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ABSTRACT 

 

Flood is the most common natural hazards around the globe that has notable negative effects 

on humans and environment. One of the examples is Queensland 2010-2011 flood, which is 

considered as one of the severest floods in recent history of Australia that claimed 31 human 

lives and caused direct damage costing over $5 billion. To reduce the flood damage, it is vital 

to understand properly the causes of major floods, their magnitudes and frequencies. 

Estimation of the magnitude of possible future floods (also called design floods) is an 

important task in hydrology. Most of the hydraulic structures and flood management tasks 

require an accurate estimation of design floods. For this reason, estimation of design flood is 

still an area of great interest in flood hydrology and is being researched worldwide. Frequent 

devastating floods in Australia have drawn attention at the state and national levels for more 

accurate flood estimation with reduced uncertainty. Many design floods estimation methods 

are being practiced around the world. This study focuses on the widely used design flood 

estimate techniques called “flood frequency analysis (FFA)”. The main objective of FFA is to 

find probability distribution model that best fits the measured flood data series at a given site. 

Although Australian Rainfall and Runoff ARR (Australian Rainfall and Runoff), 1987 

recommended Log Pearson type III probability distribution to use for FFA in Australia, in 

ARR 2019, no specific probability distribution is recommended. There has been limited 

guideline in Australia to select probability distribution models for flood frequency analysis. 

Also, many users have limited understanding on the uncertainties involved in design flood 

estimates based on a given probability distribution. This study is devoted to fill this research 

gap and examines the selection of the most appropriate probability distributions and 

associated uncertainty in FFA.  

 

This study focuses on the Brisbane River catchment of Queensland, one of the worst flood-

prone areas in Australia. In this research, a total of 26 streamflow gauging stations are 

selected from the Brisbane River catchment, with the lengths of recorded annual maximum 

flood (AMF) data series in the range of 20 years to 91 years.  

 

The goodness-of-fit tests and visual assessment by graphical methods are used to compare the 

candidate distributions and to find the best-fit probability distribution model for a given 

station. Five probability distribution models i.e. Lognormal, Log Pearson type 3 (LP3), 

Gumbel, Generalised Extreme Value and Generalised Pareto are selected as the candidate 
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distributions to select a suitable probability distribution at each of the 26 stations. The 

available AMF data for each of the selected stations are examined for outliers, and the 

identified outliers in the AMF data series are censored in FFA in quantile estimation by the 

log-Normal and LP3 distributions. To identify the most appropriate probability distribution 

that would minimise the influence of high and low floods on flood quantile estimation, FFA 

are carried out twice i.e. the high and low flood values are (i) included in the data and (ii) 

excluded from the data. The investigation shows that flood quantiles magnitude reduces 

notably when low floods are available in the data set. Sensitivity of flood quantile estimation 

on maximum recorded flow in the data series is carried out by removing the highest recorded 

flood data point from the data series in carrying out FFA. 

 

Uncertainty analysis in quantile estimation is carried out by bootstrapping and Monte Carlo 

simulation techniques. Trend analysis on the AMF data is conducted to identify any trend, 

abrupt change or shift in the AMF data.  

 

Software packages FLIKE (recommended in ARR 2019) and EasyFit are used to fit and 

compare the selected five probability distributions. Three well known goodness-of-fit 

statistical hypothesis tests (Chi-Squared, Anderson-Darling and Kolmogorov-Smirnov) are 

adopted via EasyFit software to assess how well the selected probability distributions fit the 

AMF data. The results of EasyFit software are also compared with the results of FLIKE 

where possible. Finally, FLIKE software is used for quantile estimation.  

 

It is found that, overall LP3 is the best-fit probability distribution model, followed by 

Generalised Pareto for the Brisbane River catchment. The analysis shows that quantile 

estimation is highly sensitive to the maximum recorded flood data point at most of the 

stations. Uncertainty analysis shows that the estimated flood quantiles have significant 

uncertainty, in particular, for the 100-year floods. It is found that the AMF data series at 

many selected gauging stations have linear trends, but these are generally statistically 

insignificant.  
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 : INTRODUCTION 
 

1.1.  Background to the Proposed Research 

 

Among the environmental hazards, flooding is the world’s most destructive environmental 

hazard. Floods cause social, economic, and environmental impact on both individuals and on 

urban, suburban and rural communities (OQCS, 2016). Among all-natural hazards in the 

world during 1963-1992, percentage of death due to flood ranks the highest with 26% 

(Cunderlik and Burn, 2003; Thompson and Perry, 1998). Percentage of significant damage 

caused by flood in total number of affected people is 32%, which ranks second highest after 

draughts (Cunderlik and Burn, 2003). Therefore, among all natural hazards, flood is one of 

the most ubiquitous natural hazards that causes negative impact on humans, and that requires 

several mitigation measures including building of flood embankment and flood defence 

structures, flood forecasting and evacuation, and land-use management.  

 

Statistics show that in recent era, the frequency and effect of extreme flood events have 

become more frequent around the globe (Van Herk, 2014; Bouwer et al., 2007; Zevenbergen 

et al., 2013). Many extreme floods in recent time including floods in the United Kingdom 

(2019, 2003, 2000), United States of America (2011, 1993), Europe (2010, 1995), China 

(2017, 1998), Pakistan (2010), Thailand (2011) and Australia (2011) stressed the need for 

better understanding of the global hydro-meteorological phenomenon accountable for these 

extreme floods (CWC, 2018).  

 

Many major floods have occurred over Australia over the last 150 years. In Australia, six 

major floods occurred during the first decade of the 21st century, seventy-seven major floods 

are recorded within the last 35 years of the 20th century and eight major floods are recorded 

in 19th century (OQCS, 2016). The 2010-11 flood is one of the worst ones in the Australia’s 

history which affected three eastern Australian states. This dangerous flooding began in 

December 2010, hit hard the north-eastern state Queensland (Figure 1.1) and then by early 

2011 it moved towards south, which flooded part of New South Wales and Victoria (Hossain 

et al., 2017). During this period, about 75% of Queensland (QLD) was declared disaster zone, 

loss of 35 human lives, and more than 200,000 people were directly affected (Boon et al, 

2016). 
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Flood is the costliest natural disaster in Australia and year 1974 was one of the most 

expensive years for flood in Australia amounting a total cost of AU$2.9 billion when Victoria 

(VIC), NSW and QLD were affected by floods (Hossain et al., 2017; OQCS, 2016). 

 

 

Figure 1.1: Location of Queensland (QLD) and Brisbane (https://australia-

map.blogspot.com/2012/05/australia-political-map-pictures.html) 

 

Floods cause significant damage in different sectors including infrastructure, services 

agriculture, animal lives, and loss of valuable human lives. Australia spends around $1 billion 

annually on building infrastructure that requires design flood estimation (Hossain et al., 2017; 

OQCS, 2016). In Australia, the estimated average annual direct cost due to flood is AU$448 

million (2016 Australian dollars price) for period 1967-2005 (OQCS, 2016). During 2011 

flood, the estimated cost of infrastructure damage to the local government in Queensland is 

AU$2 billion and estimated total cost of damage on public infrastructure is AU$5 to AU$6 

billion (OQCS, 2016).  

 

Amongst various natural disasters on earth, floods contribute maximum in terms of economic 

damage. Throughout the ages human beings are facing challenge from different natural 

https://australia-map.blogspot.com/2012/05/australia-political-map-pictures.html
https://australia-map.blogspot.com/2012/05/australia-political-map-pictures.html
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disasters such as flood, draught, tsunami and earthquake. Despite the amazing advancements 

of technology and science in this century, drought and flood continue to affect human beings 

resulting loss of human lives and injuries, sufferings, and material losses (Guru and Jha, 

2015). Although it is not possible to prevent floods, we can develop new strategies and 

protective measures that minimise loss of lives, major financial losses, environmental damage 

and social vulnerability (Platt, 1995, IFMRC, 1994). More accurate estimation of the risk of 

flooding is required for development of financially viable, economically efficient and 

environmentally sustainable plans (IFMRC, 1994). Advancement in predicting climates and 

weather conditions and availability of climatological satellites and development of early 

flood warning systems are an aid to flood forecasting. However, it is still not possible to 

forecast accurately the time of future occurrence of severe flood events and their magnitudes 

accurately. Therefore, to reduce the vulnerability and heavy loss due to flood, it is very 

important to look for improvement in hydrological flood estimation and forecasting. 

Estimation of the risk of flooding or risk of flood hazard is function of estimated flood 

discharge or stage, and flood frequency analysis (FFA) is generally used for this flood 

estimation (Kidson and Richards, 2005; Dunne and Leopold, 1978). Design of large 

hydraulic structures such as bridges, dams and flood embankments require flood estimation 

using FFA and for this reason the accuracy of FFA methods has notable impact on economic 

investment (Kidson and Richards, 2005; Bao et al., 1987). For design of such major 

engineering hydraulic structures, a specific design flood event for a particular return period 

such as the 50-year flood or the 100-year flood is considered. Since the measured flood 

discharge data period available for most catchments are significantly less than 50 or 100 

years, extrapolation is required to estimate design flood discharge or design flood stage 

(water level) for 50- or 100-year flood event and this extrapolation is done through different 

curve-fitting techniques using the recorded flood data, thus bringing uncertainty in flood 

estimates (Kidson and Richards, 2005).  

 

1.2.  The Need for This Research 

 

Severity of flood is usually described in terms of magnitude of flood (such as discharge, 

extent, depth and duration of flood). In order to minimise expected future flood damage, it is 

necessary to estimate with sufficient accuracy the magnitude and depth of flood that is likely 

to be exceeded any time within the design life of a structure. Expected future flood is usually 
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termed as a “design flood (DF)”. The DF is a flood magnitude, which is associated with a 

given average recurrence interval (ARI) or an annual exceedance probability (AEP). 

Depending on the type of flood control measures, estimation of different types of flood 

magnitude is required including peak flood volume, depth of flood, duration of flood flow, 

flow rate and its velocity and time to peak flow (Rahman et al., 2012). Application of peak 

flow estimation is widely practiced for design of hydraulic structures within 25 km2 to 500 

km2 rural catchments (I. E. Aust., 2014). As flood causes huge financial, economic and 

environmental damage; DF estimation has still been widely researched with great importance 

(Haddad, 2008; IFMRC, 1994). 

 

Rainfall based methods and streamflow based methods are two commonly used DF 

estimation methods. The runoff routing and unit hydrograph methods are generally used for 

design flood hydrograph (DFH) estimation. Design event approach is one of the runoff 

routing DF estimation methods. The design event approach model uses rainfall as input and it 

assumes that frequency of input rainfall is equal to the frequency of output DF (Benjamin, 

2008; Caballero and Rahman, 2014). All DF estimation techniques are based on some types 

of frequency analysis of observed flows. FFA is a well-known method for estimating DF and 

it is convenient both economically and politically (Haktanir, 1992). Among various flood 

estimation methods, most direct method is at-site FFA (Rahman et al., 2013). The DF 

estimation with at-site FFA can be used as a yardstick to compare estimation of design floods 

using other methods including rainfall based modelling and regional flood estimation 

methods. For at-site FFA, relatively long-period of observed flood data is required. It is a fact 

that the record lengths of streamflow data at many streamflow measuring stations in Australia 

and in different parts of the world are much shorter than the return periods used for DF 

estimation. Therefore, the DF estimation requires extrapolation in the form of curve fitting 

beyond available record length. If adequate and quality data are available, at-site FFA is 

recommended to use in the ARR guidelines (Ball et al., 2019) for estimation of DF. 

 

The current methods for undertaking FFA assume that the observed peak flow data are 

stationary (Gilroy and McCuen, 2012) i.e. measured streamflow events are independent and 

identically distributed (IID). However, changing environment such as climate change and 

land use change may influence recorded hydrological data. Stationarity assumption means 

that the probability of occurrence of flood events for any return period such as 50- or 100-

years will remain same over time. This stationary assumption is still applied to estimate DF 
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using FFA. However, statistics such the mean, standard deviation or skewness of 

hydrological data may change due to climate change. Hydraulic design of new infrastructure 

is generally carried out using historical information on hydrometrological extremes. As the 

record lengths of existing hydrometrological data are generally relatively short compared to 

the required design life of infrastructure, extreme value theory is used to the historical 

observations of hydrometrological extremes to estimate DF magnitude without considering 

effect of climate change (Data, 2009). It is apparent from recent studies that in near future 

global climate change will increase the frequency of flood events and their magnitude 

resulting in significant increase of flood damage in Australia (Muzik, 2002; Ball et al., 2019).   

 

Independence and stationarity are two fundamental assumptions of present FFA methods. 

However, as the climate change may influence the design flood, it is possible that in future 

these assumptions may not be valid. Under such circumstances, it is important to investigate 

different approaches taking into account non-stationarity and non-independence nature of 

hydro-meteorological extremes (Khaliq et al., 2006). Upward or downward trends or step 

jump in long term hydrological time series data are the first step to proceed with non-

stationary FFA.  

 

Many probability distributions are available for FFA. However, finding the most appropriate 

probability distribution (PD) for FFA is it is still a question. Until recently several research 

studies have been conducted on the comparison of different PDs for at-site FFA. As the 

length of available data is relatively small in comparison with the required return period, this 

remains a difficult task (Rahman et al., 2013; Bobee et al., 1993). Repetitive floods in 

Queensland, including the devastating 2011 flood, raised the immediate need for accurate 

design flood estimation for the Brisbane River catchment in Queensland for better flood 

management in future. Moreover, not many in-depth flood estimations studies were carried 

out in the past within the Brisbane River catchment.  

 

Therefore, this study is focused on finding a method for more appropriate DF estimation by 

FFA. The study is carried out with annual flood peaks data from the Brisbane River 

catchment in Queensland, Australia. This study aims to carry out at-site FFA by selecting the 

best-fit PD using different goodness-of-fit (GoF) tests and use the identified PD to estimate 

DFs. This study also aims to conduct trend analysis to examine the presence of any trend or 
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step jump in annual maximum flood (AMF) data. It also investigates the uncertainty in FFA 

by boot strapping and Monte Carlo simulation.  

 

1.3.  Research Questions 

 

This research uses at-site FFA techniques with an aim to select the best-fit PD and estimate 

uncertainty associated with the selected PD. This study uses data from the Brisbane River 

catchment, Queensland, Australia. 

 

This study examines the following research questions: 

• How to select best-fit PD in the selected study region? 

• Is there any trend in observed AMF data within the study region? 

• Is there any impact of outliers in data on estimation of design flood and on selection 

of best-fit PD? 

• What is the level of uncertainty in the estimated flood quantiles? 

 

1.4.  Overview of Methodology 

 

FFA establishes relationship between flood event magnitude and its frequency of exceedance. 

The approach of finding relationship can be applied locally using at-site FFA or regionally 

using regional flood frequency analysis (RFFA). In this study, the at-site FFA approach has 

been implemented. The research methodology is summarised into the following steps: 

  

a)  Selection of study region and preparation of data; 

b)  Selection of best-fit PD (using EasyFit); 

c)  Quantile estimation by stationary approach (using FLIKE); 

d) Uncertainty analysis applying bootstrapping and Monte Carlo simulation 

techniques; and 

e)  Trend analysis on the AMF data series. 

 

Twenty-six stream gauging stations from the Brisbane River catchment are selected. The 

best-fit PD is selected using EasyFit software (Mathwave, 2017; Drokin, 2018). Five widely 

used PDs and three GoF statistical tests are adopted in this study. Visual observation of the 
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fitted distributions is carried out using plots produced by FLIKE (Kuczera and Franks, 2016; 

Kuczera, 1999) and comparing with EasyFit results. FLIKE software is also used for quantile 

estimation. The sensitivity or impact of first, second and third highest AMF records on the 

best-fit PD is examined. Uncertainty analysis is carried out using bootstrapping and Monte 

Carlo simulation. Trend analysis is conducted by TREND software (Chiew, 2005) developed 

by eWater (eWater, 2018) using twelve different trend tests one each of the selected station’s 

AMF data set. 

 

1.5. Outline of the Thesis 

 

This thesis is composed of six chapters. Chapter 1 presents background, the need for this 

research, summary of methodology and research questions. 

 

A review of various DF estimation techniques is presented in Chapter 2. The review 

particularly focuses on at-site FFA, trend analysis, the non-stationary approach to FFA and a 

review of recent studies on different PDs, associated parameter estimation and GoF tests to 

choose the best-fit PDs for DF estimation.  

 

Chapter 3 discusses selection of study catchment, selection of streamflow gauging stations, 

streamflow data collation and preparation of streamflow data. Filling of gaps for missing data 

in the AMF data series is also discussed. The list of streamflow gauging stations selected for 

this study is also presented. 

 

Chapter 4 outlines the proposed research methodology. This includes methods and 

mathematical functions for PDs, parameter estimation, GoF tests, quantile estimation, trend 

analysis, sensitivity analysis and uncertainty analysis. This chapter also discusses the non-

stationary approach of FFA. 

 

Chapter 5 presents the results and discussion, including the selected best-fit PD. Visual 

assessment and numerical assessment using GoF tests are discussed. This chapter also covers 

quantile estimation, sensitivity analysis and trend analysis. Five different PDs have been 

tested. The results from sensitivity analysis with bootstrapping are discussed. The sensitivity 

on selection of the best-fit PD is presented. Impact of the presence of outliers in data series is 
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discussed. The results of uncertainty analysis using bootstrapping and Monte Carlo 

simulation approaches are presented. This chapter also contains the results of trend analysis. 

Twelve different trend tests, including Spearman's Rho and Mann-Kendall, are used to test 

the AMF data for presence of any trends. 

 

Chapter 6 presents summary and conclusions of this study. This chapter finally presents the 

recommendations for future research.  
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 : FLOOD ESTIMATION AND FREQUENCY 

ANALYSIS METHODS 
 

2.1 General 

 

This chapter contains review of previous studies on estimation of design flood (DF) with a 

focus on at-site flood frequency analysis (FFA). Firstly, various methods used in FFA are 

discussed. A review of FFA methods is then presented. The assumptions, advantages, and 

limitations of FFA are also discussed. Stationary and non-stationary FFA are then discussed. 

Trend analysis methods are also reviewed. An overall summary of literature review on DF 

estimation and FFA methods is presented at the end of this chapter. 

 

2.2 Design Flood (DF) Estimation Techniques 

 

Design flood (DF) is the expected peak flood discharge at a given location associated with an 

AEP. DF is used in various infrastructure planning and development projects such as bridges 

and flood control and drainage structures.  

 

Many DF estimation techniques are used around the world. The DF estimation methods can 

be classified on the basis of flood frequency methods used, empirical formula developed from 

analysis of observed flood data and envelop curves (Cordery and Pilgrim, 2000). In general, 

methods involve in DF estimation are grouped into two broad categories, i.e. the rainfall-

based methods (rainfall-runoff simulation) and the streamflow-based methods (statistical 

analysis of recorded streamflow) (Haddad, 2008; I. E. Aust., 1987; James and Robinson, 

1986; Lumb and James, 1976; Feldman, 1979). Each of these methods has advantages and 

disadvantages. The choice of a method for a given purpose constitutes a significant aspect of 

the design process (I. E. Aust., 1987). Different DF estimation methods are illustrated in 

Figure 2.1.  
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Figure 2.1: Different design flood (DF) estimation methods  

 

When adequate data on observed streamflow are available, the basic approach to estimating 

flood-frequency relationship involves statistically analysing observed streamflow. If the 

available streamflow record length is relatively short, a regional relationship with flows from 

nearby stations may potentially be used to estimate DF. At-site FFA is only applicable to 

gauged catchments, and for ungauged sites RFFA is used for estimating DF. If the observed 

flow data is missing or insufficient, using a rainfall-runoff model to obtain DF could be a 

possible solution. This is especially used to produce detailed simulations for a given 

catchment.  

 

Rainfall-runoff models typically estimate flood hydrographs using given rainfall inputs. 

Based on the storm rainfall input, there can be two approaches of rainfall-runoff modelling. 

In the design storm approach, a design storm rainfall serves as the input to the rainfall-runoff 

model, and the output is a design flow.  Design storms are obtained by statistically analysing 

rainfall observations. In this approach, the frequency of design flow is assumed equivalent to 

that of design storm, which may not always be valid, as the rainfall-runoff relationship is not 

linear.  
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The observed storm approach applies a rainfall-runoff model to rainfall data to obtain 

simulated flows. These are then used instead of observed flows. A flood-frequency 

relationship is found by statistically analysing the simulated flows. The observed storm 

approach may be event-based, or continuous. In the former, separate storms are used as 

inputs to rainfall-runoff models. In the latter, the complete rainfall record is used to model 

runoff continuously; however, this necessitates initial condition at the start of every event 

being estimated and can be demanding in terms of the required data and model calibration 

(IFM, 2018). The approach to be chosen for flood analysis and estimation depends on 

consideration of the nature of the project, and resource and data availability.  

 

If the flood frequency relationship needs to be extended beyond the range of observations, 

and is based on a very short flow record, FFA is deemed unreliable. Without sufficient 

detailed information on the land cover or geology of a catchment, complex rainfall-runoff 

models cannot be built. Reliable flood estimates are needed for more important projects as it 

is thought that methods that are more sophisticated and comprehensive produce more reliable 

results. However, the models used in these methods are not easy to calibrate and can be 

sensitive to input and parameter changes. Consequently, financial resources and the available 

time and expertise are also considered when choosing a method for flood estimation (IFM, 

2018). 

 

At-site FFA is the most direct DF estimation method. This method is also used as a base or 

standard for other DF estimation methods, such as rainfall-runoff modelling method and 

regional DF estimation methods (Rahman et al., 2013). 

 

2.2.1 Streamflow Based Methods 

 

Streamflow based methods are suitable for a catchment if relatively long record of 

streamflow data is available. In these methods, estimates of DF are made by analysing 

streamflow data. Both at-site FFA and RFFA are streamflow based methods, which are 

widely used DF estimation methods. Streamflow-based methods are mostly based on 

streamflow data analysis and involve empirical equations in RFFA and at-site FFA (Mishra et 

al., 2010). 
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2.2.1.1 Flood Frequency Analysis (FFA)  

 

FFA is a technique for estimation of DF that corresponds to particular AEP or return period. 

Statistical frequency curves were first applied to flood data as a method by Gumbel. 

Analysing recorded annual maximum (AM) flow data for relatively large number of years 

(preferably > 20 years), FFA method calculates sample (or population) parameters (e.g. 

standard deviation, mean and skewness) of probability distribution (PD) which are finally 

used to define PD for estimation of DF. FFA can be made either using observed flood data 

for DF estimation or using flood depth data for DF depth estimation. For design flow 

estimation using these methods, peak flow magnitudes of varying AEP or average recurrence 

intervals (ARI) are computed. FFA is performed using one of two models: the annual series 

and partial series. Generally, the annual series is used to estimate design flows less frequent 

than the 10-year ARI, whereas the partial series is used for estimating more frequent flows. 

 

The AM flow series is the record of each year’s peak flow. Each year’s annual peak flow is 

assumed independent of other year’s annual peak flow. In reality time intervals between two 

peak floods are different and also the time and magnitude of occurrence of these peak floods 

do not follow any regular pattern. The return period or ARI is the estimated average time 

(year) interval for a flood event expected to exceed. Although occurrence of one flood event 

is independent of other event, it is expected that the return periods for larger floods are longer 

and vice versa. Return period is inversely proportional to AEP. If a given flood magnitude q 

equals or exceeds certain flow once in T years (return period) then for flood quantile QT it 

can be written as (Haddad, 2008):  

 

                                                             (2.1) 

 

Probability plot requires estimating chance or probability of non-exceedance of individual 

event and this is known as plotting position (points) formula. There are many plotting 

position formula available and one commonly used one is: 

 

                                                   (2.2) 
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Where i is rank in ascending order of observed sample values and N is sample size. Rao and 

Hamed (2000) documents many commonly used plotting position formula. 

 

It is not unlikely that at a stream gauging location, second and third highest flood values in a 

given year are higher than the highest flood values in some other years. As the AM series 

contains only the highest flow of a given year, DF estimation using AM series may miss 

some useful flood information (Rao and Hamed, 2000). However, this limitation can be 

avoided if partial duration flow or peak over a threshold (POT) model is used, where all 

independent flow peaks above a threshold value are included in DF estimation. The selected 

threshold value should be low enough so that for each year at least one event is selected (Rao 

and Hamed, 2000). Nonetheless, the POT model also involves some limitations as some peak 

observations may have influence from the previous peak flow event.  

 

To describe probability of flood events, Australia Rainfall and Runoff ARR 2019 Book-1 

(Ball et al., 2019) recommends to use term AEP, ARI and EY and not the return period (T) 

where EY stands for number of exceedances per year and AEP stands for annual exceedance 

probability. 

 

The most important advantage of FFA is that FFA approach provides independent estimation 

of design flow for a given AEP as it assumes that all events are independent. As FFA method 

uses only direct flood data, factors affecting flood magnitudes has no impact. This approach 

is easily applicable and computes confidence limits that can indicate the relative accuracy of 

the results.  

 

2.2.1.1.1 At-Site Flood Frequency Analysis (FFA) 

 

At-site FFA is the most direct DF estimation method (Haddad, 2008). This method needs a 

relatively longer period of observed data at the stream gauging site of interest. In this method, 

it is required to select a suitable PD and procedure for associated parameter () estimation. 

Generally, PDs are chosen arbitrarily as there is no specific guideline to choose a PD for a 

given site. At-site FFA is useful for flood estimation involving smaller AEP. Moreover, at-

site FFA can be used as a base to assess the accuracy of estimation of DF using other 
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methods, including RFFA and rainfall-runoff modelling. At-site FFA is recommended to 

estimate design peak floods, if enough streamflow data of acceptable quality is available 

(Ball et al., 2016). 

 

In at-site FFA, a relationship is established between peak flood discharge and ARI for a 

gauged catchment. To establish this relationship recorded streamflow data is used. Three 

different types of recorded stream flow data may be used for establishing this relationship 

(Haddad, 2008): (1) AM flow series, (2) POT series, and (3) full recorded time series (TS) 

(Haddad, 2008).  In this study, univariate at-site FFA approach is adopted using AM flow 

series. Univariate FFA is based on peak data either derived from AM or PD series as this is 

considered representative of flood characteristics at a given site. 

 

2.2.1.1.2 Regional Flood Frequency Analysis (RFFA) 

 

Many catchments have limited observed streamflow data or sometimes data may not be 

available at all for a specific site where DF estimation is required. If the observed flood data 

is limited or unavailable for a catchment for FFA then observed flood data from similar 

catchments or neighbouring catchments can be used for FFA (Haddad, 2008). This method is 

named as “Regional Flood Frequency Analysis (RFFA)”. In RFFA, DF at an ungauged site 

may be estimated using observed flood data from a group of sites within the selected region 

(Haddad, 2008). RFFA assumes that the distribution of the standardised variate is same for all 

the sites of the selected region within a margin of sampling variability. In index flood method 

(a type of RFFA method), a single regional flood frequency curve is derived by combining all 

available observed data within the region and it is assumed that this curve can be used with 

appropriate site-specific scaling factor anywhere within the selected region (Haddad, 2008; 

Gabriele and Arnell, 1991).  

 

RFFA is useful where availability of streamflow data is limited. Physically unrealistic 

parameter estimates may be derived by statistical estimation from too small a sample, 

especially if PD of three or more parameters is involved. RFFA uses information from 

gauged sites and transforms it for use in ungauged sites. RFFA has two uses. If data is not 

available for a site, RFFA makes use of regional flood data (Haddad, 2008; Cunnane, 1989). 

