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A Variable Neighborhood Search Algorithm
for Assigning Cells to Switches in Wireless Networks

Matthieu André, Gilles Pesant and Samuel Pierre
Department of Compuier Engineering, Ecole Polytechnique de Montréal
C.P. 6079, succ. Centre-ville, Montréal, Qué., Canada H3C 3A7

Abstract: The problem of assigning cells to switches in wireless networks consists of minimizing the
total operating cost, that is, the cost of linking cells to switches and the cost of handover from one cell
to another, by taking into account factors such as network topology, switch capacity and traffic load in
the entire network. Such a problem is well known in the literature as NP-hard, such that exact
enumerative approaches are not suitable for solving real-size instances of this problem. Thus,
heuristics are recommended and have been used for finding good solutions in reasonable execution
times. Tabu Search (TS) is one of the best heuristics used to solve this problem. This research proposes
a hvbrid heuristic approach for further improving the quality of solutions obtained from TS. This
approach applies TS in combination with variable neighborhcod search, a recent metaheuristic that is
based on the principle of systematic change of neighborhood during the local search. A key element in
the success of this approach is the use of several neighborhood structures that complement each other
well and that remain within the feasible region of the search space.
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INTRODUCTION

Mobile communication services are provided on
personal communications networks. The coverage area
serviced by such networks is generally divided into
limited small geographic areas, commonly known as
cells and presented in hexagenal shapes, whose radius
varies from a few hundreds meters to several
kilometers. In each of these cells, there is a sub-radio
system made of a base station alse called Base
Transceiver Station (BTS) transmitting radio signals on
a cell. Signal channels integrated fo the base station
allow communication subscribers to communicate with
the BTS and vice versa. Base stations, for their part, are
linked to Base Station Contrellers (BSC). This
subsystem is actually the radic inferface between each
mobile ferminal and the network. The network
subsystem is composed of switches or Mobile service
Switching Centers (MSC} located in some strategically
chosen cells. The role of a switch is to manage the
interconnection of different mobile network cells and
ensure intercoennection with other telecommunications
networks.

To avoid interference, two contiguous cells should not
use identical radio channels. The transmission must
thus change channel every time the mobile passes from
one cell to another. This automatic transfer process
from a base station to another is called handover or
handoff. The cellular system permanently controls the
signal power between the mobile unit and the nearest
base station. As soon as the power drops below a
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certain level, the system automatically attributes a new
cell te the mobile unit. This transfer of cells could cause
a change of switch. In this case, update operations are
performed and this is considered te be a complex
handoff; otherwise, it is a simple handoff that involves
only one switch.

Taking into account the signal level determines the
choice of a cell. Generally, a threshold is defined to
establish the limit beyond which the power received
could be considered so great that a cell could not take it
into account. The information exchanged by the users is
generated by the switch servicing the cell. When
different contigucus cells receive signals greater than
the established thresheld, conly the one that has a
superior level could ensure the service te the user.
Figure 1 shows that several scenarics are possible
during the movement of the mobile unit of cell C;,
linked to switch MSC,, teward another cell C; with a
superior signal power:

The mebile unit is being serviced by cell C,. In this
case, C; and C, are controlled by the same switch
MSC,. Therefore, the handoff is simple and deces not
require the update of the user’s database. In this
operation, only switch MSC,; is involved.

The mobile unit is serviced by cell C,, which is
controlled by a different switch MSCs. In this case, a
large amount of information is exchanged between the
two switches to update the network’s database
{localizing the user, exchange of protocols, type of
calls, etc.). Moreover, certain operations such as billing
could be carried cut by switch MSC,. As a result, we
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will have a user connection to switch MSCs, then to
switch MSC, and finally to the network.

