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Abstract: Toxic cyanobacteria have been shown to accumulate in drinking water treatment plants
that are susceptible to algal blooms. However, the risk for plants that do not experience algal blooms,
but that receive a low influx of cells, is not well known. This study determined the extent of cell
accumulation and presence of cyanotoxins across the treatment trains of four plants in the Great Lakes
region. Samples were collected for microscopic enumeration and enzyme-linked immunosorbent
assay (ELISA) measurements for microcystins, anatoxin-a, saxitoxin, cylindrospermopsin, and
[-methylamino-L-alanine (BMAA). Low cell influxes (under 1000 cells/mL) resulted in significant cell
accumulations (over 1 x 10° cells/mL) in clarifier sludge and filter backwash samples. Microcystins
peaked at 7.2 ug/L in one clarifier sludge sample, exceeding the raw water concentration by a factor
of 12. Anatoxin-a was detected in the finished drinking water of one plant at 0.6 pg/L. BMAA may
have been detected in three finished water samples, though inconsistencies among the BMAA ELISAs
call these results into question. In summary, the results show that plants receiving a low influx of
cells can be at risk of toxic cyanobacterial accumulation, and therefore, the absence of a bloom at the
source does not indicate the absence of risk.

Keywords: microcystin-LR; anatoxin-a; cyanotoxin; cyanobacteria; harmful algal bloom;
accumulation; drinking water treatment

Key Contribution: This study examined cyanotoxins and cyanobacteria cell accumulation across
four drinking water treatment plants and the utility of a fluorescence probe for cell quantification.

1. Introduction

Harmful algal blooms (HABs) in the Great Lakes region of North America are increasing
in frequency and severity and can include toxic cyanobacteria strains [1]. The toxins produced
include microcystins, anatoxin-a, saxitoxin, cylindrospermopsin, 3-methylamino-L-alanine (BMAA),
and aplysiatoxins [2-6]. Since much of the drinking water supply in the Great Lakes region comes
from surface water, HABs present an increasing threat to public health.

Previous research has demonstrated that during algal blooms, cyanobacteria can accumulate
inside drinking water treatment plants to cause operational problems such as filter clogging, and this
may also lead to toxin accumulation to concentrations exceeding those observed in the source
water [7-12]. There is little information, however, on the potential for such toxic cell accumulation in
plants drawing from water bodies that do not experience obvious algal blooms at the water surface.

Toxins 2018, 10, 430; doi:10.3390/toxins10110430 www.mdpi.com/journal/toxins


http://www.mdpi.com/journal/toxins
http://www.mdpi.com
https://orcid.org/0000-0003-2315-9543
http://www.mdpi.com/2072-6651/10/11/430?type=check_update&version=1
http://dx.doi.org/10.3390/toxins10110430
http://www.mdpi.com/journal/toxins

Toxins 2018, 10, 430 2 of 15

The World Health Organization (WHO) provides guidance to drinking water treatment plants
to address the risk of HABs [3]. Actions that a plant might take to minimize the threat depend on
the magnitude of the bloom at the source, as measured by cyanobacteria cell density (cells/mL),
biovolume (mm?3/L), or chlorophyll-a concentration (p1g/L). In general, the absence of evidence of
a significant amount of cyanobacteria (e.g., fewer than 2000 cells/mL) indicates that a plant may
remain at a basic level of vigilance. When indicators become more pronounced, such as when there
are more than 2000 cyanobacteria cells/mL present, the WHO recommends intake optimization to
avoid cyanobacteria, increased toxin monitoring, and risk assessments [3]. However, one potential
weakness of this approach is that even if cyanobacteria concentrations are at a low level at the intake,
any low concentration might result in cyanobacteria cells accumulating inside water treatment plants
over time, since treatment plants remove particles from the water and collect them as sludge or inside
filter media. If the sludge or filter media is not frequently and effectively removed or backwashed,
the concentration of cyanobacteria inside the plant may increase to levels that are significantly greater
than in the source water.

While the increased risk of cyanobacteria and toxin accumulation inside water treatment plants
during a bloom event at the source may be intuitively obvious, evidence of whether such accumulation
might occur in the absence of a bloom at the source has not, to date, been reported. This is likely due,
in part, to the regulatory framework in many jurisdictions, such as in Canada. In Canada, monitoring
for cyanobacteria or related toxins in the source water or in treated water is normally triggered by
observations of blooms in the source water. In the absence of a bloom, water quality in the plant
will typically not be monitored for cyanobacteria or toxins. The assumption that there would not
be cyanobacteria or toxins in the plant at problematic levels in the absence of an obvious bloom at
the intake has not been tested to date. Given the strong evidence for significant magnification of
cyanobacteria concentrations within plants during a bloom event, the same potential for magnification
when cyanobacteria are at lower levels at the intake should also be assessed proactively to identify
any potential threats to public health. This study, therefore, is the first to monitor systematically four
drinking water treatment plants drawing water from the Great Lakes for the potential accumulation of
cyanobacteria and their related toxins regardless of the susceptibility of the source water body to HABs.
The toxins monitored included microcystins, anatoxin-a, cylindrospermopsin, saxitoxin, and BMAA.