When recorded data is limited for a site, combination of available data at that site and data 
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from nearby stations within the region are used to produce enough information to increase 

confidence and reliability in parameter estimation of selected PD. Combining data from 

various locations within the region for a single site is achieved by substituting time in place 

of space (Haddad, 2008; Stedinger et al., 1993; NRC, 1988). As an example, in South Africa, 

Nortje (2010) estimated extreme flood peaks for a site from regional data by developing and 

applying REFSSA (Extreme Flood Peaks by Selective Statistical Analyses) procedure 

(Smithers, 2012), and the author applied the REFSSA method and found that it was suitable 

to estimate DF with 1,000 to 10,000 ARIs for 100-7000 km2 catchment areas (Smithers, 

2012). 

 

2.2.1.2 Empirical Methods 
 

Empirical flood estimation method uses empirical formula for DF estimation. All empirical 

formula establish relationship among flood statistics, size of catchments, climate and 

physiographical characteristics. Empirical methods are less accurate and use of this method 

should be avoided if empirical formula is not calibrated using data from the selected 

catchments (Smithers, 2012; Cordery and Pilgrim, 2000). These methods are used mainly for 

ungauged catchments where very limited or no record of peak flood discharge data is 

available. The most common empirical flood estimation method is the Probabilistic Rational 

Method, which was presented in ARR 1987 (I. E. Aust., 1987). If catchment area is A in km2 

then peak discharge (QT) in m3/s for T years ARI by this method is given by (Pilgrim and 

McDermott, 1982; Haddad, 2008): 

 

QT = 0.278 CT Ttc’T A                     (2.6) 

 

Where CT is runoff coefficient (dimensionless) for T years ARI;   (mm/hour) is average 

rainfall intensity for tc (hours) design duration and T years ARI (Haddad, 2008). For short 

duration rainfall intensity estimates, there are notable uncertainties as noted by Green et al. 

(2011) which can affect DF estimates obtained by the Probabilistic Rational Method. 
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2.2.2 Rainfall Based Methods 

 

As the observed rainfall data are readily available and physical characteristics of catchments 

can be used in the model easily, rainfall-based flood estimation techniques are widely used 

for DF estimation (El-Kafagee and Rahman, 2011). Rainfall-runoff models (flood routing or 

unit hydrograph techniques) used for flood estimation usually convert rainfall data into runoff 

(flood discharge). The rainfall-runoff model used in this method is calibrated using available 

observed rainfall and flood data. Limitation in rainfall based DF estimation method includes 

finding appropriate deterministic models to convert input rainfall into flood discharge as 

outputs and to preserve the important probability characteristics involved in this process 

(Rahman et al., 1998). 

 

Event-based approach and continuous simulation approach are two main approaches in 

rainfall-based methods. Some of the rainfall-based methods are discussed below. 

 

2.2.2.1 Event-Based Methods 

 

To estimate DF, design rainfall or intensity-frequency duration (IFD) data is used in the 

event-based method. The IFD data for different durations at any location within Australia are 

available in the ARR 2019 (Ball et al., 2019) via Australian Bureau of Meteorology (BOM, 

2019) website. In ARR, IFD data is derived using rainfall data from the BOM rain gauges 

and rain gauges those are managed by other organisations across Australia and this rainfall 

data was prepared through rigorous quality control procedures (Ball et al., 2019).  Event-

based methods are probabilistic, and they require calibrated rainfall-runoff-model for the 

catchment of interest.  

 

The event-based method involves few concepts and assumptions, the impacts of which are 

difficult to quantify. For example, the assumption of same return period for rainfall and flood 

events and simplified hyetograph shape can affect flood estimation from an event-based 

method (Grimaldi et al., 2012). 

 

 



 

17 

 

2.2.2.1..1 Design Event Approach 

 

The design event approach can be used to estimate DF (Mirfenderesk et al., 2013). This 

approach estimates DFs for selected ARIs using IFD data at the catchment of interest 

(Viglione et al., 2009). This approach is relatively easy to apply and allows catchment 

processes to be considered in modelling (Rogger et al., 2012). Event-based rainfall-runoff 

model transforms probabilistic behaviour of input rainfall to corresponding DF (Ball et al., 

2019). Although this method takes into account the probabilistic behaviour of rainfall depth, 

this does not consider probabilistic nature of other input variables (e.g. initial loss and 

temporal pattern of rainfall) in the rainfall-runoff modelling. This method is basically based 

on three major assumptions, i.e. (a) choice of design rainfall hyetograph i.e. duration and 

shape can preserve ARI; (b) input rainfall and output flood discharge ARI is equivalent; and 

(c) use of chosen initial soil moisture condition can preserve ARI (Camici et al., 2011). The 

process for estimating DF for a specified AEP using this method is shown in Figure 2.2 

(Rahman et al., 2002). 
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Figure 2.2: Estimation of design flood with design event method (Rahman et al., 2002) 

 

2.2.2.1.2 Continuous Simulation Approach 

 

The continuous simulation flood estimation method is an alternative approach to direct 

statistical flood estimation specially for catchments when historical flood peaks data are 

limited (Blazkova and Beven, 2009). Continuous simulation type DF estimation approach 
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may be preferred over the event based approach as this may overcome some of the 

probabilistic limitations of the event based approach of flood estimation. Continuous 

simulation models use rainfall time series as input and transform rainfall series into 

probabilistic estimated flood series as outlined in ARR 2019 (Ball et al., 2019). In this 

method catchment flow is generated taking rainfall time series data as input using hydrologic 

model and then discharge time series (continuous flood hydrograph) is generated. Several 

studies are reported in the literature for DF estimation using this approach such as Grimaldi et 

al. (2012) and Blazkova and Beven (2009). 

 

2.2.2.1.3 Joint Probability Approach 

 

The Joint Probability Approach (JPA) is a type of holistic approach for estimation of DFs that 

takes into account the probabilistic nature of important input variables such as temporal 

pattern, intensity and duration of rainfall, initial loss into model more clearly (Charalambous 

et al., 2005). Joint probability and continuous simulation methods of flood estimation use 

similar techniques in hydrograph generation phase of the modelling, but basic inputs to model 

and process of using these inputs to develop runoff generation model are different (Rahman 

et al., 1998). In JPA, consideration of randomness in input variables helps to eliminate 

biasness in the input values. JPA is also known as derived distribution approach as 

probability distributed or random inputs are combined to produce probability distributed 

outputs (Mazumder, 2005). The procedure by which a flood frequency distribution is 

determined for a given a catchment combines deterministic and stochastic hydrologic 

modelling (Charalambous, 2004). Many studies have been found in literature using JPA for 

DF estimation. All these studies indicate that the JPA may be applied for more accurate DF 

estimation than flood estimation by design event approach. 

 

2.3 Basics of Flood Frequency Analysis (FFA) 

 

As the most common natural hazard in the world, we cannot avoid but to live with floods. We 

can minimise the negative impacts of floods taking structural (e.g. building flood 

embankment and dam) and non-structural measures (e.g. land use management and flood 

forecasting and warning system). All of these necessitate hazard or risk assessment through 
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FFA, to some degree (Dunne and Leopold, 1978). The FFA aims to estimate DF magnitudes 

corresponding to a given AEP (Stedinger et al., 1993). 

 

FFA is a statistical technique that selects and fits a PD model using historical streamflow data 

(Haddad and Rahman, 2008). It is a procedure for estimating the AEP of extreme events, in 

which extreme event’s magnitude and its frequency of occurrence are inversely proportional. 

The magnitude and frequency of occurrence of future/extreme floods are estimated using 

probability concepts. Hydrologists use FFA to estimate flow magnitude corresponding to a 

particular AEP. Thus, FFA has a significant role in water engineering practice. FFA 

establishes relationship between magnitude of a flood event (e.g. peak discharge) and its 

frequency of occurrence by applying probability models. 

 

The design of infrastructure such as dams, spillways, bridges and flood defence structures 

make use of knowledge of flood magnitude-frequency relationships. It is crucial to apply 

appropriate statistical tools to carry out FFA so that optimum design specification for 

hydraulic structures is facilitated and over-designing or under-designing is minimised. FFA 

provides measurement parameters to analyse the damage associated with specific flows 

during floods and it is applicable to planning, design and operation of different hydraulic 

structures (Haddad and Rahman, 2012). FFA is useful for flood zoning, flood insurance 

activities and also is used for flood hazard or flood risk mapping for the region (Karmakar et 

al., 2010). Not only are engineers able to better design safe structures given accurate 

estimates of flood frequency, but economic losses from structural maintenance can be 

minimised. Thus, FFA continues to be relevant and important, as it has large economic and 

environmental impact. Research to improve methods for deriving more accurate flood 

estimation is continuing, but with new emphasis (Bobee and Rasmussen, 1995). 

 

To understand FFA, understanding on the concept of ARI or return period and AEP is 

essential. Return period or ARI is the estimated average time (year) interval for an event 

expected to occur. Return period estimates the likelihood of any flood event in any given 

year. It is inversely proportional to the AEP and AEP is the probability of occurrence of event 

of same size or larger in any year. Statistical FFA is still considered as the most relevant 

means of estimating design floods systematically (Haktanir, 1992). 
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2.4 Assumptions of Flood Frequency Analysis 

 

All methods of FFA involve a degree of extrapolation. The ARI for estimation of design 

discharge is usually much larger than the discharge data record length for most catchments 

used for FFA. Therefore, the estimation of the design discharge requires, to some extent, 

extrapolation, which finally needs curve-fitting to the observed flood data. The fitting of any 

probabilistic model requires assumption regarding the PD that is used to generate flood 

events (Klemes, 1988). Through the history of FFA, sophisticated statistical techniques have 

been used for rigorous PD curve fitting. Although this has improved the accuracy of flood 

estimates and way to treat uncertainty in estimate; all these techniques are embedded within 

the broader model assumptions (Kidson and Richards, 2005). The flood data are stochastic in 

nature. For FFA, flood data are assumed random i.e. independent of time and space and 

independent of any impact due to anthropogenic or natural changes in the hydrological 

system (Haddad and Rahman, 2011). 

 

The basic assumption in empirical FFA is that flood data are independently and identically 

distributed. The implication is that the climate is assumed static at all time. Therefore, 

irrespective of climate mechanisms, the chance of occurrence of flood of certain magnitude is 

assumed to be the same for any year. Whilst this assumption may be satisfied in many 

locations, it may also produce substantially biased estimates of both long-and short-term 

flood risk if the assumption is violated (Franks et al., 2015). 

 

Basic assumptions of FFA include: 

1. Observed flood data are from same population; 

2. Flood data represent the population; and 

3. Process responsible for generating these events is static over time. 

 

FFA assumes that no errors of measurement or computation are made. Hydrological data are 

assumed independent, i.e. selected events are not correlated with one another; rather the flood 

data are random being generated from a stationary platform. The first assumption is that the 

hydrologic system is stochastic and independent over time. Usually the individual AM flow 

occurs relatively after long interval of time and for this reason AM events are more likely to 

be independent. However, it is important to check the date of occurrence of successive AM 



 

22 

 

events. The use of AM series used for FFA to satisfy this assumption has been described in 

ARR 2019 (Ball et al., 2019, Book3, Sections 2.3.3 and 2.3.4).  

 

The second assumption is called the assumption of homogeneity. This means that the 

observed flood data are identically distributed, i.e. all data are derived from same population 

and have same statistical properties because all data are based on same hydrological 

processes. This assumption is satisfied by choosing observations from the same population 

(meaning no changes in the watershed and recording gauges are made). If the recorded floods 

come from different processes (for example, due to storm or snow melt), this assumption may 

be violated. Another aspect of homogeneity is that the flood regime is assumed to be time-

independent; this may be violated by changes in the catchment over time caused by natural 

factors or human activities. 

 

2.5 Selection of Probability Distributions (PDs) in Flood Frequency 

Analysis 

 

The usefulness of FFA depends on the level of accuracy in estimating the frequency of 

occurrence of extreme events and its magnitude. Of primary importance in at-site FFA and 

RFFA is the choice of a proper PD model and related parameter estimation techniques 

(Rahman et al., 2018). This has been widely researched (Cunnane, 1989). Choice of 

appropriate PD for FFA cannot be made on a physical basis (Rahman et al., 2014a). In FFA, 

graphical methods or statistical tests are used to select appropriate probability model. Major 

consideration to choose PD is given on convenience (Bobee et al., 1993). More weight is 

given on empirical suitability than a priori reasoning while choosing a PD in FFA (Cunnane, 

1989; Cunnane, 1985). 

 

The distribution of annual maximum flood (AMF) values at a particular site can be described 

using several probability models. Until recently different studies around the globe 

recommend several suitable probability models for FFA. As there is no consensus on which 

PD(s) should be used for FFA, the selection of a suitable PD still remains problematic. 

Selection depends mostly on the properties of the available data. Hence, a suit of alternative 

distributions must be evaluated so as to find an appropriate distribution model that could 

estimate design floods with acceptable accuracy (Tao et al., 2002).  
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Inappropriate selection of a PD model could produce biasness and substantial error in 

estimated DF values, especially when ARI is high leading underestimated or overestimated 

DFs that might have dire consequences in practice (Rahman et al., 2013). As there is no 

universal guide available to adopt, PD is usually chosen arbitrarily (Rahman et al., 2013). 

 

Haddad and Rahman (2008) analysed AMF data from 18 gauged sites throughout south-east 

Australia to evaluate relative suitability of the currently recommended methods of at-site FFA 

in Australia. To compare the performances of various FFA methods with ARIs from 2-year to 

100-year, they applied a number of approaches, including statistical hypothesis testing and 

comparison of the quantile estimates found through fitted distributions with graphical 

estimates. Laio et al. (2009) evaluated capability of different performance criteria to find 

suitable PD for the available AMF series of 1000 catchments in the United Kingdom (UK). 

They inferred that, where two criteria yielded similar results, the model could be selected 

safely. 

 

2.5.1 Probability Distributions (PDs) and Parameter () Estimation Methods for 

FFA 

 

The PDs commonly used can be conventionally divided into four groups: (1) a group of 

transformed gamma distributions, including Pearson type III and Kritskii-Menkel 

distributions; (2) a group of Lognormal distributions, including Lognormal, a family of 

functionally normal curves of Yu. B. Vinogradov; (3) distributions derived by generalization 

of the theory of extreme values, Generalised extreme value (GEV) distribution combining 

Gumbel or extreme value type I (EV1) distribution, Freshet or extreme value type II (EV2) 

and Weibull or extreme value type III (EV3) distribution; and (4) a group of power 

distributions, including Generalised Pareto distribution and Pearson type V distribution 

(Gubareva, 2011). 

 

Usually, a smaller number of PD models have been used in FFA for DF estimation. However, 

available PD models are of many different types, e.g. two-parameter models and three-

parameter models. The two-parameter probability models are simpler models that are based 

on scale and location parameters and that can be fitted analytically, e.g. Lognormal (LN) and 
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Gumbel (EV1) double-exponential models. The mean and variance of the sample (AMF data) 

required for these models can be calculated using Method of Moments. The three-parameter 

models such as GEV and Log Pearson type III (LP3) cannot be fitted analytically. The widely 

used LP3 model is a generalised gamma distribution. The location, scale and shape are the 

three parameters in these three-parameter models. These models depend on the variance, 

mean and skewness of the sample data when Method of Moments may be used (Kidson and 

Richards, 2005). The two-parameter models are advantageous as they are simple and can be 

fitted easily with sample data; however, the three-parameter models with an extra shape 

parameter, have the advantage of fitting a catchments’ AMF data with longer record length 

(Kidson and Richards, 2005; NERC, 1999).  

 

A list of PDs commonly used in FFA has been documented by Cunnane (1989).  FFA can 

make use of both AMF and POT flood data; however, the former is more commonly used as 

POT data does not fully meets the assumption of independence of data for FFA (Rahman et 

al., 2013). As AMF data are frequently skewed, many skewed distributions have been 

developed and used in FFA. 

 

Cunnane (1989) mentioned that EV1 distribution has been recommended to use for FFA in 

10 countries, GEV distribution for 2 countries and LP3 distribution for 7 countries. Lim and 

Lye (2003) in their study found that GEV and Generalised Logistic distribution could well 

approximate the observed extreme floods in Sarawak, Malaysia. In ARR 1987, similar to the 

United States (USWRC, 1967), LP3 distribution was suggested for general use in 

combination with Method of  Moments (Hossain, 2019). However, in ARR 2019, no specific 

distribution is recommended (Ball et al., 2019) for FFA. Rahman et al. (2013) researched the 

suitability of using 15 different PDs for FFA in eastern Australia i.e. Five-parameter Wakeby 

(WAK5), Three-parameter Lognormal (LN3), Four-parameter Wakeby (WAK4), LP3, 

Pearson type 3, GEV, Generalised Pareto (GP), EV1, Normal, Two-parameter Gamma (G2), 

Weibull, Logistic, Generalised Logistic (GL), Two-parameter Lognormal (LN2) and 

Exponential distributions. Most of these PD models are recommended to use for at-site FFA 

in different countries around the globe (Rahman et al., 2013; Cunnane, 1989).  

 

Different countries adopt different approach to FFA. A potential reason for this is to make an 

effort to minimise legal liability. Since 1967, LP3 distribution for FFA is the official model in 

the United States (NRC, 1988). By contrast, up until 1999, the GEV distribution was 
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endorsed in the UK (NERC, 1999), and currently the official distribution is the Generalised 

Logistic. In some cases, more than one probability models have been favoured in a country 

(Kidson and Richards, 2005) such as LP3, GEV, GPA for Australia (Rahman et al., 2013), 

GEV and Wakeby  for Turkey (Seckin et al., 2011) and GEV, LN and LP3 for Bangladesh 

(Karim and Chowdhury, 1995). 

 

Many countries adopt standard methods for government and private use on the basis of large-

scale studies of the country’s flood data in an effort to achieve uniformity in FFA. LP3 was 

recommended as standard for the United States (US) by the Water Resources Council of US 

(Abida and Ellouze, 2008; Benson, 1968) and GEV distribution was recommended for the 

United Kingdom (UK) (Abida and Ellouze, 2008; NERC, 1975). In the then former USSR, 

the Generalised Gamma distribution was recommended (Abida and Ellouze, 2008) while in 

West Germany, LP3 distribution and Pearson 3 distributions were proposed (Abida and 

Ellouze, 2008). The Institution of Engineers in Australia also advocated for the LP3 method 

(I. E. Aust., 1987). In 1984, the World Meteorological Organization (WMO) prepared a 

global survey of flood frequency methods and found that GEV, EV1, LN2, Pearson 3, LP3 

and EV2 are widely used distributions (Abida and Ellouze, 2008).  

 

The appropriateness of a PD model to explain the nature of distribution of a given AMF data 

series can be evaluated using various criteria. Statistical (i.e. goodness-of-fit (GoF) tests) tests 

can be applied to evaluate whether a given PD can be used for observed AMF data. GoF tests 

together with graphical probability plots are useful methods to evaluate the suitability of a PD 

for observed AMF data (Stedinger et al., 1993). Graphical probability display methods show 

how accurate the assumed distribution is in fitting the observed AMF data.  Quantile-quantile 

(Q-Q) plot and probability-probability (P-P) plot compare the observed sample to a 

probability model. Table 2.1 outlines a few most commonly applied PDs recommended by 

various countries for at-site FFA. 
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Table 2.1: Some most commonly used probability distributions for FFA 

Distribution First Applied by Country/Region of application 

Pearson Type 1 and 3 Foster, 1924 West Germany 

Log-Pearson Type III  Beard, 1962 

Benson, 1968 

USWRC, 1967 

USA (NRC, 1988), West Germany 

and Australia 

Generalised Extreme Value  Jenkinson, 1955 UK (NERC, 1999) until 1999, 

Bangladesh (Karim and 

Chowdhury, 1995) 

Extreme Value Type 1  Gumbel, 1941 Italy (Rossi et al., 1984) 

Lognormal  Hazen, 1914 New York, USA  (Stedinger and 

Cohn, 1986) 

Wakeby  Houghton,1977; 

Houghton,1978 

Eastern Australia (Rahman et al., 

2015) 

Log-logistic  Ahmad et al., 1988 The Netherlands (Ahmad et al., 

1988) 

 

In FFA, various methods are used for estimating parameters of a PD based on the methods of 

probability theory and mathematical statistics. In the past, many such methods were 

thoroughly studied. Many of these methods are now widely used in practice in many 

countries. Numerous methodological recommendations and scientific publications on 

probabilistic estimation are available in the literature (Kuczera, 1983; Cunnane, 1989; 

Rahman et al., 2018). However, there is no universal recommendation which ensures reliable 

estimation of DF with smaller AEPs (Gubareva, 2011).  

 

For a selected PD, it is important that the parameters needed to fit the theoretical distribution 

to the relevant data are identified. This is done by estimating statistical moments/ parameters 

(e.g. variance, mean and skewness) of observed data using parameter estimation methods 

such as MoM, L-moments method and maximum likelihood estimation (MLE) method. 

Rahman et al. (2013) used L-moments, MoM and MLE in their at-site FFA study for 

Australia. Statistically, the MLE is considered a better parameter estimation technique as 

compared to the MoM (Bickel and Doksum, 1977). The effect of extreme values in the 

observed data series is less in estimating parameters using L-moments method and this is able 

to model many distributions (Rahman et al., 2013). MLE method is especially advantageous 

in that they can be used to multimodal PDFs (Kidson and Richards, 2005). MLE is also 

applicable for data series that does not follow normality assumption. As most hydrological 
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data does not follow normality assumption, MLE can be a better parameter estimation 

technique for hydrological data (Kidson and Richards, 2005). MLE method helps to define 

the confidence limits on DF estimation; however, a numerical solution may not be found for 

all cases (Kidson and Richards, 2005). 

 

MLE is more preferable for parameter estimation for long time series having possibility of 

climate change impact in data as the MLE method can be adapted to account for the non-

stationarity (Data, 2009). When samples are small, the method of L-moments is preferred, as 

with a small sample size the estimation of parameters with MLE may not be successful in 

many cases for GEV distribution (Data, 2009).  

 

Zaman et al. (2012) investigated the suitability of fifteen different PDs with MLE, L-

moments and MoM parameter estimation procedures for Australian AMF data. Haddad and 

Rahman (2011) evaluated MoM,  MLE and Bayesian Markov Chain Monte Carlo (BAY) 

methods for the Lognormal distribution in Tasmania and found that the BAY procedure 

produces better estimates with Lognormal model, for which quantile estimation became less 

bias than parameter estimation with MoM and MLE. Rahman et al. (2019) adopted a regional 

LP3 distribution for RFFA in Australia (Ball et al., 2019). Kuczera et al. (2005) and Kuczera 

(1983; 1999) uses Bayesian parameter estimation procedure for FFA. Viglione et al. (2013) 

used Bayesian method for FFA. Bayesian approach provides a general inference procedure 

for at-site FFA. Viglione et al. (2013) found that the estimated uncertainty is reduced 

significantly if more information is used through Bayesian analysis. According to study of 

Haddad and Rahman (2012), the model errors can be handled better with the Bayesian 

estimator. 

 

2.5.2 Selection of Distributions: Graphical Methods and Goodness-of-Fit Tests 

 

Three major steps are involved in FFA modelling: data choice, selection of probability model 

and selection of a parameter estimation method (Bobee, 1999). The results from FFA are 

influenced by model choice, and hence comparing several PDs is the best option to quantify 

this (Haktanir and Horlacher, 1993). Choice of suitable PD model is the most important task 

in FFA. The choice of PD for FFA depends on many factors such as availability of long time-

series flood data, and the method for estimation of parameters.  
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An inappropriate choice of PD for FFA could produce large error and bias on estimated DFs, 

especially if ARI is very high, which will result in under estimated or overestimated flood 

quantiles (Rahman et al., 2013). Rahman et al. (2013) documented numerous recent studies 

on selection of suitable PDs and related parameter estimation procedures. 

 

LP3 distribution was recommended for FFA at coastal streams of NSW (Rahman et al., 

2014b). FFA study in Queensland concluded that LP3 as the most appropriate PD (Kopittke 

et al., 1976). FFA study on 172 catchments in Australia used moment ratio diagrams to 

compare different distributions and this concluded that LP3 was the best suited PD in 

Australia (Srikanthan and McMahon, 1981). Conversely, the FFA study of Rahman et al. 

(2013) on FFA in Australia was unable to identify one single distribution for all Australian 

states.  

 

Laio et al. (2009) in their study assessed the capability of different performance criteria to 

recognise the suitable PD for the available AMF peak series collected from 1000 catchments 

in the UK. They inferred that, where two criteria yielded similar result, the model could be 

selected safely; otherwise two different models for FFA could be employed and one of the 

results to be selected to satisfy design criteria. Haddad and Rahman (2008) in their study used 

AMF data from 18 gauged sites throughout south-east Australia to evaluate relative 

capabilities of the most popular PDs for at-site FFA. Using several measures including 

statistical hypothesis testing and the comparison of quantile estimates taken from the fitted 

distributions with graphical estimates, they compared the capabilities of various FFA 

methods with ARIs ranging from 2 years to 100 years. They found that the GP-L moments 

and GEV-LH2 moments methods provided the best fit, followed by the LP3-BML method, 

whereas the ARR-recommended method (LP3-MoM) did not provide a good fit. Haddad and 

Rahman (2011) examined seven probability models for FFA in Tasmania and they concluded 

that Lognormal was the best choice. 

 

The accuracy of a PD in fitting a given data set can be assessed through statistical GoF tests. 

As different GoF tests may favour different probability models, the same test cannot be used 

to assess all the candidate probability models (Kidson and Richards, 2005). A number of 

factors including parameter estimation procedures, availability of flood data and probability 

model comparison procedures can influence the choice of a PD. Using a data set from 127 



 

29 

 

gauging stations across Australia, Zaman et al. (2012) conducted at-site FFA study with 

Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S) statistical GoF tests and also used 

Bayesian information criterion (BIC) and Akaike information criterion (AIC) to identify most 

appropriate probability models and concluded that the LP3 and GEV distributions were the 

best fit probability models for most cases. Rahman et al. (2013) in their FFA study for 

Australia identified LP3, GEV, and GP distributions as the best-fit distributions.  

 

The K-S GoF test assesses whether the observed data come from selected theoretical 

distribution or not. The A-D test shows better result with highly asymmetric distributions, 

which are very common in many hydrological applications (Zaman et al., 2012). 

Discrepancies between the population model and the sample model can be measured using 

AIC test. The BIC test relies on Bayesian framework and the most suitable PD model is the 

one that have the least AIC or BIC value (Zaman et al., 2012). 

 

2.6 Sensitivity of Quantile Estimation on Maximum Recorded Flow Event  

 

The maximum observed flow event at a flow gauging site may influence estimation of flood 

quantiles notably. Haddad et al. (2010) in their study found that quantile estimation might be 

seriously affected by maximum rating ratio (largest estimated quantile and maximum 

recorded flow ratio) in a gauging location. Viglione et al. (2013) found that extreme outliers 

(recorded flow) in flood time series significantly affect the flood frequency estimates. 

Rahman et al. (2015) examined how sampling variability may affect flood quantile estimates 

where they removed part of the AMF data to examine its effects on flood quantile estimates. 