A complex handeff is an operation requiring several
network resources and its cost has to be reduced as
much as possible. Thus, it would be desirable to
establish a handoff frequency among the different cells,
in order to assemble those with frequent mutual
handeff. These considerations are at the basis of the
assignment problem that could be expressed as follows:
Given a set of cells and switches of finite capacities
expressed in terms of Erlang or BHCA (Busy Heur Call
Altempts), the problem is to assign cells to switches
that would minimize the fotal cost, that is, the cost of
linking cells to switches and the cost of handoff from
one cell to another, by taking into account factors such
as network topology, switch capacity and traffic
(volume of communications exchanged by time unit in
each cell).

Handover in a Cellular Network

Fig. 1:

Such a problem is well-known in the literature as NP-
hard [4], such that exact enumerative approaches are
not suitable for solving real-size instances of this
problem. As a result, heuristics are recommended and
have been used for searching good solutions in
reasonable execution times.

One such heuristic appreach is simulated annealing
(SA). SA is a prebabilistic algorithmic approach based
on the analogous physical process of heating and then
slowly cooling a substance to cbtain a strong crystalline
structure. Kirkpatrick er al, [11] adapt it to solve
combinatorial optimization problems. SA picks a
neighbor at random and then accepts it if it improves
the current cost, otherwise SA rejects it with probability
depending on a cooling schedule and the amount of
deterioration.
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TS is one of the best heuristics used to solve this
problem [6]. It is an improvement on the descent
algorithm that avoids the trap of the local optimum [3].
When a local optimum is found by the descent
algorithm, it accepts solutions that do not improve the
current solution. To aveid any risk of cycling, a tabu list
T is added that keeps some information about the last k
sclutions visited in terms of the reverse action used fo
go from a recent sclution to the previous one. Then a
solution is prehibited if it is obtained by applying a tabu
action to the current solution. Usually an aspiraticn
criterion may be used te femporarily remove the tabu
status of an action that would lead to a new best
solution.

To adapt the methed to the assignment problem, Pierre
and Houeto [6] start from a sclution obtained by
assigning each cell to the closest switch, ignoring
constraints. A tabu list compenent allows the
exploration of this search space without cycling. The
search space is defined without switch capacity
constraints while respecting the assignment constraint
specific to cells. Each new solution achieved is
evaluated according o two criteria. The first criterion is
related to the cost calculated from the objective
function, while the second takes into account a penalty
introduced whenever a capacity constraint is violated.
At each step, the best solution is chosen according to
these criteria. Three memory structures avoid cycling
around a local optimum and refine the search: a short-
term memory which improves the current solution
based on cost and the penalty criteria associated with
each sclution; a medium-term memory which leads
back to promising regions to locally intensify the
search; and a long-term memory which diversifies the
regions explored [6].

Nevertheless, a  comparison  with  constraint
programming {CP)} results [7] proves that the results
provided by this TS algorithm are often non optimal
and may be improved easily within a few seconds of
execution. Moreover, [6] does not guarantee the
feasibility of the final solution, because of the
relaxation it uses and [7] CP needs too much executicn
time to find the optimum. Thus this study proposes
another TS approach, combined with variable
neighborhood search, for further improving the quality

of sclutions obtained from [6], given small
improvements lead to big money savings.
PROBLEM FORMULATION

The problem of assigning cells to  switches could be
maodeled using several appreaches. In this study, we

assume  that the network has n  cells and m
switches whose locaticns are fixed and known. To
each switch a set of cells must be assigned,

according to the volume of calls that the switch is
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capable of managing. For each pair of cells i and j, we
have the following data:

H i Cost by time unit for a complex handeff

between cells i and j;
Cjp — Cost of cabling between cell 1 and switch k;

ﬂi — Volume of calls by time unit received by cell 1;

M . — Capacity of switch k.

Without loss of generality, we can neglect the cost of a
simple handoff. The objective is to find an assignment
that minimizes the total cabling and handoff cost and
respects the capacity constraint of each MSC. To
describe the problem, we introduce the following
variables that express the unique assignment of each
cell:

S ; € {1,..., m}, S takes for value the switch to which
all i is assigned.