Cyanobacteria can be quantified using several methods including traditional microscopic
enumeration, quantitative polymerase chain reaction (qQPCR), and, with more recent technological
advances, remote sensing. However, these methods are expensive, time consuming, and require highly
trained personnel to manage [13,14]. Furthermore, none can produce results in real time. In contrast,
affordable online fluorescence monitoring probes can measure the fluorescence of the photosynthetic
pigment phycocyanin, which is representative of the cyanobacteria community, automatically and in
real time.

Recently, researchers have explored the use of in situ fluorescence measurements to assess the
cyanobacteria risk entering drinking water treatment plants. Fluorescence readings can be correlated
with moderate to high linearity to cyanobacteria cell concentration or biovolume [8,15-22], though
there are many potential sources of interference [23-26]. This relationship can be used to calculate
a site-specific fluorescence threshold value in raw water to trigger treatment adjustments that improve
cyanobacteria removal [8,20]. A statistical interpretation of probe readings may be used to predict
the likelihood of exceeding a cyanotoxin threshold [27]. Additionally, fluorescence patterns in settler
basins and filters can help to identify the location of cell agglomerations three-dimensionally [11].
This study explored the use of a monitoring probe to produce a fluorescence threshold that corresponds
to the WHO framework and further investigated the utility of fluorescence probes when employed
across the treatment train, where possible, to provide a qualitative assessment of cell accumulation
and breakthrough.

The precise objectives of this study were, therefore, the following: (1) to determine the extent
of cell accumulation in plants despite no obvious algal blooms at the intake; (2) to quantify the
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concentrations of five cyanotoxins across the treatment train of each plant; (3) to explore the potential
impact of a cyanotoxin release due to accumulated cells within the plant; and (4) to assess the value of
an in situ fluorescence probe to estimate cyanobacteria biovolume across the treatment train.

2. Results and Discussion

2.1. Cyanobacteria Accumulation across Treatment Trains

Cyanobacteria accumulation across the treatment trains was widely observed in this study,
demonstrating that monitoring programs considering the raw water alone may be insufficient to
capture the complete risk due to cyanobacteria. Over 70% of the filter backwash samples contained
a concentration of cells greater than that of the raw water, a proportion greater than any other location
measured (Figure 1). Though clarifier sludge samples less frequently contained a concentration
of cells greater than the raw water samples, when they did, the magnitude of concentration was
greater than that of the backwash samples, on average. Therefore, the filter media after a complete
or nearly complete run time (represented by the backwash) and clarifier sludge were identified
as the most problematic areas for cell accumulation in this study. A previous study reported the
formation of cyanobacteria scums during the algae season on the surface of the clarifiers and filters
with a concentration of up to 1.1 x 10° cells/mL [11]. Interestingly, those scums were dominated by
Microcystis species as were the majority of samples in this study, so it is unclear why scums formed in
those plants but not in the plants in the present study despite comparable cell concentrations in the
raw waters (Figure 1). It is possible that local environmental conditions influenced the buoyancy of
the Microcystis cells [28,29].

Inconsistent results concerning clarification were observed in this study. On 2 October 2017,
Plant A experienced nearly 70,000 Microcystis cells/mL in its intake and its upflow clarification process
reduced that concentration to approximately 2600 cells/mL. On 21 August 2017, however, the same
clarifier at the same plant led to an increase in Microcystis cell concentration from 874 cells/mL in the
raw water to approximately 7200 cells/mL in the clarified water (Figure 1a). The clarifier performance
was therefore variable in its ability to reduce influent cyanobacteria cells. This suggests a need to
optimize clarification for cyanobacteria removal throughout the algae season, such as by regular
jar testing.

Accumulation in Plants B and D was generally very low but Microcystis was still the most
dominant genus, shown in Figures 1b and 1d, respectively. The sedimentation tank at Plant B
undergoes only semi-annual sludge removal, leading to concerns over significant cyanobacteria
accumulation. However, three of the four sludge measurements at that plant showed little to no
cyanobacteria, while the fourth sampling revealed a concentration of only 900 cells/mL.