In another study, Rahman et al. (2013) examined how rating curve extrapolation error could 

affect the highest AMF data, and how this could affect flood quantile estimates.  Therefore, it 

is important to carry out sensitivity analysis of quantile estimation on maximum recorded 

flow event of each station’s AMF data series. 

 

2.7 Uncertainty in Flood Quantile Estimation Using Monte Carlo 

Simulation and Bootstrapping Techniques 

 

Due to the limitations of sufficient data length, a high degree of uncertainty is involved in 

flood quantile estimation for smaller AEPs since FFA needs extrapolating theoretical curve 
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beyond the available data period. Al Mamoon and Rahman (2014) listed a number of studies 

proposing different techniques to quantify uncertainties in frequency analysis (Al Mamoon 

and Rahman, 2014). Haddad et al. (2010) proposed a rating ratio approach to estimate 

uncertainty in FFA. A Bayesian Monte Carlo simulation technique was adopted by Kuczera 

(1999) to assess uncertainty in FFA. 

 

With current FFA methods, finding the best-fit PD and associated parameter estimation 

technique from many possible approaches appears to be difficult (Haddad and Rahman, 

2011). The difficulty is posed by the existence of uncertainties resulting from both the model 

selection and parameter estimation. Merz and Thieken (2005) classified uncertainty in 

parametric estimation as epistemic or natural uncertainty where epistemic uncertainty is 

related with the lack of enough knowledge about the process and natural uncertainty comes 

from changing underlying process. Merz and Thieken (2005) in their study separated natural 

and epistemic uncertainties in FFA and found that while the former cannot be reduced, the 

latter can be through increased knowledge. Xu et al. (2010) studied other types of uncertainty 

for modelling of extreme events. Liang et al. (2012) adopted the Markov Chain Monte Carlo 

method to overcome difficulties in computing the integrals when estimating the sampling 

distribution. Li et al. (2010) applied bootstrapping techniques to calculate parameter 

uncertainty in SWAT (Soil and Water Assessment Tool) model. Baltussen et al. (2002) 

proposed an uncertainty analysis method using Monte Carlo simulations alongside non-

parametric bootstrapping techniques. Al Mamoon and Rahman (2014) reviewed several 

sources of uncertainties in estimation of design rainfall and suggested that uncertainties could 

be analysed using Monte Carlo simulation and bootstrapping techniques.  

 

2.8 Trend Analysis 

 

According to Intergovernmental Panel on Climate Change (IPCC) (2007, 2014), global 

average surface air temperature is increasing. This may cause abnormalities in climatic events 

(e.g. precipitation and evapotranspiration); which in turn affect rainfall runoff process and 

streamflow regimes. Numerous studies around the globe have examined the presence of 

trends in hydrological variables (Khaliq et al., 2009). It is reported in many studies that due to 

climate change there exists systematic trends in many critical climate data (Rahman et al., 

2012). Around the globe, different researchers reported temporal and spatial variability in 
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flood discharge data due to climate change. These changes can impact the rainfall runoff 

relationship (Villarini et al., 2009). Presence of trends in peak streamflow and rainfall data 

globally is the evidence of these changes (O’Brien and Burn, 2014; Hajani et al., 2017; 

Hajani and Rahman, 2018). Pekarova et al. (2003) highlighted the availability of high natural 

variation in streamflow around the globe might include strong periodic behaviour in 

streamflow, Therefore, if one or more cycles of such behaviour exist, trend analysis on the 

available streamflow data series for periods covering cyclic behaviour should be carried out 

(Pekarova et al., 2003). 

 

As concerns regarding the impacts of climate change escalate (IPCC, 2007; IPCC, 2014), 

researchers around the world have been analysing hydrological data series using different 

statistical methods to determine trends, sharp drop  or shifts in observed time series  (Hossain 

and Rahman, 2019). Trends in data series can dramatically affect the results of FFA, which 

ultimately raise question on the concept of AEP used in FFA (Petrow and Merz, 2009). 

Therefore, DF estimation with data having varying flow regimes should be carried out 

assuming that the parameters of PD are variable over time (i.e. nonstationary FFA) (Petrow 

and Merz, 2009). 

 

2.9 Stationary and Nonstationary Flood Frequency Analysis 

 

The basic assumption in traditional FFA is that the flood data is stationary, homogenous 

(observed data is identically distributed), does not show any periodic pattern or any trends or 

any shifts (Machiwal and Jha, 2009). Stationarity means that hydrological data is random and 

independent over time and estimated parameters from any samples of same population will 

be the same within a margin of sampling variability. When statistical properties of a time 

series data do not change over time, this data series is called stationary time series data 

(Machiwal and Jha, 2009).  

 

A time series data is considered nonstationary if distributional parameters of this data series 

changes with time (Cunderlik and Burn, 2003). Such changes in hydro-meteorological data 

series can be gradual (i.e. trend) or sudden (i.e. step change) or can be complex type of 

changes. These changes in data series may be due to natural causes (shifts in weather 

patterns/climate change) or due to human causes, including change of land use type (e.g. rural 
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to urban), shifting of gauging locations, flow extraction for irrigation and diversion of flow. If 

time series data have significant correlation (either positive or negative) between observed 

values and corresponding time, this series is considered to have trend (Machiwal and Jha, 

2009). 

 

One of the most direct techniques of detecting changes in hydrological time series is to test 

the recorded time series data for trends or step jumps by applying statistical tests. If no trend, 

step jump or periodicity is found in time series data, the data series is assumed stationary. 

Parametric and nonparametric are two common statistical tests that can be used to examine 

trends (Machiwal and Jha, 2009). Mann-Kendall (MK) test and Spearman’s Rho (SR) test are 

two well-known nonparametric tests used to identify trends in hydrological time series 

(Sadeghi and Hazbavi, 2015; Laz et al., 2014; Liu et al., 2012). Three parametric tests i.e. 

Student’s t, Autocorrelation and Linear Regression are used for identifying trends in data 

(eWater, 2018; Chiew, 2005). Parametric tests are reported to be more efficient than 

nonparametric ones. In general, nonparametric tests require 5 to 35% more data to achieve 

similar result at same confidence level of parametric test (Bethea and Rhinehart, 1991). To 

study trend on hydrological data series selected for non-stationarity frequency analysis, 

parametric tests are generally preferred over nonparametric test (Khaliq et al., 2009). 

However, trend analysis using parametric processes requires many assumptions about the 

trend behaviour, whereas nonparametric tests are more reliable in terms of non-normality, 

non-linearity, seasonality, missing records, serial dependence and sensitivity to outliers in 

data (Ishak et al., 2010). 

 

Hossain and Rahman (2019) documented list of researches around the globe to investigate the 

presence of trend in hydrological time series data.  Ishak et al. (2010), in their trend analysis 

study of 491 stream gauging stations across Australia, found that AMF data around 30% 

gauging stations showed trends. Rahman et al. (2012) concluded in their study that further 

investigation was necessary before any decisive conclusion could be made on possibility of 

trends in Australian flood data and whether the reason of these trends was the effect of the 

climate change or the climate variability. 

 

Result of investigation on the presence of trends in AMF data series from 491 stations across 

Australia showed that numbers of stations with downward trends (21-33%) were substantially 

more compared to the numbers of stations with upward trends (1-6%) (Ishak et al., 2013).  
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Hajani and Rahman (2017) found mixed trends in annual rainfall data in their analysis of 

trends with 60 rainfall gauging stations across NSW. A trend analysis on annual rainfall data 

across Yarra River catchment showed decreasing trends (Hossain and Rahman, 2019; Barua 

et al., 2013). Trends have been found in Australian rainfall data series by many other 

researchers (Hossain and Rahman, 2019; Laz et al., 2014). Across Iran, Javari (2016) found 

seasonal variation in rainfall series.  

 

Roughly speaking, a random process that does not change over time or that has statistical 

measures which remain constant over time is considered stationary. Presence of significant 

trends in time series records is the first step in non-stationarity FFA. Several parametric and 

nonparametric tests are available to identify trends in flood data series. In this study, twelve 

statistical tests i.e. MK nonparametric test, SR nonparametric test, Linear Regression 

parametric test, and Cumulative Deviation test, Cusum test, Rank Sum, test, Rank Difference, 

Worsley Likelihood, Autocorrelation, Student's t, Turning Point and Median Crossing test, 

are adopted to assess trends. These nonparametric methods have an advantage is that these 

tests are less sensitive to data gaps which may exist in AMF data series. World 

Meteorological Organization recommends SR and MK tests for identifying trends in the 

hydrological data (Chebana et al., 2013). 

 

2.10 Climate Change and Flood Frequency Analysis 

 

The Fourth Assessment Report of Intergovernmental Panel for Climate Change (IPCC) found 

that average surface air temperature is rising globally (IPCC, 2007). The expectation that 

these predicted temperature changes will cause the hydrological cycle to intensify at the 

global and regional levels is widely recognised (Huntington, 2006). The possibility that 

climate change will trigger increase in the average global temperature alongside global 

population growth has also been confirmed by many other studies, as the magnitude and 

timing of flood events can be changed. These changes can alter earth’s hydrometeorological 

systems and influence on the rainfall runoff process, and impact on the risk of flooding 

around the world (O’Brien and Burn, 2014).  

 

It is reported that in near future, climate change will influence the magnitude and frequency 

of floods across Australia and as the rainfall runoff relationship will be affected by the future 
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climate change, assumption of stationary in hydrological data may not be valid (Hossain et 

al., 2017). Consequently, regional flood estimations, which use past flood data series, will not 

be representative for the future flood. Failing to take into consideration of climate change can 

raise question on the concept of AEP, leading to error and bias in DF estimation, which will 

bring large consequences on planning, design and operation of hydraulic infrastructures 

(Rahman et al., 2010). 

 

In adopting most of the existing FFA methods, assumption of independence and stationarity 

is needed. In the context of global warming, water vapor in the atmosphere will increase; 

causing more intense and frequent heavy rainfall events (Kunkel, 2003). If the evidences of 

trends are found in hydrological data, then the IID assumption will not be valid on that data 

series and DFs estimated using current FFA method will be underestimated or over estimated. 

The PD and its parameters for non-stationary time series data change over time. In such 

situation alternate FFA method that use time-dependent distributional parameters (location, 

scale and shape) should be adopted for DF estimation, which is named as non-stationary 

FFA.  

 

Several studies have been carried out to address non-stationarity in hydrological data series. 

For example, a second-order non-stationary techniques to pooled FFA was introduced by 

Cunderlik and Burn (2003) assuming non-stationarity in mean and variance where non-

stationary pooled quantile function was a combination of  regional time-dependent and local 

time-dependent component of scale and location parameters (Khaliq et al., 2006). To identify 

and assess local significance and to estimate changes in time-dependent components the 

author used trend analysis tools. A regional trend analysis was then carried out to assess 

changes at regional scale. The application of the model to a homogeneous catchment showed 

that quantile estimation for 20-year ARI could be heavily biased even if very insignificant 

non-stationarity in data series is ignored (Cunderlik and Burn, 2003). 

 

To assess the suitability of non-stationary FFA to DF estimation and to examine the possible 

changes during extreme floods, Hounkpe et al. (2015) used an extreme-value non-stationary 

probabilistic model in the Oueme River Basin. Their study showed that use of non-

stationarity in extreme FFA by connecting climate variables or time with the distributional 

parameters is necessary to produce better estimates.  
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Debele et al. (2017) evaluated GAMLSS, maximum likelihood (ML) and two-stage weighted 

least squares (WLS/TS) nonstationary FFA techniques using recorded seasonal maximum 

flow data to investigate the influence of nonstationarity on estimation of time-dependent 

parameters and flow quantile and found that GAMLSS produced the best results to estimate 

trends in standard deviation and WLS/TS provides better accuracy in estimating trends in 

time series data at mean value. 

 

2.11 Summary 
 

Globally, more people are affected by floods each year than any other natural disaster. Flood 

in Australia during 2010-2019 caused loss of many human lives, huge damage worth billions 

of Australian dollars and brought sufferings and hardship to millions of urban and rural 

Australians. As floods are a natural part of the hydrological cycle, they cannot be prevented 

through human intervention. However, losses can be minimised by reducing flood risk. In 

order to carry out flood risk analysis, it is required to estimate DF discharges for various 

AEPs. Several methods exist for estimation of design floods; among these, at-site FFA is the 

simplest and most direct. FFA serves as a standard for the accuracy of other DF estimation 

methods, including rainfall runoff based flood estimation and regional flood estimation 

methods. 

 

FFA method uses flood time series data to fit probability distributions and establish 

relationship between flood magnitude and their AEPs. A relatively long-period of observed 

flood data is required for at-site FFA. Lengths of data period in most of flow gauging stations 

are much shorter than ARIs being investigated. For this reason, DF estimation often 

necessitates extrapolation beyond the limit of observed flood data.  

 

In FFA, it is assumed that hydrologic data series are IID. It is also assumed that hydrologic 

system is space and time-independent and is stochastic (Pandey et al., 2018). In order to 

satisfy these assumptions, the streamflow data must be appropriately chosen. Selecting 

observations from the same population satisfies the assumption of identical distribution or 

homogeneity (i.e., no changes in the watershed and recording gauges are made). Selecting 

annual maximum value of flow data generally satisfies the assumption of independence, as 

the successive yearly observations are likely to be independent. However, recent evidences of 
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the effects of ongoing forms of regional climate variability, alongside intensified human 

activity, have prompted hydrologists to study flood regimes outside of the hypothesis of 

stationarity.  

 

Some countries generally adopt a uniform PD to model floods (e.g. LP3 in in USA). The 

ARR 2019 guidelines in Australia do not recommend any specific distribution. However, 

selection of single probability model for all gauging stations in a country is not driven by 

specific theoretical considerations. Different statistical GoF tests can be adopted to select the 

most suitable probability model.  

 

There are many studies available for at-site FFA, which have adopted many PDs. Attempts 

have been made to obtain best-fit PD model for a country or for a region. It is observed that a 

single PD model may not be suitable as the most appropriate PD model for a region or for the 

whole country. The PD that best fits the data at a given location should be adopted for flood 

quantile estimates at the location; however, its suitability at other locations in the region 

cannot be guaranteed.  

 

As concerns regarding the effects of climate change escalate, various statistical and stochastic 

methods have been proposed by researchers to identify existence of trends and shifts in 

hydrological data. The existence of trends in data series can profoundly impact the results of 

FFA and compromise the practicality of the idea of AEP used in designing hydraulic 

structures. If trends exist, flood estimation procedures must account for varying flood 

regimes, e.g., assume that the parameters of the PD model are time dependent. Therefore, 

trend analysis should be carried out for hydrological time series data. One of the simplest 

techniques of detecting changes in hydrological time series is to examine this time-series data 

for presence of trends using different statistical tests. Two tests commonly used to this end 

are the SR tests and MK tests. 

 

A number of literatures are available on FFA for Queensland (Weeks, 1991; Rahman et al., 

2008; Palmen and Weeks, 2011; McMahon and Kiem, 2018; Ayre et al., 2015; Frisby et al., 

2018). However, literatures on FFA for Brisbane River catchment in Queensland are limited. 

Previous FFA studies for Australia are found more for Victoria and for New South Wales as 

compared to that of Queensland. Since Queensland has different climate regime, the PD 

recommended for FFA in other Australian states may not be applicable to Brisbane River 
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catchment in Queensland. Hence, this study focuses on FFA using data from Brisbane River 

catchment, situated in Queensland. 

 

The next chapter discusses the study catchment and details of collation and preparation of 

streamflow data for this study. 
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 : SELECTION OF STUDY AREA AND 

PREPARATION OF STREAM FLOW DATA  
 

3.1 General 

 

Streamflow data plays a vital role in FFA. The collection of streamflow data from different 

gauging stations of the selected catchment and preparation of the data for FFA is very crucial 

in any FFA study. This chapter covers different aspects of peak flow data collation for FFA. 

These include selection of the study area (which is the Brisbane River catchment in 

Queensland), selection of stream gauging stations, checking quality of peak flow data series, 

filling gaps in the data, checking for any outliers in the data, and testing selected AMF data 

series for any significant trends. 

 

3.2 Selection of Study Catchments 

 

The following factors are considered in selecting the study catchments for this study. 

 

3.2.1 Catchment Area 

 

The flood frequency behaviour of a catchment may vary with catchment size. The behaviour 

of flood and their frequencies of occurrence in large catchments is found notably different 

than that of smaller catchments (Haddad, 2013). ARR 2019 Book 3 (Ball et al., 2019) 

recommended to select small to medium sized stream gauging catchments with a maximum 

catchment area of 1 000 km2 for RFFA; however, for at-site FFA, there is no such limit.  

 

In the present study, the Brisbane River catchment in Queensland has been selected as the 

study area since it is one of the most flood affected areas in Australia.  

 

The Brisbane River catchment is situated in the southeast corner of Queensland. It extends 

from Great Dividing Range at upstream up to Moreton Bay at downstream. The catchment 

area, including the Brisbane River and its tributaries, the Lockyer Creek and the Bremer 

River is 13,570 km2 of which major percentage of area is rural (van den Honert and 
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McAneney, 2011). Its climate is sub-tropical, with average annual rainfall being 1500 mm 

(Weber, 2018), mostly as a result of intense summer storms. 

 

The Brisbane River catchment has different types of land uses. The upstream part of the 

catchment is mainly rural and downstream is urban. Majority of catchment is rural with forest 

and grazing land. Urban area of catchment has number of towns including Brisbane city, 

Toogoolawah, Ipswich, Crows Nest, Rosewood, Forest Hill, Blackbutt, Laidley, Gatton and 

Woodford. Brisbane city is the largest town and is situated on the Brisbane River floodplain. 

Brisbane city has population more than two million and it is experiencing a fast population 

growth.  

 

The Brisbane River catchment drains to Moreton Bay. The economy of the region and the 

lifestyle of its population revolve greatly around the Bay. Brisbane is the only major city in 

the world within sight of which 700-900 dugong graze on seagrasses. Internationally 

acknowledged sites for migratory birds are also found on the Bay (Weber, 2018). 

 

The Brisbane River catchment has number of sub-catchments including Stanly River 

catchment, Upper Brisbane River sub-catchment, Lockyer Creek sub-catchment, Bremer 

River sub-catchment, Purge Creek sub-catchment, Warril Creek sub-catchment and Lower 

Brisbane River sub-catchment. Among these, the Upper Brisbane River sub-catchment is the 

largest sub-catchment with an area of 5,645 km2. One of the major waterway related 

problems in this catchment is flooding, as 80 km of the river’s lower ranges are prone to 

flooding, and since 1840 Brisbane experienced 11 major floods. The study area along with 

the seven main Brisbane River sub-catchments is shown in Figure 3.1. Table 3.1 shows the 

area of these sub-catchments. 
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Figure 3.1: Brisbane River catchment (study area) (Jordan et al., 2014; Seqwater, 2013) 
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Table 3.1: Area of elected catchments 

Catchment 
Area  

(km2) 
Stanley River to Somerset Dam 1,324 

Upper Brisbane river to Wivenhoe Dam 5,645 

Lockyer Creek to O’Reilly’s Weir 2,964 

Bremer River to Walloon 634 

Warrill Creek to Amberley 902 

Purga Creek to Loamside 209 

Lower Brisbane River 1,855 

 

 

The Brisbane River has a long history of flooding. The 1974 and 2011 flood events of this 

River system caused extensive damage (Hossain, 2019). The main tributaries of the upper 

Brisbane River are Emu Creek, Cressbrook and Cooyar Creek, and have headwaters in the 

Great Dividing Range. The Cooyar Creek is the most northerly of the upper Brisbane River 

tributaries and tends to have the lowest annual rainfalls recorded within the catchment. The 

Stanley River is the major tributary of the Brisbane River that flows westwards. Warrill 

Creek is main tributary of the Bremer River. The lower reaches of the Bremer River flow 

through the City of Ipswich. With a total area of 2 600 km2, Lockyer Creek is the largest 

tributary of the Brisbane River. Figure 3.2 shows major rivers/creeks within Brisbane River 

catchment. 
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Figure 3.2: Brisbane River catchment and its major river system (SoQ, 2017; QLD Gov., 

2017) 
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The stream gauging network used in the study is shown in Figure 3.3 and detailed in Table 

3.2. Some stream gauges have historical records extending over a period of more than ninety 

years. The majority of gauge records cover the post-1960 period. All gauges with 2011 flow 

data and a record length of at least 20 years are considered in this study. Latest continuous 

gauge recordings are collected from the Department of Natural Resources and Mines 

(DNRM) website that includes daily maximum flow and annual maximum flow time series.  
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Figure 3.3: Selected stream gauging locations 
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Table 3.2: Selected catchments with annual maximum flood record lengths 
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3.2.2 Record Length  

 

In at-site FFA, for the underlying probability distribution to have acceptable fit, the 

streamflow gauging data record length should be relatively long (Haddad, 2008). Design flow 

estimation in FFA using streamflow data with long record length has less uncertainties and 

standard errors compared to that of with shorter length (Griffis and Stedinger, 2007). 

Streamflow record length at many gauging stations is in fact not long enough for FFA. To 

compensate for this, number of gauging stations are selected in this study by compromising 

between the available number of stream gauging sites (to capture better spatial information) 

and relatively longer record length (to enhance accuracy of at-site FFA). It is not feasible to 

select only stations those have long record length, as this criterion reduces the number of 

stations greatly. For this study, all the stations within the Brisbane River catchment with a 

minimum record length of 20 years of AMF data are chosen initially. All the selected gauges 

have record of 2011 severe flood event. Altogether 26 stations are selected. The range of the 

AMF series record lengths for the chosen 26 stations is 20 to 91 years and mean of record 

length is 47 years. The flood record of the stations shows that 2011 flood event is the highest 

peak of most of the stations during the recorded data period (Hossain, 2019). Figure 3.4 

shows that AMF in year 2011 is the highest, followed by year 1974 for stations 143001C and 

AMF of other years are much less compared to the 2011 AMF.  

 

 

 

Figure 3.4: Annual Maximum Flow at station 143001C 
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3.2.3 Regulation 

 

Ideally, the selected gauging stations for FFA should not have any major flow control or 

regulation, as major flow regulation may change flow storage upstream of gauging stations. 

The presence of major flow regulation in the stream may influence the rainfall runoff 

relationship greatly. Consequently, the assumption of independence of measured flow at 

gauging stations may be violated. However, gauging stations with minor flow regulation 

including small dams for farm irrigation in their watercourses, can be chosen as this type of 

flow regulation is unlikely to have any significant impacts on higher flows at a station.   

 

3.2.4 Quality of Data 

 

In any FFA, the quality of AMF data plays a significant role in determining the accuracy of 

estimated flood quantiles. AMF series needs to be checked to ensure they are appropriate for 

FFA. This involves filling in missing data, detection of trends and shifts in data (Salas, 1993). 

All AMF data should be quality-checked before commencing FFA.  

 

The FFA assumes that the AMF events are independent. Therefore, it is important to check 

whether the successive AMF events are independent or not. This is done by checking the date 

of occurrence of successive AMF events using guideline form ARR 2019  Book 3, section 

2.3.3 (Ball et al., 2019). If the date of occurrence of an AMF event at the end of a year is 

close to the date of occurrence of next AMF event at the beginning of next year then only one 

of these two is selected.  

 

Most FFA assumes that the selected data are free from any error. Usually streamflow gauging 

authority audits quality of recorded data and assigns quality code at every station. If any 

station’s data is marked as ‘poor quality’ or any other comments related to poor data quality, 

then that station’s data need to be checked properly before selecting for FFA. After detail 

assessment, if the data are considered to be of low quality then that station is excluded from 

present FFA study. 
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3.3 Filling Missing Records 

 

Flood events may damage streamflow measurement stations. Sometimes data recording 

device may have mechanical or electrical failure during storm events. For these or for other 

reasons, it is usual that some gauging stations may have missing records in streamflow data 

series. One of the preliminary steps when preparing data for FFA is dealing with this issue. 

Although streamflow time series records for FFA are assumed to be independent events, 

however missing records can cause loss of significant information in data series and can bring 

unreliability in data series and ultimately increase uncertainties in FFA. Filling up gaps in 

AMF series appropriately provides more accurate information of AMF data series at a given 

site. Filling missing records is one of the elementary steps in any FFA. Infilling of missing 

flow data can be accomplished through a range of techniques. This includes different 

interpolations techniques or some types of statistical analysis. The types of appropriate 

method to be used for filling record in streamflow time series data depend on many factors 

including season of missing data period, length of missing data period, regional climate 

condition of the catchment, characteristics of available data and availability of data in nearby 

stations (Gyau-Boakye and Schultz, 1994).  

 

If nearby other stations have data during the missing period of concerned station, the missing 

data can be filled up using weighted average approach (Wallis et al., 1991; Hirsch, 1979).  

One of the weighted average approach is to find the ratio of average flow of neighbouring 

stations and average flow of stations having missing records or to use the ratio of drainage 

area of neighbouring station and the stations having the missing record (Tencaliec et al., 

2015). 

 

Woodhouse et al. (2006) and Rahman et al. (1997) recommended regression analysis to 

reconstruct missing data. The study on filling missing time series data records found that 

usage of simple models like regression is sufficient (Gyau-Boakye and Schultz, 1994).  One 

of the commonly adopted methods of filling missing records is by correlating available 

records of common period between a neighbouring station and the target gauging station 

through linear regression method. Relatively more complex method is correlating available 

records of common period among number of neighbouring gauging stations and the target 

station through multiple regression techniques. These methods can be utilised to fill a few 

missing records, which increases the number of data records for a station having missing 
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records and can provide better estimates of means and variances (Stedinger et al., 1993). In 

this study, a correlation is established between available records covering a common period 

of one or more neighbouring stations to estimate the missing data points. 

 

3.4 Checking for Outliers in the Data 

 

Outliers may be present in any AMF data series. An outlier is an observation/record in a data 

series that deviates considerably from the majority of the data in the series. There are several 

reasons of presence of outliers in time series data. These may include error in recording data 

due to malfunction or damage of recording instruments, error in calibration or installation of 

recording equipment, or error in data collection process. Outliers in data series cause 

problems to fit probability distribution model to that data series (Haddad, 2008). 

Identification of low outlier and their treatment are important issues in FFA, as the estimate 

of extreme flood quantiles can be heavily affected by such observations. Outliers can be low 

outliers or high outliers. Therefore, it is very important to identify and treat low outliers in 

hydrological time series data before using for FFA (Lamontagne et al., 2013). Identifying 

potentially influential low flows (PILFs)/outliers becomes a large concern when the flow data 

series is used to fit the probability model in FFA (Rahman et al., 2014b). In the analysis, if a 

data point is detected as a possible outlier, it should be checked whether there is an error with 

the data.  

 

There are no specific criteria to detect and treat outliers in flow data series (Jackson, 1981). 

Most of the methods available for detecting and treating outliers are statistical and they 

require hydrological and mathematical judgement for sensible application (Haddad, 2008). 

