposing

new geometrical constraints, comparing with successive max-
flow method, and (4) evaluate the computation time. The
descriptions of testing data and design parameters are listed
in Table I. The ultimate pits in the tests are created by a
maximum flow algorithm and then modified by the geometric
operators to ensure sufficient smoothness and enough width
at pit bottom. 

The first test data is from an artificial deposit created by
FFTMA (Fast Fourier Transformation Moving Average)
geostatistical simulation method (Ravalec, Noetinger, and Hu,
2000). The model contains 134 × 134 × 47 blocks. The unit
block is 15 m × 15 m × 15 m. Pushback design uses the
unique slope angle of 45° over the domain, and target width
of 90 m, i.e. six blocks. Auxiliary width control parameter
AW is 135 m (i.e. nine blocks). The smoothing factor NS
adopts four blocks. The final pit is divided into five PBs. The
tonnages of ore (blocks with positive profit) in each
pushback are constrained to lie between 11.7 to 17.6 Mt (i.e.
between 11 556 and 17 383 ore blocks at 3 t/m3). Note that
the ore tonnage range is flexible and should be adjusted
considering the capacity tolerance of processing plants and
the possible use of one or more stockpiles. 

The second test data is from a real copper mine; the name
and location are undisclosed for confidentiality reasons. A
part of the deposit was previously mined, and pushbacks
need to be designed for the remaining material. The testing
data consists of 81 × 63 × 41 blocks, with a block size of 
10 m × 10 m × 10 m. The slope is 45° over the domain, the
target width is 70 m, i.e. seven blocks wide. Auxiliary width
control parameter AW is 100 m (i.e. 10 blocks). The
smoothing factor NS is five blocks. The ore blocks are sent to
a single mill. The mining production plan is divided into six
periods. The tonnages of ore in each pushback are
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Number of blocks 134 × 134 × 47 81 × 63 × 41
Unit block size (m) 15 × 15 × 15 10 × 10 × 10
TW (blocks) 6 7 
AW (blocks) 9 10 
NS (blocks) 4 5 
Resource constraints in each PB (Mt) [11.7, 17.6] [6.0, 11.0] 
Number of PBs 5 6



constrained to lie between 6.0 and 11.0 Mt (i.e. between
2000 and 3667 ore blocks at 3 t/m3). 

For the calculation of NPV, we first create a simple block
sequence in each pushback and then discount the value of
each block according to its sequence number. The block
sequencing mimics the actual mining sequence, with three
levels of precedence: (1) the blocks in an earlier pushback
precede those in later pushbacks; (2) in one pushback, the
blocks on higher bench levels are extracted before those at
lower levels; (3) on each bench, the blocks are mined from
east to west. The discount period is the time required to mine
a single block (ore or waste). The discount rate for each block
is 1.259 × 10-5. The UPit contains 37 858 blocks. The
discount factor for the last block in the UPit is 1/(1 + 1.259 ×
10-5)37858 = 0.62. The (impractical) pushbacks generated by
the nested shells method inside the same UPit are computed
to provide a reference NPV. Note that these PBs do not

respect the constraints of width, smoothness, and continuity.
Hence, the reference NPV cannot be reached in practice. It is
simply used as an indicator. 

Figures 12 and 15 display the generated pushbacks on
selected levels for the two cases. As is shown, the new
geometrical constraints are all satisfied in the generated
pushbacks. Most areas of the pushback benches are wider
than the target minimum width. The pushback boundaries
are regular and have smooth transitions with the pit of earlier
periods. Also, each pushback has a single continuous
component. In comparison, the pushbacks using the
successive max-flow method do not show these desirable
properties (shown in Figures 13 and 16). Those pushbacks
are not mineable, as they present many isolated parts and are
too irregular to be practical, especially in the real case no. 2.
Figure 14 (for case 1) and Figure 17 (for case 2) show the
change of the third pushback on different levels. In case 1, on
level 20 (Figures 14a and 14b), the narrow bench is
broadened to the target width, due to the effect of dilation. A
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similar effect can be seen on level 17 in case 2 (Figures 17c and
17d). On level 40 of case 1, the smaller isolated green areas of
Figure 14c disappear in Figure 14d. A similar effect appears in
case 2 level 10 (Figures 17a and 17b). Also, the larger cluster
with irregular boundary in Figure 14a is smoothed. 

Ore tonnages of modified pushbacks are plotted in Figure
18 along with the relative change in ore tonnage compared to
the initial max-flow pit. Note that the capacity constraints are

not applied on the max-flow pit as they are the solutions
used to initiate our PB, which are the ones constrained by the
processing capacity. The last pushback is not shown as it
contains only the residual material, the ore tonnage for which
does not cover an entire period. The application of the
geometric operators globally enlarged the initial max-flow.
For case 1, modified pushback ore tonnages are increased by
13% to 55% compared to the initial parametric pits obtained
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after ‘mining’ the previous PB. For case 2, the tonnage
increase reaches 50% to 166%. The increase is mostly due to
dilation applied at lower levels that requires appending a
large number of predecessors at upper levels. One exception
is the fourth pushback in case 2, where the tonnage is
reduced by 46%. As shown in Figures 18a and 18c, the ore
tonnages of the first five pushbacks are well within the
capacity thresholds. The final pushback has insufficient
tonnage feed, but this will not cause a practical problem, as it
can be considered to be the production for a shorter period
until the end of the mine life. 

