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a b s t r a c t 

We present an extension of the Hamiltonian of the two dimensional limit of the vibron model to en- 

compass all possible interactions up to four-body operators. We apply this Hamiltonian to the modeling 

of the bending spectrum of four molecules: HNC, H 2 S, Si 2 C, and NCNCS. The selected molecular species 

include linear, bent, and nonrigid equilibrium structures, proving the versatility of the algebraic approach 

which allows for the consideration of utterly different physical cases within a single Hamiltonian and a 

general formalism. For each case we compute predicted bending energies and wave functions, that we 

use to depict the associated quantum monodromy diagram, Birge-Sponer plot, and participation ratio. In 

nonrigid cases, we also show the bending energy functional obtained using the coherent –or intrinsic–

state formalism. 
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. Introduction 

The two-dimensional nature of the vibrational bending degree 

f freedom, despite having the linear and bent molecular equi- 

ibrium structures physical limits, implies also rovibrational cou- 

lings in quasilinear systems that, even for triatomic systems, have 

een the source of frequent misunderstandings in the description 

f molecular bending dynamics [1] . If the potential energy surface 

ssociated with a particular system has its minimum in the origin 

i.e. it coincides with the molecular axis) the system is said to be 

inear. If this minimum is replaced by a maximum, and the po- 

ential minimum is located somewhere else, the molecule is said 

o have a bent equilibrium structure. Of course, this is not always 

o simple –even for textbook examples with a linear configuration 

2] – and, apart from the two well-defined limiting cases, one often 

as to deal with quasilinear molecules, whose bending dynamics 

s characterized by large amplitude nuclear displacements and are 

ot well described within the traditional normal mode approach. 

he possible cases occurring for intermediate situations can be 
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learly illustrated by correlation energy diagrams that follow the 

volution of energy levels from one limiting case to the other [3,4] . 

For quasilinear molecular species, we introduce in the present 

ork a further distinction between quasilinear and nonrigid 

olecules. The quasilinear case has a molecular bending poten- 

ial with a flat minimum at the origin, and its bending spectrum 

as peculiar signatures, e.g., a positive anharmonicity in the Birge- 

poner plot or an anomalous ordering of the energy levels –with 

aximum vibrational angular momentum levels at lower energies 

or a given number of quanta of vibration. The nonrigid case is 

ven richer in spectroscopic signatures, and it happens in a sys- 

em with a potential minimum that is not in the origin, once the 

ending excitation energy reaches values high enough to allow for 

he exploration by eigenstates of the linear configuration, which in 

rinciple is classically forbidden due to the existence of the barrier 

o linearity. This explains the switch between negative and pos- 

tive anharmonicities in the Birge-Sponer plot that characterizes 

hese molecules, the well-known Dixon dip [5] . Birge-Sponer plots 

btained with the present model for the different cases described 

bove, besides the limiting linear and bent configurations, can be 

ound in Refs. [6–8] . 

The study of large amplitude bending dynamics, and the en- 

uing coupling between vibrational and rotational degrees of free- 

om, has been successfully carried out making use of different ap- 

roaches. Most of them solve a zeroth-order Hamiltonian, where 
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he large amplitude motion (LAM) is placed on equal footing with 

otations, and then consider the complete vibrational-rotational 

amiltonian with respect to a configuration of reference. Per- 

ect examples of this philosophy are the bender Hamiltonian of 

ougen-Bunker-Johns [9] , its extensions, like the semirigid ben- 

er Hamiltonian [10] and the general semirigid bender Hamilto- 

ian [11] , or the MORBID [12] model. The consideration of both 

otational and vibrational degrees of freedom makes these mod- 

ls extremely useful tools for the analysis of molecular spectra, as 

hey allow for the modeling of experimental term values and the 

ssignment of quantum labels. 

The barrier to linearity in nonrigid species is often modeled 

ith Mexican-hat type potentials. Classical mechanics show that 

uch potentials prevent the definition of a set of globally valid 

ction-angle variables [13] . When this situation is brought into the 

uantum mechanics realm, the lack of global action-angle vari- 

bles translates into the impossibility of finding a unique set of 

ibrational quantum numbers globally valid for the system [14,15] . 

his phenomenon, called quantum monodromy , is explained by the 

hanges experienced by the system spectrum as the linear configu- 

ation, initially forbidden, can be explored for increasing excitation 

nergies. Introduced by Child, quantum monodromy is character- 

zed by a piling of states around a critical energy value and a par-

icular dependence of the bending energy levels on the vibrational 

ngular momentum, evinced in the quantum monodromy diagram 

14] . This feature was soon used as an effective tool for the labeling

f highly-excited energy levels of water in particularly difficult en- 

rgy regions [16] . Quantum monodromy signatures have been later 

ound in other molecular species [15,17–21] . 

The present work is based on an algebraic approach that treats 

uantum many-body systems with N degrees of freedom in terms 

f bosonic realizations of the U(N + 1) Lie algebra [22] ; an ap-

roach that has been successfully applied to the modeling of 

he structure of widely different physical systems: nuclei [23,24] , 

adrons [25] , and molecules [26] . In the latter case, rovibrational 

xcitations in molecules are treated as collective bosonic excita- 

ions called vibrons , and the model is known as the vibron model . 

his approach was originally introduced by Iachello for the study 

f the full rovibrational spectrum of diatomic molecular species 

27] . In the present paper, we use the two-dimensional limit of the 

ibron model (2DVM), with a U(3) dynamical algebra, originally 

ntroduced for the study of single and coupled benders [28] . This 

odel provides an effective Hamiltonian able to deal with large 

mplitude bending modes and including from the onset couplings 

ith the rotational projection around the molecule-fixed z-axis. 

t allows for a simple, though complete, description of the linear 

nd bent limiting cases, as well as of the quasilinear and nonrigid 

egimes [6,29] . A thorough description of the model can be found 

n Ref. [7] . 

A point of particular interest for algebraic models is the study 

f ground state quantum phase transitions (QPTs), also called 

hape phase transitions, that are zero-temperature transitions be- 

ween phases associated with specific configurations of the sys- 

em ground state. The different phases are often associated with 

ell-known limits, called dynamical symmetries [30] . These transi- 

ions are non-thermal and are driven through the variation of one 

r several Hamiltonian parameters (control parameters). The study 

f such transitions can be traced back to the seminal studies of 

ilmore [31] and it has received a great deal of attention in alge- 

raic models of nuclear structure [32–34] . The description of the 

round state QPT for the 2DVM model is found in Ref. [7] , while

ifferent aspects of interest about this transition can be found in 

efs. [35–40] . 

More recently, the ground state QPT concept has been extended 

o encompass excited states, with the introduction of excited state 

uantum phase transitions (ESQPTs). ESQPTs are characterized by a 
2 
ingularity in the energy spectrum due to the clustering of excited 

evels at a certain critical energy [41,42] . ESQPTs have been studied 

n different models, e.g., the nuclear interacting boson [32] , Jaynes- 

ummings [43] , kicked-top [44] , Rabi [45] , Lipkin-Meshkov-Glick 

LMG) [32,46–50] , and Dicke [36,43,51,52] models. For a recent re- 

iew see Ref. [53] and references therein. 

In the molecular case, it was shown that quantum monodromy 

nd its associated excited levels clustering can be understood as 

 manifestation of an ESQPT [7] and it can be described with a 

ormulation common to other many-body systems [41,54,55] . Due 

o the advances in experimental techniques that have made fea- 

ible to record highly-excited bending overtones in nonrigid sys- 

ems, the molecular bending degree of freedom has been the first 

uantum system where experimental signatures of ESQPTs have 

een identified [17,18] and explained from an algebraic perspective 

8,56] . Other systems where experimental access to ESQPTs has 

een achieved are superconducting microwave billiards [57] and 

pinor condensates [58] . 

The present work can be considered as an extension and an up- 

ate of the results presented in [8] and [56] , with the main aim

f calculating spectra within the 2DVM with uncertainties close 

o spectroscopic accuracy. In these two works, particular bending 

odes of several molecular species with different characteristics –

inear, quasilinear, nonrigid, and bent– were modeled making use 

f the 2DVM. The selected species are mostly four- or five-atomic 

n [8] and triatomic in [56] and their bending rovibrational struc- 

ure was explained in terms of the most general 2DVM Hamilto- 

ian up to two-body interactions (besides the water molecule case, 

here extra interactions were taken into consideration). We ex- 

end the number of interactions and make use of the most general 

DVM Hamiltonian including up to four-body interactions. To illus- 

rate the improved results achieved with this extension, we show 

esults for four molecular species: hydrogen isocyanide (HNC, lin- 

ar), hydrogen sulfide (H 2 S, bent), cyanogen isothiocyanate (NC- 

CS, nonrigid), and disilicon carbide (Si 2 C, nonrigid). We provide 

n the Supplementary Material section the predicted values for not 

et measured levels as well as the residual plots for our fits. 

In addition to the calculated spectra and spectroscopic param- 

ters for the selected species, we have also computed the partici- 

ation ratio [59] (PR) of the resulting eigenstates expressed in the 

wo 2DVM bases, associated with the linear and bent limiting cases 

7] . 

Finally, in nonrigid cases, we make use of the coherent or in- 

rinsic state formalism [7,60,61] to compute an approximation to 

he system bending energy functional. 

. The two dimensional limit of the vibron model 

The vibron model, based on the U(4) Lie algebra, was origi- 

ally devised for the study of diatomic molecular species [27] . This 

odel was later extended to model the spectrum of tri- [62] and 

etratomic [63] molecular species. The simultaneous treatment of 

ll rotational and vibrational degrees of freedom comes at a cost, 

nd the required coupling of U(4) algebras increase the mathemat- 

cal and computational complexity of the model. 

As a possible way of overcoming this drawback, a simplified 

ersion, the 2D limit of the vibron model -abbreviated as 2DVM- 

as introduced to model molecular bending vibrations [28] . Since 

hen, due to its general character, it has proved able to encom- 

ass the limiting linear and bent molecular structures, besides the 

nteresting situations in-between them. In the field of molecular 

tructure, the model was applied to different problems involving 

ending vibrations: calculation of infrared or Raman line inten- 

ities [29,64–68] , definition of an algebraic force field for bend- 

ng vibrations [69] , computation of Franck-Condon factors [70] , or 

haracterizing signatures of non-rigidity in energy spectra [6,8,56] . 
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ore recently, the authors have found that the 2DVM model is ca- 

able of characterizing the transition state in such reactions, ap- 

lying this finding to the bond-breaking system HCN-HNC [71] . 

In fact, as the 2DVM is the simplest two-level bosonic model 

ith a non-trivial angular momentum, it has been often used to 

llustrate the occurrence of ESQPTs in algebraic models [42,72,73] . 

he authors and Santos have also recently shown clear evidences 

f a link between the ESQPT formalism and the study of the tran- 

ition state in isomerization chemical reactions [71] . 

Alternative algebraic approaches to molecular structure that try 

o get a firmer grasp on the connection to the traditional phase 

pace approach are also based on the 2DVM [74–76] . 

Specially important for the present discussion are the detailed 

escription of the model provided in Ref. [7] and Refs. [8,56] , 

here a careful study of many different benders is presented and 

he model results are explained under the prism of the occurrence 

f an ESQPT in nonrigid cases. Nonrigid molecules have vibrational 

ending levels that straddle the barrier to linearity, whose wave- 

unctions have significant components in both the linear and bent 

egions of configuration space, giving rise to particular spectro- 

copic signatures. The spectra of such molecules display features 

ypical of a bent or linear configurations, depending on the energy 

indow considered and they showcase the expected ESQPT precur- 

ors for a finite system, once the system overcomes the potential 

arrier and explores the previously forbidden linear configuration 

egion of the phase space. 

It is worth to mention the extension of the model to situa- 

ions where two benders are coupled, which implies a significantly 

arger computational complexity [77,78] and where the obtained 

esults can be explained from the perspective of QPTs involving 

wo bosonic fluids [79–83] . Related to this, it is worth mention- 

ng the use of the 2DVM model in the study of the spectra of 2D

rystals with various lattice geometries [84] . 