Various methods are used in past to detect and treat outliers in AMF flood data series. The 

potentially influential low flows (PILFs) in data series can be detected by Grubbs-Beck test 

with one sided 10% significance level (Grubbs and Beck, 1972). A sequential two-sided 

outlier test formulated from generalisation of Grubbs (1969) test for outliers was proposed by 

Rosner (1975, 1983). ARR 1987 (I. E. Aust., 1987) suggests a method that requires an 

adjustment for skew. The FFA method in Bulletin 17B (USDIGS, 1981; IACWD, 1982) is 

widely used as well. Rao and Hamed (2000) suggest using the G-B (Grubbs and Becks, 1972) 

method to detect outliers.  
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If is mean and s is SD of the natural logarithms of AMF data then xH and xL are calculated 

as follows (Haddad, 2008): 

 

𝑥𝐻 = 𝑒
(𝑥 ̅+𝑘𝑁𝑆)                             (3.1) 

𝑥𝐿 = 𝑒
(𝑥 ̅−𝑘𝑁𝑆)                             (3.2) 

 

Where, kN is the G-B test statistic, its value depends on sample size and significance levels 

used. If observed sample data magnitude is higher than xH then it is considered high outliers, 

and if it is lower than xL then it is considered low outliers (Haddad, 2008). 

 

The multiple Grubbs-Beck (MGB) test was recommended in the updated version of Bulletin 

17B, also known as “Bulletin 17C” (Rahman et al., 2014b).  The basic relationships required 

to develop an acceptable MGB test are provided by Cohn et al. (2013).  

                         

FLIKE software has implemented the MGB test to detect outliers in AMF data series. This 

MGB test in FLIKE software has been used in this study for identification of outliers. 

 

The outlier detection results are stated below:   

 

• The maximum percentage of low outliers found in the AMF data at a single station is 

41%. 

• Maximum low outliers were detected during dry years, especially years with severe 

drought. During droughts, the maximum flows occurring in many rivers are actually 

base flow, which in unrelated to flood event. Rahman et al. (1997) found similar 

results. 

 

The identified outliers in AMF data are marked as censored flows in FFA in FLIKE.  

 

In summary, the AMF data of the 35 stations were collected; these data were checked for data 

quality, gaps were filled, outlier points were censored, and trends and shifts in the AMF data 

series were tested. Finally, twenty-six (26) stream gauge stations are selected for this study 

where each station has at least 20 years of AMF data.  

x
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3.5 Trend in Annual Maximum Flood (AMF) Data 

 

The presence of significant positive or negative trends in the observed AMF data makes the 

data non-stationary.  

 

AMF data for FFA is generally assumed to be stationary, consistent and homogeneous i.e. 

records follow IID assumption. AMF data should be screened by testing for decreasing or 

increasing trends, and for presence of a shift series. The method of trend analysis adopted in 

this study is discussed in Chapter 4. 

 

3.8 Chapter Summary  

 

The Brisbane River catchment is selected for this study. The AMF data as well as daily 

maximum flow data from the stream gauging stations within this catchment are obtained 

from the DNRM website. The gaps in the data are filled and outliers are identified.  Stations 

with poor data quality are excluded. Altogether 26 stations are finally identified to use for 

FFA in this study.  

 

The next chapter discusses the methodology adopted in this study.
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 : METHODS ADOPTED IN THIS STUDY  
 

4.1 General 

 

Methodology used in this study is discussed in this chapter.  Most AMF data series generally 

show skewness. Therefore, many skewed distributions are used in FFA. A suit of statistical 

approaches is adopted in this study. It is also possible to transform the skewed data so that the 

skew was approximately zero. This approach has been explored by Kuczera (1983); however, 

this approach is not adopted in this study. 

  

4.2 Methodology 

 

The initial step involved collection and review of available flow data from all the sources as 

presented in Chapter 3. According to Department of State Development, Infrastructure and 

Planning/Department of Natural Resources and Mines, Queensland (DSDIP/DNRM, 2015), 

for FFA, gauge data should meet following conditions: 

 

➢ Each gauging site should have reasonable long period of continuous record. The 

minimum record length for each gauging site considered in this study is 20 years.  

➢ The recorded data should be homogeneous i.e. data should reliably indicate all floods 

within the period of record. 

➢ The flood flow estimates method (rating curve or other method) should be reliable. 

 

To identify the best-fit PD for the Brisbane River catchment, AMF data series is used instead 

of POT series.  

 

Following steps are considered in the methodology: 

 

a. selection of candidate PDs; 

b. selection of suitable parameter estimation methods; 

c. use of statistical hypothesis test to assess goodness-of-fit (GoF) of the 

hypothesised PDs to the AMF data at a selected site; 
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d. evaluation of the selected probability distributions with respect to right tail 

behavior 

e. graphical analysis i.e. visual plots of selected PD and AMF data series. The 

flowchart in Figure 4.1 depicts the main procedure carried out for at-site FFA and 

evaluating flood quantiles. 
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Figure 4.1: Flood frequency analysis (FFA) method adopted in this study. 
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The techniques for evaluating the suitability of distributions can be divided into two groups 

(Cunnane, 1989): (a) tests of descriptive ability, which seeks from some known PDs one 

which fits the observed data, judged best from graphical analysis, GoF (GoF) tests, and tests 

based on skewness, and (b) tests of predictive ability, which examines the statistical 

behaviour of candidate distributions, especially the sampling distribution of coefficient of  

variation and skewness, and standardised largest sample values, to determine their capability 

to generate random samples with same statistical characteristics as the AMF data series, and 

this is done by methods such as split sample and robustness tests (Haddad and Rahman, 

2008).  

 

To assess the suitability of selected distributions, three different statistical GoF tests are 

applied in this study to assess how good the AMF data fit to a given distribution and then 

compared with the graphical method.  

 

In the graphical method, distribution graphs with result from GoF tests help to identify best 

fit PD. The graphical approach is subjective and depends on user. This approach uses various 

graphs to visualise data and decide the best fitting model. On the other hand, the GoF tests 

are outcome of statistical calculation and the results are independent of the user (assuming the 

tests are carried out correctly).  

 

All commonly available GoF tests tell mathematically whether a particular PD fits well for a 

given data set or not. The results of these tests differ depending on the formulation and how 

they are performed. Different GoF test results sometimes differ among themselves. For 

example, the Anderson-Darling GoF test find that the LP3 distribution can be the best-fit for 

a particular AMF series, but the Kolmogorov-Smirnov test may show that LP3 is the second 

best-fit for the same data series.  In such a situation, visual inspection of graphs may help to 

decide on the best-fit PD.  

 

This study used FLIKE and EasyFit, two well-known statistical software for FFA (Kuczera 

and Franks, 2016). The FLIKE software was developed by Professor George Kuczera, 

University of Newcastle and has been recommended in the ARR 2019 guidelines. FLIKE has 

the advantage of using automated Bayesian fitting techniques. In Bayesian techniques, 

properties of population or PD are obtained from sample data using Bayes’ theorem. The 

mathematical formulations of the Bayesian procedure are available in Kuczera (1999). 
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Bayesian statistics use prior information for model parameters with a PD and then update this 

prior information with current recorded data to obtain posterior PD. Bayesian approach of PD 

is more useful when observed data length is smaller. 

  

FLIKE supports five commonly adopted PDs, i.e. LP3, LN, Gumbel, GP, GEV and a number 

of parameter estimation methods. FLIKE has the capability to incorporate prior or regional 

information and to address uncertainty in stage-discharge and to evaluate parameter uncertainty 

found from regional information (Rahman et al., 2014a). This software also has the option to 

select threshold values for censoring. However, FLIKE does not have any GoF test. In this study 

updated version of FLIKE (2017) is used. Identification of PILFs was done manually using GB 

test in the older version of FLIKE. The new version of FLIKE has built in MGB test that can 

recognise multiple PILFs in the AMF series (Rahman et al., 2014a). 

 

EasyFit is statistical data analysis and simulation tools that enable fitting and simulation of 

statistical PDs with sample data, choosing of the most appropriate PD, and use of the 

obtained result of the analysis to make a better decision. The EasyFit has number of 

parameter estimation methods such as MLE for LN, MoM for Gumbel and LP3 distribution 

and for GP and GEV distributions Method of L-moments is used for estimation of the 

distributional parameters. EasyFit has three GoF tests which help to select the best-fit 

distribution at a given station.  

 

A number of FFA studies have been completed using EasyFit software. For example, Singo 

et al. (2012), Atroosh and Moustafa (2012), Kamal et al. (2017), and Sarauskiene and 

Kriauciuniene (2011). Singo et al. (2012) applied this software for FFA in South Africa. 

Kamal et al. (2017) used this software for FFA of the Ganga River at Haridwar and 

Garhmukteshwar in India. 

 

It should be noted that FLIKE does not have any GoF test. Hence, the alternative software 

EasyFit, which has three GoF tests, has been adopted in this study to assist in selecting the 

appropriate PD for a given catchment. 
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4.3 Probability Distributions Used in This Study 

 

In this study; based on a broad literature survey, five candidate PDs are selected i.e., LN, 

Gumbel, LP3, GEV and GP. Details of these statistical distributions are available in EasyFit 

and FLIKE Manual (Drokin, 2018; Mathwave, 2017; FLIKE, 2017). Both FLIKE and 

EasyFit software are used in this study. Both the software includes the selected five PDs.  

 

The probability density functions (PDF) for the selected PDs are described below (FLIKE, 

2017). 

 

4.3.1 Lognormal (LN) Distribution 

 

The LN PD assumes that the logarithm of random sample is normally distributed. Since the 

logarithm of any variable exists only when the variable itself is a real positive number, 

therefore, to apply LN distribution, the quantity of interest must be real positive value. It is a 

special case of the LP3 model as described below.   

 

This distribution is generally well-behaved for a wide range of flood data. FLIKE software 

uses MoM for estimation of most probable parameter to the selected AMF data for this 

distribution. EasyFit software uses the MLE for parameter estimation of the LN PD. 

 

LN probability model has the PDF: 

𝑓(log𝑒 𝑥 |𝜇, 𝜎) =  
1

𝜎√2𝜋
exp (−

(log𝑒 𝑥−𝜇)
2

2𝜎2
) , −∞ < log𝑒 𝑥 < ∞ (4.1) 

 

where x is the random variable (AMF in this study),  and  represents location and scale 

parameters respectively (FLIKE, 2017). 

The first three moments i.e. mean, variance and skewness of loge x are given by (FLIKE, 

2017): 

Mean (logex) =                                                                                                           (4.2) 
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Variance (logex) = 2                                                                                                   (4.3) 

Skew (logex) = 0                                                                                                           (4.4) 

 

Skew of LN distribution is zero. When skew become non-zero then it becomes LP3 

distribution. Detail explanation of LN distribution is available in FLIKE manual (FLIKE, 

2017). 

 

4.3.2 Log Pearson Type III (LP3) Distribution 

 

LP3 is widely used PD for FFA. In many studies around the world it was found that this 

distribution fits observed flood data relatively better than many other distributions. If the 

skew of the logarithm of variable (logex) become zero, the distribution becomes LN 

distribution. LP3 is a three-parameter distribution, i.e. location (𝜇), scale (𝜎) and shape (𝛾). 

EasyFit software uses the MoM for parameter estimation of LP3 distribution. 

 

The PDF of LP3 distribution is given by (FLIKE, 2017): 

 

𝑓(log𝑒 𝑥 |𝛼, 𝛽, 𝜏) =  
|𝛽|

𝜏(𝛼)
[𝛽(log𝑒 𝑥 − 𝜏)]

𝑥−1exp[−𝛽(log𝑒 𝑥 − 𝜏)]   

for 𝛽 > 0, 𝑥 > 𝜏;  𝛽 < 0, 𝑥 < 𝜏                                                                                         (4.5) 

Where, x is random variable and  () is the gamma function.   

The mean, variance and skewness moments of loge x are estimated as (FLIKE, 2017): 

First moment, Mean (logex) =  + 



                                                                            (4.6) 

Second moment, Variance (logex) =  



                                                     (4.7) 

Third moment, Skew (log𝑒 𝑥) = {

2

√𝛼
,   if 𝛽 > 0

−
2

√𝛼
,   if 𝛽 < 0

                                          (4.8) 
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Further explanation on LP3 distribution can be found in FLIKE manual (FLIKE, 2017). 

 

4.3.3 Gumbel Distribution 

 

The Gumbel PD is two-parameter extreme value type I (EV1) distribution. This distribution 

can have two forms i.e. highest or maximum extremes and smallest or minimum extremes. 

For FFA, Gumbel maximum is used. The location and scale parameters of this distribution 

are the mean and the standard deviation respectively. The Gumbel PD is a special type of 

GEV distribution. The Gumbel distribution has fixed shape, skewed to the left. EasyFit 

software uses MoM for estimation of its location and scale parameters. The PDF and CDF of 

Gumbel probability model are (FLIKE, 2017): 

PDF:   𝑓(𝑥|𝜏, 𝛼) =
1

𝛼
exp [−

(𝑥−𝜏)

𝛼
]  exp {−exp [−

(𝑥−𝜏)

𝛼
]}                 (4.9) 

 

where x is the random variable,  and  are location and scale parameters respectively. 

CDF: 𝑓(𝑥|𝜏, 𝛼) = exp {−exp [−
(𝑥−𝜏)

𝛼
]}                                                           (4.10) 

Mean, Variance and Skew are: 

Parameter Mean (x) =  + 0.5772                                                                       (4.11) 

Parameter Variance (x) =                                                                               (4.12) 

Fixed Skew (x) = 1.1396                                                                                         (4.13) 

  

EasyFit allows automatic or manual fitting of the Gumbel maximum distribution, including 

other distributions. FLIKE software uses MoM method for estimation of most probable 

location () and scale ( ) parameters, fitted to the selected AMF data for this distribution.  

Experience indicates that the Gumbel is a well-behaved distribution in most FFA studies 

(FLIKE, 2017). Detail explanation of Gumbel distribution is given in FLIKE manual 

(FLIKE, 2017).   

 

22

6
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4.3.4 Generalised Pareto (GP) Distribution 

 

The GP distribution is a 3-parameter (location, scale, and shape) extreme value continuous 

probability model with fat tails.  

The PDF of GP distribution is: 

 

𝑓(𝑥|𝛼, 𝜅) = {

1

𝛼
[1 − 𝜅

𝑥

𝛼
]

1

𝜅
−1

, if 𝜅 < 0 and 𝑥 ≥ 0 or 𝜅 > 0 and 0 ≤ 𝑥 ≤
𝛼

𝜅 
1

𝛼
exp (−

𝑥

𝛼
),  if 𝜅 = 0 and 𝑥 ≥ 0

 `   (4.14) 

 

Where, x is the random sample variable,  is scale, and  is shape parameter.  The CDF of 

GP distribution is: 

 

𝑓(𝑥|𝛼, 𝜅) = {
[1 − 𝜅

𝑥

𝛼
]

1

𝜅
−1

, if 𝜅 < 0 and 𝑥 ≥ 0 or 𝜅 > 0 and 0 ≤ 𝑥 ≤
𝛼

𝜅 

1 − exp (−
𝑥

𝛼
),  if 𝜅 = 0 and 𝑥 ≥ 0

     (4.15)                                                                                                                 

 

Its first three moments mean, variance and skew are: 

Mean(𝑥) =
𝛼

1+𝜅
, 𝜅 > −1                                                                                       (4,16) 

Variance (𝑥) =  
𝛼2

(1+𝜅)2(1+2𝜅)
,        𝜅 > −

1

2
                                                                   (4.17) 

Skew (𝑥) =  
2(1−𝜅)√(1+2𝜅)

(1+3𝜅)
,        𝜅 > −

1

3
                                             (4.18) 

 

 

The GP PD becomes two-parameter exponential distribution if shape parameter  is zero and 

 has an upper bound when it is positive.  

 

EasyFit allows automatically or manually fitting the GP distribution, including other 

distributions. FLIKE use MoM for estimation of scale parameter  fitted to the gauged data 
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with the shape parameter  fixed at zero. This strategy is robust with the flow’s upper bound 

pushed to infinity. Experience indicates the GP distribution is well-behaved in FFA studies 

(FLIKE, 2017). Detail explanation of GP is given in FLIKE manual (FLIKE, 2017).   

 

4.3.5 Generalised Extreme Value (GEV) Distribution 

 

The GEV distribution is an extreme value probability model. In this distribution, three 

different extreme value distributions, i.e. EV1, EV2 (Frechet) and EV3 (Weibull) are 

combined to a single function. The location, scale and shape are 3 parameters of GEV 

distribution. The location parameter explains the left or right shift/movement of the 

distribution on horizontal axis relative to the standard normal distribution. For standard 

normal distribution the location parameter is zero. The scale parameter shrinks or stretches 

out the PD function. For standard normal distribution scale parameter is one standard 

deviation. The more the value of scale parameter the flatter is the distribution curve. The 

shape parameter defines the general shape of the distribution. This shape does not change 

with the change of location or scale parameter. The shape parameter describes the tail 

behaviour of the distribution. 

 

The GEV probability model has the PDF: 

 

𝑓(𝑥|𝜏, 𝛼, 𝜅)

=

{
 
 

 
 
exp{− [1 −

𝜅(𝑥 − 𝜏)

𝛼
]

1
𝜅
} [1 −

𝜅(𝑥 − 𝜏)

𝛼
]

1
𝜅
−1

,   when 𝜅 > 0, 𝑥 < 𝜏 +
𝛼

𝜅
;when 𝜅 < 0, 𝑥 > 𝜏 +

𝛼

𝜅

1

𝛼
exp [−

(𝑥 − 𝜏)

𝛼
] exp {−exp [−

(𝑥 − 𝜏)

𝛼
]} ,   if 𝜅 = 0

 

                                                                                                                                            (4.19) 

where   and  are scale, location and shape parameters, respectively. It’s CDF is: 
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𝑓(𝑥|𝜏, 𝛼, 𝜅)

=

{
 
 

 
 
exp{− [1 −

𝜅(𝑥 − 𝜏)

𝛼
]

1
𝜅

} ,   when 𝜅 > 0, 𝑥 < 𝜏 +
𝛼

𝜅
;when 𝜅 < 0, 𝑥 > 𝜏 +

𝛼

𝜅

exp [−
(𝑥 − 𝜏)

𝛼
] ,   if 𝜅 = 0

 

                                                                                                                                 (4.20) 

Its mean and variance are respectively: 

Mean (𝑥) =  𝜏 +
𝛼

𝜅
[1 − Γ(1 + 𝜅)],   𝜅 > −1                                                               (4.21) 

Variance (𝑥) =  
𝛼2

𝜅
[Γ(1 + 2𝜅) − [Γ(1 + 𝜅)]2],   𝜅 > −

1

2
                                                (4.22) 

 

 

With different value of shape parameter, GEV distribution becomes three different type of 

distributions. When no shape is considered i.e. when  = 0, it becomes extreme value type1 

(EV1: Gumbel), when  > 0, it becomes extreme value type 2 (EV2: Frechet) and when  < 

0, it becomes extreme value type 3 (EV3: Weibull) distribution (Millington et al., 2011). 

FLIKE starts the search for the most probable parameters by setting the shape parameter  to 

zero and using the Gumbel MoM estimates of location () and scale () parameters, fitted to 

observed data series.  This approach is very sound with the flow’s upper bound pushed to 

infinity.  Experience indicates the GEV is well-behaved in FFA (FLIKE, 2017).  

 

In the present study, every candidate distribution is fitted to at-site AMF data of all the 

selected stations. Using FLIKE, for each of the distributions, flood quantiles (QARI) are 

obtained for ARIs of 2, 5, 10, 20, 50, 100 and 200 years. These estimates are referred to as 

“distributional estimates”. 

 

 4.4 Parameter Estimation 

 

After selection of PD, parameters estimation for each selected PD is the next step in FFA. 

Various parameter estimation methods are available to fit a PD to AMF data. As mentioned 
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earlier, both EasyFit and FLIKE software are used in this study. This software uses different 

parameter estimation methods. 

  

The parameter estimation using EasyFit software (Mathwave, 2017; Drokin, 2018) is carried 

out with MoM for Gumbel and LP3 distributions, MLE for LN distribution and for GP and 

GEV distributions Method of L-moments is used. Table 4.1 summarises the PDs, parameters 

and parameter estimation methods adopted in this study.  

 

Table 4.1: Probability distributions, parameters and parameter estimation methods 

 

 

FLIKE software uses Bayesian inference for parameter estimation. This method can be 

viewed as a generalisation of Maximum Likelihood (ML). The likelihood function is the 

main component in Bayesian analysis. It is to be mentioned that likelihoods are attached to 

hypotheses and probabilities are attached to results. Likelihood function tells about the 

parameters and the prior distribution. This prior distribution and likelihood are coupled to 

find posterior distribution.   FLIKE software also uses the LH moment. In this study, LP3 and 

LN and Gumbel distributions are fitted using the Bayesian inference method, whereas GEV 

and GP distributions are fitted using the LH moment (with H = 1) method. When H = 0, the 

LH moment becomes L moment. When H > 1 is used, higher floods are given more 

importance in distributional fitting. Hence, for the LH moment, censoring of data may not be 

necessary. 
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4.5 Selection of Best-fit Probability Distribution (PD) and Goodness-of-Fit 

(GoF) Tests 

 

Statistical hypothesis tests are used to evaluate statistical GoF of hypothesised PDs to AMF 

data series. Most of the available statistical hypothesis tests are formulated on normality 

assumption. The normality tests assume that the observed sample data follow normal 

distribution and the populations from where data sample comes are also assumed to follow 

normal distribution. Test of normality along with different probability plots are used to 

verify these important assumptions of sample distribution (Ghasemi and Zahediasl, 2012).  

 

The GoF tests for normality are statistical hypothesis tests and they are applied to explain 

how good the random sample data represents a probability model with normally distributed 

population. This GoF test clarifies whether the distribution of random variable of sample fits 

a selected distribution in the population or not. Alternatively, GoF test shows how much is 

random sample data is compatible to the PD function. If the observed random data match 

properly along with the fitted probability functions, then it can be expected that a good fit is 

achieved between random sample and selected distribution. 

 

The GoF test calculates the difference between recorded random data and selected PD. This 

is called test statistics which is the function of fitted cumulative distribution function (CDF) 

and the observed sample data (Mathwave, 2017; Drokin, 2018). If this test statistic is lesser 

compared to the critical value (threshold) then the fit between measured data and PD is 

considered acceptable. The critical values are function of the observed data size and the 

significance level considered for the test. The significance level is the probability of 

rejecting the fitted distribution (null hypothesis) when the distribution is actually fits (when 

it is true) (Mathwave, 2017; Drokin, 2018). Significance levels 0.05 and 0.01 are commonly 

used in the GoF test. 

 

Different types of GoF tests are available to assess assumption of normality such as 

Anderson-Darling (A-D) test, Chi-Squared (C-S) test, and Kolmogorov–Smirnov (K-S) test 

(Ghasemi and Zahediasl, 2012). The fundamental approach of GoF tests are similar, i.e. 

these tests compare test statistics with the critical values, however each test differs from the 

other in calculating test statistic and critical value. The A-D, C-S and K-S tests are widely 

used GoF tests, either based on PDF (f(x)) or cumulative distribution functions (CDF) 

(F(x)), to identify best-fit distribution for sample.  
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The A-D test uses more weight at the distribution tails than that of K-S test. In cases with 

relatively large extremes, the A-D test is more preferable test for selection of the best fit PD 

model (Alam et al., 2018). The A-D test is refinements of the K-S test. The test is not 

calculated when a frequency variable is specified. The K-S test compares the maximum 

distance between the observed CDF value and the expected /theoretical CDF value. This test 

can be used to decide whether an observed data come from a population with a completely 

specified continuous distribution or not (Baghban et al., 2013). The advantage of the C-S 

test is that it is relatively easy to use, but it is not a very strong test.  

 

Different GoF tests may produce different outcomes, and hence more than one test should be 

adopted. In this study three different tests are adopted following the approach of Mamoon 

and Rahman (2017). 

 

EasyFit, software from Mathwave (Drokin, 2018) is used to perform GoF tests. It should be 

noted that FLIKE does not have any GoF test. Hence, the alternative software EasyFit, 

which has three of GoF tests, has been adopted in this study to assist in selecting the 

appropriate PD for a given catchment. The three GoF tests in EasyFit software are the A-D 

test, K-S test and C-S test. Once random data is loaded to the software, EasyFit fits the 

distributions and it provides tables of the test statistics and critical values at various 

significance levels (Mathwave, 2017; Drokin, 2018). The test statistics are described in 

Table 4.2. 
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Table 4.2: Details of Goodness-of-fit (GoF) tests 

GoF test 

 

Test Statistic 

 

Interpretation 

 

Kolmogorov 

-Smirnov 

 (K-S) test 
 

The K-S test uses empirical CDF and theoretical CDF to 

calculate test statistics. This test can be used to evaluate level 

of difference between theoretical continuous distribution 

being specified and observed distribution from sample data. 

The K-S test is nonparametric test and no assumption is 

required regrading distribution of sample data. Candidate 

distribution is needed to be fully specified for K-S test. The 

K-S test statistic (D) is the maximum vertical difference 

between empirical CDF (𝑃(𝑋n)) and theoretical CDF (𝐹(𝑋n)) 

and is expressed as: 

𝐷=𝑚𝑎𝑥|𝑃(𝑋n)−𝐹(𝑋n)|  

 

with, P(Xn) is empirical CDF of observed random sample of 

n ordered observations., and F(Xn) is the theoretical CDF for 

each of the ordered observations (Sharma et al., 2016).  

When test 

statistics D 

becomes 

smaller than 

the critical 

value, then 

observed 

data is 

considered 

having a 

good fit 

with the 

assumed 

distribution.  

 

Anderson-

Darling 

 (A-D) test  

 

The Anderson-Darling (A-D) test is a distribution free or 

nonparametric test.  

 

The A-D test compares expected (theoretical) CDF to an 

observed CDF. Compared to K-S test, A-D test provides 

higher weight to the tails of distribution to be fitted. The A-D 

test statistic (A2) is (Solaiman, 2011):  

 

 

Where,  

 

𝑆 = ∑
2𝑘 − 1

𝑛
[ln 𝐹(𝑌𝑘) + ln{1 − 𝐹(𝑌𝑛+1−𝑘)}]

𝑛

𝑘=1

 

 

Where, n = sample size, Y1, Y2, Y3, Y4, …, Yn are sample data 

and F = CDF (Solaiman, 2011).  

 

If test 

statistics 

(A2) is 

higher than 

critical 

value, the 

null 

hypothesis 

is rejected. 
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Chi-Squared 

(C-S), (χ2) 

test  

 

The C-S test is a nonparametric test.  

In this test observed data are grouped into number of bins (k). 

Based on the size of sample data, the number of bins can be 

calculated using empirical expression where  

𝑘 = 1 + log2𝑁 

N is the size of sample. The C-S test statistic is: 

 

χ2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=1

 

 

𝐸𝑖 = 𝐹(𝑥2) − 𝐹(𝑥1) 

where, Ei is expected frequency for bin i, Oi is observed 

frequency for bin i (Sharma et al., 2016).  

where, x1, x2 are the limits for bin i, F is CDF of expected 

distribution.  

 

The null 

hypothesis is 

rejected when 

test statistics 

is higher than 

the critical 

value i.e. 

statistically 

significant 

difference 

exists 

between 

observed and 

expected 

value.  