The cost of each cell i is the sum of the cabling cost
between cell i and assigned switch §; and the cost of
handoff:

il
A :Cisi + ZHU‘
=
5,25,

The total velume of calls generated by all cells linked to
switch k must not be higher than the maximum capacity
of the switch and can be expressed as follows:

S A<M,

i=l
8=k

Thus, the problem cculd be formulated as follows:
Minimize > 7,

i=1
subject to

S A<M,

i=1
8=k

1<k=<m, 1<§=<m 1<i<n
VARIABLE NEIGHBORHOOD SEARCH

VNS is a recent metaheuristic that is based on the
principle of systematic change of neighberhood during
the local search. Following [12], consider an
optimization  preblem  formulated as  follows:

min{f(x),xe X,X c §} where S is the solution
space, X the feasible set, X a feasible solution and f
a real valued function. Consider also a finite set of pre-

selected neighborhood structures % . With these
neighborhoods, we can build many optimization
algorithms. The simplest is called variable
neighborhood descent (VND} where changes of
neighborhood are made in a deterministic way, as
described in Fig. 2.

Initialization: Select a subset of neighborhoods {N;, N,
vees Npan v N that will be used in the descent and an
initial feasible solution X

Repeat the following sequence until no improvement is
obtained

Step 1: Set k to 1;

Step 2: Find the best neighbor x"of X in N,
Step 3: If x"is better than x set X to x~ and go to
Step 2, otherwise increment k;

Step 4: If k <k go to Step 2 else end.

Fig. 2: Variable Neighborhood Descent Algorithm

With k. =1, we can note that this algorithm is the

well-known descent algorithm. We can also note that
the final solution is a local optimum with respect to all
the neighbeorhoods used and so the chances of obtaining
a global optimum are increased.

This deterministic algorithm may be combined with a
stochastic one to give the algorithm called basic VNS,
described in Fig. 3.

Initialization: Find an initial feasible selution X and a
stopping criterion

Repeat the following sequence until the stopping
criterion is met:

Step 1: Set k to 1;

Step 2: Generate a random neighbor x of xin N P
Step 3: Apply a local search methed with x" as initial
soluticn; denote x” the so obtained local optimunm;
Step 4: If x” is better than X set X to x~ and go to
Step 2 otherwise increment X ;

Step 5: If k <k, go to Step 2 else end.
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Fig. 3: Basic Variable Neighborhood Search Algorithm

We can observe that point x s generated at random in
Step 2 in order to avoid cycling which might occur if
any deterministic rule was used, as in the VND
algorithm. The local search in Step 3 may alsc be
replaced by VND in an appreoach that led to the most
successiul applications recently reported.

VNS may also be combined with Tabu Search.
Basically there are two ways te realize the combination:
use TS within VNS or use VNS within TS. An example
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of TS used as the local search {Step 3 in Fig. 3} within
VNS can be found in [13]. The methed we propose in
the next section falls into the other category.

THE ALGORITHM

Given that Tabu Search (TS8) and Constraint
Programming (CP} both provide interesting results, the
first idea is to combine them: a CP algorithm [7] is first
used to construct a feasible initial selution to each
instance and then a TS algorithm is applied te improve
the result. We then try to improve TS with the addition
of a variable neighborhooed structure.

Reassignment: To be consistent with Coenstraint
Programming, we first chese to ensure the feasibility of
each intermediate soluticn of the TS algerithm, whereas
[6] chese not te. Thus we have a different neighborhood
from [6] fo explore that may lead to better sclutions.
The feasibility of each intermediate selution also avoids
the relaxation of the problem and thus ensures that the
final soluticn is feasible. We first chose to use a basic
lecal move structure that modifies the assignment of a

single cell. Thus, a cell { assigned to switch kK
switch k. We call this

neighborhcod reassignment. We define Aik for each

becomes assigned to

cell { and each switch k, so that moving cell i from
switch k™ to switch k changes the cost I of the
current solution to I'— A . The table of Aj values is

updated after each move and a simple inspection of its
values defines the following move.