The 2DVM associates a U(3) dynamical algebra to each ben- 

er. The nine generators of this Lie algebra are built as bilinear 

roducts of a creation and an annihilation operator from the basic 

ricks for the algebra: two Cartesian bosons ( τx , τy ) and a scalar 

oson ( σ ). The system Hamiltonian is obtained as an expansion in 

erms of operators with the right symmetry properties that belong 

ither to the dynamical algebra or to one of its subalgebras. The in- 

erested reader can find a detailed mathematical description of the 

odel in Refs. [7,28] . We provide here some basic details concern- 

ng the bases and Hamiltonians we use in the present work and 

e also introduce the participation ratio, a quantity used to ana- 

yze the wave function localization in the different bases. We also 

utline the intrinsic state formalism, used to obtain the classical 

imit of the model in the mean field approximation. 

.1. The cylindrical and displaced oscillator bases 

There are two possible subalgebra chains starting from the dy- 

amical algebra, U(3) , and ending in the system symmetry algebra, 

O (2) . The requirement of having SO (2) as the symmetry algebra 

mplies angular momentum conservation in the system [85] . 

U(2) Chain (I) 
↗ ↘ 

(3) SO (2) 
↘ ↗ 

SO (3) Chain (I I ) 

(1) 

ach one of the possible subalgebra chains is known as a dynami- 

al symmetry and it provides an analytical solution to the problem: 

n energy formula that can be mapped to certain physical cases 

22,85] . In addition to this, there is a basis associated with ev- 

ry dynamical symmetry. We proceed to detail the basis quantum 
3 
umbers and branching rules for the two dynamical symmetries at 

take. 

The cylindrical oscillator basis. The U(3) ⊃ U(2) ⊃ SO (2) chain is 

nown as the cylindrical oscillator chain and it can be mapped 

ith the linear case. Its states are labeled by quantum numbers 

 and � 

U(3) ⊃ U(2) ⊃ SO (2) 
[ N ] n � 

〉
, (2) 

nd the associated basis states are denoted as | [ N] ; n � 〉 . The quan-

um number N labels the totally symmetric representation of U(3) 

nd the total number of bound states of the system is a function 

f N. The label n is the vibrational quantum number and � is the 

ibrational angular momentum. The branching rules in this case 

re 

 = N, N − 1 , N − 2 , . . . , 0 

� = ±n, ±(n − 2) , . . . , ±1 or 0 (n = odd or even ) . (3) 

This is the most convenient basis to fit vibrational bending data 

rom linear molecules. We provide in A.0.1 the matrix elements in 

his basis of the different operators included in the 2DVM Hamil- 

onian. 

The displaced oscillator basis. States in the displaced oscillator 

hain, associated with bending vibrations in molecules with a bent 

eometric configuration, are characterized by the quantum num- 

ers 

U(3) ⊃ SO (3) ⊃ SO (2) 
[ N ] ω � 

〉
(4) 

nd will be denoted as | [ N] ;ω, � 〉 . The branching rules in this case

re 

 = N, N − 2 , N − 4 , . . . , 1 or 0 (N = odd or even ) , 

� = ±ω, ±(ω − 1) , . . . , 0 . (5) 

t is convenient to introduce a vibrational quantum number νb , 

hich can be identified with the number of quanta of excitation 

n the displaced oscillator νb = 

N−ω 
2 . The branching rules in this 

ase are 

νb = 0 , 1 , . . . , 
N − 1 

2 

or 
N 

2 

(N = odd or even ) , (6) 

 = � = 0 , ±1 , ±2 , . . . , ±(N − 2 νb ) , 

xpressed in terms of symmetric top quantum labels. This is the 

atural basis to fit bending vibration data from nonrigid and bent 

olecules. We provide in A.0.2 the values of the matrix elements 

f the four-body 2DVM Hamiltonian operators in this basis. 

For nonrigid molecules, it is expected that low energy eigen- 

tates would be better defined within the displaced oscillator ba- 

is set –SO (3) dynamical symmetry– whereas states with energies 

bove the potential barrier should be better characterized in the 

ylindrical oscillator basis set –U(2) dynamical symmetry. There- 

ore, depending on the energy, vibrational bending overtones could 

e assigned either to symmetric top quantum labels, νb and K, or 

o the 2D harmonic oscillator quantum labels, n and �, used in the 

inear case. These two sets of quantum numbers are linked by the 

ransformation νb = 

n −| � | 
2 and K = � (see, e.g. [1,15] ). 

.2. The 2DVM Hamiltonian 

In this work we make use of three different Hamiltonian opera- 

ors of increasing complexity. The simplest one, ˆ H , has been chiefly 

sed in the study of ground and excited state QPTs in the 2DVM. It 

s a very simplified Hamiltonian that includes the ˆ n operator, from 
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he cylindrical oscillator dynamical symmetry, and the Pairing op- 

rator ˆ P , from the displaced oscillator dynamical symmetry, 

ˆ 
 = ε 

[
(1 − ξ ) ̂  n + 

ξ

N − 1 

ˆ P 

]
. (7) 

The number operator, ˆ n , is the total number of τ bosons and 

as a direct physical interpretation in the cylindrical oscillator dy- 

amical symmetry as the number of quanta of excitation in the lin- 

ar limit. In fact, it is defined as ˆ n = ˆ n x + ˆ n y for a two-dimensional 

armonic oscillator. The Pairing operator interpretation is not so 

irect, it is defined as ˆ P = N(N + 1) − ˆ W 

2 , where the first contribu-

ion is constant and it is used for convenience to make the ground 

tate lie at zero energy. The second term, ˆ W 

2 , is the Casimir op- 

rator of the SO (3) subalgebra. Therefore it is a squared angular 

omentum which, nevertheless, should not be mistaken with the 

hysical angular momentum, that is the vibrational angular mo- 

entum, ˆ � . The spectrum of the Pairing operator is anharmonic, 

ts associated potential has a minimum outside the origin -thus 

he displaced oscillator name for the dynamical symmetry- and the 

umber of quanta of excitation, νb , can be obtained from the quan- 

um number ω as shown in Eq. (6). The interested reader can find 

ore details in Ref [7] . 

The Hamiltonian (7) has two parameters: a global energy scale 

and a control parameter ξ . For ξ = 0 . 0 , the system is in the first

ynamical symmetry (linear limit) while for ξ = 1 . 0 the system is 

n the second one (bent limit). The different values of the control 

arameter ξ ∈ [0 , 1] quantifies the weight of one limit or the other. 

his is specially adequate in the characterization of ground and ex- 

ited state QPTs. A second-order ground state QPT occurs for the 

ritical value ξc = 0 . 2 [7] . In the present work we use this sim-

lified model Hamiltonian to illustrate the use of the participation 

atio as an ESQPT probe. In order to perform fits to observed bend- 

ng spectra, the Hamiltonian should include more interactions. 

It is very illustrative to compute the quasilinearity parameter, 

0 , introduced by Yamada and Winnewisser [1,86] computed from 

he spectrum of Hamiltonian (7) for different values of the ξ con- 

rol parameter. The γ0 parameter is defined as the ratio of two en- 

rgy gaps and aims to locate a particular molecule between the 

emirigid linear ( γ0 = -1) and bent ( γ0 = 1) limits 

0 = 1 − 4 

E(νb = 0 , � = 1) − E(νb = 0 , � = 0) 

E(νb = 1 , � = 0) − E(νb = 0 , � = 0) 
, (8) 

here in the bent and nonrigid cases the � label is replaced by the 

one. In order to make a comparison between the two parame- 

ers, we have depicted in Fig. 1 a correlation diagram that shows 

he value of γ0 as a function of ξ for ξ ∈ [0 , 1] and different system

izes. 

As expected, the γ0 value varies from -1 for ξ = 0 to 1 for 

= 1 displaying a sudden change around the critical value of the 

ontrol parameter, ξc = 0 . 2 , where the system spectroscopic fea- 

ures change from linear to bent through a nonrigid configuration 

6,7] . This change becomes more abrupt the larger the system size, 

omething that is explained by the fact that the true shape phase 

ransition happens in the mean field limit, i.e. for large N values. In 

act, the quasilinearity parameter (8) would be a possible order pa- 

ameter to characterize the ground state quantum phase transition 

n the 2DVM. The finite-size scaling properties of this transition 

ere studied analitically in [36] . 

A second Hamiltonian of interest is ˆ H 2 b , the most general one- 

nd two-body Hamiltonian of the 2DVM [7,28] 

ˆ 
 2 b = E 0 + ε ˆ n + α ˆ n ( ̂  n + 1) + β ˆ � 2 + A ̂

 P . (9) 

he operators ˆ n and ˆ n ( ̂  n + 1) are the first and second order Casimir 

perators of U(2) algebra in the cylindrical oscillator chain. There- 

ore, the operator ˆ n ( ̂  n + 1) is an anharmonic correction to the lin- 

ar limit bending vibration. The pairing operator ˆ P , as mentioned 
4 
bove, is the Casimir operator of SO (3) in the displaced oscillator 

hain, whose spectrum can be mapped to a two-dimensional an- 

armonic oscillator. The vibrational angular momentum, ˆ � , is com- 

on to both dynamical symmetries and it is the physical angular 

omentum of the two-dimensional system. In fact, in all the cases 

onsidered, the angular momentum is a constant of the motion, � 

s a good quantum number, and the Hamiltonian matrix is block 

iagonal in � . This fact simplifies numerical calculations, reducing 

atrix dimensions. This reduction is further increased because for 

 � = 0 only positive angular momentum values are considered. This 

s explained because, in absence of symmetry-breaking external 

elds, the first order angular momentum operator ˆ � is not included 

n the Hamiltonian and there positive and negative � value levels 

re degenerate. 

The third Hamiltonian considered is ˆ H 4 b , the most general 1-, 

-, 3-, and 4-body Hamiltonian expressed as follows 

ˆ 
 4 b = P 11 ̂  n 

+ P 21 ̂  n 

2 + P 22 ̂  � 2 + P 23 
ˆ W 

2 

+ P 31 ̂  n 

3 + P 32 ̂  n ̂

 � 2 + P 33 ( ̂  n 

ˆ W 

2 + 

ˆ W 

2 ˆ n ) (10) 

+ P 41 ̂  n 

4 + P 42 ̂  n 

2 ˆ � 2 + P 43 ̂  � 4 + P 44 ̂  � 2 ˆ W 

2 

+ P 45 ( ̂  n 

2 ˆ W 

2 + 

ˆ W 

2 ˆ n 

2 ) + P 46 
ˆ W 

4 + P 47 ( ˆ W 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 ) / 2 . 

This Hamiltonian has fourteen spectroscopic constants P i j , 

here the subindexes indicate that the parameter is the j-th op- 

rator among the i -body interactions. The operators have been 

onveniently symmetrized when they involve products of non- 

ommuting operators. The physical interpretation of the role of the 

hree- and four-body operators in this Hamiltonian is still quite 

lear: ˆ n 3 and ˆ n 4 are further anharmonic resonances in the lin- 

ar limit; ˆ � 4 is a centrifugal correction; and 

ˆ W 

4 is an anharmonic 

orrection to the displaced oscillator (bent limit). The operators 

ˆ  ̂  � 2 and ˆ n 2 ˆ � 2 are vibration rotational terms in the linear limit, as 

ell as � 2 ˆ W 

2 for the bent limit. The resonances ˆ n ̂  W 

2 + 

ˆ W 

2 ˆ n and 

ˆ  2 ˆ W 

2 + 

ˆ W 

2 ˆ n 2 mix the two limits of the model. Finally, the term 

ˆ 
 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 is a resonance that involves the Casimir opera- 

ors for the SO (3) and SO (3) subalgebras in the model, associated 

ith two possible realizations for the displaced oscillator chain [7] . 

his last parameter has only been included for completeness as it 

as not been found necessary in any of the fits for the different 

olecules considered in this work. The same happens for the ˆ n 3 

nd ˆ n 4 operators. 