 

4.6 Graphical Method of Selecting the Best-fit Probability Distribution 

 

The graphical method is a simple technique that can be used to select the best-fit PD. The 

distribution graph is a visual way to identify PD that fits AMF data. Graphical test or a 

visual inspection method assesses how well the PD fit the observed sample visually. This 

method plots histogram, probability and quantiles from observed sample with those against 

theoretical (fitted) distribution. This method is generally not reliable, and this method should 

not be used alone to conclude that the expected PD fits the observed sample data since 

conclusion from visual plots is more subjective. Graphical methods are typically more 

useful when the observed sample size is very large. When observed sample size is large, 

interpretation from graphical plots including histogram (frequency distribution graph), 

quantile-quantile (Q-Q) plot, probability-probability (P-P) plot, PDF graph, CDF graph, 

stem-and-leaf plot, box plots and FLIKE probability plot are useful in selecting the best-fit 

PD.  
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The Q-Q plot is the plot of observed sample quantile in one-axis and calculated theoretical 

distribution quantile (inverse of CDF) in another axis. The Q-Q plots are used to compare 

the selected distribution to sample data which helps to assess level of GoF to the model. 

Actually, Q-Q plot compares sample quantiles with the quantile function for the distribution 

at the plotting positions. Commonly used plotting position formula is:  

 

pi;n = 
𝑛−𝑎

𝑁+1−2𝑎
                  (4.23)

            
 

Where N is observed sample size, n is rank of the sample data (n = 1, 2, 3, …., N) and a is a 

constant. 

 

When a = 3/8 this formula is called Blom’s plotting position, when a =0.44 this is called 

Gringorten’s plotting position and when a = 0.40 this is called Cunnane’s plotting position. 

Blom’s plotting position is suitable for Normal, Gamma, 2-parameters LN, 3-parameter LN 

and LP3 distributions, and for Gumbel and Weibull distributions, Gringorten’s plotting 

position and Cunnane’s plotting position are suitable for GEV and Log-Gumbel 

distributions (Kim et al., 2008, Vogel and Kroll, 1989; Cunnane, 1978). 

 

In P-P plot, theoretical CDF values are plotted against cumulative probability of observed 

sample i.e. empirical CDF values. This plot displays how good a candidate distribution fits 

the sample data. The PDF graph plots histogram (frequency distribution plot) of sample data 

and theoretical PDF of the candidate distribution. The shape of the sample data can be clearly 

visualised from PDF graph. The histogram is the plot of the observed sample data and their 

frequency of occurrence and this provides a visual judgment on location, scale and shape of 

distribution (Ghasemi and Zahediasl, 2012). The CDF graph plots empirical CDF (derived 

from sample data) and theoretical CDF of the candidate distribution. The plot of CDF graph 

is helpful to decide how well the sample data fit a distribution. 

 

In EasyFit, the P-P, Q-Q, PDF, CDF and probability difference plots are used to assess 

visually how well a candidate PD fits the AMF data at a given station. FLIKE probability 

plot shows observed AMF data and fitted PD, which helps to assess visually how well a PD 

fits the observed AMF data at a given station (Hossain, 2019). The procedure is repeated for 

each of the candidate PDs for each of the selected stations using EasyFit and FLIKE. 
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4.7 Flood Quantile Estimation 

 

In this study, flood quantiles are estimated for each of the sites using each of the five PDs. 

Flood quantiles are estimated using FLIKE software for different ARIs (2, 5, 10, 20, 50, 100 

and 200 years) along with 90% confidence limits. 

 

4.8 Sensitivity of Quantile Estimation on Maximum Recorded Flow  

 

The record length of AMF data and maximum value of the AMF data series can influence 

the selection of the best-fit PD. In general, the record length of flood data is relatively small 

compared to the required average recurrence intervals (ARIs) in practice. For this reason, 

uncertainties are introduced in quantile estimation when the fitted PD is used to extrapolate 

to large ARIs (e.g. ARIs  of 100-year). The fitted PD with small record length of flood data 

can have a large effect on quantile estimates especially when ARIs are greater than 50 years. 

When the observed data length is increased by few more years at a given location, the fitted 

PD with few more flood data can be different than the fitted PD with smaller record length 

(Boughton and Hill, 1997). The sensitivity of the selection of the best-fit PD and the flood 

quantile estimation is tested in three different ways, i.e. (a) remove the highest flow record 

from each of the site’s AMF data series, (b) remove the first and second highest flow 

records and (c) remove the first, second and third highest records. For each of above 

scenarios; parameter estimation, GoF tests, selection of the best-fit PD, and quantile 

estimation are conducted. 

 

4.9 Uncertainty Analysis using Bootstrapping and Monte Carlo Simulation 

Methods  

 

Flood quantile estimation using by FFA or RFFA is subject to uncertainties that should be 

estimated (Arnaud et al., 2017). Uncertainties in flood quantile estimation may exist due to 

error in input data, due to inability of mathematical model to represent physical hydrological 

process accurately (i.e. modelling error), sampling error comes from accuracy of sample to 

represent population, and error due to change in climate that affect hydrological process. 

Uncertainty in estimation is usually expressed in terms of confidence level. The 
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hydrological process is not linear and extreme flow events from this nonlinear hydrological 

process show higher uncertainties and use of these flow events for estimation of flood 

quantile increases uncertainties on estimated flood quantiles (Arnaud et al., 2017).  

 

Uncertainty in flood quantile estimates may arise due to the following issues: 

 

• Record length of observed flood data. 

• Error form instrument used to measure flood data. 

• Gaps in observed flood data. 

• Human error while entering and processing flood data.  

• Insufficient number of stream gauging stations within the region. 

• Choosing of AMF or PDS data series in modelling. 

• Serial and interstation correlations of the flood data. 

 

Uncertainty in flood quantile estimates using non-stationary FFA may result from: 

• Trend analysis methods. 

• Data length. 

 

Different methods are used for uncertainty analysis including statistical and simulation 

methods based on resampling processes (Arnaud et al., 2017). A detailed review on 

uncertainty analysis was done by Melching (1995). Some approaches used to understand and 

quantify uncertainties are: 

 

• Bootstrapping that allows resampling of dataset (Efron and Tibshirani, 1993; Efron and 

Tibshirani, 1994); 

• Bayesian approaches that continuously updates the probability of a hypothesis as new 

information becomes available (Renard et al., 2010);  

• Monte Carlo simulation (Baltussen et al., 2002); and 

• Cross validation techniques (Mamoon and Rahman, 2019; Haddad et al., 2013). 

 

4.9 1 Monte Carlo Simulation  
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Analysis of probabilistic uncertainty using Monte Carlo simulation has been well explained 

in Baltussen et al. (2002). Sensitivity of any hydrological model is commonly assessed using 

Monte Carlo simulation techniques. This technique performs repeated simulations using 

randomly generated parameter combinations (Harlin and Kung, 1992). Monte Carlo 

simulation uses random samples in groups as inputs and evaluates deterministic model 

through iteration. This technique is suitable to assess model impacts and evaluate 

uncertainty in parameter estimation which is generally expressed as confidence limits on 

estimates (Al Mamoon and Rahman, 2014). Random data generated from probability 

distribution may be used as inputs in Monte Carlo simulation. The Monte Carlo simulation 

results can be plotted as a histogram or error bars or as confidence limits (Al Mamoon and 

Rahman, 2014). 

 

Steps in a typical Monte Carlo simulation technique for assessing uncertainty are presented 

below (Al Mamoon and Rahman, 2014):  

 

• Select PD for each of the input variables and estimate distributional parameters and 

correlation structure among the input variables; 

• Generate 10,000 values of the input variables from the specified PDs and correlation 

structure; 

• Select model to convert each of the sets of the input variables to output; 

• Create 10,000 model outputs and save model outputs for further analysis; 

• Repeat the above procedures many times until the total number of simulations is 

completed or the convergence criterion is met; and 

• Analyse the results to derive expected value of the output and confidence limits. 

 

4.9 2 Bootstrapping  

 

Bootstrapping is a resampling technique that uses an observed sample to create many 

simulated samples. Nonparametric bootstrapping can be used to compute standard error, 

build confidence intervals, and perform hypothesis testing for different types of sample 

statistics (Efron and Tibshirani, 1993). Bootstrapping does not require normality assumption 

to be satisfied like many traditional statistical methods (Tung and Wong, 2014). 
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The following basic steps may be used for bootstrapping (Al Mamoon and Rahman, 2014): 

 

▪ Generate numerous (~10,000) samples by randomly drawing samples with replacement 

from the AMF data set at a station; 

▪ Calculate statistics of interest from the generated samples; 

▪ Create sampling distribution of the statistic; and 

▪ Find standard deviation of the statistic. 

 

In FFA, flood quantiles can be estimated from the selected PD using mean, standard 

deviation and skewness of the AMF data. If a range of mean, standard deviation and 

skewness values is generated, a range of flood quantiles for a given ARI can be estimated. 

With a range of quantile values, the uncertainty in the estimated quantiles can be 

understood.  

 

For this study, five (5) stations where LP3 is found as the best-fit PD are selected for 

uncertainty analysis. Standard error of mean, standard deviation, skewness and correlations 

of the sample are estimated using the bootstrapping method. Then, uncertainty is examined 

using Monte Carlo simulation techniques. The procedure is explained below: 

 

• From the AMF data of a station, 10,000 samples (Q) are generated by bootstrapping. 

For each of these samples, the mean, standard deviation and skewness of the log(Q) 

values are noted. 

• The mean and SD values of the above 10,000 means are estimated. 

• The mean and SD values of the above 10,000 standard deviations are estimated. 

• The mean and SD values of the above 10,000 skewnesses are estimated. 

• The correlations of the above mean, standard deviation and skewness values are 

estimated. 

• The above values are used to fit a multivariate normal distribution to the mean, 

standard deviation and skewness values. A Monte Carlo simulation is then conducted 

to generate 10,000 sets of LP3 distributional parameters and used to estimate flood 

quantiles. These flood quantiles are arranged in ascending order and 5% and 95% 

limits are noted to obtain the 90% confidence limits for a given ARI.  
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4.10 Trend Analysis 

 

Inconsistency and non-homogeneity may exist in hydrological time series data (Yevjevich 

and Jeng, 1969) which can be viewed as trends and jumps in time series data. Inconsistency 

in data may come from systematic error while recording hydrological data at a station. This 

error may come from the instrument used for recording data or the method used for recording 

data. If there exist changes in statistical properties in the hydrological time series data, non-

homogeneity in time series is assumed to exist. Non-homogeneity in time series may arise 

preliminary from natural causes, e.g. due to climate change that alters existing weather 

patterns over time or man-made causes, e.g. land use, urbanisation, flow diversion and 

construction of dams. (Wijesekera and Perera, 2012). The presence of non-homogeneities  

and inconsistencies in data series is identified by using specific statistical tests and the result 

of these statistical tests is used to confirm the presence of trend and change points in data 

(Wijesekera and Perera, 2012). 

 

Hydro-metrological processes (also called probabilistic or stochastic process) are random 

process as the variables in hydro-metrological process (flood, rain, temperature, etc.) are 

random in nature. Hydrological variables are probabilistic as these cannot be predicted with 

certainty. A hydrological process can be considered as stationary if this process does not 

change over a period of time or if the statistical properties e.g. mean and variance of the 

hydrological data series do not change over time period. Presence of trend in hydrological 

time series is an indication that the data series may not be stationary.  

 

Many statistical tests are available to find whether a time series show significant trend and is 

non-stationary. Most of these tests usually check for the trend in statistics (e.g. mean or 

median) of the data series or check the sudden change in mean or median in the data series. A 

simple quick way to check the presence of trend in data is to divide the data series into two 

time spans and then compare the mean and variance of each time span. If these statistics 

(mean, variance) of these two sub-data series differ significantly then there may exist trend in 

the data series and the time series is likely to be non-stationary. 

 

This study considers 12 statistical tests for detecting trend, randomness or sudden change in 

the AMF data. Trend tests are conducted using the TREND software developed by eWater, 

CRC (eWater, 2018; Chiew, 2005). These statistical tests basically compare null hypothesis 
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(i.e. there is no trend in the time series data) and alternative hypothesis (i.e. there is trend in 

the time series data) (eWater, 2018; Chiew, 2005) for specified levels of error. The accepted 

level of error in a statistical test is expressed as significance level. The statistical tests within 

TREND software use 1%, 5% and 10% significance levels. It is a way of expressing change 

of difference of test statistics under alternative hypothesis with those of null hypothesis 

(eWater, 2018; Chiew, 2005). A 5% significance level means that there is a 

chance/probability that a test statistic has 5% chance of becoming not true.  

 

This study adopts non-parametric and parametric tests for detection of trend and step jumps 

in the AMF data. In parametric tests, shape (generally Normal Distribution) and parameters 

(mean and standard deviation) of the population distribution are assumed from the sample 

distribution. When all assumptions of parametric tests are met, these tests are considered 

more powerful tests to analyse the data than non-parametric tests (eWater, 2018; Chiew, 

2005). Non-parametric statistical tests do not require assumptions for the shape or parameters 

of population distribution. The Non-parametric test is distribution free test and does not 

require to use null hypothesis on population parameters (eWater, 2018; Chiew, 2005). Non-

parametric test does not quantify the trend/change, although it detects the presence of 

trend/change in time series data (eWater, 2018; Chiew, 2005). As hydrometrological time 

series data generally do not follow normal distribution, non-parametric tests are preferred for 

detection of trend or change in time series. (eWater, 2018; Chiew, 2005).  

 

This study use Spearman’s Rho (SR), Mann-Kendall (MK), Rank-Sum, Rank Difference, 

Turning Point, Distribution-Free CUSUM and Median Crossing non-parametric tests and 

Linear Regression, Autocorrelation, Student’s t, Worsley Likelihood Ratio and Cumulative 

Deviation parametric tests for trend analysis (Hossain and Rahman, 2019). Trends in the data, 

step jumps in the data, difference in the mean or median from two selected data periods and 

randomness in the data are evaluated through these tests (Hossain and Rahman, 2019). The 

presence of trend in data is evaluated using the Linear Regression parametric tests, MK non-

parametric and Spearman's Rho non-parametric tests (Hossain and Rahman, 2019).  

 

Critical test statistics for null hypothesis under different significance levels are valid as long 

as the test assumptions are satisfied. Resampling analysis can be used when test assumptions 

are violated. As there are chances of violation of test assumptions in hydrological data, 

resampling technique has been adopted in this research using TREND to estimate 
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significance level of test statistics (eWater, 2018; Chiew, 2005). TREND provides tabular 

output at three significance level, α = 0.01, α = 0.05 and α = 0.1 of test statistic and critical 

values of test statistic and write notes on test result (eWater, 2018; Chiew, 2005).  

 

TREND resamples data using bootstrapping method. The details of trend test with resampling 

are available in TREND user guide (eWater, 2018; Chiew, 2005). 

 

The details of tests mentioned below are available in TREND user guide (eWater, 2018; 

Chiew, 2005). 

 

4.10.1 Mann-Kendall (MK) Test 

This non-parametric test is used to detect the existence of monotonic trend in AMF data. The 

null hypothesis and alternative hypothesis are compared in MK statistical test. In null 

hypothesis it is assumed that the sample data are IID random variables from population i.e. 

no trend exists in the AMF data series and the alternative hypothesis assumes that trend exists 

in the data (eWater, 2018; Chiew, 2005). The test statistic (S) in the MK test is expressed as: 

 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑌𝑗 − 𝑌𝑖)
𝑛
𝑘=𝑗+1

𝑛−1
𝑗=1                 (4.24) 

 

where n is sample data length, Y is the sample data ranked in order 1, 2, 3, …, n, and sign can 

be obtained by: 

 

 sign(Yj-Yk) =   1 when (Yj-Yk) is positive 

sign(Yj-Yk) =  0  when (Yj-Yk) is zero            (4.25) 

sign(Yj-Yk) = -1  when (Yj-Yk) is negative 

 

According to Kendall (1975) and Mann (1945), the statistic S can be expressed by using 

normal distribution approximately when sample data (n) is greater than or equal to 10 (Null 

Hypothesis H0 is true), with values of mean and variance are (Ahmad et al., 2015): 

 

Mean of S; E (S) = 0                     (4.26) 
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𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑆) = 𝜎2 =
1

18
[𝑛 ⋅ (𝑛 − 1) ∙ (2𝑛 + 5) − ∑ 𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)

𝑝
𝑗=1 ]`    (4.27) 

 

where, tj is ties for jth and p is the number groups forming ties. Assuming S follow normal 

distribution, critical test statistic Z at different significance levels is given by (Ahmad et al., 

2015): 

 

𝑍 = {

𝑆−1

𝜎
, 𝑆 > 0 

𝑆+1

𝜎
,        𝑆 < 0

0,       𝑆 = 0

                              (4.28) 

 

Statically significant trend in time series can be exist if the null hypothesis is rejected at 

specified significance level, when where, is the standard normal variate having 

exceedance probability equal to 

2
 (Ishak et al., 2013; Ahmad et al., 2015). Time series has 

statistically upward trend if Z > 0 and vice versa.  

 

4.10.2 Spearman's Rho (SR) Test 

The SR test is used to test presence of positive or negative trends in a time series. This non-

parametric test assesses the presence of significant correlation between the ranking of two 

variables (year/time and corresponding flow) in AMF data series. The test statistics ρs is 

given below by (eWater, 2018; Chiew, 2005): 

 

𝜌𝑠 =
∑ (𝑥𝑖−�̅�)⋅(𝑦𝑖−�̅�)
𝑛
𝑖=1

(∑ (𝑥𝑖−�̅�)
2⋅∑ (𝑦𝑖−�̅�)

2)𝑛
𝑖=1

𝑛
𝑖=1

1
2

               (4.29) 

 

Where xi and yi is the year of AMF and AMF values respectively in AMF data series, X and Y 

is the ranks. 

 

Detailed procedures of SR test are available at TREND user guide (eWater, 2018; Chiew, 

2005). 
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4.10.3 Linear Regression Test 

This parametric test is based on the assumption that sample data series are normally 

distributed IID random variables (eWater, 2018; Chiew, 2005). Linear regression test 

assesses the relationship between time (x) and the corresponding AMF (y) in AMF time series 

data for the possibility of trend in the data.  

 

The linear regression test statistics is given by: 

 

𝑆 =

∑ (𝑥𝑖−�̅�)⋅(𝑦𝑖−�̅�)
𝑛
𝑖=1

∑ (𝑥𝑖−�̅�)
𝑛
𝑖=1

2

√
12∑ (𝑦𝑖−𝑎−𝑏𝑥𝑖)

𝑛
𝑖=1

𝑛(𝑛−2)(𝑛2−1)

                  (4.30) 

 

Where 

a is y intercept of regression line, b is regression line slope and n is record length. 

 

𝑎 = �̅� − 𝑏�̅�                     (4.31) 

                                                                                     

𝑏 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)
𝑛
𝑖=1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

                     (4.32) 

 

The detailed description of this test is available at TREND user guide (eWater, 2018; Chiew, 

2005). 

 

4.10.4 Distribution Free CUSUM Test 

In this test, data series is divided into two groups and then compare the means of these two 

groups to find whether they are significantly different (eWater, 2018; Chiew, 2005).  This 

non-parametric test does not use any assumption of distribution for sample data. The 

distribution free CUSUM test is expressed as: 

 

𝑉𝑘 = ∑ sgn(𝑥𝑖 − 𝑥𝑚𝑒𝑑𝑖𝑎𝑛),   𝑘 = 1, 2, 3, … , 𝑛
𝑘
𝑖=1                   (4.33) 
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Where 

Sample time series; Xi = xi, x2, x3, …. xn 

Sample time series median = Xmedian 

 

sgn(𝑥) = 1, for 𝑥 > 0 

sgn(𝑥) = 0, for 𝑥 = 0 

sgn(𝑥) = −1, for 𝑥 < 0 

 

The detailed description of this test is available at TREND user guide (eWater, 2018; Chiew, 

2005). 

 

4.10.5 Cumulative Deviation Test 

 

This parametric test identifies the possible change point of the mean by comparing the means 

in the two parts of time series data (eWater, 2018; Chiew, 2005). According to Buishand 

(1982) this test calculates cumulative deviations and adjusted partial sums from the mean. 

 

The cumulative deviations are: 

 

𝑆𝑘 ∗= ∑ (𝑥𝑖 − �̅�),   𝑘 = 1, 2, 3, … , 𝑛𝑘
𝑖=1                               (4.34) 

 

Xi is the observed sample data, n is total number of sample data and X is the mean.  

 

The adjusted partial sums are: 

 

𝑆𝑘
∗∗ =

𝑆𝑘
∗

𝐷𝑥
                            (4.35) 

 

Where Dx is the standard deviation. 

 

𝐷𝑥
2 = ∑

(𝑥𝑖−�̅�)
2

𝑛

𝑛
𝑖=1                              (4.36) 

 

The test statistic Q in Cumulative Deviation Test is given by: 
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𝑄 = max |
𝑆𝑘

∗∗

𝐷𝑥
|                                     (4.37) 

 

The detailed description of this test including critical value is available at TREND user guide 

(eWater, 2018; Chiew, 2005). 

 

4.10.6 Worsley Likelihood Ratio Test 

In this method, time series data is divided into two periods and this test finds difference in 

means by comparing the two means of two sets of data (eWater, 2018). This test is based on 

the assumption of normality of sample data and is an extension of Cumulative Deviation 

Test. The weighted cumulative deviations (Zk*) and adjusted partial sum are: 

 

𝑍𝑘
∗ = [𝑘(𝑛 − 𝑘)] − 0.5〔∑ (𝑥𝑖 − �̅�)〕, 𝑘 = 1, 2, 3, … , 𝑛𝑘

𝑖=1                          (4.38) 

 

𝑍𝑘
∗∗ =

𝑍𝑘
∗

𝐷𝑥
                  (4.39) 

Xi is the observed sample data, n is total number of sample data and X is the mean. 

The test statistic W is given by: 

 

𝑊 =
(𝑛−2)0.5𝑉

(1−𝑉2)0.5
                                (4.40) 

  

Where V = max | Zk**| 

 

The detailed description of this test including Critical value of W is available at TREND user 

guide (eWater, 2018; Chiew, 2005). 

 

4.10.7 Rank-Sum Test 

This non-parametric test is similar to the 2-sample t-test. This test divides the sample time 

series data into two sub-groups (two sub time-periods) and compares the medians of these 

two groups. In this test sample time series data is first sorted in ascending order (1, 2, 3,…, 

K). If the values of two records in the sample are same, then average of ranks of two records 

is used as the rank of these two records. If T is sum of ranks of smaller sub-group, and j and k 
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are the number of records of two sub-groups respectively, then the mean (μT) and standard 

deviation (σT) of T are: 

μT = k * (K + 1) / 2               (4.41) 

σT = [k * j * (K + 1) / 12]0.5                                                                               (4.42) 

 

and the test statistic Z is: 

 

Z = (T – 0.5 – μT) / σT   for T > μT                                                                   (4.43) 

Zrs = 0 for T = μT                                                                                             (4.44) 

Zrs = |T + 0.5 – μT| / σT   for T < μT                                                                 (4.45) 

 

The detailed description of this test including critical test statistics at different confidence 

levels is available at TREND user guide (eWater, 2018; Chiew, 2005). 

 

4.10.8 Student’s t Test 

This statistical test is used to detect whether two groups of sample data differ significantly by 

calculating the mean of sample data of two data periods. Like some other test, this test is 

based on the normality assumptions. The Student’s t test statistic is calculated as: 

 

𝑡 =
(�̅�−�̅�)

𝑇√
1

𝑛
+
1

𝑚

                               (4.46) 

 

where  

𝑥 is the mean of one sub-group of sample data and 𝑦 the mean of another sub-group of 

sample data respectively, m and n are record number of two sub-group data sets respectively 

and standard deviation of sample data is T (eWater, 2018; Chiew, 2005). The detailed 

description of this test is available at TREND user guide (eWater, 2018; Chiew, 2005). 
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4.10.9 Median Crossing Test 

In median crossing normality test, each time series data is assigned zero if median of sample 

data is greater than the particular data value and one if median of sample data is less than the 

particular data value. The mean (μ) and SD (σ) of data set with 0 and 1 value are (eWater, 

2018; Chiew, 2005): 

 

μ = (k – 1) / 2                                                                                                 (4.47) 

σ = (k – 1) / 4                                                                                                  (4.48) 

 

here, k is the sample size. 

 

The median crossing test statistic (z) is calculated as with median (m) (eWater, 2018; Chiew, 

2005): 

 

𝑧 =
|𝑚−𝜇|

𝜎
1
2

                           (4.49) 

 

The detailed description of this test is available at TREND user guide (eWater, 2018; Chiew, 

2005). 

 

4.10.10 Turning Points Test 

It is a non-parametric test for randomness and is based on assumption of normality. In this 

test, each record of time series data is assigned a value of 1 or 0. If the value (a) of data of a 

particular time step is greater than the value of data of immediately before or immediately 

after that time step i.e. if ai-1 < ai > ai+1, then 1 otherwise 0. The mean and SD of the data 

series with 0 or 1 are calculated as (eWater, 2018; Chiew, 2005):  

 

μ = 2 (k – 2) / 3                                                                                              (4.50) 

σ = (16k – 29) / 90                                                                                         (4.51) 

 

The turning point test statistic (Z) is calculated as (eWater, 2018; Chiew, 2005): 
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𝑧 =
|𝑚∗−𝜇|

𝜎
1
2

                           (4.52) 

 

The detailed description of this test is available at TREND user guide (eWater, 2018; Chiew, 

2005). 

 

4.10.11 Rank Difference Test 

Rank Difference non-parametric test assigns rank in ascending order to the time series data. 

Assume a large data set (n > 10), the statistics U is calculated as (eWater, 2018; Chiew, 

2005): 

 

𝑈 = ∑ |𝑅𝑖 − 𝑅𝑖−1|
𝑛
𝑖=2                             (4.53) 

 

Where, absolute rank differences sum between consecutive ranks is (Ri  --  Ri-1) 

The mean and SD of rank sample are (eWater, 2018; Chiew, 2005): 

 

Mean; μ = (k + 1) (k – 1) / 3                                                                            (4.54) 

 

SD; σ = (k – 2) (k + 1) (4k – 7) / 90                                                 (4.55) 

 

The rank difference test z-statistic is computed as (eWater, 2018; Chiew, 2005): 

 

z = | U – μ | / σ0.5                                                                           (4.56)                                                                                       

 

The detailed description of this test is available at TREND user guide (eWater, 2018; Chiew, 

2005). 

 

4.10.12 Autocorrelation Test 

`In this test one autocorrelation coefficient between value at rth time step and value at one 

time step before (rth-1) i.e. lag-1 autocorrelation (i.e. the correlation between time series 

sample values that are separated by 1 time period) coefficient is expressed as (eWater, 2018; 

Chiew, 2005):   
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𝑟1 =
[∑ (𝑥𝑖−�̅�)(𝑥𝑖+1−�̅�)
𝑘−1
𝑖=1 ]

∑ (𝑥𝑖−�̅�)
2𝑘

𝑖=1

                        (4.57) 

 

The expected value and variance of r1 are (eWater, 2018; Chiew, 2005): 

 

E(r1) = - 1 / k                       (4.58) 

 

Var (r1) = (k3 – 3k2 + 4) / [k2 (k2 – 1)]                                                              (4.59) 

 

The autocorrelation test statistic (z) is given by (eWater, 2018; Chiew, 2005): 

 

z = | r1 – E(r1) | / Var(r1)
0.5                                   (4.60) 

 

The detailed description of this test is available at TREND user guide (eWater, 2018; Chiew, 

2005). 

 

4.11 Summary 

 

This chapter presents methods adopted in this study covering mathematical formulation of 

selected PDs and parameter estimation methods. Three GoF tests are also described. 

Bootstrapping and Monte Carlo simulation techniques are also presented. Different tests for 

trend analysis are also outlined.  