Though high concentrations of cells in drinking water treatment plants can cause physical
disruptions to the treatment process, an important concern with cyanobacteria is the risk for toxin
release. The World Health Organization has established a framework that implies a correlation between
toxin risk and the cyanobacteria biovolume or cell counts in the source water [3], and previous studies
have noted such correlations [10,30]. In this study, however, there was no observed correlation between
toxin concentrations and biovolume nor phycocyanin fluorescence, as shown in Figures S1 and S2 in
the Supplementary Information, respectively.

Low levels of accumulation (up to 2000 cells/mL) produced intracellular microcystins in the
range of 3.8-6.4 ug/L, indicating that these cells had a high cell quota for microcystins (3.34.2 pg/cell)
(Figure 2a). In contrast, a comparable intracellular microcystins concentration of 6.2 ng/L in a clarifier
sludge sample corresponded to a cell concentration of over 100,000 cells/mL, indicating the cell quota
in this case was only 0.05 pg/cell. The highest microcystins cell quota calculated was 8.7 pg/cell
in a sample containing 87 cells/mL and 0.76 pg/L intracellular microcystins, assuming that the
toxins measured were produced solely by the cells enumerated in that sample and evenly among
the cells, although in reality other factors such as environmental conditions, bloom growth stage,
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and interspecific competition affect toxic gene expression [31-33]. This demonstrates significant
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The trend of tive ELISA neswillis comfomned welll witdh thett aff the ICNH/MS results for
microcystin-LR, though the microcystin-LR concentrations were lower than the microcystins
concentrations, suggesting the presence of other microcystin variants in these samples (Figure 3).
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the sludge blanket could rise over the weir and deliver a concentrated slug of toxins to the filters.
Nonetheless, no microcystins were detected in any filter surface, backwash, or finished water sample.

Extracellular anatoxin-a was detected in the absence of cyanobacteria cells, shown in Figure 2b.
Anatoxin-a was detected in samples spanning all sites and all stages of the treatment process, and
may have been present in one finished drinking water sample at 0.6 pg/L (MDL = 0.24 ug/L) in the
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2.2. Risk Assessment for the Worst-Case Scenario Toxin Release Event

No exceedances of local drinking water standards were found in this study. There is a theoretical
risk, however, that any accumulated cells could lyse and release their toxins, causing a high toxin
concentration to break through to the finished water. A simple calculation was therefore performed
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2.2. Risk Assessment for the Worst-Case Scenario Toxin Release Event

No exceedances of local drinking water standards were found in this study. There is a theoretical
risk, however, that any accumulated cells could lyse and release their toxins, causing a high
toxin concentration to break through to the finished water. A simple calculation was therefore
performed to estimate the upper-bound risk associated with such a scenario, using the maximum
cell concentration of 240,000 cells/mL of Microcystis sp. observed in the filter media of Plant A
(Figure 1a). The maximum cell quota for microcystins by Microcystis sp. reported by Buratti et al. [34]
is 4 pg/cell, however a maximum cell quota of up to 8.7 pg/cell was attributed to cells in this study,
see Section 2.1. With 240,000 cells/mL producing microcystins at 8.7 pg/cell all undergoing lysis at
once (i.e., the worst-case), this would result in a concentration of 2088 ug/L microcystins entering the
chlorine contact chamber. Modelling with CyanoTOX V 2.0 (Hazen-Adams) reveals that a concentration
x time (CT) of 128.8 mg-min/L with free chlorine is required to reduce the microcystins to a safer level
of 0.3 ng/L. Whereas it is possible that some large-scale municipal drinking water systems can achieve
such a high CT value, smaller systems may not, and this would consequently pose a health risk to the
consumer. This issue is exacerbated if the cyanotoxin in question is anatoxin-a: the model predicts
that the same CT value of 128.8 mg-min/L would result in only 7.4% removal for any concentration
of anatoxin-a.

In reality, however, the toxin concentration coinciding with the sample containing the
240,000 cells/mL in this study was below the detection limit. Toxin release occurs as a result of
natural (cell decay) or induced (physical or chemical stress) lysis [41] and is difficult to predict.
Additionally, the volume of water surrounding the filter media and carrying the toxins would be
significantly diluted in a clearwell. Therefore, it is possible that even in the worst-case scenario for the
results of this study, microcystins would be degraded to safe levels under normal operating conditions.