From the matrix elements of the creation and annihilation σ
nd τ bosons in the two bases associated with the model dynam- 

cal symmetries, published in [7] , the operator matrix elements of 

ll operators in Eq. (10) can be derived. We provide the matrix 

lements of the operators in the two bases of interest as an ap- 

endix to the present work. 

.3. ESQPT and participation ratio 

It has been recently shown that in all vibron model limits the 

SQPT occurring between the U(N − 1) and SO (N) dynamical sym- 

etries (for N = 2 , 3 , 4 ) implies a strong localization of the wave

unction for the state(s) closer to the critical energy of the tran- 

ition when expressed in the U(N − 1) basis. This fact has impor- 

ant consequences in the system dynamics [73,87,88] . A convenient 

uantity to reveal this localization is the PR [59] . This quantity, 

losely linked to the Shannon entropy [89] , is also named inverse 

articipation ratio [90] or number of principal components [89] . If 

e consider a basis { | ψ i 〉 } dim 

i =1 , we can express the eigenstates of 

ur problem as | �k 〉 = 

∑ dim 

i =1 c ki | ψ i 〉 , with the usual normalization
 dim 

i =1 c ki c 
∗
k ′ i = δk ′ k . The PR is defined as the inverse of the sum of
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Fig. 1. Quasilinearity parameter γ0 [86] given in Eq. (8) evaluated from the spectrum obtained with model Hamiltonian (7) for control parameter values ξ ∈ [0 , 1] and 

different N values. 
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squared: 

 R [�k ] = 

1 ∑ dim 

i =1 | c ki | 4 
. (11) 

he minimum value of the PR for a given state is one, when the 

igenfunction corresponds exactly with a basis state and all c ki 

omponents are zero besides one which is equal to unity. This en- 

ails a maximum localization in the selected basis. On the other 

and, the maximum value of the PR is dim, the dimension of the 

amiltonian block. This value is attained once the wavefunction 

as all their components equal and non-zero. In the present case 

e can express the eigenstates in one of the two bases associated 

ith the U(3) dynamical symmetries, 

| �(� ) 
k 

〉 = 

∑ 

n c 
(� ) 
kn 

| [ N] ; n � 〉 (Cylindrical oscillator chain) 

↗ 

 �(� ) 
k 

〉 
↘ 

| �(� ) 
k 

〉 = 

∑ 

νb 
d (� ) 

kνb 
| [ N] ;νb � 〉 (Displaced oscillator chain) . 

(12) 

PR values are usually normalized, dividing the value obtained 

rom Eq. (12) by the dimension of the space. This facilitates com- 

aring results for systems with different sizes. The results ob- 

ained for the model Hamiltonian (7) help to illustrate the in- 

ormation provided by the PR quantity. The ground state QPT for 

he model Hamiltonian happens for the critical control parameter 

alue ξc = 0 . 2 and the ESQPT occurs for control parameters val- 

es larger than ξc . The ESQPT is marked by a nonanaliticity of the 

nergy level density at the critical energy in the thermodynamic 

r mean field limit ( N → ∞ ). This critical point can be reached

n two different ways: (i) varying a Hamiltonian control parame- 

er, within a certain range, for a constant excitation energy; or (ii) 

ncreasing the excitation energy for a Hamiltonian with constant 

arameters. In Fig. 2 we depict the correlation energy diagram for 

 = 20 0 0 and 0 ≤ ξ ≤ 1 and we plot the PR for the cylindrical (left

anel) and displaced (right panel) oscillator basis as a heat map. 

he left panel shows the high localization of the states on the 

eparatrix that marks the ESQPT (low PR values) when expressed 

n the cylindrical oscillator basis. States located above the separa- 
5 
rix have a U(2) character –being closer to a linear configuration–

hile states below the separatrix have a SO (3) character – and are 

loser to a bent configuration. For a high enough barrier to linear- 

ty, states with a bent character are more localized in the SO (3) 

asis and states closer to a linear configuration are better localized 

n the U(2) basis, respectively. Thus, under the barrier, PR values 

n the SO (3) basis are less than PR values in the U(2) basis. This

attern reverses as energy crosses the barrier to linearity. How- 

ver, if the barrier to linearity is low, and therefore the system lies 

ar from any dynamical symmetry, there is a substantial mixing in 

oth bases and it may happen that, under the barrier, the PR in the 

(2) basis is similar or less than the PR in the SO (3) basis. There-

ore, in cases far from the dynamical symmetries the PR is a probe 

oo coarse to assign U(2) or SO (3) character to a state. In spite of

his, as illustrated in the left panel of Fig. 2 , the minimum of the

R value in the U(2) basis always allows for a precise determina- 

ion of the critical energy of the ESQPT. 

.4. Mean field limit of the 2DVM 

The zero temperature ground and excited state QPTs truly occur 

n the thermodynamic limit –or mean field limit– of the system, 

or large system sizes (large N values). In any case, the derivation 

f a classical energy functional from the algebraic Hamiltonian is 

f great help in understanding and classifying these phenomena. 

 classical energy functional, within a 1 /N approximation, can be 

btained using the coherent or intrinsic state formalism. This for- 

alism, originally introduced by Gilmore [31] , was applied in the 

rst instance to algebraic models in nuclear physics [60] , and it 

as later extended to molecular systems [61] . We present here the 

asic results, further details about the intrinsic state formalism re- 

ults for the 2DVM model can be found in Ref. [7] . 

The initial step is the consideration of the coherent (or intrin- 

ic) ground state 

 [ N ] ; r 〉 = 

1 √ 

N ! 

(
b † c 

)N | 0 〉 , (13) 
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Fig. 2. Both panels represent the normalized excitation energies for � = 0 states with N = 20 0 0 versus the ξ parameter of the model Hamiltonian (7) . Each energy point 

is colored in accordance with the value of the normalized PR for the corresponding eigenstate expressed in the cylindrical oscillator (left panel) or the displaced oscillator 

(right panel) basis. 
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hat is normalized, and where r stands for the 2D classical coordi- 

ates and b 
† 
c is the boson condensate operator 

 

† 
c = 

1 √ 

1 + r 2 

[
σ † + xτ † 

x + yτ † 
y 

]
. (14) 

Calculating the expectation value of the Hamiltonian (10) in the 

oherent state (13) we obtain the system energy functional E(r) 

(r) = 〈 [ N ] ; r | ̂  H 4 b | [ N ] ; r 〉 (15) 

The results for the different terms composing the four-body al- 

ebraic Hamiltonian (10) can be found in Appendix B . 

The one- and two-body Hamiltonian phase diagram was stud- 

ed in [7] and it implies a single control parameter and a second 

rder ground state phase transition between the linear and bent 

imits, as expected [30] . The role of the anharmonicity was studied 

n [72] . The inclusion of three- and four-body operators in Hamil- 

onian implies a significantly more complex phase diagram and we 

re currently working in its characterization. Once this task is ac- 

omplished we will have a number of essential control parame- 

ers, ξ1 , ξ2 , . . . and the correlation between them and the quasilin- 

ar parameter (8) can be worked out. 

The complete classical limit of the system is obtained consid- 

ring a complex variational parameter in the boson condensate 

14) . The real and imaginary parts of the variable are mapped to 

oordinate and momenta of the system. We perform a simpler 

ransformation, with a real r parameter to obtain the system en- 

rgy functional. The comparison of this energy functional to the 

ending potentials used in configuration space is far from direct. 

s mentioned above, the coherent approximation is valid only up 

o a 1 /N-order. Considering the N values involved in the study of 

olecular benders this is a significant uncertainty. It is possible 

o go beyond the mean field limit [36] , but before embarking in 

his procedure one should grapple with two other issues that also 

inder the above mentioned comparison. The first one is that the 

inetic energy obtained in the intrinsic state approach is position- 

ependent [61] and, therefore, it is not equivalent to the usual ki- 

etic energy operator. Furthermore, one has to deal with the trans- 

ormation from the dimensionless variable r to a physical coordi- 
6 
ate measuring the deviation of linearity angle, θ, which implies a 

onnection between the physical system and its algebraic realiza- 

ion. A linear approximation to this problem has been previously 

orked out for the two dynamical symmetries and extended to 

ituations in-between [6,8] . In the present case, the use of higher- 

rder terms in the Hamiltonian further complicates this connec- 

ion. In spite of these drawbacks, and notwithstanding that the re- 

ults obtained should in principle be considered of a qualitative 

ature, the energy functionals resulting from the coherent state 

pproach provide a fairly intuitive grasp into the model results that 

elps to overcome its abstract character. Therefore, in the nonrigid 

olecules studied, we provide the resulting energy functionals to 

elp in the interpretation of the obtained results. 

. Results 

The main advantage of the 2DVM is the possibility to encom- 

ass, in a computationally simple approach, the full gamut of be- 

aviors expected for molecular bending vibrations: linear or bent 

emi-rigid configurations and the nonrigid case. The latter one is 

haracterized by a large amplitude, highly anharmonic, degree of 

reedom and its modeling is only achieved using a Hamiltonian op- 

rator that combines interactions from the linear and bent dynam- 

cal symmetries. 

In order to bring to light the 2DVM versatility, we model bend- 

ng vibrational data for four molecules which have very different 

pectroscopic signatures: one semirigid linear (HNC), one semirigid 

ent (H 2 S), and two nonrigid molecules (Si 2 C and NCNCS) with 

 large amplitude bent-to-linear mode. In all cases, the bending 

pectrum has been reproduced making use of the most general 

-body Hamiltonian (10) . For this purpose, we have collected the 

vailable data for the bending degree of freedom under study. The 

DVM model only deals with vibrational bending levels, therefore 

t is necessary that the experimental ro-vibrational term values are 

tted and assigned making use of a model able to extract the vi- 

rational origins from the rotational spectra for each vibrational 

and. This vibrational origins are the data we used as a reference 
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Table 1 

Optimized Hamiltonian parameters ( P i j , in cm 

−1 units) for the selected bending degree of freedom of HNC, H 2 S, Si 2 C, and NCNCS. Values are given with their associated 

uncertainty (one σ confidence interval) between parentheses in units of the last quoted digits. The total vibron number, N, the rms obtained in the fit (in cm 

−1 units), and 

the number of data entering the minimization algorithm, N data , are also included. 

Molecule HNC H 2 S 
a Si 2 C NCNCS 

P 11 1414.0(4) - 63.8(5) 331.97(8) 

P 21 −29 . 837(15) - −0 . 108(18) −2 . 0954(6) 

P 22 15.81(10) 2.897(13) 0.98(5) 1.190(8) 

P 23 −8 . 054(3) −3 . 0113(12) −0 . 8117(17) −0 . 58578(17) 

P 32 4 . 9(10) × 10 −2 - - - 

P 42 - - - −2 . 65(20) × 10 −5 

P 43 - −5 . 7(3) × 10 −5 - - 

P 44 - 1 . 235(9) × 10 −4 - - 

P 46 - 1 . 924(4) × 10 −5 - 3 . 48(8) × 10 −7 

N 40 121 49 150 

rms 0.08 0.20 1.48 0.79 

N data 19 96 37 88 

a Two additional parameters besides those listed in this table are used in this case to account for rotational effects. See Subsection 3.2 . 
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or our model, though in the H 2 S case (see Subsection 3.2 ) we in-

lude in our calculation the effect of the rotational structure in or- 

er to optimize the agreement with the reported energy values. 