 

The next chapter presents results and discussion. 
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 : RESULTS AND DISCUSSION  
 

This chapter presents statistical characteristics of AMF data, outcomes of selection of the 

best-fit probability distribution (PD) for FFA using GoF tests and visual assessment, and 

results of trend, sensitivity and uncertainty analysis. 

 

5.1 Statistical Characteristics of AMF Data 

 

For better understanding of the statistical properties of AMF data, basic statistics are 

computed. A total of 26 streamflow measuring stations are selected as mentioned in Chapter 

3. All the AMF data was screened, and outliers were identified. Table 5.1 lists the descriptive 

statistics such as mean, maximum, minimum, SD, range, skewness, variance, coefficient of 

variation, excess kurtosis and standard error of the AMF data for each of the 26 stations.  

 

From Table 5.1 it is seen that station 143001C shows the highest AMF value of 9533 m3/s. 

This flow was recorded in 2011, which was one of the worst flooding years in the study area. 

This station also shows the highest AMF mean (1425 m3/s). The skewness is positive with a 

value of 3.176. The minimum and maximum skewness vales are 0.27 and 6.10 for station 

143209B and 143203C, respectively. In regard to excess kurtosis, station 143203C shows the 

highest value of 43.01. The lowest value is -1.32 at station 143209B. It is seen that for station 

143203C, skewness and excess kurtosis values are the highest among all the 26 stations. 

Standard deviation and excess kurtosis of 6.10 and 43.01 respectively at station 143203C are 

very high compared to the minimum value 0.27 and -1.32, respectively at station 143209B. 

Station 143203C is an upstream station where mean flow is 264 m3/s and maximum flow is 

3643 m3/s in 2011. There is a very high difference between mean flow and maximum flow. 

The maximum flow for this station is 1380% larger than its mean flow. These statistics 

indicate that AMF data at this station follows relatively peaky positively skewed distribution.   

 

On the other hand, station 143209B has a mean flow of 250 m3/s and maximum flow of 349 

m3/s. The maximum flow for this station is only 140% higher than its mean AMF. It is seen 

in Table 5.1 that skewness is positive for all the stations, although excess kurtosis is negative 

for three stations. Maximum SD and coefficient of variation values are found to be 1968.58 

m3/s and 9.45 at station 143001C and 143232A, respectively. Although station 143219A 
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shows the lowest mean of 21.06 m3/s, the skewness (5.51) and excess kurtosis (32.38) for this 

station are very high. The percentile estimates of the AMF data are shown in Table 5.2 for all 

the 26 stations. 

 

Table 5.1: Descriptive Statistics of the AMF data for all the 26 stations 

Station 

ID 

Range 

m3/s 

Mean 

m3/s 

Variance 

m3/s 

Std. 

Deviation 

m3/s 

Coef. Of 

Variation 

Std. 

Error 

m3/s 

Skewness 
Excess 

Kurtosis 

143001C 9439.3 1425.9 3875300 1968.60 1.381 303.76 3.176 11.014 

143007A 4402.8 525.98 805880 897.71 1.707 122.16 2.472 6.410 

143009A 6969.5 1045.4 3235500 1798.70 1.721 240.37 2.210 3.801 

143010B 2025.6 270.24 173100 416.05 1.540 64.98 2.774 8.274 

143015B 2324.5 297.51 194880 441.46 1.484 68.94 2.953 10.875 

143028A 126.72 35.41 804 28.36 0.801 4.43 1.764 3.140 

143032A 271.81 85.207 5404 73.51 0.863 14.15 1.971 3.515 

143033A 353.37 140.11 10186 100.92 0.720 20.19 1.017 0.128 

143107A 1884 513.89 132170 363.55 0.707 60.59 2.463 8.410 

143108A 1939 490.2 173170 416.14 0.849 75.98 2.507 7.340 

143110A 290.18 178.09 7651 87.47 0.491 13.34 1.072 -0.215 

143113A 373.86 126.72 6040 77.72 0.613 14.96 1.896 5.756 

143203C 3610 263.83 212100 460.54 1.746 55.05 6.061 43.132 

143207A 2950 627.43 557960 746.96 1.191 99.82 1.671 1.884 

143209B 250.51 203.56 6849 82.76 0.407 15.64 0.270 -1.322 

143210B 1361.8 321.06 100780 317.45 0.989 64.80 2.049 4.941 

143212A 1358.2 225.41 123350 351.21 1.558 51.23 1.962 2.872 

143213C 509.63 101.88 23122 152.06 1.493 36.88 1.880 2.751 

143219A 361.43 21.062 3412 58.41 2.773 9.35 5.507 32.380 

143229A 1379.3 239.4 123860 351.93 1.470 76.80 2.532 6.248 

143232A 33.43 22.884 89 9.45 0.413 2.44 0.997 0.254 

143233A 501.51 105.38 17035 130.52 1.239 32.63 2.379 6.361 

143303A 531.77 351.64 16523 128.54 0.366 19.60 0.983 0.628 

143306A 154.84 79.301 2510 50.10 0.632 10.93 0.640 -0.769 

143921A 589.5 71.022 21634 147.09 2.071 27.31 3.089 9.130 

143307A 433.64 144.54 14978 122.38 0.847 24.98 1.314 0.994 
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Figure 5:1: Variation of absolute skewness in the AMF data for 26 stations 
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Table 5.2: Percentile estimates of AMF data for all the 26 stations 

Station 

ID 

05 % 

 

Percentile 

 (m3/s) 

10 % 

 

Percentile 

(m3/s) 

25% 

(Q1) 

Percentile 

(m3/s) 

50% 

(Median) 

Percentile 

(m3/s) 

75% 

(Q3) 

Percentile 

(m3/s) 

90% 

 

Percentile 

(m3/s) 

95% 

 

Percentile 

(m3/s) 

Max. 

 

Percentile  

(m3/s) 

143001C 136.81 162.64 337.07 857.11 1648.80 2838.4 8130.0 9533.0 

143007A 6.58 8.89 29.03 143.09 391.45 2104.3 2559.8 4404.0 

143009A 12.81 18.53 83.71 322.63 785.85 4462.3 5938.9 6975.8 

143010B 19.34 22.50 38.66 128.90 255.99 989.5 1288.8 2035.7 

143015B 12.09 19.74 43.39 110.69 383.19 915.1 1142.9 2335.3 

143028A 8.05 13.64 16.61 24.09 45.77 66.9 105.8 133.4 

143032A 26.50 28.27 35.22 55.97 107.12 206.8 296.1 297.1 

143033A 35.18 46.71 54.48 96.50 203.58 312.0 373.0 385.4 

143107A 177.55 194.82 291.02 408.47 612.51 936.4 1275.6 2057.0 

143108A 174.75 196.74 229.92 337.71 569.62 1127.4 1657.3 2107.5 

143110A 86.82 95.48 117.05 146.03 212.95 338.0 353.7 370.0 

143113A 40.38 51.66 70.15 111.30 164.56 203.6 328.3 410.8 

143203C 41.47 50.66 65.47 140.56 341.93 484.8 676.7 3643.0 

143207A 37.46 51.85 133.36 284.13 850.35 2067.7 2489.9 2976.6 

143209B 99.59 104.08 122.79 204.24 277.60 327.7 348.3 349.0 

143210B 40.67 48.42 104.55 209.57 417.06 801.6 1258.3 1400.6 

143212A 1.61 3.87 12.20 58.71 215.37 908.5 1145.3 1359.4 

143213C 0.93 3.00 7.00 33.03 147.18 426.9 510.6 510.6 

143219A 0.27 0.34 2.20 4.93 16.02 47.2 78.2 361.6 

143229A 15.68 17.56 55.17 105.09 252.27 932.5 1359.4 1394.7 

143232A 11.51 14.38 16.32 17.00 32.14 37.5 44.9 44.9 

143233A 14.87 16.26 27.92 45.09 165.83 325.0 516.4 516.4 

143303A 186.56 194.75 271.48 312.70 423.73 549.9 638.5 710.3 

143306A 19.78 20.62 34.25 67.31 125.65 167.7 174.4 174.6 

143921A 0.23 0.72 2.48 15.43 66.46 176.8 576.9 589.6 

143307A 28.72 29.26 53.71 88.28 201.99 377.6 445.2 462.2 
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5.2 Parameter estimation and selection of the best-fit probability 

distribution (PD) 

 

In FLIKE, the parameters are estimated by the in-built modules in the FLIKE which vary 

from distribution to distribution. In using FLIKE, these in-built parameter estimation methods 

are used. Since FLIKE does not have any GoF test, EasyFit is used to carry out the GoF test. 

 

It should be noted that PILFs are only censored for LN and LP3 distributions as per FLIKE 

guide, these are not censored for the other three distributions (EV1, GEV and GP). PILFs 

were not removed in EasyFit as it compares many distributions and most of them are not 

affected by the presence of PILFs.  

 

In using EasyFit software, the parameter estimation methods in-built with this software is 

applied.  EasyFit software provides distribution graph of the candidate PDs, which provides a 

clear visual fitting of the distributions in relation to the observed AMF. The estimated 

parameters for candidate PDs for stations 143001C, 143007A and 143009A are given in 

Table 5.3, Table 5.4 and Table 5.5, respectively. The estimated parameters for other stations 

are provided in Appendix-A 

 

Table 5.3: Estimated parameters for Station 143001C 

Distribution Parameters Parameters 

Estimation method 

Lognormal  = 1.1018,  = 6.6497 
Maximum Likelihood 

Method (MLE) 

Log Pearson type III  = 129.87,  = 0.09786,  = -6.0592 Method of Moments 

Gumbel  = 1534.9,  = 539.89 Method of Moments 

Generalised Pareto K = 0.33611,   = 906.41,  = 60.561 Method of L-moments 

Generalised Extreme 

Value 
K = 0.45938,   = 611.88,  = 569.44 Method of L-moments 
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Table 5.4:  Estimated parameters for Station 143007A 

Distribution Parameters Parameters 

Estimation method 

Lognormal  = 1.8747,  = 4.8721 
Maximum Likelihood 

Method (MLE) 

Log Pearson type III  = 135.02,  = -0.16285,  = 26.86 Method of Moments 

Gumbel  = 699.94,  = 121.97 Method of Moments 

Generalised Pareto K = 0.49192,  = 293.06,  = -50.824 Method of L-moments 

Generalised Extreme 

Value  
K = 0.57188,  = 217.25,  = 119.61 Method of L-moments 

 

Table 5.5: Estimated parameters for Station 143009A 

Distribution Parameters Parameters 

Estimation method 

Lognormal  = 1.809,  = 5.5886 
Maximum Likelihood 

Method (MLE) 

Log Pearson type III  = 916.39,  = -0.0603,  = 60.845 Method of Moments 

Gumbel  = 1402.5,  = 235.84 Method of Moments 

General Pareto K = 0.50966,  = 557.23,  = -91.044 Method of L-moments 

Generalised Extreme 

Value 
K = 0.58517,  = 417.39,  = 234.27 Method of L-moments 

 

To identify the best-fit PD (s) for the station; three GoF tests i.e. K-S, C-S and A-D are 

applied via EasyFit software. Test results showed that for some station’s AMF data series, 

best-fit distribution types are same for all the three GoF tests, which is regarded as the best 

outcome. However, for majority of the stations, the best-fit PD types varied. Therefore, a 

scoring technique is applied to rank and select the best-fit PD for each station. The best-fit 

PD of a station (where distribution type is not common across the three GoF tests) is the one 

that has the minimum sum of the rank scores. The results of the A-D, K-S and C-S tests for 

stations 143009A, 143007A and 143015B are summarised in Table 5.6, Table 5.7 and Table 

5.8, respectively. The test statistics for the remaining stations are shown in Appendix-B.  

 

The test statistics of A-D, K-S and C-S test for each station are computed and based on the 

lowest values of each of the test statistics, initially selected five PDs are ranked. It is clear 

from Tables 5.6, 5.7 and 5.8 that Log Pearson type III (LP3) distribution best fits the AMF 

data for Stations 143009A 143007A and 143015B based on the ranks of GoF tests. 
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Table 5.6: GoF test statistics for five candidate distributions used to fit AMF data for 

Station 143009A 

 
Note: Bold value test statistics is the best-fit PD according to GoF tests. 

 

Table 5.7: GoF test statistics for five candidate distributions used to fit AMF data for 

Station 143007A 

 
Note: Bold value test statistics is the best-fit PD according to GoF tests. 

 

Table 5.8: GoF test statistics for five candidate distributions used to fit AMF data for 

Station143015B 

 
Note: Bold value test statistics is the best-fit PD according to GoF tests. 

 

A comparative assessment of five candidate PDs for each station is performed to select the 

best-fit PD. Figure 5.2 shows a GoF test results summary with GoF test rank 1 for all the 

stations. In carrying out the GoF tests in EasyFit, no outlier/PILF is removed as this 

outlier/PILF is more important for flood quantile estimation using only LN and LP3 

distribution, which has been undertaken using FLIKE. It is seen from this figure that 

according to A-D test, 18 stations show LP3 as rank 1, while 11 stations show GP as rank 1 

and 6 station show GEV as rank 1. Whereas according to K-S test, 7 stations shows rank 1 
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with LP3, 11 stations rank 1 with GP and 6 stations rank 1with GEV.  Table 5.9, Table 5.10 

and Table 5.11 show the selected PDs of the 26 stations based on the A-D, K-S and C-S test 

statistics of rank 1, rank 2 and rank 3, respectively. 

 

 

Figure 5.2: GoF tests summary for all selected stations 

 

It is seen from Table 5.9, Table 5.10 and Table 5.11 that LP3 is the rank 1 distribution for 18 

out of 26 stations (i.e. 69% of the cases) with A-D GoF test, for 7 out of 26 stations (23%) 

with K-S GoF test and for 7 out of 26 stations (23%) with C-S GoF test. Generalised Pareto 

(GP) distribution is ranked second: for 7 out of 26 stations (23%) with A-D GoF test, for 11 

out of 26 stations (43%) with K-S GoF test, and for 5 out of 26 stations (19%) with C-S GoF 

test.   
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Table 5.9:  Rankings of probability distributions for 26 stations based on A-D GoF test 

Station Probability distribution corresponding to ranks of A-D GoF test 

 I II III 

143001C GP LP3 Lognormal 

143007A LP3 Lognormal GP 

143009A LP3 Lognormal GP 

143010B LP3 Lognormal GP 

143015B LP3 Lognormal GP 

143028A LP3 GEV Lognormal 

143032A GP LP3 GEV 

143033A GP LP3 Lognormal 

143107A LP3 GEV Lognormal 

143108A LP3 GEV Lognormal 

143110A LP3 GEV Lognormal 

143113A LP3 Lognormal GEV 

143203C LP3 GEV Lognormal 

143207A LP3 Lognormal GP 

143209B GP GEV LP3 

143212A LP3 Lognormal GP 

143219A LP3 Lognormal GP 

143229A LP3 Lognormal GP 

143303A GEV LP3 Gumbel 

143921A LP3 Lognormal GP 

143210B GP GEV LP3 

143306A GP LP3 GEV 

143213C LP3 Lognormal GP 

143232A LP3 GEV Gumbel 

143233A LP3 GP GEV 

143307A GP LP3 Lognormal 
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Table 5.10: Rankings of probability distributions for 26 stations based on K-S test 

Station Probability distribution corresponding to ranks of K-S GoF test 

 I II III 

143001C GP Lognormal LP3 

143007A LP3 Lognormal GEV 

143009A LP3 Lognormal GEV 

143010B GP LP3 GEV 

143015B LP3 Lognormal GP 

143028A LP3 GEV Lognormal 

143032A GEV LP3 GP 

143033A GP LP3 Lognormal 

143107A GEV LP3 GP 

143108A GEV LP3 GP 

143110A GP LP3 GEV 

143113A Gumbel GP GEV 

143203C GP LP3 GEV 

143207A LP3 Lognormal GP 

143209B GP LP3 Lognormal 

143212A LP3 Lognormal GEV 

143219A GP LP3 Lognormal 

143229A GEV GP LP3 

143303A GEV LP3 Gumbel 

143921A LP3 Lognormal GEV 

143210B GEV Gumbel LP3 

143306A GP LP3 GEV 

143213C Lognormal LP3 GP 

143232A GP GEV LP3 

143233A GP LP3 GEV 

143307A GP LP3 Lognormal 
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Table 5.11: Rankings of probability distributions for 26 stations based on C-S test 

Station Probability distribution corresponding to ranks of C-S GoF test 

 I II III 

143001C Lognormal GP LP3 

143007A GEV GP LP3 

143009A LP3 Lognormal GP 

143010B GEV LP3 GP 

143015B Lognormal LP3 GEV 

143028A LP3 GEV Lognormal 

143032A GP GEV LP3 

143033A GP Lognormal LP3 

143107A GEV LP3 Lognormal 

143108A GEV LP3 Lognormal 

143110A LP3 GEV Lognormal 

143113A GEV Gumbel LP3 

143203C LP3 Lognormal GEV 

143207A GEV GP LP3 

143209B GP GEV LP3 

143212A Lognormal LP3 GP 

143219A LP3 GP GEV 

143229A Lognormal LP3 GP 

143303A LP3 GEV Gumbel 

143921A GP GEV Lognormal 

143210B GEV LP3 Lognormal 

143306A GEV Gumbel LP3 

143213C Lognormal LP3 GP 

143232A LP3 GEV Gumbel 

143233A GEV GP LP3 

143307A GP Gumbel LP3 

 

The average of three GoF test results for rank 1, rank 2 and rank 3 are computed to find the 

most preferred PD for each station. Table 5.12 shows the average of three GoF test results 

with rank 1. The average of three GoF test results with rank 2 and rank 3 are given in 

Appendix-B (Table B.24 and Table B.25). It is seen that according to the average of three 

different GoF tests with rank 1, LP3 is the most preferred distribution for 11 stations, 

followed by GP with 8 stations. Gumbel is the lowest, with no station’s AMF data fit this 

distribution. In Table 5.13, a station with rank 1 best-fit distribution is multiplied by weight 

of 3, rank 2 best-fit distribution is multiplied by weight of 2, and rank 3 best-fit distribution is 

multiplied by weight of 1. The average of the GoF test results in Table 5.13 shows that for 10 

out of 26 stations, LP3 distribution is the most preferred PD, followed by GP. It is also seen 
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that Gumbel distribution is the least preferred PD as only the K-S GoF test selects this for 

only one station as rank 1.  

Table 5.12: GoF test summary (number distributions with rank 1, for all the stations) 

 
 
 

Table 5.13: GoF test summary (number of distributions with ranks 1, 2, and rank 3 for 

all stations with weights for rank 1, rank 2 and rank 3) 

 
 

 

Figure 5.3 shows the location of stations with the best-fit PDs based on the A-D GoF test. It 

is seen that LP3 is the best-fit distribution model for majority of the gauging sites at upper 

part of the catchment  i.e. LP3 is the most suited PD for mountainous area of the catchment 

((within red and green circle) of Figure 5.3) and GP distribution appears to be most 

appropriate PD for downstream catchments. However, LP3 distribution is dominating over 

most of the Brisbane River catchment, which is an important finding. 
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Figure 5.3: Geographical presentation of the best-fit distributions based on A-D test 
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Figure 5:4:  Box plot of the best-fit distributions with catchment area 

 

It is seen from box plot of catchment area and best-fit distribution (Figure 5.4) of the selected 

stations that there is no relationship between catchment area and the best-fit PD. 

 

The distribution plots are used to visually identify probability distribution that fits AMF data. 

The best-fit PD from the GoF tests for each station is compared with graphical fitting method 

using EasyFit generated graphs (Q-Q plot, PDF Graph, CDF Graph, P-P plot, Probability 

Difference graph) and FLIKE generated graphs. The PDF for the candidate PDs (Figure 5.5) 

at site 143028A shows that GEV, LP3, and LN distributions fit AMF series better than other 

two PDs. The histogram (Figure 5.5a) of AMF series indicates a positive skewed unimodal 

distribution skewed to the right. The PDF plots (Figure 5.5a) of all the five distributions are 

used to fit the empirical histograms of AMF data. It is seen form the PDF graph (Figure 5.5a) 

that the LN and LP3 distributions exhibit similar probability densities and their probability 

densities are very different than the probability densities of Gumbel and GP distributions. The 

CDF graph (Figure 5.5b) shows CDF of five theoretical distributions and empirical CDF 

from AMF data. The probability-probability (P-P) plot (Figure 5.5c) shows that CDF of LP3 

is relatively closer to empirical CDF. The AMF magnitude and theoretical quantiles (Q-Q 
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plot) graph (Figure 5.5d) shows that quantiles form Lognormal and LP3 distributions are 

closer to sample quantiles.  

 

 
 

 

 

 

Figure 5:5: (a) PDF graph (b) CDF graph (c) P-P plot and (d) Q-Q plot for Station 

143028A (obtained from EasyFit) 
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Figure 5.6: (a) PDF graph (b) CDF graph (c) P-P plot (d) Q-Q plot and (e) Probability 

Differences graph for Station 143207A (obtained from EasyFit) 

 

Figure 5.6 shows PDF graph, CDF graph, Q-Q plot, P-P plot and Probability Difference 

graph of the five candidate PDs for Station 143207A. The PDF (Figure 5.6a) graph shows 
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GEV and LP3 as the better fit, the CDF graph (Figure 5.6b) shows LP3 and LN as better fit at 

high flow events compared to other candidate distributions. The P-P plot (Figure 5.6c) and Q-

Q plot (Figure 5.6d) show LN and LP3 fit better towards highest flood events. The 

probability difference graph (Figure 5.6e) shows LP3 and LN fit better to AMF data. It is 

seen that that LP3 and Lognormal show the best fit than the other three distributions. The 

Gumbel distribution generally shows a poor fit. The histogram of AMF data (Figure 5.6a) 

shows recorded AMF frequency distribution is skewed to the right with single peak. From the 

PDF diagram, we can see that AMF data is skewed to the right. The probability difference 

graph also shows that LP3 is a relatively better fit distribution. The test statistics show that 

skewness of the AMF data of this station is below 0.6. The candidate distribution can be 

assessed as ‘good fit’ with AMF data if maximum absolute difference becomes lower than 

5% (Singo et al., 2012). For LP3 distribution, the difference is within 5% (Fig. 5.6e) 

indicating an acceptable fit. The distribution plots for other stations are shown in Appendix-

C. 

 

FLIKE Probability Plots display estimated quantile line form candidate distributions, the 

AMF data and the confidence limit. The Y-axis of FLIKE probability plot is estimated 

quantile and observed AMF and the x-axis is AEP 1 in Y (ARI).  FLIKE graphs for visual 

assessment in Figures 5.7 to 5.18 show fitting, estimated quantile as well as confidence 

limits. The result from graphical plots and that from GoF tests show that the best-fit 

distribution based on the statistical hypothesis GoF test result does not fully agree with the 

graphical observation for several stations. As discussed in the earlier part of this chapter that 

according to the GoF test results, LP3 distribution is the most preferred PD for many stations, 

followed by GP distribution. However, graphical assessment indicates for only 9 stations, 

LP3 is the best-fit PD. 

 

The visual assessment of probability graphs of the AMF records and the distribution models 

for Station 143001C are shown in Figure 5.7 for LP3, Figure 5.8 for LN and Figure 5.9 for all 

the distributions. The visual graphs for Station 143028A are shown in Figure 5.10 for LP3, 

Figure 5.11 for GEV and Figure 5.12 for all the distributions. The visual graphs for station 

143007A are shown in Figure 5.13 for LP3, Figure 5.14 for LN and Figure 5.15 for all 

distributions and visual graph for station 143032A are in Figure 5.16 (GP), Figure 5.17 

(LP3), and Figure 5.18 (all distributions). 
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Figure 5.7: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for LP3 

probability model for Station 143001C 

 

 

 

Figure 5.8: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for GP 

probability model for Station 143001C 
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Figure 5.9: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for 5 

probability models for Station 143001C 

 

 

 

Figure 5.10: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for LP3 

probability model for Station 143028A 
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Figure 5.11: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for GEV 

probability model for Station 143028A 

 

 

 

Figure 5.12: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for 5 

probability models for Station 143028A 
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Figure 5:13: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for LP3 

probability model for Station 143007A 

 

 
 

Figure 5:14: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for LN 

probability model for Station 143007A 
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Figure 5:15: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for 5 

probability models for Station 143007A 

 

 

 

 

Figure 5.16: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for GP 

probability model for Station 143032A 
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Figure 5.17: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for LP3 

probability model for Station 143032A 

 

 

 

 

Figure 5.18: Estimated Quantile and AMF data vs ARI (AEP 1 in Y) plot for 5 

probability models for Station 143032A 
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The visual observation from Figures 5.7, 5.8 and 5.9 for Station 143001C show that LP3 is 

the most closely fitted PD for flood quantile estimation. Although the A-D and K-S test show 

that the best-fit PD is GP (followed by LP3/LN). For station 143028A (Figure 5.10 to 5.12), 

LP3, GEV and GP appear to be representative PD for quantile estimation. For this station, 

GoF test results demonstrate that LP3 (followed by GEV) is the best-fit PD. For station 

143007A (Figure 5.13 to 5.15), the most representative PD from visual assessment is GEV 

(followed by LP3). The GoF test result for this station shows that LP3 (followed by LN) is 

the best-fit PD. For station 143032A (Figure 5.16 to 5.18), GP is the best-fit PD as per A-D 

test and with visual fit. However, the K-S test indicates GEV as the best-fit PD. The 

comparison between visual and statistical GoF test for all the stations are summarised in 

Table-5.14. From this table, it is observed that out of 26 stations, 10 stations show LP3 as the 

most appropriate PD using both the A-D and GoF test and visual assessment. That is, for only 

38% cases, GoF test results agree with visual assessment. Therefore, it is more appropriate to 

select a best-fit distribution model using both GoF tests and visual assessment. If both the 

methods do not agree, a decision should be made based on regional analysis and hydrological 

judgement by experts.  

 

The above results show that GoF test results may not agree with the visual assessment, 

although visual assessment in FFA is widely practiced. Another important issue is that most 

of the high AMF data values suffer from very high rating curve extrapolation error (Rahman 

et al., 2019) and hence their relative locations in the FFA plot is tentative, and hence visual 

assessment has little validity in the region of high flows. 