2.3. Use of A Fluorescence Probe for Improved Cyanobacteria Monitoring

Monitoring guidelines of some jurisdictions recommend visual inspection of a source water as
a reactive trigger for cyanobacteria prevention strategies. However, it was shown that the presence
of an algal bloom does not indicate that a treatment plant is necessarily at risk. Algal blooms were
observed on the surface of the source waters of Plant A (Figure 1a) on 21 August and 2 October 2017 and
Plant C (Figure 1c) on 7 September and 4 October 2017. In only one of these four instances, however,
did the concentration in the raw water intake exceed the WHO Alert Level 1 of 2000 cells/mL, reaching
70,000 cells/mL. Even so, the cell concentration in the clarifier surface, clarifier sludge, and filter
surface was reduced to below 8000 cells/mL while the filter backwash contained only 1.6 times the
concentration of the raw water, and no cyanotoxins were detected that day. Therefore, the mere
presence of a bloom on the water surface does not indicate that cyanobacteria will enter the intake and
necessitate preventative actions in a drinking water treatment plant.

The lack of breakthrough of cyanobacteria into a plant despite a visible bloom on the water surface
is presumably due to the depth of the intake, which makes accurate visual monitoring difficult as
some cyanobacteria species will form surface scums and not distribute themselves throughout the
water column. Conversely, the absence of an algal bloom at the water surface does not indicate the
absence of cells at the location of the intake, as previously shown [11]. Therefore, there is a need for
a real-time quantification tool to measure cyanobacteria in the actual intake water to drinking water
treatment plants.

This study examined the use of a monitoring probe to quantify the biovolume (mm3/L)
of cyanobacteria entering the treatment plants, as well as to assess its ability to detect cyanobacteria at
various locations within the plant. A moderate correlation (R2 =0.73,n =13, p = 0.0018) was established
using paired phycocyanin fluorescence and biovolume data from the raw water samples of all the sites,
shown in Figure 5. Previously reported coefficients of determination for the correlation of cyanobacteria
biovolume (mm?3/L) to phycocyanin RFU range from R? = 0.41 (n = 53) to 0.87 (1 = 46) [8,12,19,22,24].
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One further consideration is that the WHO framework does not account for cyanobacteria cell
accumulation in drinking water treatment plants. While the 0.2 mm3/L Alert Level 1 value is derived
from the threshold biovolume that could produce microcystins above the WHO guideline in raw
vsatesnydhsmaller biovolume can cause significant cell accumulation. For example, a biovolymeg
of only 0.05 mm?3/L (870 cells/mL) in the raw water sample of Plant A on 21 August 2017 was
associated with a biovolume of 18.5 mm?/L (240,000 cells/mL) in that day’s backwash sample, as
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treatment train.

A strong correlation between cyanobacteria biovolume and probe readings was established for
samples taken across the treatment train of Plant C (R?=0.84, n =15, p = 0.0007), shown in Figure 6.
This finding can be used to quantify in real time the breakthrough of cyanobacteria by installing a probe
in one or more of the locations in Plant C where this data was collected: the raw water, the clarifier
surface, the filter surface, and the finished water. The use of a probe to quantify cyanobacteria at
various points along the treatment train could be a powerful tool for operators to optimize treatment
reactively where sufficient data can be obtained, but the difficulty of establishing an accurate correlation
remains a barrier [20].
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occur despite a low cell flux. Instead, online monitoring of cyanobacteria across the treatment train can
inform utilities of the breakthrough of cyanobacteria at each treatment step, allowing them to make
optimizations precisely where they are needed.

4. Materials and Methods

4.1. Cell Accumulation Sites

Sampling campaigns were undertaken at four drinking water treatment plants in Ontario, Canada.
Samples were collected during the algae season from August-November 2017 as algae are not expected
to proliferate until the late summer or early fall. The intakes of the four plants are located in Lake
Erie, Lake Ontario, the Bay of Quinte in Lake Ontario, and an inland reservoir, and are labelled Plants
A-D, respectively. The two plants drawing water from Lake Ontario and the inland reservoir have
a low risk for HABs. The sources of the two plants drawing water from Lake Erie and the bay in Lake
Ontarlojrouti&%lyo xperiepes blooms, but the depth of their intakes reduces their susceptibyjlity. to HAB
effects. All four plants employ conventional treatment trains, with minor differences. A summary of
the treahotenpgtodéssesiifttite fotirtpédattssimpresentedyifallaBieihtakes of the four plants are located
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4.3. YSI EXO2 Monitoring Probe

A YSI EXO2 Multiparameter Sonde (YSI, Yellow Springs, OH, USA) equipped with the Total
Algae sensor for measuring phycocyanin in relative fluorescence units (RFU) was used in the 2017
algae season. The sensor was calibrated throughout the sampling season with rhodamine WT dye
and was found to remain stable.
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4.3. YSI EXO2 Monitoring Probe

A YSI EXO2 Multiparameter Sonde (YSI, Yellow Springs, OH, USA) equipped with the Total
Algae sensor for measuring phycocyanin in relative fluorescence units (RFU) was used in the 2017
algae season. The sensor was calibrated throughout the sampling season with rhodamine WT dye and
was found to remain stable.