Each move that was applied is stored in the tabu list.
The latter is a LIFO queue of fixed length that forbids
inverse moves from the present one. The aspiration
critericn used is the traditional one: a move that
impreoves the best solution found so far and that is tabu
is performed anyway. Older tabu moves are dropped
when the queue is full. The stop criterion is also
classical and is defined by a maximal number of
consecutive moves without an improvement of the best
solution.

Redistribution: This simple implementation of TS
does not always find the optimum for small instances
for which the optimum is known.

In another adaptation of TS to the problem, traditional
intensification and diversification techniques have been
used to improve the algorithm [6]. We here propose to
use another neighborhood, as in VNS, when there exists
no move that can improve the current solution in the
neighborhced. In this case, the classical algorithm
would choose the best meve even if it detericrates the
cost. Doing so, the hope is that we may find a better
solution in a later iteration. This method may look too
optimistic because there is very little chance that such a
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move would effectively lead to a better solution. We
propose here to choose a move that will lead to good
moves that are currently infeasible because of the

constraints of the problem. Let [J, be the demand for
switch & defined by:

D= YA,

A =0
ik
A=
i #k

where g} is the residual capacity of switch & given
by:

1
=M — > X
i=1
S.=k

The demand can be interpreted as the possible
improvement on the cost if switch K would have an
infinite capacity and can be understood as the overall
desire of cells to be assigned to this switch. Then,

switch k& with the greatest value of D, is the switch
most in demand and the algorithm tries to choose a
local moeve that reassigns a cell i assigned to £,
possibly with a large number of calls ﬂi . The resulting
new assignment will also be chosen with the lowest
impact on the cost functien: since Ay <O, the

algorithm will maximize Aik /ﬂi. Such a move,

which frees call-handling capacity on switch k " may
allow many goed moves that were infeasible before.
Actually this method tends to reassign a cell that stops
other cells from taking its place and thus greatly
improves the soluticn, so in others words we can say
that it redistributes switches between cells to satisfy a
majority. We will call this neighborhood redistribution.
We can further improve the formulation of demand.
The current formulation gives the same impact to a cell
with a low number of calls {which has a great chance of
having its demand satisfied) than to a cell with a huge
number of calls (with very liftle chance of having it
satisfied}. Then we use the following formulation:

= A
D — Z ik
OE A
Aik>0
?ui>uk

Using this formulation, a cell that is very likely to be
redistributed will have a more important weightin the
demand.
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Double Move: TS with simple reassignment only
allows moves that satisfy the limited handling capacity
of switches. As a result, there may be a lot of moves
that would improve the current solution but which are
infeasible. We use the redistribution neighborhood
which gives a chance to bypass this preblem when the
solution cannot be improved with the first
neighborhood. The following idea is that we may also
try to bypass this problem by using a third
neighborheed. That’s why we decided to add a third
type of local move that changes the assignment of two
cells at a time. We will call this new local move double
move. The equivalent result obtained by two
consecutive local moves using the first neighborhood
might not always be feasible because of capacity
constraints.

Figure 4 shows two resulting interesting local moves.
On the left, we can presume that, because of the
capacity constraint, cells A and B cannot be assigned
respectively to switches 1 and 2, even if the overall
move improves the sclution. The preblem is solved
when we exchange the assignment of beth cells. On the
right, we can alsc imagine that cell A cannot be
assigned to switch 2, even if it would improve the
current solution and that cell B can be assigned to
switch 3 with a little deterioration of the solution. The
resulting shift sclves the preblem and globally
improves the current solution.

Old assignment

<:> Cell I:‘ Switch

Fig. 4: Example of Double Moves

New assignment

This double move may also combine two feasible
simple moves and so speed up the simple TS algorithm.
So during the choice of the next move, the algorithm
will fake the best move in cost. A double move will be
considered as fabu if it deteriorates the current sclution
and if one of the two simple moves used is tabu. These
two simple moves are added to the same tabu list if the
deuble move detericrates the soluticn.