 

From both the GoF test results and graphical assessment, it can be concluded that LP3 is the 

most favourable PD for FFA in the Brisbane River catchment. It should be noted that LP3 

was also found as the most appropriate PD by Rahman et al. (2013) in their investigation for 

at-site FFA based on larger number of data set from Australia. They recommended that LP3 

is one of the top three best-fit distributions. LP3 distribution was recommended as the most 

favourable PD in Australia in the ARR 1987. However, the latest ARR 2019 does not specify 

any particular PD as the best model for flood estimation. Zaman et al. (2012) in their study 

for at-site FFA (using data across Australia) recommended LP3 and GEV distributions as the 

best-fit PD for flood estimation for majority of the stations. 
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Table 5.14: Best-fit probability distribution: comparing GoF test result and visual 

assessment 

Station Anderson Darling Rank 1 FLIKE Visual Rank 1 Agree 

(Yes/No) 

143015B LP3 LP3 Yes 

143207A LP3 LP3 Yes 

143921A LP3 LP3 Yes 

143213C LP3 LP3 Yes 

143113A LP3 LP3 Yes 

143010B LP3 LP3 Yes 

143110A LP3 LP3 Yes 

143232A LP3 LP3 Yes 

143233A LP3 LP3 Yes 

143107A LP3 LP3 Yes 

143203C LP3 GP No 

143007A LP3 GEV No 

143009A LP3 GEV No 

143028A LP3 GEV No 

143212A LP3 GEV No 

143219A LP3 GP No 

143108A LP3 GP No 

143229A LP3 GP No 

143001C GP LP3 No 

143032A GP GP Yes 

143033A GP GEV No 

143209B GP GEV No 

143306A GP GEV No 

143307A GP GEV No 

143210B GP GEV No 

143303A GEV GP No 

 

5.3 Quantile estimation  

 

FLIKE software is used for estimation of flood quantile for different ARIs (T). Figures 5.19 

to 5.23 and Figures 5.24 to 5.28 show the flood quantile estimation plots for Stations 

143007A and 143028A, respectively. All other stations’ probability plots of estimated 

quantile with LP3 model are provided in Appendix-D. It is seen from probability plots 

(Figures 5.19 to 5.23) that GEV appears to be the most favourable PD at 143007A. From 

probability plots (Figures 5.24 to 5.28), it appears that LP3 is the best-fit probability model at 
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143028A. From GoF tests, LP3 is found to be the most appropriate probability model for 

both 143007A and 143028A. From analysis it is evident that the best-fit distribution from 

visual observation and that from GoF test results do not agree for all the stations. Therefore, it 

is important to check both visual observation and GoF test results to decide the best-fit PD for 

a given station. Tables 5.15 and 5.16 show the estimated flood quantiles and Monte Carlo 

90% quantile probability limits, with LP3 PD for Stations 143007A and for station 143028A, 

respectively. The flood quantile estimates for other stations are provided in Appendix-E. 

 

 

Log Pearson type III 

Figure 5:19: Estimated quantile with LP3 probability distributions for 143007A using 

FLIKE 
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Lognormal 

Figure 5:20: Estimated quantile with LN probability distributions for 143007A, using 

FLIKE 

 

 
Gumbel 

Figure 5:21: Estimated quantile with Gumbel probability distributions for 143007A, 

using FLIKE 

 



 

111 

 

 
Generalised Pareto 

Figure 5:22: Estimated Quantile with GP probability distributions for 143007A, using 

FLIKE 

 

 
Generalised Extreme Value 

Figure 5:23: Estimated Quantile with GEV probability distributions for 143007A, using 

FLIKE 
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Log Pearson type III 

Figure 5:24: Estimated Quantile with LP3 probability distributions for 143028A, using 

FLIKE 

 
Lognormal 

Figure 5:25: Estimated Quantile with LN probability distributions for 143028A, using 

FLIKE 
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Gumbel 

Figure 5:26: Estimated Quantile with Gumbel probability distributions for 143028A, 

using FLIKE 

 

 

Generalised Pareto 

Figure 5:27: Estimated Quantile with GP probability distributions for 143028A, using 

FLIKE 
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Generalised Extreme Value 

Figure 5:28: Estimated Quantile with GEV probability distributions for 143028A, using 

FLIKE 

 

 

Table 5.15: Quantile with 90% Monte Carlo probability limits for 143007A 

Quantile with 90% Probability Limit for 143007A with LP3 Distribution 

  
Estimated Annual 

Max Flow Quantile  
90 % Monte Carlo probability limits 

ARI 

(AEP 1 

in Y) 

Estimated Quantile 

by LP3  

Lower Bound 

  
Upper Bound  

2 142 88 232 

5 694 433 1126 

10 1506 916 2677 

20 2781 1567 5951 

50 5389 2597 15413 

100 8240 3390 30195 

200 12014 4166 56789 

500 18704 5138 127248 
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Table 5.16: Quantile with 90% Monte Carlo probability limits for 143028A 

Quantile with 90% Probability Limit for 143028A with LP3 Distribution 

  
Estimated Annual 

Max Flow Quantile  
Monte Carlo 90% probability limits 

ARI 

(AEP 1 

in Y) 

Estimated Quantile 

by LP3  

Lower Bound 

  

Estimated Quantile by 

LP3  

2 23 18 30 

5 50 39 64 

10 72 56 97 

20 96 72 140 

50 131 93 217 

100 159 107 295 

200 189 119 396 

500 230 133 567 
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Table 5.17: Quantile estimates by 5 different probability distributions for station 

143001C and % difference with LP3 distribution 

ARI          

(Year) 

Quantile 

Estimate 

AMF 

(m3/s) 

(LP3) 

Quantile 

Estimate 

AMF 

(m3/s) 

(LN) 

Quantile 

Estimate 

AMF 

(m3/s) 

(Gumbel) 

Quantile 

Estimate 

AMF 

(m3/s) 

(GP) 

Quantile 

Estimate 

AMF 

(m3/s) 

(GEV) 

2 315 
291 

(92%) 

545  

(173%) 

366  

(116%) 

811  

(257%) 

5 1549 
1379 

(89%) 

1800 

(116%) 

1412  

(91%) 

1953 

(126%) 

10 3067 
3113 

(102%) 

2632  

(86%) 

3119  

(102%) 

3074 

(100%) 

20 5020 
6097 

(121%) 

3429  

(68%) 

6469 

 (129%) 

4540 

 (90%) 

50 8134 
12991 

(160%) 

4461 

 (55%) 

16297 

(200%) 

7238 

 (89%) 

100 10784 
21512 

(199%) 

5235  

(49%) 

32337 

(300%) 

10084 

(94%) 

200 13598 
34131 

(251%) 

6005 

 (44%) 

63821 

(469%) 

13892 

(102%) 

500 17451 
59714 

(342%) 

7022 

 (40%) 

156166 

(895%) 

20976 

(120%) 

 

 

Table 5.17 shows estimated flood quantiles for 5 different PDs at station 143001C. This table 

displays that estimated flood quantiles using Gumbel and Lognormal PDs are notably 

different than those using LP3, GP and GEV distributions. Estimated flood quantiles for 

143010B with 5 different PDs are shown in Table 5.18. It is visible from this table that 100-

year flood quantiles at station 143010B are quite different with different distributions and this 

is found for all the selected stations. This study shows that the quantile estimates using 

Gumbel and Lognormal in most of the stations are notably different than that of using LP3, 

GEV and GP distributions. 
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Table 5.18: Quantile estimates with 5 different probability distributions for station 

143010B and % difference with LP3 distribution 

 

ARI          

(Years) 

Quantile 

Estimate 

AMF 

(m3/s) 

(LP3) 

Quantile 

Estimate 

AMF 

(m3/s) 

(LN) 

Quantile 

Estimate 

AMF 

(m3/s) 

(Gumbel) 

Quantile 

Estimate 

AMF 

(m3/s) 

(GP) 

Quantile 

Estimate 

AMF 

(m3/s) 

(GEV) 

2 67 
61  

(91%) 

133 

(197%) 

74 

(111%) 

124 

(185%) 

5 321 
290 

(90%) 

374 

(117%) 

290 

(90%) 

352 

(110%) 

10 649 655 (101%) 534 (82%) 643 (99%) 590 (91%) 

20 1099 
1283 

(117%) 

687 

(63%) 

1341 

(122%) 

918 

(84%) 

50 1878 
2738 

(146%) 

886 

(47%) 

3397 

(181%) 

1560 

(83%) 

100 2600 
4537 

(175%) 

1035 

(40%) 

6771 

(260%) 

2277 

(88%) 

200 3427 
7204 

(210%) 

1183 

(35%) 

13425 

(392%) 

3286 

(96%) 

500 4665 
12615 

(270%) 

1379 

(30%) 

33052 

(709%) 

5277 

(113%) 

 

 

LP3 flood quantile plots (Figures 5.19 and 5.24) display good match at low ARI among 

recorded AMF and the estimated quantile values. However, when ARI is very high i.e. 100-

year or more, choice of the preferred distribution is relatively difficult. The quantile 

estimation with all the 5 PDs show LP3 distribution fits relatively better to the recorded AMF 

data for majority of the stations.  

 

The comparison of observed 2011 AMF (Q2011) (one of the most devastating flood in recent 

time) and 100-year ARI flood quantile in Table 5.1 shows that Q2011 values are higher than 

estimated 100-year quantiles for 2 stations and they are similar to Q2011 for 3 stations. 

However, for remaining 21 stations, 100-year flood quantiles are higher than the Q2011 

observed value. 
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Table 5.19: Comparison of recorded 2011 AMF and 100 ARI flood quantile (Q100) using  

LP3 distributions for 26 stations 

 
 

 

5.4 Impact of outliers in AMF data on best-fit probability distribution (PD) 

and quantile estimation 

 

The AMF data of all the 26 stations are analysed for the presence of outliers and outliers in 

data series are identified and removed from the AMF data to evaluate how this removal 

affects distributional fitting and parameter estimation. Each station’s AMF data is checked 
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for the presence of outlier using the inbuilt tool of FLIKE software. The details of outlier test 

in FLIKE are highlighted by Kuczera et al. (2005) and discussed in Chapters 3 and 4.  

 

Table 5.20 shows that generally LP3 is more suitable PD followed by GP for the Brisbane 

River catchments.  The GoF test results with and without outliers differ for 12 stations out of 

26 stations.  Table 5.21 provides quantile estimates with and without outliers in AMF data for 

Station 143229A. The quantile estimation with and without outliers in AMF data varies up to 

a maximum of 47%. Rahman et al. (2014b) in their study for eastern Australia also found a 

high difference of up to 60% in quantile estimates due the presence of outliers. 

 

Table 5.20: GoF test results summary for 26 stations including outliers in data 

Probability 

Distribution 

Kolmogorov 

Smirnov 
Anderson Darling 

Average 

Method Rank 1 Rank 1 Rank 1 

Log-Pearson 3 11 14 13 

Lognormal 1 1 1 

Gumbel 0 0 0 

Generalised Pareto 7 7 7 

Gen. Extreme Value 7 4 5 
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Table 5.21: Comparison of quantile estimation for Station 143229A with and without 

outliers (% value indicates the increase in flood quantiles if the outliers are removed as 

compared to the quantiles if outliers are not removed) 

  

Quantile Estimation Including 

Outliers for 143229A with LP3 

Distribution 

Quantile Estimation Excluding 

Outliers for 143229A with LP3 

Distribution 

ARI 

(AEP 1 

in Y) 

Estimated 

AMF 

Quantile 

Monte Carlo 90% 

Quantile probability 

limits 

Estimated 

AMF 

Quantile  

Monte Carlo 90% 

Quantile probability 

limits 

  

Estimated 

AMF 

(m3/s) 

LP3 

Lower 

Limit 

(m3/s) 

Upper 

Limit 

(m3/s) 

Estimated 

AMF 

(m3/s) 

 LP3 

Lower 

Limit 

(m3/s) 

Upper 

Limit 

(m3/s) 

20 880 448 1844 1149 

(131%) 

500 

(10.4%) 

(112%) 

4252 

(56.63%) 

(231%) 

50 1506 764 4074 2305 

(153%) 

826 

(7.51%) 

(108%) 

16902 

(75.90%) 

(415%) 

100 2015 974 6270 3606 

(179%) 

1080 

(9.81%) 

(111%) 

50133 

(87.49%) 

(799%) 

200 2521 1232 8624 5368 

(213%) 

1306 

(5.67%) 

(106%) 

144555 

(94.03%) 

(1676%) 

 

5.5 Sensitivity on selected best-fit probability distribution (PD) and 

quantile estimation with respect to maximum recorded flow  

 

The sensitivity analysis is carried to investigate the influence of very high values on the 

selection of the best-fit PD and on the quantile estimation using 3 different scenarios: (a) 

excluding the highest record from the AMF series; (b) excluding the two highest records from 

the AMF series; and (c) excluding the three highest records from the AMF series. 

 

Table 5.22 shows the number of stations with best-fit distribution (Rank 1) when highest 

flood event from all station’s AMF data is removed.  
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Table 5.22:  Best-fit distributions with 3 different GoF tests when the highest ranked 

flood event is excluded from AMF data 

Probability Distribution 
Kolmogorov 

Smirnov 

Anderson 

Darling 
Chi-Squared Average 

 No. of Stations 

Rank 1 

No. of 

Stations 

Rank 1 

No. of 

Stations Rank 

1 

No. of 

Stations 

Rank 1 

Log Pearson type III 9 13 5 9.00 

Lognormal 1 0 6 2.33 

Gumbel 1 0 2 1.00 

Generalised. Pareto 12 11 9 10.67 

Gen. Extreme Value 3 2 4 3.00 

 

 

 

Figure 5:29: GoF tests summary for all selected stations excluding the highest ranked 

data point from AMF series 

 

From Table 5.22 and Figure 5.29, it is seen that removal of the highest AMF data point 

affects overall GoF test results, e.g.  GP becomes the most preferred distribution, followed by 

LP3. However, if the maximum observed data point is retained in the AMF series, LP3 is the 

preferred distribution (as found before in this chapter). 

 

Table 5.23 shows the best-fit PD from 3 different GoF tests by excluding the highest and the 

2nd highest flow records from the AMF data. Figure 5.30 shows GoF test summary with rank 

1 for selected stations without the highest and 2nd highest AMF records in the data. From 
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Table 5.24 and Figure 5.31 it is seen that removal of the highest, 2nd highest and 3rd highest 

AMF data points results in GP being the preferred distribution in more cases, followed by the 

LP3 distribution.  

 

Table 5.23:  Best-fit distributions with 3 different GoF tests when the highest ranked 

and second highest ranked flood events are excluded from AMF data  

Probability 

Distribution 

Kolmogorov 

Smirnov 
Anderson Darling Chi-Squared Average 

 
No. of 

Stations 

Rank 1 

No. of Stations 

Rank 1 

No. of Stations 

Rank 1 

No. of 

Stations 

Rank 1 

Log Pearson type 

III 
9 12 7 9.33 

Lognormal 1 0 2 1.00 

Gumbel 1 0 1 0.67 

Generalised. Pareto 10 12 8 10.00 

Gen. Extreme Value 5 2 7 4.67 

 

 

 

Figure 5:30:  GoF tests summary for all selected stations excluding the highest and the 

second highest ranked data point from AMF series 

 

Table 5.24 shows the best-fit distribution from three different GoF tests by removing three 

highest AMF records from data. Figure 5.31 shows summary of GoF test results where the 

highest, second highest and third highest AMF records are excluded from the data. 



 

123 

 

 

Table 5.24: Best-fit distributions with 3 different GoF tests when the highest ranked,  

second highest ranked and third highest ranked flood events are excluded from AMF 

data  

Probability 

Distribution 

Kolmogorov 

Smirnov 

Anderson 

Darling 
Chi-Squared Average 

 
No. of 

Stations 

Rank 1 

No. of 

Stations 

Rank 1 

No. of 

Stations Rank 

1 

No. of 

Stations Rank 

1 

Log Pearson type 

III 
9 12 3 8.00 

Lognormal 1 0 3 1.33 

Gumbel 2 0 5 2.33 

Generalised. Pareto 8 12 9 9.67 

Gen. Extreme Value 6 2 5 4.33 

 

 

 

Figure 5:31: GoF tests summary for all selected stations excluding the highest,  the 

second highest and the highest ranked data point from AMF series 

 

It is understood from Table 5.24 and from Figure 5.31 that by excluding the 3 highest 

records, more stations show GP as the best-fit-distribution, followed by LP3.  

 

Investigation for impacts of extreme events on flood quantiles is made by (a) removing the 

highest AMF data point; (b) two highest AMF data points; and (c) three highest AMF data 

points. Table 5.25 shows the comparison of estimated quantiles considering these three cases. 



 

124 

 

It is seen from Table 5.25 that the quantile estimation is greatly affected by the highest AMF 

data point in the series. The differences for Q100 range 9% to 86% (with a mean difference of 

48 %). This in essence indicates that if a very high flood occurs in future, the Q100 estimate 

(which is widely used in practice) will be much different than that obtained from the current 

AMF data series. Hence, FFA should be carried out after each big flood event to ensure that 

the existing hydraulic structures designed with the old AMF data does not put significant risk 

to the infrastructure and the community. 
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Table 5.25: Estimated Q50 and Q100 flood quantiles using full AMF data and excluding 

the first, the second and the third highest AMF data points  

Station 

Full 

AMF 

Data 

Full 

AMF 

Data 

3 Highest 

AMF 

Records 

Removed 

3 Highest 

AMF 

Records 

Removed 

2 Highest 

AMF 

Records 

Removed 

2 Highest 

AMF 

Records 

Removed 

1 Highest 

AMF 

Record 

Removed 

1 Highest 

AMF 

Record 

Removed 

 
Q50 

 

Q100 

 

Q50 

 

Q100 

 

Q50 

 

Q100 

 

Q50 

 

Q100 

 

143001C 8134 10784 6766 9090 4033 4033 3410 3410 

143007A 5389 8240 4252 6228 5408 5408 4704 4704 

143009A 11842 19085 9982 15796 12930 12930 10607 10607 

143010B 1878 2600 1353 1760 1761 1761 1313 1313 

143015B 2205 3080 1280 1581 1493 1493 1217 1217 

143028A 131 159 109 129 113 113 85 85 

143032A 379 533 308 422 270 270 227 227 

143033A 415 469 370 417 370 370 331 331 

143107A 1671 2107 1123 1271 1164 1164 937 937 

143108A 1622 2117 1292 1642 1385 1385 1083 1083 

143110A 447 520 429 499 475 475 455 455 

143113A 369 434 224 235 238 238 243 243 

143203C 1395 1989 946 1231 745 745 678 678 

143207A 3009 3582 2700 3173 3037 3037 2743 2743 

143209B 387 416 394 426 398 398 379 379 

143210B 1558 1958 1488 2385 1660 1660 1108 1108 

143212A 1696 2213 1486 1939 1758 1758 1639 1639 

143213C 772 927 551 740 416 416 302 302 

143219A 212 348 91 123 92 92 78 78 

143229A 2305 3606 1134 1372 932 932 493 493 

143232A 55 63 43 47 49 49 47 47 

143233A 993 1645 344 449 478 478 432 432 

143303A 658 721 585 625 658 658 605 605 

143306A 208 231 214 238 186 186 605 605 

143307A 517 624 446 533 450 450 356 356 

143921A 758 1058 641 1000 239 239 199 199 
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5.6 Uncertainty Analysis using Bootstrapping and Monte Carlo Simulation 

Techniques 

Six stations (143028A, 143009A, 143207A, 143015B, 143212A and 143007A) out of the 26 

are selected for uncertainty analysis. From FFA as discussed in Section 5.2, LP3 is found to 

be the best-fit PD for these selected gauging sites. Table 5.26 to 5.31 show estimated flood 

quantiles with 5% and with 95% confidence levels for 143028A, 143009A, 143207A, 

143015B, 143212A and 143007A, respectively. Tables 5-32 to 5-37 show moments and 

correlations for 143028A, 143009A, 143207A, 143015B, 143212A and 143007A, 

respectively. These moments and correlations were estimated by boot strapping. 

The computed 5% and 95% confidence intervals for these six stations are compared with 

those obtained from the FLIKE. It is found that in few cases, the width of the confidence 

intervals is quite high indicating that the associated uncertainty level in FFA is quite high. 

This implies that design of hydraulic structures based on the expected quantiles may not be 

able to provide adequate protection in high floods, and hence necessary measures need to be 

planned e.g. emergency evacuation of the people, erosion control and ecological impacts.   

It is found that out of these six stations, our Monte Carlo simulation provides narrower 

confidence limits for 4 cases. This shows that uncertainty analysis in FLIKE is not absolute 

uncertainty; it only provides an indication of possible uncertainty. 

It should be noted that in FLIKE, a Bayesian method is used in carrying out the uncertainty 

analysis, but in this study a non-Bayesian Mote Carlo simulation is adopted where a 

multivariate normal distribution is used to generate correlated parameters of the LP3 

distribution. The correlation was estimated by the boot-strapping of the AMF data. Since, 

there is a difference in the adopted Mote Carlo simulation methods in FLIKE and this study 

the observed differences in the confidence limits are not unexpected. 
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Table 5.26: Flood quantiles for 143028A by Monte Carlo simulation 

AEP (1 in Y) 

Expected Quantile  5% Confidence 

Level  

95% Confidence Level 

2 23.37 18.31 30.10 

5 49.96 37.63 66.47 

10 70.60 50.91 98.53 

20 91.55 63.35 134.63 

50 119.54 78.12 188.49 

100 140.68 87.78 235.90 

 

Table 5.27: Flood quantiles for 143009A by Monte Carlo simulation 

AEP (1 in Y) 

Expected Quantile  5% Confident 

Level  

95% Confident Level 

2 272.65 182.55 414.72 

5 1249.15 801.72 1965.22 

10 2740.02 1670.94 4520.97 

20 5205.87 2966.17 9266.27 

50 10664.01 5532.03 21286.26 

100 17119.51 8201.78 37446.60 

 

Table 5.28: Annual Maximum Flood Quantiles for 143207A 

AEP (1 in Y) 

Expected Quantile  5% Confidence 

Level  

95% Confidence Level 

2 205.06 128.13 332.21 

5 928.10 536.58 1618.37 

10 1691.64 904.42 3207.62 

20 2544.28 1263.24 5304.00 

50 3702.27 1681.78 8752.15 

100 4541.46 1916.06 11806.05 
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Table 5.29: Annual Maximum Flood Quantiles for 143015B 

AEP (1 in Y) 

Expected Quantile  5% Confidence 

Level  

95% Confidence Level 

2 80.42 44.81 146.78 

5 405.69 204.11 805.41 

10 778.25 349.27 1772.43 

20 1217.14 489.99 3205.23 

50 1844.36 639.84 6006.72 

100 2319.31 715.89 8694.48 

 

Table 5.30: Annual Maximum Flood Quantiles for 143212A 

AEP (1 in Y) 

Expected Quantile  5% Confidence 

Level  

95% Confidence Level 

2 72.50 34.31 153.70 

5 346.04 135.20 870.00 

10 572.81 190.53 1829.10 

20 762.50 216.31 3226.24 

50 939.12 228.44 5709.63 

100 1022.36 234.10 7875.08 

 

Table 5.31: Annual Maximum Flood Quantiles for 143212A 

AEP (1 in Y) 

Expected Quantile  5% Confidence 

Level  

95% Confidence Level 

2 137.66 89.48 215.07 

5 650.55 405.59 1048.25 

10 1424.13 834.88 2444.06 

20 2676.50 1453.68 5041.12 

50 5363.09 2583.08 11603.18 

100 8436.26 3630.89 20789.02 

 

Table 5.32: Moments and Correlation Coefficient for 143028A obtained by 

bootstrapping 

 

  
 

5.589 0.244 1.000     

1.825 0.139 -0.010 1.000   

-0.064 0.176 0.009 -0.006 1.000 
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Table 5.33: Moments and Correlations Coefficient for 143009A obtained by 

bootstrapping 

   

3.053 0.145 1.000     

1.003 0.108 0.012 1.000   

-0.597 0.223 0.007 0.004 1.000 

 

 

Table 5.34: Moments and Correlations Coefficient for 143207A obtained by 

bootstrapping 

   

4.937 0.273 1.000     

2.242 0.225 0.008 1.000   

-1.068 0.216 -0.012 -0.009 1.000 

 

 

Table 5.35: Moments and Correlations Coefficient for 143015B obtained by 

bootstrapping 

   

3.992 0.337 1.000     

2.377 0.292 -0.006 1.000   

-1.029 0.305 0.005 0.001 1.000 

 

Table 5.36: Moments and Correlations Coefficient for 143212A obtained by 

bootstrapping 

   

3.581 0.391 1.000     

2.793 0.478 0.001 1.000   

-1.625 0.505 -0.014 0.010 1.000 
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Table 5.37: Moments and Correlations for 143212A obtained by bootstrapping 

   

4.872 0.257 1.000     

1.892 0.155 -0.014 1.000   

-0.167 0.223 0.008 0.002 1.000 

 

 

5.7 Trends Analysis and Change Point Test 

Existence of trends or abrupt change in the AMF data for all the 26 stations is evaluated in 

this section. Twelve different statistical tests are used for this analysis at different 

significance levels (α) (10%, 5% and 1%). Trends in the data, step jumps in the mean of data, 

differences in the median from two data periods and randomness in data are evaluated 

through these tests. The possibility of trend in the AMF data is assessed through Spearman's 

Rho (SR) nonparametric test, Mann-Kendall (MK) nonparametric test and Linear Regression 

tests. In addition to trend analysis, trend analysis with data resampling is carried out in this 

study so that greater accuracy is achieved to estimate the significance level of a test statistic, 

especially if the null hypothesis is rejected (i.e. assumptions of test are violated). The 

summary of the 12 statistical tests (test statistic’s magnitude, test statistic’s critical values and 

re-sampling test statistic’s critical values) at 1%, at 5% and at 10% significance levels for 

sites 143001C, 143015B, 143028A and 143033A, respectively are presented in Tables 5.38 to 

5.41. The statistical trend test summary at 1%, 5% and 10% significance levels for all other 

stations are given in Appendix-F.   
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Table 5.38: Trend Analysis Result of AMF series at 143001C  

 

Note: ‘NS’ stands for statistically not significant at 10%; ‘S’ stands for significant with level 

inside the brackets. 
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Table 5.39: Trend Analysis Result of AMF series at 143015B 

 

 Note: ‘NS’ stands for statistically not significant at 10%; ‘S’ stands for significant with level 

inside the brackets. 
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Table 5.40: Trend Analysis Result of AMF series at 143028A 

 

 Note: ‘NS’ stands for statistically not significant at 10%; ‘S’ stands for significant with level 

inside the brackets. 
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Table 5.41: Trend Analysis Result of AMF series at 143033A 

 

Note: ‘NS’ stands for statistically not significant at 10%; ‘S’ stands for significant with level 

inside the brackets. 
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Figure 5:32: The AMF series of station 143001C and the linear trend 

 

 

Figure 5:33: The AMF series of station 143015B and the linear trend 
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Figure 5:34: The AMF series of station 143028A and the linear trend 

 

 

Figure 5:35: The AMF series of station 143033A and the linear trend 

 

Figures 5.32, 5.33, 5.34 and 5.35 display the AMF series and corresponding linear regression 

line for stations 143001C, 143015B, 143028A and 143033A, respectively. Visual observation 
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of Figures 5.32 to 5.35 suggests that AMF series at these four stations do not have any 

sudden drop or rise. The trend analysis test statistics of MK, SR and Linear Regression tests 

(Table 5.38) for AMF series of station 143001C confirms that that no statistical significant 

trend exist in data series and test statistics of Distribution-Free CUSUM, Cumulative 

Deviation and Worsley Likelihood Ratio tests (Table 5.38) suggest no step jump in the mean 

of the data series. Rank-Sum and Student’s t statistical tests statistics show “not significant 

(NS)” (in Table 5.38), which suggests that there is no significant difference in median values 

between two separate data periods within AMF time series at station 143001C. Figure 5.32 

shows a mild downward slope in the regression line for the data from station 143001C. 