Figure 19 shows the NPV per ton of the different PBs.
Note that the NPV per ton is computed over a substantially
larger tonnage for the modified PB than for the successive
max-flow PB, so it is difficult to directly compare these
results. However, over the life of the mine, and then for the
same UPit, the modified PB NPVs diminish compared to those
obtained with the (non-mineable) successive max-flow PB,
by 0.5% ($4.18 billion vs. $4.26 billion) for case 1, and by
7.3% ($685million vs. $739 million) for case 2. As expected,
imposing more constraints reduces the NPV. Note, however,
that in case 2, the 7.3% NPV reduction is due mostly to the
first three PBs, where the successive max-flow PBs are
clearly non-mineable (see Figure 16). 

The NPV of the new method could be improved in a
number of ways. First, the sequencing within each PB could
be improved easily compared to the ad-hoc simple
sequencing used here. Secondly, local search methods could
be used to try to perturb the current PB definition by
exchanging sets of blocks at the boundaries between the
different PBs while still enforcing the geometric constraints to
keep all the PBs mineable. This method is currently under
investigation.

To analyse the sensitivity of the method to the new
constraints, pushbacks are generated for a set of different
mining widths. For case 1, the TW varies from two to six
blocks; for case 2, it varies from three to seven blocks. To
ensure that total value of the pit is same for comparison, the
UPit for each case is created with the largest TW, i.e., six
blocks for case 1 and seven blocks for case 2. We measure
the NPV loss ratio relative to the successive max-flow method
for these varying TWs, which is shown in Figure 20. It shows
clearly that NPV decreases steadily with the increase of
mining width. 

In addition to the three new constraints introduced here,
real-world pushback design also needs to take into account
more requirements, such as ramp access and infrastructure
constraints. These are detailed requirements that may impact
the final pushback design on different scales. They are
nevertheless difficult to measure in standard ways, unlike pit
slope and mining width. Integrating the full set of design
constraints and delivering automated designs is an area for
further research.

Figure 21 shows the main steps and associated variables in
the proposed algorithm. Since the pushbacks are generated
sequentially, the number of pushbacks scales linearly with
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the computation time. For the definition of a given pushback,
the computing time for maximum flow depends on the
spatial distribution of values in the block model. The
application of geometrical constraints works bench-by-bench
from bottom to top, but possibly with many ups and downs

due to the removal of blocks on the upper level that have
successors at lower levels in the same pushback. The
computing time depends on the geometry of the pushback
created by maximum flow, the complexity of the contour of
already-mined zones, and the boundary of the ultimate pit.



The bench modification utilizes a series of morphological
operations. Typically, the computational complexity of
morphological algorithms is ( MNW2) , where M and N are
the dimensions of the block model in a horizontal plane, and
W is the width of the structural element used in the
operation. One can consider that between six and ten mining
blocks usually suffice to create enough width for the
equipment. Hence, the dominant terms for computing time
are clearly the size of the deposit, M and N. 

We used three simulated deposit of different sizes: 100 ×
100 × 34, 134 × 134 × 47, 150 × 150 × 53, and 200 × 200 ×
71. Figure 22 displays the computation time as a function of
the size of the UPit for a fixed number of pushbacks. The
design uses TW = 7 blocks. Tests were done on a laptop
computer with Intel Core i5 2.5G CPU and 8 GB RAM. The
programs were run in Matlab. Figure 22 shows that the
program takes around 4 minutes to process a UPit with less
than 100 000 blocks, and around 2 hours for a UPit with 
550 000 blocks. Moreover, the computation time appears to
globally scale quasi-linearly with the UPit size. This
demonstrates that the algorithm is able to handle a medium-
size block model in an affordable time, especially when
compared to the time required for manual editing.
Admittedly, processing a block model with more than 1
million blocks in the UPit would benefit from slight
improvements to the current implementation of the method.
One promising avenue is to use the more efficient
implementation of morphological operations described in
Dokládal and Dokládalová (2011), or simply to use a C++
compiled version or alike.

In this paper we propose a new algorithm to automatically
generate mining pushbacks with practical geometries. The
algorithm can manipulate the new geometrical constraints,
including pushback bench and bottom width, smoothness,
and continuity. A case study demonstrates that by reshaping
the non-mineable initial pushbacks, one can obtain modified
mineable pushbacks with marginal loss on the NPV value.
The method is computationally efficient and has the potential
to significantly contribute toward the automation of highly
practical pushback designs.
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