Bevond Double Move: The addition of the double
move improves the algorithm, because it extends the
neighborhcod and it allows bypassing the capacity
constraint. This constraint bypass may be an impoertant
key to finding better solutions to the problem. One can
also notice that this double move is a simple particular
case of the well-known ejection chains technique [10],
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where there is one ejection. The idea is then to apply
the principle of ejection chains to our problem. Doing
o, the chain would begin with a move that assigns a

cell #] to switch k1. Such a move would violate the
capacity constraint of £y, so another cell iy would
have to be ejected from kl and reassigned to another
switch k2 . Eventually, this ejection move could viclate

the capacity constraint of Ko and so on. The ejection

process would then continue until all constraints are
satisfied. One way to implement such a process consists
of allowing a viclation of the capacity constraint and
then applying the TS algorithm with an objective
function composed of the residual capacity of switches.
Doing so, it is true that we violate our first rule, that
was to ensure the feasibility of each intermediate
solution, but actually we ensure that we will obtain a
feasible final sclution, so globally we do not violate the
idea of the first rule.

With this technique, we can replace the use of deouble
moves. Indeed it extends the idea of double moves
allowing an arbitrary number of simple moves. But the
choice of move is linked tc a bit of chance, whereas the
double move technique takes the best move in cost. It
will be interesting to compare the two techniques later.

RESULTS

Our experiments were performed on Sun Microsystems
Ultra 10 Model 440, 64 bit stations, equipped with a
440 MHz UltraSPARC-III processor and 1024 MB of
memory.

We used 5 sets of 15 instances of data corresponding to
problems with respectively 30 cells and 3 switches, 50
cells and 4 switches, 100 cells and 5 switches, 150 cells
and 6 switches and 200 cells and 7 switches. These
instances are the same as [6]. We thus cover a large set
of configurations.

A Constraint Programming {CP} algorithm [7] was first
used to construct a feasible initial solution to each
instance. This CP algerithm provides a good initial
solution in a very short time (less than half a second for
the biggest problems). The average deviation frem the
best known solution is less than 2 %.

The good quality of this initial solution may clearly be a
factor that helps our method te find good soluticns so
we added another possibility of initial sclution: it is
obtained with a “maximal gap” algorithm that
sequentially affects cells to switches maximizing at
each step the greatest remaining capacity. This other
initial soluticn is also feasible butits costis far from the
optimum. [t is obtained in approximately the same time
as the CP one.

On this set of tests, we found that the best tabu
parameters with the simple reassignment neighborhood
are a size of 13 for the tabu list and a stopping criterion
of 100 fails. Experiments have shown that better results
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can be cbtained with this cheice of values. We decided
to apply the same parameters to all the neighborhoods.
Thus, we can note than a further calibration of tabu
parameters for other neighborheods could improve the
results.

Figure 5 shows the impact of redistribution, double
move and gjection chain neighberhoods on the quality
of results. These experimentations were performed with
the CP initial solution. We consider here the average
percent deviation from the best known solution of all
our experimentations as the criteria for the quality of
solutions. Note that, for most instances under 150 cells,
the CP algorithm [7] gives us the optimal solution. So
we have gap from optimal in that case. We can observe
in Fig. 5 that both redistribution and double move
neighborhoods increase the quality of our results.
However, in general ejection chains appear less
efficient than double moves. Actually ejection chains
proceed to find a combination of moves that may
improve the current solution. So with this technique not
every chain will improve the solution, whereas each
double move improves it. Thus it is not surprising that
double moves are in general more efficient than
gjection chains. The only real advantage with ejection
chains over double moves is that they are quicker. But
the difference between the two methods is only of one
or two seconds.

o Simple TS

O With redistribution
B With redistribution and double moves
W With redfiribution and ejection chains

L.