 

According to MK or SR tests statistics for AMF data at 143015B in Table 5.39, no statistical 

trend exists. However, according to Rank-Sum test, AMF data of this station has significant 

difference (at 10% significant level) in median values between two data periods within the 

total series. Mild upward slope in the linear regression line is visible in Figure 5.33 and 

Figure 5.34 for AMF data at stations 143015B and 143028A, respectively. However, no 

significant trend is shown for these stations (Table 5.39 and Table 5.40) from Linear 

Regression test. Presence of step jump in data at station 143028A is suggested according to 

the CUSUM and Cumulative Deviation statistical tests (Table 5.40). MK or SR tests display 

no significant trend in the data for this station (Table 5.40, 143028A). Upward slope of linear 

regression line for station 143033A is visible in Figure 5.35. Although Linear Regression test 

statistics for 143033A show existence of trend at 10% significance level (Table 5.41), no 

significant trend is estimated for this station by the SR and MK tests (Table 5.41). 

 

The summary of trend analysis tests for all selected stations are shown in Table 5.42 where 

some test statistics show upward (+Ve) or downward (-Ve) trend in the AMF data. The 

presence of step jump in the data between two sub-sets of data within the data series is 

evaluated using Distribution-Free CUSUM test, Cumulative Deviation test and Worsley 

Likelihood Ratio tests. The summary result (Table 5.42) shows that a limited number of 

station’s AMF data have step jump at 10% significance level. It is seen in Table 5.42 that 21 

station’s AMF data have mild +Ve slope in their linear regression line and 5 station’s data 

have -Ve slope. Figure 5.36 presents a layout map with statistically significant trends in AMF 

data at the 10% significance level for all the stations.  
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Table 5.42: Trend test Summary for all station’s AMF data 
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As explained in Section 4.15; trend in the time series data is deemed to be present, if most of 

the trend tests detect statistically significant trend in data series at regional level. In this 

study, out of 12 statistical trend detection tests, most of the tests detect no trend (Table 5.42) 

in the AMF data series of the 26 stations.  

  

The MK and Spearman’s Rao tests for data series at 143015B shows trend at 10% 

significance level. As shown in Figure 5.36, this station is located at Cooyar Creek (upstream 

of Brisbane River). The 143015B catchment is relatively large with an area of 953 km2. The 

geography of the area suggests that this catchment has not been affected by the significant 

human intervention. The highest AMF of 143015B was recorded in 2011 with a magnitude of 

853 m3/s.  The statistically significant trend by trend test may not attribute to a real trend in 

AMF series for this station; however, further investigation is needed to make a firm 

conclusion.  

 

Two commonly used statistical test for detecting trend in data i.e. SR and MK tests do not 

detect any significant trend in AMF data for Station 143033A (Table 5.42), although the 

Linear Regression test shows statistically significant trend at 10% significance level (Table 

5.42). The plot of AMF data for site 143033A (Figure 5.35) shows that the yearly observed 

peak flows fluctuated year to year notably compared to that of the other gauging sites. 

Statistically significant test result and linear regression line slope value is shown in Figure 

5.36 for station 143033A. Figure 5.36 also shows that 143033A gauging station is located at 

Oxley Creek, New Beith, Queensland. This creek travel from New Beith around 50 km 

downstream and meet with the Brisbane River at Brisbane city. In the past, major sand 

extraction and mitigation works were carried out along this reach of the Creek (Hossain, 

2019). This has caused great impacts on geometry and configuration of the greatly mobile 

nature of this creek and brought several meanderings, created loops, sub-branches and 

oxbows along the course of the creek towards Brisbane River (Hossain, 2019; BCC, 2014). 

These changes due to human intervention may contribute on the flood flow magnitude and 

flow depth with time. Therefore, trend in AMF time series may be due to the human activities 

and may not be due to change of climate. 
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Figure 5:36: AMF series linear regression Trend (Upward/Downward) and statistical  

test result (S and NS  at 10% significance level) 

 

It is seen from Figure 5.36 that the slope of the regression lines for most of the stations 

(especially stations at upstream of catchment) are upward ((+Ve) i.e. AMF is increasing with 

time) indicating increasing trend. However, few stations show downstream (-Ve) or 

decreasing trends and these stations are located mainly at downstream of the catchment. The 
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Worsley Likelihood Ratio, Distribution-Free CUSUM, Cumulative Deviation statistical tests 

are used to detect existence of step jump in the AMF data series. All these three tests result 

display no significant step jump for almost all stations.  Distribution-Free CUSUM test result 

show no significant step jump for almost all stations except 143028A. Cumulative Deviation 

test result shows no significant step jump for all stations except for 143028A and 143107A at 

10 % significant level and Worsley Likelihood Ratio test result show no significant step jump 

for all stations except for 143107A at 10 % significance level. The existence of difference in 

the median of selected two data periods within AMF series is tested using Rank-Sum non-

parametric statistical test and test results display no significant difference within data series 

for all stations except for 143009A and 143015B. The existence of difference in mean of 

selected two data periods within AMF series is tested using Student’s t parametric statistical 

test and test results display no significant difference within data series for all stations except 

for 143032A and 143203C. The existence of randomness in data series is tested using 

Turning Points test, Median Crossing test, Rank Difference test and Autocorrelation test; and 

most of the station’s AMF series show no significant result in randomness except for stations 

143033A, .143108A and 143033A. 

 

It is clear from all the statistical tests that the existence of trend or step jumps in AMF data 

series are not significant at regional level within Brisbane River catchment. Haddad and 

Rahman (2011) in their FFA study used MK test to detect trend in the AMF data at 53 

stations in Tasmania, Australia and found only 3 stations having statistically downward trend 

at 5% significance level. Similar finding was also reported by Robson et al. (1998) in their 

study and they reported no significant trend in the AMF dataset from the United Kingdom.  

 

As the trend analysis results (presented above) do not detect statistically significant trend, 

step jump, mean difference or median difference for the whole Brisbane River catchment at 

10% significance level, non-stationary FFA is not conducted. 

 

5.8 Chapter Summary 

 

The results and findings of the study are presented in this chapter. The results of parameter 

estimation and GoF tests for the selection of the best-fit PD are discussed. Different 

probability plots are presented for comparison of the best-fit PD with GoF test results. The 
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results from quantile estimation and observed peak flow vs. ARI plots are presented for all 

the 5 candidate PDs.  

 

It is clear that the LP3 distribution best fits the AMF data series for the majority of studied 

stations. It is also observed that GP and GEV distributions fit the data very well but are 

ranked second and third, respectively. Thus, a particular PD cannot be selected until the 

quantiles are computed and compared with the observed AMF data.  To select the best-fit PD, 

a comparative assessment of the top three distributions at each site has been made, eventually 

identifying the most favourable distribution for the study area. 

 

LP3 distribution is the rank 1 distribution in 11 cases out of the 26 stations, while GP 

distribution is the rank 2 distribution in 8 cases out of the 26 stations. The flood quantiles at 

all the sites are computed considering all the five selected PDs using FLIKE software, i.e. 

LN, Gumbel, GP, GEV, and LP3 distributions. The flood quantiles are computed for the 

aforesaid distributions and it is found that LP3 distribution yields values closer to the GP and 

GEV at most of the stations compared to other distributions. Analysis of the impact of 

outliers in data on quantile estimation show that quantile estimation is changed up to 41%, if 

outliers are not censored form the AMF data. Sensitivity analysis for quantile estimation on 

maximum recorded flow in the AMF data series show that quantile estimates change greatly 

and reduce up to 50% if maximum recorded flow is removed from data series. Uncertainty 

analysis of quantile estimation is also carried out using Monte Carlo simulation techniques. 

Monte Carlo simulation provides narrower confidence limits for 4 stations out of 6 compared 

to FLIKE. This shows that FLIKE does not provide absolute uncertainty; rather it gives an 

indication of possible uncertainty. The trend analysis shows that there is no statistically 

significant trend in the AMF data in the study region.  

 

The next chapter presents a summary of this research and conclusions. 
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 : SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS  
 

6.1 General 

 

Estimation of design flood (DF) is a preliminary step in infrastructure planning, development 

and design process of many civil engineering works including design of flood control and 

drainage structures and streamflow and floodplain management. Among many DF estimation 

methods, at-site FFA is the most direct DF estimation method. According to the ARR 2019 

guidelines (Ball et al., 2019), if record length of available streamflow data is adequate at the 

location of interest then at-site FFA should be used for estimation of DFs. FFA is aimed to 

establish a relationship between stream flow magnitude and its AEP and use the relationship 

to estimate the DF for different AEPs at a given location. A summary of the study, 

conclusions and recommendations for further study are presented in this chapter. 

 

6.2 Summary of the Study 

 

This study involves finding of the best-fit PD for flood quantile estimation using AMF data 

from 26 stream gauging stations within the Brisbane River catchment. The summary of this 

study are presented below. 

 

6.2.1 Selection of Study catchments and Data Preparation   

 

Initially more than 32 stream gauging stations are selected based on data quality, record 

length of streamflow data (>20-year) and catchment size. AMF time series data has been 

analysed for presence of missing data, quality of data and degree of regulation. Finally, a total 

of 26 stream gauging stations have been selected. Missing data (<2%) are infilled through 

regression analysis. FLIKE software is used to identify the presence of outliers in the AMF 

data (Section 5.4) and the outliers in data are censored as needed in FFA. 
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6.2.2 Selection of Probability Distribution  

 

The selection of the most appropriate PD is a difficult task in FFA. The choice of the best-fit 

PD for FFA depends on the quantity and quality of recorded flood data, the goodness-of-fit 

(GoF) criteria used in selecting PD and visual assessment of the plotted AMF data and the 

fitted PD. Therefore, it is essential to evaluate several PDs by fitting with the available AMF 

data series to find the most appropriate PD to use for estimation of DFs. Based on a literature 

review, this study selects five most commonly used PDs as candidates, which are LN, 

Gumbel, LP3, GEV and GP to find the best-fit PD for flood estimation in the study region.  

 

EasyFit and FLIKE software are used in this study. Both software has the option of fitting 

these 5 PDs with different parameter estimation methods. For Gumbel and LP3, MoM is 

used, for LN, MLE method is used and for GEV and GP Method of L-moments is used. 

Parameter estimation methods used in FLIKE are Bayesian inference and LH moments. In 

this study, LP3, Lognormal, GP and Gumbel distributions are fitted using the Bayesian 

inference method, whereas GEV distributions is fitted using the LH moments (with H = 1) 

method. When H = 0, the LH moments become L moments. When H > 1 is used, higher 

floods are given more importance in distributional fitting. Hence, for the LH moments, 

censoring of data is not required. It should be noted that no censoring is needed in the case of 

EV1, GEV and GP distributions. 

 

6.2.3 Best-fit Probability Distribution and Quantile Estimation 

 

In this study three different GoF tests are adopted to evaluate the appropriateness of a PD.  

The graphical plots from EasyFit and FLIKE software along with GoF test results are used 

for selection of the best-fit PD. The outcomes of GoF test and graphical plots form EasyFit 

are compared with the outcome of the FLIKE software. Three GoF tests (A-D, K-S and C-S) 

are carried out for all the five PDs for each of the 26 stations.  The results of the three GoF 

tests show the ranking of all the five PDs, with rank 1 as the best-fit PD, rank 2 as the second 

best and rank 3 as the third best. The results of the GoF tests indicate that LP3 provides better 

fitting to the observed AMF data compared to GP, GEV, Lognormal and Gumbel 

distributions for most of the stream gauging stations in the study region.  Results also show 
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that the 2-parameters Gumbel distribution is the least preferred PD in the study region. Figure 

5.5 shows that for most of the rural catchments, LP3 is the best-fit PD. 

 

The reason for LP3 distribution being selected as the best-fit distribution has little physical 

meaning but has few statistical justifications. The LP3 distribution is a 3-parameter 

distribution, and in general, a 3-parameter distribution should fit the AMF data better than a 

2-parameter distribution (e.g. LN distribution) since flood data is generally skewed. The 

skewness coefficient measures the shape of a sampling distribution. When skewness is 

positive, LP3 yields slightly conservative estimates (Haktanir and Horlacher, 1993). The 

AMF data series of majority stations selected in this study show a positive skewness. One of 

the possible reasons is that the skewness of logged AMF data generally does not exceed the 

desirable limit of ± 1.4 (Griffis and Stedinger, 2005; Griffis and Stedinger, 2009; Rahman et 

al., 2016). In Australia, FFA studies conducted by Rahman et al. (2013) and Srikanthan and 

McMahon (1981) recommended LP3 as the most fitted distribution for FFA. Similar previous 

studies in the USA and in many other countries also recommended LP3 as the most suitable 

distribution (e.g. Vogel et al., 1993; Gunasekara and Cunnane, 1992). 

 

Flood quantiles are estimated using FLIKE for each of the 26 stations using all the five PDs 

for ARIs of 2, 5, 10, 20, 50 and 100 years.  

 

6.2.4 Sensitivity Analysis on Flood Quantile Estimation 

 

Presence of outliers in the AMF data changes quantile estimation. It is seen from the analysis 

that quantile estimation can change up to 41% if outliers are not removed from the AMF data. 

Flood quantile estimation is also greatly affected if FFA analysis is carried out excluding 

maximum recorded flow data point (which is not outlier) from the AMF data series. Analysis 

shows that quantile estimation can reduce by 9% to 86% if FFA is repeated by removing 

maximum recorded flow data point form the AMF data series. This also changes the best-fit 

distribution selection in many cases.  
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6.2.4 Uncertainty Analysis on Flood Quantile Estimation 

 

Uncertainty analysis of quantile estimation is carried out using bootstrapping and Monte 

Carlo simulation techniques. Uncertainty analysis with Monte Carlo simulation provides 

narrower confidence limits for 67% cases compared to that of by FLIKE; indicating that 

FLIKE gives an indication of possible uncertainty and not absolute uncertainty in FFA. 

 

6.2.5 Trend Analysis 

 

The detection of trend and step change in the AMF data is made using eWater’s TREND 

software. It is found from the analysis that the trend in the AMF data is not significant for 

Brisbane River catchment. Haddad and Rahman (2011) found similar result in their FFA 

study for Tasmania; they found trends for only 3 out of 53 stations. Similar result was also 

found by Robson et al. (1998) in their study; they reported no significant trend in the AMF 

dataset of the United Kingdom. As the trend detection tests do not identify statistically 

significant trend in the AMF data series, non-stationary FFA is not considered in this 

research. 

 

6.3 Conclusions 

 

The following conclusions are drawn from this study: 

• It is found that LP3 is the most preferred PD in the Brisbane River catchment, 

followed by the GP distribution. However, there are many cases where LP3 is not the 

best-fit PD. In many cases, the results of the goodness-of-fit tests do not agree with 

the outcome of the visual assessment in FLIKE plots. 

• FLIKE software should be used for flood frequency analysis in Australia; however, it 

should be updated by incorporating GoF tests. 

• The 2011 floods in the 26 stations within the Brisbane River catchment are generally 

smaller than a 100-year flood event. 

• The selection of the best-fit PD by using three GoF statistical tests is influenced by 

the presence of the highest, the second highest and the third highest AMF records in 
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the data series; if these highest records are included, LP3 is the preferred distribution 

in the study region; however, the removal of the highest, the second highest and the 

third highest AMF data points make GP as the most preferred distribution and LP3 as 

the second most favourite one. It should be noted that the highest, second highest and 

third highest AMF values were not found as outliers. This result implies that as more 

and more intense flood will happen in future, the new AMF series may change the 

preferred distribution and GP may become the most preferred distribution in the study 

region. The presence of these high AMF data points affects the 100-year flood 

estimates significantly (by about 9 % to 86 %). This in essence indicates that if a very 

high flood occurs in future, the 100-year flood estimate (which are widely used in 

practice) could be much different than that obtained from the current AMF data series. 

Hence, FFA should be carried out after each big flood event to ensure that the existing 

hydraulic structures designed with the old AMF data do not put significant risk to the 

infrastructure and the community. 

• The flood quantile estimates have a high level of uncertainty given that the record 

lengths of the AMF data are not too high; in particular, the 100-year flood has a 

significant level of uncertainty as found by the wider confidence intervals generated 

by the FLIKE and by the outcomes of the Monte Carlo simulation carried out in this 

study. 

• There is no statistically significant trend in the AMF series within the Brisbane River 

catchment. 

 

6.4 Recommendation for Future Research  

 

The following further research tasks are recommended: 

 

• The parent distribution should be checked by simulating AMF data from the fitted 

distribution at each of the sites within the study area. 

• The non-stationary FFA should be conducted using the LP3, GP and GEV 

distributions. 

• The study should be extended to other regions of Australia to confirm whether LP3 is 

the most preferred distribution across Australia. 
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• The at-site flood frequency analysis results should be compared with the ARR 

Regional Flood Frequency Analysis Model. 

• FLIKE software should include goodness-of-fit tests in its subsequent upgrade. 
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PARAMETER ESTIMATION 
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Table A.1: Parameter estimation for stream gauging sites (continued) 
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APPENDIX - B 

GOODNESS OF FIT TEST STATISTICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

170 

 

 
 

 

 

 



 

171 

 

 
 

 

 

 



 

172 

 

 
 

 

 

 



 

173 

 

 
 

 

 

 



 

174 

 

 
 

 

 

 



 

175 

 

 
 

 

 

 

 

 



 

176 

 

 
 

 

 

 



 

177 

 

 
 

 

 

 



 

178 

 

 

 

Table B.24. Number of time-series records show Rabk-2 in GoF test 

Probability 

Distribution 

Number of 

Time-series 

station AMF 

record with 

Rank-2 in 

A-D Test 

Number of 

Time-series 

station AMF 

record with 

Rank-2 in K-S 

Test 

Number of 

Time-series 

station AMF 

record with 

Rank-2 in C-S 

Test 

Average  

Log Pearson type III 6 14 8 9.33 

Lognormal 11 7 3 7.00 

Gumbel 0 1 3 1.33 

General Pareto 1 2 5 2.67 

General Extreme Value 8 2 7 5.67 

 

Table B.25. Number of time-series records show Rank-3 in GoF test 

Probability 

Distribution 

Number of 

Time-series 

station AMF 

record with 

Rank-3 in 

A-D Test 

Number of 

Time-series 

station AMF 

record with 

Rank-3 in K-S 

Test 

Number of 

Time-series 

station AMF 

record with 

Rank-3 in C-S 

Test 

Average  

Log Pearson type III 2 4 10 5.33 

Lognormal 8 5 6 6.33 

Gumbel 2 1 2 1.67 

General Pareto 10 6 5 7.00 

General Extreme Value 4 10 3 5.67 
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APPENDIX - C 
VISUAL DISTRIBUTION FITTING 
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PROBABILITY PLOT 
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Figure D.1:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143001C 

 

 

Figure D.2:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143009A 
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Figure D.3:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143010B 

 

 

Figure D.4:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143015B 
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Figure D.5:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143032A 

 

 

Figure D.6:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143033A 
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Figure D.7:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143107A 

 

 

Figure D.8:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143108A 
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Figure D.9:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 143110A 

 

 

Figure D.10:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143113A 
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Figure D.11:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143203C 

 

 

Figure D.12:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143207A 
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Figure D.13:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143209B 

 

 

Figure D.14:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143212A 
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Figure D.15:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143219A 

 

 

Figure D.16:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143229A 
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Figure D.17:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143303A 

 

 

Figure D.18:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

1433921A 
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Figure D.19:  LP3 Probability Plot Visual Fitting: AMF, Estimated Quantile for 

143307A 
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APPENDIX – E 
QUANTILE ESTIMAITON 

  



 

205 

 

 

 

 

Table E.1: Quantile estimation for 143001C with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 315 194 513 

5 1549 1026 2426 

10 3067 2031 4886 

20 5020 3278 8472 

50 8134 5087 15784 

100 10784 6439 24327 

200 13598 7675 36695 

500 17451 9068 59015 

     
Table E.2: Quantile estimation for 143007A with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 142 88 232 

5 694 433 1126 

10 1506 916 2677 

20 2781 1567 5951 

50 5389 2597 15413 

100 8240 3390 30195 

200 12014 4166 56789 

500 18704 5138 127248 
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Table E.3: Quantile estimation for 143009A with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) – LP3 
Lower Limit Upper Limit 

2 277 173 446 

5 1336 832 2185 

10 2983 1769 5455 

20 5734 3085 13208 

50 11842 5230 39389 

100 19085 7041 85287 

200 29411 8930 180196 

500 49401 11500 449266 

     
Table E.4: Quantile estimation for 143010B with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) – LP3 
Lower Limit Upper Limit 

2 67 41 111 

5 321 205 524 

10 649 408 1085 

20 1099 670 1998 

50 1878 1064 4237 

100 2600 1370 7297 

200 3427 1649 12125 

500 4665 1962 22701 
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Table E.5: Quantile estimation for 143015B with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) – LP3 
Lower Limit Upper Limit 

2 79 48 133 

5 371 234 598 

10 751 472 1232 

20 1277 768 2400 

50 2205 1209 5645 

100 3080 1542 9799 

200 4099 1851 16421 

500 5655 2204 32776 

 

     
Table E.6: Quantile estimation for 143028A with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) – LP3 
Lower Limit Upper Limit 

2 23 18 30 

5 50 39 64 

10 72 56 97 

20 96 72 140 

50 131 93 217 

100 159 107 295 

200 189 119 396 

500 230 133 567 
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Table E.7: Quantile estimation for 143032A with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 34 26 48 

5 89 63 129 

10 148 100 228 

20 229 143 420 

50 379 205 970 

100 533 250 1721 

200 732 292 3281 

500 1082 336 7181 

    
Table E.8: Quantile estimation for 143033A with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 45 30 79 

5 156 111 222 

10 244 185 330 

20 325 248 429 

50 415 308 566 

100 469 347 660 

200 512 386 740 

500 555 417 896 
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Table E.9: Quantile estimation for 143107A with LP3 distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 238 184 309 

5 552 437 721 

10 837 645 1107 

20 1166 864 1627 

50 1671 1152 2751 

100 2107 1364 4092 

200 2593 1564 5888 

500 3311 1796 9531 

     
Table E.10: Quantile estimation for 143108A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 173 132 229 

5 456 345 613 

10 735 541 1044 

20 1074 758 1670 

50 1622 1068 2918 

100 2117 1306 4372 

200 2683 1539 6397 

500 3549 1829 10237 
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Table E.11: Quantile estimation for 143110A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 130 112 155 

5 221 187 262 

10 287 240 346 

20 355 289 462 

50 447 344 669 

100 520 373 872 

200 595 396 1135 

500 699 417 1584 

     
Table E.12: Quantile estimation for 143113A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 52 36 74 

5 138 105 189 

10 208 160 285 

20 278 212 394 

50 369 275 567 

100 434 315 721 

200 496 350 890 

500 571 388 1123 
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Table E.13: Quantile estimation for 143203C with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 90 70 116 

5 281 216 373 

10 505 374 704 

20 816 574 1229 

50 1395 901 2440 

100 1989 1192 3992 

200 2748 1512 6373 

500 4055 1975 11638 

     
Table E.14: Quantile estimation for 143207A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 224 149 340 

5 887 631 1239 

10 1518 1129 2039 

20 2175 1639 3073 

50 3009 2233 4717 

100 3582 2587 6402 

200 4092 2853 8343 

500 4668 3093 11236 
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Table E.15: Quantile estimation for 143209B with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 106 77 144 

5 218 184 269 

10 283 244 340 

20 335 290 414 

50 387 332 534 

100 416 352 634 

200 438 367 746 

500 460 378 912 

     
Table E.16: Quantile estimation for 143210B with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 139 86 224 

5 438 284 685 

10 730 474 1209 

20 1065 679 1971 

50 1558 936 3520 

100 1958 1109 5112 

200 2373 1255 7683 

500 2935 1411 12717 
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Table E.17: Quantile estimation for 143212A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 60 34 107 

5 323 198 523 

10 650 411 1083 

20 1062 666 1964 

50 1696 1002 3941 

100 2213 1209 6411 

200 2738 1360 9807 

500 3422 1502 16679 

     
Table E.18: Quantile estimation for 143213C with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 6 2 26 

5 115 45 345 

10 296 131 759 

20 511 221 1602 

50 772 343 4398 

100 927 427 6850 

200 1043 499 9825 

500 1148 577 14126 
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Table E.19: Quantile estimation for 143219A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 5 3 9 

5 23 14 43 

10 52 28 114 

20 101 50 275 

50 212 89 798 

100 348 128 1679 

200 547 173 3429 

500 945 242 8768 

     
Table E.20: Quantile estimation for 143229A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 51 26 104 

5 267 136 546 

10 603 289 1768 

20 1149 500 4252 

50 2305 826 16902 

100 3606 1080 50133 

200 5368 1306 144555 

500 8567 1523 436502 
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Table E.21: Quantile estimation for 143232A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 17 13 22 

5 28 22 36 

10 36 27 48 

20 44 33 65 

50 55 38 93 

100 63 42 120 

200 72 45 159 

500 84 48 231 

     
Table E.22: Quantile estimation for 143233A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 28 15 55 

5 115 58 240 

10 247 111 649 

20 472 183 1678 

50 993 299 6793 

100 1645 394 18118 

200 2629 479 50790 

500 4677 568 195647 
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Table E.23: Quantile estimation for 143303A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 173 140 209 

5 349 298 415 

10 461 399 535 

20 555 496 641 

50 658 586 764 

100 721 640 847 

200 774 677 925 

500 830 715 1016 

     
Table E.24: Quantile estimation for 143306A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 24 12 43 

5 83 60 127 

10 129 97 183 

20 168 130 254 

50 208 161 390 

100 231 176 517 

200 247 185 662 

500 263 191 902 
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Table E.25: Quantile estimation for 143307A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 50 31 84 

5 161 108 253 

10 263 180 392 

20 372 262 540 

50 517 357 858 

100 624 414 1124 

200 726 456 1456 

500 850 493 2349 

 

 

     
Table E.26: Quantile estimation for 143921A with LP3 

distribution 

  

Estimated Annual 

Max Flow Quantile 

(qY) 

Monte Carlo 90% quantile 

probability limits 

ARI          

(AEP 1 in 

Y) 

Estimated AMF 

(m3/sec) - LP3 
Lower Limit Upper Limit 

2 13 5 31 

5 98 47 214 

10 231 115 516 

20 424 209 1092 

50 758 354 2815 

100 1058 464 5088 

200 1384 555 8477 

500 1838 644 16106 
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APPENDIX - F 
STATISTICAL TREND TEST SUMMARY 
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Table F.1: Trend analysis test result for 143007A 
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Table F.2: Trend analysis test result for 143009A 
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Table F.3: Trend analysis test result for 143032A 
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Table F.4: Trend analysis test result for 143107A 

 
 

 

 

 

 

 

 

 

 

 

 



 

223 

 

Table F.5: Trend analysis test result for 143108A 
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Table F.6: Trend analysis test result for 143110A 
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Table F.7: Trend analysis test result for 143113A 

 
 

 

 

 

 

 

 

 

 



 

226 

 

Table F.8: Trend analysis test result for 143203C 
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Table F.9: Trend analysis test result for 143207A 
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Table F.10: Trend analysis test result for 143209B 
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Table F.11: Trend analysis test result for 143212A 
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Table F.12: Trend analysis test result for 143219A 
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Table F.13: Trend analysis test result for 143229A 
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Table F.14: Trend analysis test result for 143303A 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

233 

 

Table F.15: Trend analysis test result for 143921A 
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Table F.16: Trend analysis test result for 143210B 
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Table F.17: Trend analysis test result for 143306A 
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Table F.18: Trend analysis test result for 143213C 
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Table F.19: Trend analysis test result for 143232A 
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Table F.20: Trend analysis test result for 143233A 
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Table F.21: Trend analysis test result for 143307A 
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Table F.22: Trend analysis test result for 14010B 

 
 