Making use of this information, the P i j spectroscopic parame- 

ers of Hamiltonian (10) have been optimized to reproduce the re- 

orted bending spectra, obtaining in all cases a good agreement 

etween our results and reported data. We have developed a For- 

ran source code for the calculation of the algebraic Hamiltonian 

10) eigenvalues and eigenstates, as well as the different quantities 

ncluded in the present work. The code makes use of the LAPACK 

91] and LAPACK95 [92] libraries for matrix diagonalization and it 

lso performs the requested state assignment tasks. The parame- 

er optimization procedure is a nonlinear least square fitting using 

he Minuit Fortran code [93] . In every molecule we start from the 

wo-body minimal Hamiltonian (9) , fixing to zero the three- and 

our-body operators. This Hamiltonian has been previously used in 

he modeling of three out of the four cases under study [8,56] . Af-

er that, the effects of different combinations of three- and four- 

ody parameters are studied, including them in the minimization 

nd using the statistical information provided by Minuit to choose 

 minimal set of physically relevant parameter. The minimization 

nishes once convergence is reached for a set of parameters and a 

areful check of the obtained results has been carried out, to ascer- 

ain their physical character. As can be seen in Tab. 1 , not all pos-

ible P i j parameters in the general algebraic Hamiltonian (10) have 

een used. The code is available under request to the authors and 

t will be published in a forthcoming work. 

Apart from the P i j spectroscopic parameters, there is an extra 

arameter, the total number of bosons N. The integer nature of this 

uantum number hinders its inclusion in the Minuit minimization. 

nstead, following the methods published in the appendix of [8] , 

e have manually adjusted it to optimize the agreement with re- 

orted data. In the HNC, NCNCS, and H 2 S we have used as initial N

alues those reported in [8,56] . In a recent work, it has been pos-

ible to estimate a lower bound for the N parameter in isomerizing 

ystems [71] . 

The agreement between calculated ( { E calc 
k 

} N data 

k =1 
) and reported 

esults ( { E re f 

k 
} N data 

k =1 
) is assessed using the rms, defined as follows

ms = 

√ ∑ N data 

k =1 

(
E calc 

k 
− E re f 

k 

)2 

N data − n p 
, (16) 

here n p is the number of free parameters in the optimization 

outine. 

To facilitate the comparison between the different cases, we re- 

ort in Tab. 1 the optimized parameters in the four cases studied 

s well as their one σ confidence interval. As mentioned above, 
7 
ot all possible P i j parameters in the general algebraic Hamiltonian 

10) have been used. We have organized this section into four sub- 

ections, where we discuss the results obtained for each molecule. 

e also include in this table the value of the total number of 

osons, N, the rms of the fit, and the number of vibrational lev- 

ls involved in the minimization process. 

As mentioned above, the present work can be considered as an 

xtension of previous works where most fits were performed with 

 two-body Hamiltonian [8,56] . We have reviewed the results pre- 

iously obtained making use of the four-body 2DVM Hamiltonian 

10) and the agreement in some cases have notably improved with 

he addition of operators of three- or four-body character, e.g. the 

NC case with an rms that has decreased from 2.3 to 0.08 cm 

−1 

ith the addition of a single three-body operator. 

Apart from the calculation of the fit to the spectrum, we have 

ried to cast some light upon the dynamical structure of the dif- 

erent molecular systems. We show in the four cases under study 

heir quantum monodromy diagram, Birge-Sponer plot, and par- 

icipation ratio plot. The quantum monodromy diagrams and the 

irge-Sponer plots include experimental and calculated bending 

nergy values, as well as the algebraic four-body Hamiltonian 

odel predictions for yet unknown energy levels. The PR plots in- 

lude the results for the optimized zero vibrational angular mo- 

entum eigenstates expressed in the cylindrical (2) and displaced 

scillator (4) bases versus the state energy. In the two nonrigid 

ases, we include as insets in the PR panel the classical energy 

unctional obtained with the coherent state approach to offer a 

ore intuitive view of the 2DVM results. Tables with the values 

f predicted levels and a residuals plot can be found in the Sup- 

lementary Material. 

.1. Hydrogen isocyanide, HNC 

Hydrogen isocyanide is an isomer of hydrogen cyanide and a 

inear molecule. From the many experimental ro-vibrational term 

alues in the literature, we have selected the 19 available pure ν2 

xperimental energy levels [94] . In the case of linear and quasilin- 

ar molecules, the interactions included in the cylindrical oscilla- 

or subalgebra chain (1) are the most relevant, although once the 

olecule starts departing from a rigidly-linear behavior, interac- 

ions like ˆ W 

2 , attached to the displaced oscillator chain in Eq. (1) , 

re also required. This is specially true for quasilinear molecules, 

ue to the flatness of the potential that characterizes systems close 

o the ground state QPT [8,56] . 

We have obtained a sizable improvement in the fit to this 

olecule with respect to the results published in Ref. [56] ; manag- 

ng to get a decrease in the rms from 2.3 cm 

−1 to 0.08 cm 

−1 with
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Fig. 3. ν2 bending mode of HNC. Left panel: Quantum monodromy plot. Central panel: Birge-Sponer plot. In the left and central panels blue circles (green triangles) are 

calculated (experimental) data. Right panel: Participation Ratio of � = 0 eigenstates in the U(2) (yellow line) and SO (3) (magenta line) bases as a function of the state energy. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Experimental and calculated term values and residuals for the bending mode of 

HNC. Units of cm 

−1 . 

(n, � ) a Exp. b Cal. c Exp.-Cal. d 

(2 0) 926.50 926.5071 –0.007 

(4 0) 1867.05 1867.0497 0.000 

(6 0) 2809.29 2809.2992 –0.009 

(1 1) 462.72 462.6863 0.034 

(3 1) 1398.56 1398.5296 0.030 

(5 1) 2341.84 2341.7558 0.084 

(7 1) 3281.50 3281.4508 0.049 

(2 2) 936.05 936.1066 –0.057 

(4 2) 1878.72 1878.6866 0.033 

(6 2) 2822.75 2822.7088 0.041 

(3 3) 1419.97 1419.9198 0.050 

(5 3) 2366.83 2366.9073 –0.077 

(7 3) 3309.78 3309.9472 –0.167 

(4 4) 1913.87 1913.8403 0.030 

(6 4) 2863.11 2863.1206 –0.011 

(5 5) 2417.57 2417.6251 –0.055 

(7 5) 3367.37 3367.2552 0.115 

(6 6) 2930.90 2931.0649 –0.165 

(7 7) 3453.78 3453.9760 –0.196 

a Cylindrical oscillator basis quantum labels assigned to the optimized eigen- 

vectors. 
b Experimental energies from Ref. [94] . 
c Calculated energies. 
d Difference between experimental and calculated energies. 
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he addition of only one extra interaction: the 3-body term ˆ n ̂  � 2 . 

he experimental and calculated vibrational energies are reported 

n Tab. 2 . All the states are well below the isomerization transition 

tate energy, which lies around 12,0 0 0 cm 

−1 [71] . 

The calculated energies and eigenstates for the optimized 

amiltonian have been used in preparing the figures in the dif- 

erent panels of Fig. 3 where the quantum monodromy plot (left 

anel) indicates a linear equilibrium geometrical configuration for 

his molecule. However, the Birge-Sponer diagram (center panel 

f Fig. 3 ) is more complex than expected for a linear molecule, 

ith noticeably different behavior for states with different vibra- 

ional angular momentum values. Besides, the participation ratio 

iagram (right panel of Fig. 3 ) shows, for � = 0 states, a crossing

round 3,0 0 0 cm 

−1 after which states are more localized in the 

O (3) basis set than in the U(2) basis set. As already highlighted 

n Ref. [56] , the Birge-Sponer plot indicates that there is a com- 

etition between anharmonicity and pairing operators in the sub- 

paces with different vibrational angular momenta. The inclusion 

f the new cubic term seems to conveniently tackle with this. In 

ny case, the eigenvectors are more complex than expected for a 

emirigid linear molecule, as can be deduced from the crossing 

f the two curves of the PR plot. This could be due to the influ-

nce of the isomerization barrier for this system. However, it lies 

t 12,0 0 0 cm 

−1 , too far to explain such a low energy feature in
8 
he PR [71] . The HNC system, as energy increases, is characterized 

y a large mixing of states in both bases which, as explained in 

ubsec. 2.3 , makes the PR unable to unambiguously ascribe a lin- 

ar or bent character to the wave function. 

.2. Hydrogen sulfide, H 2 S 

The rovibrational spectrum of hydrogen sulfide has been ex- 

austively studied (see, e.g., Ref. [95] and references therein). Rovi- 

rational energies for bending overtones are known in bands up to 

2 = 5 , inclusive [96–101] . This is a bent molecule and only inter- 

ctions associated with the displaced oscillator dynamical symme- 

ry have been required in order to obtain a good fit. 

The H 2 S molecule is an asymmetric-top and its experimental 

2 bending states are therefore labeled as | νb ; J, K a , K c 〉 , where the

uantum numbers K a and K c are the projections in the molecular 

xed frame system of the rotational angular momentum J along 

he z-axis (assuming the I r and I I I r conventions, respectively). In 

his case, one should start by selecting those states that are more 

nto the 2DVM scope, taking into account that in the SO(3) dy- 

amical symmetry, the model can be mapped into a 2D trun- 

ated rovibrator, and the � angular momentum can be identified 

ith K, the angular momentum projection on the figure axis of 

he molecule. Therefore, in the case of asymmetric top molecules, 

ne should consider whether the molecule is closer to a prolate or 

blate rotator. Hydrogen sulfide is closer to the oblate limit, and 

herefore we have used as an input for the model the 96 avail- 

ble experimental bending rovibrational levels | νb ; J, K a = 0 , K c = J〉 , 
ith J = K c = 0 , . . . , 20 with A 1 (even J) or B 1 (odd J) symmetry

for a discussion on the symmetry of these states see, for exam- 

le, [95,102] ). 

In this case, we have added to the Hamiltonian (10) two extra 

perators that are linear in the absolute value of the vibrational 

ngular momentum, | � | , associated with the spectroscopic param- 

ters B and B νb 
. 

ˆ 
 bent = 

ˆ H 4 b + B | � | + B νb 
| � | ˆ W 

2 , (17) 

These two parameters, in particular B, are fundamental to un- 

erstand the improvement achieved in this case when comparing 

ur results with the results in Ref. [56] . The need of these extra 

nteraction terms in Eq. (17) can be understood considering the 

inear J term that stems from the rotational term J(J + 1) in the 

ovibrational Hamiltonian while the operator associated with the 

 νb 
parameter introduces an extra centrifugal correction [95,102] . 

Our analysis started with the fit of the Hamiltonian (10) rele- 

ant parameters, those associated with the displaced oscillator dy- 

amical symmetry (see Tab. 1 ), obtaining an rms of 11.02 cm 

−1 . 

nce the parameter B is included, the rms decreases to 0.93 cm 

−1 . 

he final result has an rms of 0.20 cm 

−1 . The optimized values of 

he B and B νb 
parameters are B = 18 . 98(21) and B νb 

= −6 . 29(15) ×
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Fig. 4. ν2 bending mode of H 2 S. Left panel: quantum monodromy plot. Right panel: Birge-Sponer plot. In both panels blue circles (green triangles) are calculated (experi- 

mental) data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a

0 −4 , both in cm 

−1 units. The calculated bending energy levels, 

hown in Tab. 3 , have a satisfactory agreement with the exper- 

mental data. This agreement is markedly better than the agree- 

ent obtained in Ref. [56] , where only 35 experimental term val- 

es were included in the fit. Therefore, the present four-body 

amiltonian, plus the rotational energy correction, achieves a sig- 

ificant improvement in the optimization and, in our experience, 

ithin these accuracy levels, the predicted spectra can help in the 

abeling of not-yet-assigned experimental energy levels. The resid- 

al plot included in the Supplementary Material section displays 

lear tendencies in the calculated energy differences. To explain 

his, one has to take into consideration that experimental data 

each large K values ( K = 20 ) and the present work is a global ro-

ibrational analysis for the bending vibration. Thus, we have sys- 

ematic errors in the vibrational headbands, due to the neglect of 

tretch-bend interactions. In addition to this, we only include op- 

rators up to fourth order in the quantum number K, while, in 

 band by band analysis, higher order interactions are considered 

e.g. see Ref. [100] ). 