100~5 150~6  200~7
Number of Cells~Number of Switches

P09 o0 200
O = Wbk Loy O~

Average Percentage Deviation

b

30~3

Fig. 5: Average Percent Deviation from Best Known
Solution

We can also compare cur heuristic with others from the
literature: a TS algorithm [6] equipped with
intensification and diversification techniques, a
simulated annealing {SA) algorithm [14-15] and a
limited time versicon of a CP algorithm [7].

Tests have been performed on the same equipment,
with the same instances and with parameters
recommended by the authors of these other algorithms.
We first have to note that initial sclutions of other local
search algorithms are different from ours. We chose to
keep these initial solutions to respect the authors’
choices. A comparison between all these methods
requires a special attenticn on both computing time and
solution cost. We so chose to cbserve the evolution of
the average percent deviation of the best feasible
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solution found by each algorithm over time. The first
point {with the lower time} in the observation represents
the first feasible selution found by the algerithm. To do
so, each algorithm was executed for a duration in
seconds equal to the number of cells multiplied by the
number of switches. We thus set the stopping criterion
to the time limit with our TS/VNS algorithm. Figures 6
and 7 with logarithmic scales present the results
obtained by these methods for two series of tests.

Time {secands)

1.00 10.00 100.00 1060300

1060000
1GG000

r 16G.06C

—

r 1600

[l ———

A

Avenge deviatien (%)

AL

- G.00t

— TSNS with CP
— — Houeto TS
—CP

——— TSNS with me gap
—3A

Fig. 6:Comparison with other Methods with 200 Cells
and 7 Switches

Time (seconds)

0.0t 010 1.00 16.00 10060
: : : : 1.0E402
I 10E+0T
&
?ﬁ——\x- 105400 ¢
_____ v F10ECT £
1 L1002 @
—_———— b=}
F10EGS &
o
F1L.0ECE §
Ed
F1oEcs <
L {0EG6
wm— TSNS with TP —— TSNS with mex gap
= = Houeta TS —3SA

—s

Fig. 7:Comparison with other Methods with 30 Cells
and 3 Switches

We can observe on both figures the geod performance
of our method. At Fig. 5, instances have a complexity
of 77, With a CP initial sclution, after 0.5 second, our
algorithm is the quickest and gives the best results.
With the other solution, it needs much more time to
give good results but after 3 seconds it is better than
other methods except the one with the CP initial
solution. With different initial solutions, our results are
therefore very near. Figure 6 seems to confirm our
observations, even with a lower complexity of 3°°. It is
important te note that for all these instances of Fig. 6,
the optimum found is proved by CP. We must note that
because of the legarithmic scale, the null deviation of
the optimum cannot appear and is thus set to nearly
(1.000C1 %. Thus we can alsc observe that our methoed
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is the only heuristic that always finds the optimum
within the time limit.

CONCLUSION

We presented another heuvristic algorithm based on TS
and VNS to solve the assignment of cells to switches in
a wireless network. A constraint programming (CP)
algorithm was first used to construct a feasible initial
solution to each instance. This CP algorithm provides a
good initial sclution in a very short time (less than half
a second for the biggest problems).

We first evaluated the impact of redistribution, double
move and gjection chain neighberhoods on the quality
of results. Both redistribution and double move
neighborhoods increase the quality of our results.
However, in general ejection chains appear less
efficient than double moves. We alse compared our
heuristic with others from the literature: a TS algorithm
equipped with intensification and diversification
techniques, a simulated annealing (SA} algorithm and a
limited time version of a CP algorithm.

Combining ideas from variable neighberhcod search
and tabu search paradigms, our approach cutperforms
the other algorithms on a standard set of benchmarks. A
key element in the success of this approach is the use of
several neighborhood structures that complement each
other well and that remain within the feasible region of
the search space. Though the benchmark problems used
were carefully generated with realistic parameters,
additional experimentation based on actual data from
the telecommunications industry would be a logical
next step in order to assess more clearly the
performance of the algorithm proposed. We only tested
cne combination of TS and VNS. [t could therefore be
interesting to experiment an algorithm using TS within
VNS on this problem in a further work.
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