The probe was used to measure the phycocyanin fluorescence of samples collected across the
treatment trains. The fluorescence of the raw water, clarifier and filter surface, and finished water was
recorded at each sampling visit. Clarifier sludge and filter backwash samples were not measured due
to interferences caused by excessive turbidity. Triplicate readings were averaged to provide a single
phycocyanin value for each sample. Coefficients of variation among the triplicates were generally
below 0.2 but were higher for samples with very low fluorescence.

4.4. ELISA Analysis

The concentrations of dissolved and total toxins were determined using the ELISA kits. Samples
for dissolved cyanotoxin measurements were filtered through 0.2 um syringe filters (Sarstedt Filtropur)
to remove intact cyanobacteria cells and then kept frozen at —20 °C. Samples for total cyanotoxins
(intracellular plus extracellular) were subjected to three freeze-and-thaw cycles to lyse the intact
cells and release the intracellular toxins. Duplicate values were typically within about 20% but
could have a difference of up to 50%. Absorbance was measured using an absorbance reader
(Sunrise, Tecan Trading AG, Mannedorf, Switzerland). Online software [44] was used to produce
a four-parameter logistic curve to calculate the cyanotoxin concentration of the samples. The method
detection limits (Table S3), were generally higher than the manufacturer listed MDLs (Table S4),
except for saxitoxin, which was comparable. Failure to recover most of the control standards in
three of the five BMAA Kkits prevented the calculation of an MDL for those tests and their results are
not reported.

Notwithstanding the uncertainty involved with and variable performance of the five ELISA kits
in numerous studies [38,39,45-49], they were selected for such practical considerations as availability
for the desired analytes and ease of use.

The anti-ADDA microcystins ELISA kit measures all microcystin variants with the ADDA
moiety except conjugated microcystins, though overestimation can occur in drinking water samples
because of the presence of ADDA-containing chlorination by-products [50-52]. The anatoxin-a
and cylindrospermopsin ELISA kits appear to demonstrate higher accuracy based on previous
studies [45,53,54]. On the other hand, the saxitoxin ELISA kit is functional only from a presence/absence
perspective [45]. Lastly, Faassen et al. [39] reported many likely false positives with the BMAA ELISA kit,
but more recently, Clausi et al. [38] reported spiked recoveries in the range of 70-83%, which is adequate.
Because this study is the first exploration of these five cyanotoxins across treatment trains in the drinking
water plants, the weaknesses in the ELISA measurements were accepted but must be considered in the
data interpretation.

4.5. LC-MS/MS Analysis

A liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) system (Agilent
6460 Triple Quadrupole LC/MS) was used to determine the microcystin-LR portion of the microcystins
concentration reported by ELISA. The LC-MS/MS samples were prepared with an injection of 1 ug/L
of nodularin as an internal standard. The method used a 0.5% formic acid acetonitrile and 0.5% formic
acid water gradient through a C18 column (Agilent Poroshell 120 EC-C18). A positive control was
included every 10 samples. The two 5 pug/mL stock solutions of microcystin-LR (Cedarlane Labs,
Burlington, ON, Canada) and nodularin (BioLynx Inc., Brockville, ON, Canada) were stored at —20 °C
in methanol and used to prepare the calibration standards.



Toxins 2018, 10, 430 12 of 15

4.6. Cell Microscopy

All the samples were preserved in Lugol’s iodine solution and enumerated by Lucja Heintsch
Microscopy (Toronto, ON, Canada) to determine cell counts, species composition, and biovolume.
Algae were identified on a Nikon inverted microscope at 100x — 600x magnifications. Biomass
estimates were based on cell measurements, following the procedures listed in the Ontario Ministry of
the Environment Phytoplankton Methods Manual. Because of the potential for significant differences
in microscopy results between laboratories and as well as between individuals [55], one microscopist
was retained for all sample analysis.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6651/10/11/430/
s1, Figure S1: No correlation was found between cyanobacteria biovolume and phycocyanin fluorescence, Table S1:
Cell speciation in all samples with concentrations in cells/mL, Table S2: General water qualities, Table S3: Method
detection limits for all ELISA tests performed in pg/L, Table S4: Method detection limits for the ELISA test kits
provided by Abraxis.
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