The energy term values and eigenvectors obtained from the op- 

imized Hamiltonian have been used to compute the quantities de- 

icted in the two panels of Fig. 4 . The quantum monodromy plot 

left panel) and Birge-Sponer diagram (right panel) obtained in this 

ase are textbook examples of a semirigid bent molecular species. 

s in this case all the ˆ H 4 b operators included belong to a dynami- 

al symmetry, we decided not to include the PR. In the SO (3) ba-

is all eigenstates have PR equal to unity and maximal localization, 

hile in the U(2) case the PR would be given by the transforma- 

ion bracket between the two basis. 

.3. Disilicon carbide, Si 2 C 

Disilicon carbide is a floppy triatomic molecule [103–

05] which, in recent years, has been the subject of a number 

f experimental works on its rotational and rovibrational spec- 

ra [21,106] mostly motivated by the relevance of silicon and 

arbon clusters in astronomy and in technical applications. The 

resence of this molecule in IRC + 10216 was confirmed in 2015 

107] . 

The large amplitude motion of Si 2 C stems from the ν2 bend- 

ng mode. The available experimental rovibrational term values of 

he excited ν2 bands, up to νb = ν2 = 13 and � = 3 (approx. up to

600 cm 

−1 ) denote a pronounced quantum monodromy effect [21] . 

his dataset has been used as an input to optimize the four one- 

nd two-body spectroscopic parameters in Hamiltonian (10) . They 

ave been fitted to reproduce a total of 37 available experimen- 
9 
al data with an rms of 1.48 cm 

−1 (see Tab. 1 ). Note that this re-

ult is slightly less than the reported experimental uncertainty of 

 cm 

−1 [21] and it can be considered a very good agreement with 

he reported data. It does not seem necessary to include higher or- 

er interactions in this case and our results can be compared to 

he results reported in previous works [21,108] though taking into 

ccount that these calculations are not of a phenomenological na- 

ure. In both Refs. [21,108] , the rovibrational energies are obtained 

rom an ab initio potential energy surface. The bending energies 

btained with the present approach, labeled with displaced oscil- 

ator (bent molecule) quantum numbers, are reported in Tab. 4 , to- 

ether with the reported experimental data values and fit residu- 

ls. 

The calculated energies and bending eigenstates have been used 

o compute the different quantities displayed in Fig. 5 . The quan- 

um monodromy diagram –left panel– and the Birge-Sponer plot 

mid panel– are in very good accordance with the results pub- 

ished in Refs. [21,108] , with a critical ESQPT energy and Dixon 

ip at νb = 6 , and a barrier to linearity that extends up to around

00 cm 

−1 . The PR results, depicted in the right panel, behave as 

xpected. The PR for states up to the second overtone in the SO (3) 

asis is under the PR expressed in the U(2) basis, which implies a 

arger eigenstate localization for the displaced oscillator basis. The 

rend is reversed for higher energy values. In particular, this plot 

llustrates vividly the predicted localization effects in the U(2) ba- 

is for the νb = 6 overtone, the closest one to the critical ESQPT 

nergy. As expected, the closest states to the critical energy have 

 very large component in the | n = 0 � =0 〉 basis state [73,87,88] . For

nergies above the barrier, states have a linear character and the 

R in the U(2) basis is less than the PR in the SO (3) one. The

nergy functional is given as a inset in the right panel of Fig. 5 .

rom the energy functional the barrier to linearity value can be es- 

imated to be around ∼ 675 cm 

−1 . As explained in Subsec. 2.4 , the

mplicit 1 /N errors in the mean field approximation and the dif- 

erence between the kinetic energy operators can explain why the 

alue is too low, when compared with the values 783(48) cm 

−1 

from the information of the Dixon dip [21] - and 832 cm 

−1 ob- 

ained using ab initio calculations [108] . 

.4. Cyanogen isothiocyanate, NCNCS 

In this subsection we apply the 2DVM to the ν7 bending mode 

f cyanogen isothiocyanate (NCNCS), a nonrigid molecule char- 

cterized by a large amplitude CNC bending [11,109] . The spec- 

rum for this mode has been carefully charted in the microwave 

nd millimeter ranges for several highly-excited ν states and this 
7 
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Table 3 

Experimental and calculated term values and residuals for the bending mode of 

H 2 S with quantum numbers (νb , J, K a = 0 , K c = J) ( A 1 or B 1 symmetry). Units of 

cm 

−1 . 

(νb , K) a Exp. b Cal. c Exp.-Cal. d 

(0 1) 13.75 14.4158 –0.66952 

(0 2) 38.02 38.2719 –0.25581 

(0 3) 71.42 71.5662 –0.14191 

(0 4) 114.17 114.2953 –0.12315 

(0 5) 166.34 166.4546 –0.11116 

(0 6) 227.94 228.0378 –0.09286 

(0 7) 298.97 299.0375 –0.06786 

(0 8) 379.41 379.4448 –0.03755 

(0 9) 469.25 469.2497 –0.00365 

(0 10) 568.47 568.4406 0.03187 

(0 11) 677.07 677.0046 0.06701 

(0 12) 795.03 794.9274 0.09960 

(0 13) 922.32 922.1934 0.12747 

(0 14) 1058.93 1058.7857 0.14837 

(0 15) 1204.85 1204.6860 0.16002 

(0 16) 1360.03 1359.8745 0.15930 

(0 17) 1524.48 1524.3303 0.14495 

(0 18) 1698.14 1698.0309 0.11375 

(0 19) 1881.02 1880.9526 0.06325 

(0 20) 2073.06 2073.0702 –0.00924 

(1 0) 1182.58 1182.1654 0.41456 

(1 1) 1196.47 1196.8248 –0.35769 

(1 2) 1220.87 1220.8053 0.06288 

(1 3) 1254.26 1254.1050 0.15850 

(1 4) 1296.86 1296.7204 0.14046 

(1 5) 1348.76 1348.6469 0.10921 

(1 6) 1409.96 1409.8782 0.08236 

(1 8) 1560.27 1560.2244 0.04448 

(1 9) 1649.35 1649.3203 0.03154 

(1 10) 1747.71 1747.6830 0.02310 

(1 11) 1855.32 1855.2998 0.01524 

(1 12) 1972.17 1972.1563 0.00962 

(1 13) 2098.24 2098.2370 0.00245 

(1 14) 2233.52 2233.5248 –0.00482 

(1 15) 2377.99 2378.0016 –0.01616 

(1 16) 2531.62 2531.6475 –0.03001 

(1 17) 2694.39 2694.4416 –0.05001 

(1 18) 2866.29 2866.3615 –0.07479 

(1 19) 3047.28 3047.3834 –0.10789 

(1 20) 3237.33 3237.4822 –0.14761 

(2 0) 2353.96 2353.4272 0.53280 

(2 1) 2368.02 2368.3260 –0.31093 

(2 2) 2392.57 2392.4289 0.14305 

(2 3) 2425.98 2425.7339 0.24608 

(2 4) 2468.45 2468.2375 0.21325 

(2 5) 2520.10 2519.9351 0.16101 

(2 6) 2580.93 2580.8204 0.10757 

(2 7) 2650.94 2650.8861 0.05828 

(2 8) 2730.14 2730.1233 0.01338 

(2 9) 2818.50 2818.5219 –0.02676 

(2 10) 2916.01 2916.0702 –0.06272 

(2 11) 3022.66 3022.7555 –0.09498 

(2 12) 3138.44 3138.5634 –0.12111 

(2 13) 3263.34 3263.4784 –0.14310 

(2 14) 3397.32 3397.4835 –0.15999 

(2 15) 3540.39 3540.5604 –0.17126 

(2 16) 3692.51 3692.6893 –0.17623 

(2 18) 4023.85 4024.0181 –0.16597 

(3 0) 3513.79 3513.3476 0.44241 

(3 1) 3528.02 3528.4819 –0.46341 

(3 2) 3552.76 3552.7051 0.05449 

(3 3) 3586.21 3586.0153 0.19295 

(3 4) 3628.58 3628.4090 0.17204 

(3 5) 3680.00 3679.8815 0.11853 

(3 6) 3740.49 3740.4267 0.06612 

(3 7) 3810.05 3810.0371 0.01212 

(3 8) 3888.67 3888.7039 –0.03842 

(3 9) 3976.33 3976.4169 –0.08406 

(3 10) 4073.04 4073.1646 –0.12356 

(3 11) 4178.78 4178.9341 –0.15506 

(3 12) 4293.53 4293.7111 –0.17708 

(3 13) 4417.29 4417.4801 –0.18743 

(3 14) 4550.04 4550.2241 –0.18406 

(4 0) 4661.68 4661.4963 0.18369 

( continued on next page ) 

Table 3 ( continued ) 

(4 1) 4676.10 4676.8620 –0.76288 

(4 2) 4701.06 4701.2035 –0.14727 

(4 3) 4734.58 4734.5187 0.06025 

(4 4) 4776.88 4776.8044 0.08028 

(4 5) 4828.12 4828.0557 0.06006 

(4 6) 4888.30 4888.2666 0.03130 

(4 7) 4957.43 4957.4295 0.00067 

(4 8) 5035.51 5035.5357 –0.02751 

(4 9) 5122.53 5122.5750 –0.04977 

(4 10) 5218.47 5218.5358 –0.06318 

(4 11) 5323.34 5323.4052 –0.06383 

(4 12) 5437.12 5437.1691 –0.04788 

(4 13) 5559.80 5559.8117 –0.01193 

(4 14) 5691.37 5691.3162 0.04929 

(4 15) 5831.81 5831.6642 0.14280 

(4 16) 5981.11 5980.8360 0.27088 

(4 17) 6139.26 6138.8106 0.44855 

(5 0) 5797.24 5797.4504 –0.21044 

(5 3) 5870.73 5870.8214 –0.09345 

(5 6) 6024.00 6023.9173 0.07835 

(5 7) 6092.74 6092.6406 0.10417 

(5 8) 6170.33 6170.1960 0.13321 

a Displaced oscillator basis quantum labels assigned to the optimized eigen- 

vectors. 
b Experimental energies from [96–101] . 
c Calculated energies. 
d Difference between experimental and calculated energies. 

Table 4 

Experimental and calculated term values and residuals for the bending mode of 

Si 2 C. Units of cm 

−1 . 

(νb , K) a Exp. b Cal. c Exp.-Cal. d 

(1 0) 140.0 141.5931 –1.593 

(1 1) 142.0 143.8421 –1.842 

(2 0) 273.0 274.6069 –1.607 

(2 1) 278.0 277.1851 0.815 

(3 0) 399.0 398.3725 0.627 

(3 1) 401.0 401.4841 –0.484 

(3 3) 425.0 425.7597 –0.760 

(4 0) 515.0 511.7915 3.209 

(4 1) 516.0 515.9391 0.061 

(4 3) 544.0 546.6778 –2.678 

(5 0) 613.0 612.6117 0.388 

(5 1) 622.0 619.6988 2.301 

(5 2) 636.0 637.0290 –1.029 

(5 3) 663.0 661.9059 1.094 

(6 0) 695.0 696.4984 –1.498 

(6 1) 716.0 714.2134 1.787 

(6 2) 741.0 741.3982 –0.398 

(6 3) 775.0 774.8380 0.162 

(7 0) 770.0 771.9460 –1.946 

(7 1) 809.0 808.0725 0.928 

(7 2) 848.0 847.2296 0.770 

(7 3) 890.0 890.0296 –0.030 

(8 0) 861.0 862.3533 –1.353 

(8 1) 912.0 910.8638 1.136 

(8 2) 959.0 959.9006 –0.901 

(8 3) 1011.0 1011.0350 –0.035 

(9 0) 970.0 968.8106 1.189 

(9 1) 1025.0 1024.8626 0.137 

(9 2) 1080.0 1081.3839 –1.384 

(9 3) 1140.0 1139.4754 0.525 

(10 0) 1085.0 1087.2974 -2.297 

(10 1) 1151.0 1149.1694 1.831 

(10 3) 1278.0 1275.7166 2.283 

(11 0) 1214.0 1215.9113 –1.911 

(11 1) 1283.0 1282.7567 0.243 

(12 1) 1425.0 1424.8196 0.180 

(13 1) 1574.0 1574.7200 –0.720 

a Displaced oscillator basis quantum labels assigned to the optimized eigen- 

vectors. 
b Experimental energies from [21] . 
c Calculated energies. 
d Difference between experimental and computed energies. 

10 
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Fig. 5. ν2 bending mode of Si 2 C. Left panel: quantum monodromy plot. Central panel: Birge-Sponer plot. In both panels blue circles (green triangles) are calculated (exper- 

imental) data. Right panel: Participation Ratio of � = 0 eigenstates in the U(2) (yellow line) and SO (3) (magenta line) bases as a function of the state energy. The bending 

energy functional derived using the coherent state formalism is included as an inset in the right panel. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 6. ν7 bending mode of NCNCS. Upper left panel: quantum monodromy plot. Upper right panel: Birge-Sponer plot for the ν7 bending mode of NCNCS. Lower left panel: 

�B e f f for as a function of the bending excitation νb . In these three panels blue circles (green triangles) are calculated (experimental) data. Yellow circles are predictions from 

[19] . Lower right panel: PR for � = 0 eigenstates in the U(2) (yellow line) and SO (3) (magenta line) bases as a function of the state energy. The bending energy functional 

derived using the coherent state formalism is included as an inset in this panel. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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olecule has been subject of several works aiming to study quan- 

um monodromy effects, making it one of the best examples of 

uantum monodromy found to date [15,17,19,20] . 

Being so rich in spectroscopic features, the disentangling of the 

pectra of NCNCS is a cumbersome task, and it displays unusual 

eatures in its rotational and vibrational spectra. In the case of 

ef. [19] the GSRB model is used to allow the simultaneous treat- 

ent of rotations and vibrations and the calculation of the vibra- 

ional band origins. We use these values as an input to our model. 

he simultaneous treatment of rotations and vibrations is possible 

n the U(4) based original vibron model [110] , though at the cost 

f a more complex mathematical apparatus than the 2DVM one. 

owever, it is possible to carry out a simpler description of the ro- 

ational spectra for nonrigid molecules within the 2DVM. In this 

ase the �B e f f parameter, defined as �B e f f = B (νb , � ) − B (0 , 0) ,

hat quantifies the rotational constant dependence on the bend- 

ng number of quanta and the vibrational angular momentum -or 

value, � = K- can be expressed as a series expansion in the num- 
i  

t

11 
er operator [8] 

B e f f = a 1 ̂  n + a 2 ̂  n ( ̂  n + 1) + . . . , (18) 

ith a 1 >> a 2 >> . . . . 

In this work we analyze the CNC bending mode band origins 

p to νb = ν7 = 5 and K a = 20 reported in [19] . These data corre-

pond to νb , J = K a , K a levels and were obtained analyzing the ex-

erimental rovibrational term values with use of the GSRB model 

See Tables 8 to 11 in Ref. [19] ). Eighty-eight reported band ori- 

ins have been fitted using six operators of the four-body Hamil- 

onian (10) (full one- and two-body plus two four-body operators), 

ith a final rms = 0.79 cm 

−1 (see Tab. 1 ), which improves the rms of

.2 cm 

−1 obtained in [8] though a direct comparison is not easy as 

n this paper data from [17] were used in the fit. The improvement 

chieved can be explained from the inclusion of the four-body in- 

eractions ˆ � 2 ˆ n 2 and 

ˆ W 

4 . 

The reported and our calculated bending energies are included 

n Tab. 5 . The residuals plot for this fit included in the Supplemen-

ary Material section displays systematic trends in each vibrational 
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Table 5 

Bending band origins and calculated energy term values and residuals for the ν7 bending mode of 

NCNCS. Units of cm 

−1 . 

(νb , K) a E origin 
b Cal. c E origin -Cal. d (νb , K) a E origin 

b Cal. c E origin -Cal. d 

(0 1) 3.42 3.3158 0.102 (2 8) 404.23 405.0085 –0.776 

(0 2) 13.38 13.0153 0.362 (2 9) 449.63 450.4394 –0.811 

(0 3) 29.24 28.5486 0.694 (2 10) 497.20 498.0187 –0.816 

(0 4) 50.32 49.2975 1.025 (2 11) 546.79 547.5617 –0.768 

(0 5) 75.99 74.6863 1.301 (2 12) 598.26 598.9047 –0.640 

(0 6) 105.70 104.2139 1.491 (2 13) 651.50 651.8997 –0.401 

(0 7) 139.03 137.4520 1.583 (2 14) 706.39 706.4114 –0.022 

(0 8) 175.61 174.0355 1.572 (2 15) 762.85 762.3142 0.532 

(0 9) 215.11 213.6505 1.464 (3 0) 232.26 231.4167 0.842 

(0 10) 257.30 256.0247 1.272 (3 1) 254.74 254.6472 0.089 

(0 11) 301.93 300.9194 1.015 (3 2) 283.01 283.2800 –0.267 

(0 12) 348.84 348.1224 0.716 (3 3) 315.44 315.9345 –0.493 

(0 13) 397.84 397.4436 0.399 (3 4) 351.30 351.9597 –0.658 

(0 14) 448.81 448.7108 0.096 (3 5) 390.15 390.9329 –0.785 

(0 15) 501.60 501.7664 –0.162 (3 6) 431.66 432.5398 –0.877 

(0 16) 556.12 556.4650 –0.343 (3 7) 475.60 476.5282 –0.926 

(0 17) 612.26 612.6711 –0.407 (3 8) 521.76 522.6870 –0.922 

(0 18) 669.94 670.2580 –0.318 (3 9) 569.99 570.8336 –0.845 

(0 19) 729.07 729.1059 –0.035 (3 10) 620.13 620.8062 –0.673 

(0 20) 789.59 789.1010 0.484 (3 11) 672.08 672.4592 –0.383 

(1 0) 85.04 86.2903 –1.253 (3 12) 725.71 725.6596 0.051 

(1 1) 90.10 91.2120 –1.112 (4 0) 304.64 303.0936 1.542 

(1 2) 103.60 104.4256 –0.830 (4 1) 340.46 339.6111 0.852 

(1 3) 123.67 124.1949 –0.528 (4 2) 377.14 376.8006 0.336 

(1 4) 149.02 149.2855 –0.270 (4 3) 415.88 415.9199 –0.042 

(1 5) 178.76 178.8451 –0.081 (4 4) 456.86 457.1720 –0.314 

(1 6) 212.29 212.2602 0.029 (4 5) 500.03 500.5241 –0.492 

(1 7) 249.13 249.0662 0.063 (4 6) 545.30 545.8758 –0.576 

(1 8) 288.93 288.8958 0.029 (4 7) 592.55 593.1078 –0.557 

(1 9) 331.39 331.4483 –0.056 (4 8) 641.68 642.0979 –0.421 

(1 10) 376.30 376.4701 –0.174 (4 9) 692.58 692.7267 –0.150 

(1 11) 423.44 423.7425 –0.301 (4 10) 745.16 744.8795 0.279 

(1 12) 472.66 473.0733 –0.412 (4 11) 799.34 798.4468 0.888 

(1 13) 523.81 524.2908 –0.479 (4 12) 855.03 853.3238 1.708 

(1 14) 576.77 577.2395 –0.469 (5 0) 389.60 388.0694 1.530 

(1 15) 631.43 631.7769 –0.351 (5 1) 433.35 432.1249 1.229 

(2 0) 162.94 163.8041 –0.864 (5 2) 476.53 475.7039 0.827 

(2 1) 173.03 173.9391 –0.910 (5 3) 520.61 520.1175 0.493 

(2 2) 192.71 193.5571 –0.849 (5 4) 566.10 565.8299 0.267 

(2 3) 218.52 219.2953 –0.773 (5 5) 613.16 612.9982 0.167 

(2 4) 248.97 249.6923 –0.717 (5 6) 661.86 661.6519 0.205 

(2 5) 283.24 283.9316 –0.695 (5 7) 712.16 711.7624 0.399 

(2 6) 320.77 321.4770 –0.703 (5 8) 764.04 763.2733 0.764 

(2 7) 361.20 361.9377 –0.735 (5 9) 817.44 816.1141 1.323 

a Displaced oscillator basis quantum labels assigned to the optimized eigenvectors. 
b Bending band origins from [19] . 
c Calculated energies. 
d Difference between experimental and calculated energies. 
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ending band. This can be traced back to the need of including in 

he Hamiltonian higher order powers of the K angular momentum 

nd its interaction with the bending vibration. 

In Fig. 6 we show the quantum monodromy plot (upper left 

anel), the Birge-Sponer plot (upper right panel), the �B e f f (lower 

eft panel), and the PR (lower right panel) for the NCNCS ν7 

arge amplitude bending mode. In the �B e f f case, a fit was per- 

ormed making use of the expectation value of the number op- 

rator ˆ n in the eigenfunctions resulting from the fit to the vi- 

rational band origins and computing the values of the a 1 and 

 2 parameters in (18) that optimize the agreement with the ob- 

erved �B e f f values reported in Tables 8 to 11 of Ref. [19] . 

he optimized parameter values are a 1 = 2 . 39(4) MHz and a 2 =
 . 0108(4) MHz with a fit having an rms = 1 . 29 MHz. We ex-

lored the effect of a cubic term in the expansion but it pro- 

ides a marginal improvement and the two-parameter expan- 

ion (18) already gives a fine result, achieving a satisfactory 

ms . 
l

12 
In Fig. 6 , the change from a quadratic to a linear pattern in the

uantum monodromy plot and the location of the Dixon dip [5] in 

he Birge-Sponer plot indicate that the critical energy of the mon- 

dromy -or the ESQPT critical energy- is around the νb = 3 over- 

one, as already discussed in the literature [8,15,17,19] . In both plots 

he agreement between the reported data (green triangles) and the 

DVM results (blue circles) is good. We also include in the fig- 

re, as yellow circles, the values predicted by the GSRB model in 

ef. [19] . The agreement achieved for the �B e f f is also very satis- 

actory. 

The PR (lower right panel) in Fig. 6 makes evident the lack of 

ignificant localization effects in any basis for energies below the 

arrier. Nevertheless, the closest eigenstate to the critical energy 

νb = 3 overtone– is significantly more localized in the cylindrical 

scillator basis, as predicted in recent works [73,87,88] for states 

lose to the critical energy of the ESQPT. 

The energy functional obtained making use of the coherent 

tate approximation for this molecule, shown as an inset in the 

ower right panel of Fig. 6 , provides an intuitive image for the po- 
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ential associated to the model, with a low barrier to linearity and 

t allows for a rough estimation of the height of this barrier at ∼
25 cm 

−1 . Therefore, the different features shown in Fig. 6 confirm 

he nonrigid character of this molecule, which undergoes a bent- 

o-linear transition, in consonance with previous works [8,15,17,19] . 

. Summary and conclusions 

We analyze the bending vibrations of four different molecules 

aking use of the 2DVM most general Hamiltonian that includes 

p to four-body interactions. The four molecular species have been 

elected trying to include examples of the different dynamics as- 

ociated with the bending vibrational degree of freedom: linear, 

onrigid, and bent. We present optimized algebraic spectroscopic 

arameters for each one of the cases, as well as the calculated 

ending spectrum and its comparison with reported values. The 

eader can find in the Supplementary Material section the full 

pectrum, including not yet measured or reported levels as well 

s a plot depicting the fit residuals as a function of energy. We use 

he model energies wave functions to compute the quantum mon- 

dromy, Birge-Sponer, and participation ratio for each case. In the 

atter case we illustrate the eigenstate localization in the two basis 

onsidered in the model. 

Apart from its computational simplicity, one of the best 2DVM 

eatures is the possibility of encompassing, within a simple model, 

he full gamut of bending spectroscopic patterns that range from 

inear to bent, including the feature-rich nonrigid cases. We have 

ocused particularly in nonrigid cases, where the bent-to-linear 

tructural changes in the system, as it samples the top of the bar- 

ier to linearity for increasing excitation energies, can be consid- 

red as a perfect example of an ESQPT. 

In a way, this work is a sequel of Refs. [8,56] , where a sys-

ematic study of bending dynamics in molecular systems with and 

ithout ESQPT signatures was performed for the first time. In our 

ase, we use a higher-order Hamiltonian to repeat the analysis, in- 

orporating new reported data when possible, trying to improve 

he results, and casting some light upon the modeled physical sys- 

ems. The extension of the algebraic Hamiltonian to include three- 

nd four-body interactions has permitted us to model the available 

xperimental data for the four molecules considered and, accord- 

ng to the rms of the fits (see Tab. 1 ), a satisfactory agreement is

btained between calculated and reported energies. 

In particular, in the HNC case, the inclusion in the fit of a sin-

le three-body operator has dramatically improved the fit qual- 

ty. As a bent molecule, we have considered the bending spectrum 

f H 2 S, where the coupling with the rotational projection around 

he molecule-fixed z-axis in the Hamiltonian has been included 

o grapple with the rotational contribution. The results obtained 

n the fit to the H 2 S bending levels largely improves previously 

ublished results [56] ; with an accuracy such that our predictions 

ight be helpful for the assignment of new levels. 

We have considered two nonrigid molecules, Si 2 C and NCNCS. 

n the first case we have obtained a fit within the experimental 

ccuracy with only four parameters using one- and two-body inter- 

ctions. In the NCNCS case, the epitome of a nonrigid molecule, we 

ave also included results that reproduce rotational spectrum pa 

atterns associated with to the nonrigidity of the bending model. 

e have computed �B e f f obtaining in this case a satisfactory 

greement too. 

We have included the mean field limit energy functional for the 

ending degree of freedom of the nonrigid molecules under study 

sing the intrinsic state formalism. Given the level of abstraction 

f the algebraic model, developed far from the traditional approach 

n phase space, this is a useful contribution as it provides a more 

ntuitive handle to the obtained results. One should always take 

nto consideration that this is a 1 /N approximation, but still the 
13 
ending energy functional shed light on the potential shape, the 

eight of the linearity barriers, and the positions and number of 

inima. 

Hence, we consider proved that the 4-body 2DVM Hamiltonian 

s a suitable effective Hamiltonian for the analysis of bending vi- 

rations and it provides new venues to explore the ESQPT that 

ccurs in the excitation spectrum of nonrigid molecular species. 

hese results allow for an easier classification of the bending de- 

ree of freedom among the possible situations existing between 

he linear and bent limits, apart from being of great help in the 

ssignment of quantum labels to highly-excited bending states, of- 

en quite a cumbersome task. Of course, one should always be 

ware of the model limits: it is a phenomenological model need- 

ng a minimal set of values, either experimental or extracted from 

xperiment. 

The programming codes used in this work are available upon 

equest to the authors, and they will be published soon. In the 

upplementary Material section, we provide predicted values for 

ighly-excited bending levels of the molecules studied in this 

ork, with the expectation that they could be of help in the mea- 

urement or assignment of experimental values. This is of partic- 

lar importance in the case of nonrigid molecular species, where 

n improved knowledge of the critical energy region of the quan- 

um monodromy –and, therefore, of the ESQPT– is of major impor- 

ance and where we expect that our approach could facilitate the 

ssignment of quantum labels. In addition to this, we also facilitate 

n the Supplementary Material section residual plots for the fits of 

he four molecules under study. 

There are a number of developments that we are planning to 

ndertake in a near future, fostered by the success of the four-body 

amiltonian. The full description of the vibrational spectrum of a 

olecule implies the simultaneous consideration of stretching and 

ending vibrational modes, as well as torsional, rocking, or other 

arge amplitude modes. This can be naturally accomplished in the 

lgebraic approach using coupled Lie algebras as shown in [82] for 

he case of two coupled benders or in [66–68,70] in the case of 

oupling of a bending and two stretching degrees of freedom. The 

atter works use an algebraic approach to obtain both energy lev- 

ls and spectrum line intensities, a very important step for a right 

olecular characterization. The algebraic approach has performed 

ery well in the characterization of spectrum energies and line in- 

ensities of experimental Franck-Condon [70,111–114] and Raman 

ntensities [66–68] . In this respect we are currently paying heed to 

he modeling of highly excited bending progressions of HCN -with 

nd without stretching excitations- to facilitate the assignment in a 

pectrum complicated by very large level density at high excitation 

nergies. 

In a different order, further developments of the model are cur- 

ently being considered based on the promising results for the 

ransition state in the isomerization of the [H,CN] system recently 

ublished in [71] . The new developments include the possibil- 

ty of extending the model to simultaneously treat both isomer 

pecies. We will explore this model in comparison with the re- 

ults obtained using the GSRB model for this same system [115] ; 

nd looking for inspiration in other, more sophisticate models as 

efs. [116,117] and also Refs. [118,119] , based on a formalism closer 

o the algebraic one. In particular, we are planning to explore a 

onfiguration mixing formalism akin to the one that has been suc- 

essfully applied to nuclear systems [120] . 
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A

A

 = 1 . 

〈
 2 ,n 1 

 δn 2 ,n 1 −2 

2) δn 2 ,n 1 +2 . 

nd it is a band matrix as the non-zero matrix elements are located in 

t

is also band diagonal with matrix elements 

〈 1) n 1 + � 2 
]
δn 2 ,n 1 

1)(n 1 + � )(n 1 − � ) δn 2 ,n 1 −2 

 1 + � + 2)(n 1 − � + 2) δn 2 ,n 1 +2 . 

 the ˆ W 

2 operator matrix times � 2 . 

erator. 

〈  1) n 1 + � 2 
]
δn 2 ,n 1 

 − n 1 + 1)(n 1 + � )(n 1 − � ) δn 2 ,n 1 −2 

 1 − 1)(n 1 + � + 2)(n 1 − � + 2) δn 2 ,n 1 +2 . 

of the ˆ W 

2 operator matrix times itself. 

een the matrix elements of the ˆ W 

2 and 

ˆ W 

2 

operators is the sign of the 

 full operator is computed via matrix multiplication. 

A

〈  � + 2)(ω 1 + � + 1) ] 

 

� )(ω 1 − � − 1) ] 
}

δω 2 ,ω 1 

 + 1)(ω 1 + � + 2)(ω 1 + � + 1) 

2 ω 1 + 5) 
δω 2 ,ω 1 +2 

− 1)(ω 1 + � )(ω 1 + � − 1) 

 ω 1 + 1) 
δω 2 ,ω 1 −2 

d it is again a band matrix with non-zero matrix elements located in 

t is are taken from [7] with a typo that has been corrected. 
ppendix A. Operator Matrix elements 

0.1. Operator matrix elements in the dynamical symmetry (I) 

The diagonal operators in this dynamical symmetry are 

Operator ˆ n p : 〈 [ N ] ; n � | ̂  n p | [ N ] ; n � 〉 = n p for p = 1 , 2 , 3 , 4 . 

Operator ˆ � 2 q : 〈 [ N ] ; n � | ̂  � 2 q | [ N ] ; n � 〉 = � 2 q for q = 1 , 2 . 

Operator ˆ n p ˆ � 2 q ]: 〈 [ N ] ; n � | ̂  n p � 2 q | [ N ] ; n � 〉 = n p � 2 q for p = 1 , 2 and q

The non-diagonal matrix elements in this basis are 

SO (3) Casimir Operator ˆ W 

2 : 

 [ N ] ; n 

� 
2 | ˆ W 

2 | [ N ] ; n 

� 
1 〉 = 

[
(N − n 1 )(n 1 + 2) + (N − n 1 + 1) n 1 + � 2 

]
δn

−
√ 

(N − n 1 + 2)(N − n 1 + 1)(n 1 + � )(n 1 − � )

−
√ 

(N − n 1 )(N − n 1 − 1)(n 1 + � + 2)(n 1 − � +
Note that this is the main non-diagonal operator in this case a

he main and first diagonals only. 

Operator ˆ n ̂  W 

2 + 

ˆ W 

2 ˆ n : As the operator ˆ n is diagonal the matrix 

 [ N] ; n 

� 
2 | ̂  n ̂

 W 

2 + 

ˆ W 

2 ˆ n | [ N] ; n 

� 
1 〉 = 2 n 1 

[
(N − n 1 )(n 1 + 2) + (N − n 1 + 

−(2 n 1 − 2) 
√ 

(N − n 1 + 2)(N − n 1 + 

−(2 n 1 + 2) 
√ 

(N − n 1 )(N − n 1 − 1)(n

Operator ˆ � 2 ˆ W 

2 : This operator is computed for � � = 0 multiplying

Operator ˆ n 2 ˆ W 

2 + 

ˆ W 

2 ˆ n 2 : This is computed as the ˆ n ̂  W 

2 + 

ˆ W 

2 ˆ n op

 [ N] ; n 

� 
2 | ̂  n 

2 ˆ W 

2 + 

ˆ W 

2 ˆ n 

2 | [ N] ; n 

� 
1 〉 = 2 n 

2 
1 

[
(N − n 1 )(n 1 + 2) + (N − n 1 +

−[ n 

2 
1 + (n 1 − 2) 2 ] 

√ 

(N − n 1 + 2)(N

−[ n 

2 
1 + (n 1 + 2) 2 ] 

√ 

(N − n 1 )(N − n

Operator ˆ W 

4 : This operator is computed as the matrix product 

Operator ˆ W 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 : In this basis the only difference betw

non-diagonal contribution, which is positive in this case. The

0.2. Operator matrix elements in the dynamical symmetry (II) 

The diagonal operators in this dynamical symmetry are 

SO (3) Casimir Operator ˆ W 

2 : 〈 [ N ] ;ω� | ̂  W 

2 | [ N ] ;ω� 〉 = ω(ω + 1) . 

Operator ˆ � 2 q : 〈 [ N ] ;ω� | ̂  � 2 q | [ N ] ;ω� 〉 = � 2 q for q = 1 , 2 . 

Operator ˆ � 2 ˆ W 

2 : 〈 [ N ] ;ω� | ̂  � 2 ˆ W 

2 | [ N ] ;ω� 〉 = � 2 ω(ω + 1) . 

Operator ˆ W 

4 : 〈 [ N ] ;ω� | ̂  W 

4 | [ N ] ;ω� 〉 = ω 

2 (ω + 1) 2 . 

The non-diagonal matrix elements in this basis are 

Operator ˆ n : 

 [ N ] ;ω 

� 
2 | ̂  n | [ N ] ;ω 

� 
1 〉 = 

{
(N − ω 1 ) [ (ω 1 − � + 2)(ω 1 − � + 1) + (ω 1 +

2(2 ω 1 + 1)(2 ω 1 + 3)

+ 

(N + ω 1 + 1) [ (ω 1 + � )(ω 1 + � − 1) + (ω 1 −
2(2 ω 1 + 1)(2 ω 1 − 1) 

+ 

√ 

(N − ω 1 )(N + ω 1 + 3)(ω 1 − � + 2)(ω 1 − �

(2 ω 1 + 1)(2 ω 1 + 3) 2 (

+ 

√ 

(N − ω 1 + 2)(N + ω 1 + 1)(ω 1 − � )(ω 1 − �

(2 ω 1 − 3)(2 ω 1 − 1) 2 (2

Note that this is the main non-diagonal operator in this case an

he main and first diagonals only. The ˆ n matrix element in this bas
15 
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y matrix multiplication of the basic operator ˆ n . 

he ˆ n operator matrix times � 2 . 
ˆ 
 

2 is diagonal, this operator matrix is also band diagonal with matrix 

〈 � + 2)(ω 1 − � + 1) + (ω 1 + � + 2)(ω 1 + � + 1) ] 

2(2 ω 1 + 1)(2 ω 1 + 3) 

1) + (ω 1 − � )(ω 1 − � − 1) ] 

2 ω 1 − 1) 

}
δω 2 ,ω 1 

 2)(ω 1 − � + 1)(ω 1 + � + 2)(ω 1 + � + 1) 

2 ω 1 + 3) 2 (2 ω 1 + 5) 
δω 2 ,ω 1 +2 

� )(ω 1 − � − 1)(ω 1 + � )(ω 1 + � − 1) 

 1 − 1) 2 (2 ω 1 + 1) 
δω 2 ,ω 1 −2 

 the ˆ n ̂  W 

2 + 

ˆ W 

2 ˆ n operator but taking into account that the ˆ n 2 operator 

n be expressed as follow 

〈
 ] [ ̂  n 

2 ] ω 1 ,ω 1 +2 δω 2 ,ω 1 +2 

 ] [ ̂  n 

2 ] ω 1 ,ω 1 −2 δω 2 ,ω 1 −2 

 ] [ ̂  n 

2 ] ω 1 ,ω 1 +4 δω 2 ,ω 1 +4 

 ] [ ̂  n 

2 ] ω 1 ,ω 1 −4 δω 2 ,ω 1 −4 , 

te the matrix elements of the ˆ W 

2 

making use of Eqs. (37) and (38) of 

〈
 1 −1 + C ω 1 ,� 1 δω 2 ,ω 1 +2 δ� 2 ,� 1 −1 , 

A

B
 + � − 2) 

ω − � + 3) 
. 

ion for the ˆ R + operator matrix elements 

〈
 2 −2 δ� 1 ,� 2 +1 

 

= 

ˆ R + ̂  R − + 

ˆ � 2 can then be expressed as 

〈

a ing that the upper and lower bandwidths are the same. 

 + 

ˆ W 

2 ˆ n 2 operator 

〈
 1 
Operators ˆ n 2 , ˆ n 3 , and ˆ n 4 : These three operators are computed b

Operator ˆ n ̂  � 2 : This operator is computed for � � = 0 multiplying t

Operator ˆ n ̂  W 

2 + 

ˆ W 

2 ˆ n : As the operator ˆ n is band diagonal and W

elements 

 [ N] ;ω 2 � | ̂  n 

ˆ W 

2 + 

ˆ W 

2 ˆ n | [ N] ;ω 1 � 〉 = 2 ω 1 (ω 1 + 1) 

{
(N − ω 1 ) [ (ω 1 −

+ 

(N + ω 1 + 1) [ (ω 1 + � )(ω 1 + � −
2(2 ω 1 + 1)(

+ [ ω 1 (ω 1 + 1) + (ω 1 + 2)(ω 1 + 3) ] 

×
√ 

(N − ω 1 )(N + ω 1 + 3)(ω 1 − � +
(2 ω 1 + 1)(

+ [ (ω 1 − 2)(ω 1 − 1) + ω 1 (ω 1 + 1) ] 

×
√ 

(N − ω 1 + 2)(N + ω 1 + 1)(ω 1 −
(2 ω 1 − 3)(2 ω

Operator ˆ n 2 ˆ W 

2 + 

ˆ W 

2 ˆ n 2 : This is computed in the same way that

is double banded. Therefore the operator matrix elements ca

 [ N] ;ω 2 � | ̂  n 

2 ˆ W 

2 + 

ˆ W 

2 ˆ n 

2 | [ N] ;ω 1 � 〉 = 2 ω 1 (ω 1 + 1)[ ̂  n 

2 ] ω 1 ,ω 1 δω 2 ,ω 1 

+ [ ω 1 (ω 1 + 1) + (ω 1 + 2)(ω 1 + 3)

+ [ (ω 1 − 2)(ω 1 − 1) + ω 1 (ω 1 + 1)

+ [ ω 1 (ω 1 + 1) + (ω 1 + 4)(ω 1 + 5)

+ [ (ω 1 − 4)(ω 1 − 3) + ω 1 (ω 1 + 1)

where [ ̂  n 2 ] ω i ,ω j are the ˆ n 2 operator matrix elements. 

Operator ˆ W 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 : In this basis we need first to compu

Ref [7] . 

 [ N] ;ω 2 � 2 | ̂  R −| [ N] ;ω 1 � 1 〉 = A ω 1 ,� 1 δω 2 ,ω 1 δ� 2 ,� 1 −1 + B ω 1 ,� 1 δω 2 ,ω 1 −2 δ� 2 ,�

where 

 ω,� = 

(2 N + 3)(2 � + 1) 

(2 ω − 1)(2 ω + 3) 

√ 

(ω + � )(ω − � + 1) / 2 

 ω,� = −
√ 

2(N + ω + 1)(N − ω + 2)(ω + � )(ω − � )(ω + � − 1)(ω

(2 ω + 1)(2 ω − 1) 2 (2 ω − 3) 

C ω,� = 

√ 

2(N + ω + 3)(N − ω)(ω + � + 1)(ω − � + 1)(ω − � + 2)(

(2 ω + 1)(2 ω + 3) 2 (2 ω + 5) 

The previous result can be used for the derivation of an express

 [ N] ;ω 2 � 2 | ̂  R −| [ N] ;ω 1 � 1 〉 † = 〈 [ N] ;ω 1 � 1 | ̂  R + | [ N] ;ω 2 � 2 〉 
= A ω 2 ,� 2 +1 δω 1 ,ω 2 δ� 1 ,� 2 +1 + B ω 2 +2 ,� 2 +1 δω 1 ,ω

+ C ω 2 −2 ,� 2 +1 δω 1 ,ω 2 +2 δ� 1 ,� 2 +1 . 

The upper diagonal matrix elements of the Casimir operator ˆ W 

2

 [ N ] ;ω 2 � | ˆ W 

2 | [ N ] ;ω 1 � 〉 = (A 

2 
ω 1 ,� 1 

+ B 

2 
ω 1 ,� 1 

+ C 2 ω 1 ,� 1 
) δω 2 ,ω 1 

+ (A ω 1 ,� B ω 1 +2 ,� + C ω 1 ,� A ω 1 +2 ,� ) δω 2 ,ω 1 +2 

+ C ω 1 ,� B ω 1 +4 ,� δω 2 ,ω 1 +4 , 

nd the lower diagonal matrix elements can be computed consider

The ˆ W 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 operator is then computed as for the ˆ n 2 ˆ W 

2

 [ N] ;ω 2 � | ˆ W 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 | [ N] ;ω 1 � 〉 = 2 ω 1 (ω 1 + 1) [ ˆ W 

2 

] ω 1 ,ω 1 δω 2 ,ω
16 
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 3) ] [ ˆ W 

2 

] ω 1 ,ω 1 +2 δω 2 ,ω 1 +2 

1) ] [ ˆ W 

2 

] ω 1 ,ω 1 −2 δω 2 ,ω 1 −2 

 5) ] [ ˆ W 

2 

] ω 1 ,ω 1 +4 δω 2 ,ω 1 +4 

1) ] [ ˆ W 

2 

] ω 1 ,ω 1 −4 δω 2 ,ω 1 −4 , 

w

A

10) , 
〈

ˆ O 

〉
c.s. 

= 〈 [ N ] ; r | ̂  O | [ N ] ; r 〉 for one- to four-body operators are 

r 4 

+ r 3 ) 3 

 

 

2 ) 3 

r 4 

+ r 2 ) 3 

− 2)(N − 3) 8 r 6 

(1+ r 2 ) 4 
 − 2) r 4 + r 2 

(1+ r 2 ) 3 

using the traditional analysis in phase space is hindered by the need 

al bending coordinate. A connection has been worked out for the two 

based on the molecular G matrix elements. However, it is necessary to 

ordinate resulting from the coherent state approach and the physical 

alitative description of the system potential by directly connecting the r

angle, θ (rad) = 

θe (rad) 
r min 

r, making use of the experimental information on 

 state approach only in the two nonrigid molecules, Si 2 C and NCNCS. In 

right position, and the figure offers a pictorial and intuitive perspective 

shape. We are planning to work on a more involved scaling in a future 
+ [ ω 1 (ω 1 + 1) + (ω 1 + 2)(ω 1 +

+ [ (ω 1 − 2)(ω 1 − 1) + ω 1 (ω 1 +

+ [ ω 1 (ω 1 + 1) + (ω 1 + 4)(ω 1 +

+ [ (ω 1 − 4)(ω 1 − 3) + ω 1 (ω 1 +

here [ ̂  W 

2 

] ω i ,ω j are the ˆ W 

2 

operator matrix elements. 

ppendix B. Coherent state approach results 

The matrix elements of the different operators in Hamiltonian (

• One-body operator: 

•
〈
ˆ n 
〉
c.s. 

= N 

r 2 

1+ r 2 
• Two-body operators: 

•
〈
ˆ n 2 

〉
c.s. 

= N 

r 2 

1+ r 2 + N(N − 1) r 4 

( 1+ r 2 ) 2 

•
〈
ˆ � 2 
〉
c.s. 

= 

〈
ˆ n 
〉
c.s. 

•
〈

ˆ W 

2 
〉
c.s. 

= 2 N + N(N − 1) 4 r 2 

(1+ r 2 ) 2 
• Three-body operators: 

•
〈
ˆ n 3 

〉
c.s. 

= N 

r 2 

1+ r 2 + 3 N(N − 1) r 4 

( 1+ r 2 ) 2 
+ N(N − 1)(N − 2) r 6 

(1+ r 2 ) 3 

•
〈
ˆ n ̂  � 2 

〉
c.s. 

= 

〈
ˆ n 2 

〉
c.s. 

•

〈
ˆ n ̂  W 

2 + 

ˆ W 

2 ˆ n 
〉
c.s. 

= 4 N 

r 2 

1+ r 2 + 4 N(N − 1) r 4 

(1+ r 2 ) 2 
+12 N(N − 1) r 2 

(1+ r 2 ) 2 + 8 N(N − 1)(N − 2) 
(1

• Four-body operators: 

•

〈
ˆ n 4 

〉
c.s. 

= N 

r 2 

1+ r 2 + 7 N(N − 1) r 4 

(1+ r 2 ) 2 + 6 N(N − 1)(N − 2) r 6

(1+ r
+ N(N − 1)(N − 2)(N − 3) r 8 

(1+ r 2 ) 4 
•

〈
ˆ n 2 ˆ � 2 

〉
c.s. 

= 

〈
ˆ n 3 

〉
c.s. 

•
〈
ˆ � 4 
〉
c.s. 

= N 

r 2 

1+ r 2 + 3 N(N − 1) r 4 

(1+ r 2 ) 2 
•

〈
ˆ � 2 ˆ W 

2 
〉
c.s. 

= 2 N 

r 2 

1+ r 2 + 4 N(N − 1) r 4 + r 2 
(1+ r 2 ) 2 + 4 N(N − 1)(N − 2) 

(1

•

〈
ˆ n 2 ˆ W 

2 + 

ˆ W 

2 ˆ n 2 
〉
c.s. 

= 4 N 

r 2 

1+ r 2 + N(N − 1) 12 r 4 +16 r 2 

(1+ r 2 ) 2 
+ N(N − 1)(N − 2) 4 r 

6 +28 r 4 

(1+ r 2 ) 3 + N(N − 1)(N 

•

〈
ˆ W 

4 
〉
c.s. 

= 4 N(2 N − 1) + 24 N(N − 1) r 2 

(1+ r 2 ) 2 + 32 N(N − 1)(N

+16 N(N − 1)(N − 2)(N − 3) r 4 

(1+ r 2 ) 4 

•
1 
2 

〈
ˆ W 

2 ˆ W 

2 

+ 

ˆ W 

2 
ˆ W 

2 

〉
c.s. 

= 4 N + N(N − 1) 4 r 
4 +28 r 2 

(1+ r 2 ) 2 

+8 N(N − 1)(N − 2) r 4 + r 2 
(1+ r 2 ) 3 

The connection of the energy functional with results obtained 

of a connection between the unitless r variable and the physic

dynamical symmetries [8,29] , with a simple linear relationship 

look for a more elaborate relationship between the classical co

coordinate valid for more general cases. Still, we can obtain a qu

intrinsic approach classical variable to the deviation of linearity 

the molecular equilibrium structure. We have used the intrinsic

this way the energy functional has the minimum located at the 

to the obtained results and a qualitative image of the potential 

work. 
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