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 Evolutionary Algorithms (EAs) based pattern recognition has emerged as an 

alternative solution to data analysis problems to enhance the efficiency and 

accuracy of mining processes. Differential Evolution (DE) is one rival and 

powerful instance of EAs, and DE has been successfully used for cluster 

analysis in recent years. Mutation strategy, one of the main processes of DE, 

uses scaled differences of individuals that are chosen randomly from the 

population to generate a mutant (trial) vector. The achievement of the DE 

algorithm for solving optimization problems highly relies on an adopted 

mutation strategy. In this paper, an empirical study was presented to 

investigate the effectiveness of six frequently used mutation strategies for 

solving clustering problems. The experimental tests were conducted on the 

most widely used data set for EAs based clustering, and the quality of cluster 

solutions and convergence characteristics of DE variants were evaluated. The 

obtained results pointed out that the mutation strategies that use the guidance 

information from the best solution mange to find more stable results whereas 

the random mutation strategies are able to find high quality solutions with 

slower convergence rate. This study aims to provide some information and 

insights to develop better DE mutation schemes for clustering. 
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1. INTRODUCTION  

Evolutionary algorithms (EAs), motivated by Darwin’s theory of natural selection, have become a 

powerful way to solve several different optimization problems in various domains [1]. Among them, the 

Differential Evolution (DE) algorithm is a simple, competent, and robust stochastic search strategy based on 

population, and it has been successfully used to catch global optimum on high-dimensional continuous 

problems [2]. Like a standard EA, DE applies evolution processes such as mutation, crossover and selection to 

transfer from one generation to the next. It differs significantly from other EAs in the fact that the distance 

between pairs of randomly selected individuals is used to modify the solution, and the selected solution’s 

position guides the track of the search process. To employ the mutation operator in DE, there exist a few 

different mutation strategies that determine the solution to be modified and the number of different vectors to 

be used to find the distance for modification [3, 4]. The effectiveness of DE heavily depends on the chosen 

mutation strategy due to different mutation strategies that can guide different tracks toward exploration and 

exploitation. 

In recent years, DE has been widely utilized to solve clustering problems due to its ability to enhance 

the solution quality. It has been widely used to perform clustering independently [5-7] or incorporate it into the 

existing clustering approaches [8-10]. Paterlini and Krink described an innovative approach for DE based 

clustering [5, 6]. They studied the performance superiority between genetic algorithm (GA), particle swarm 

optimization (PSO), and DE, and concluded that DE is more suitable for cluster analysis. Some paper proposed 

the combination of DE with local search approaches to achieve considerably better efficiency [8-10]. 
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Nevertheless, it is needed that the comparisons on clustering performance of different mutation strategies for 

cluster analysis. In this paper, an empirical analysis is presented to compare and examine the performance of 

DE with different variants of mutation strategy for clustering problems. It is expected that the acquired 

information insight from the experiments may be useful and helpful to employ optimal mutation strategy for 

future DE researches in the clustering domain. 

In the next section of the paper, a brief explanation of a traditional DE algorithm and different 

mutation strategies used in DE are presented. The DE based clustering method is explained in Section 3. In the 

fourth part, the outcomes of experimental tests are shown, and in Section 5, the paper is completed with a 

conclusion. 

 

2. BACKGROUND  

In this section, the basic structure of DE algorithm is firstly described, and then different variants of 

the mutation strategy used in DE are briefly explained. 
 

2.1. Differential Evolution Algorithm 

DE is an innovative heuristic population-based search approach that had been proposed by Storn and 

Price in 1995. It has become one of the most successful and widely used EAs to solve several real-world 

continuous global optimization problems in various domains [2, 3]. Like a standard EA, DE maintains a 

population of individuals that are a sample of candidate solutions to an optimization problem.  Hence, an initial 

population is created through random sampling with uniform distribution at the beginning of the algorithm. 

And then, DE iteratively performs three consecutive steps (namely mutation, crossover, and selection) until a 

stopping situation is reached. 

Let 𝑋𝑖,𝑔 = {𝑥𝑖,𝑔
1 , 𝑥𝑖,𝑔

2 , … , 𝑥𝑖,𝑔
𝑑 } is the ith solution (individual) of the population, 𝑃 = {𝑋1, 𝑋2, . . , 𝑋𝑁𝑃} at 

the gth iteration where d is the data dimensionality and NP is the size of population. 

 

2.1.1. Mutation 

 A trial vector Vi,g is generated for each parent solution Xi,g  by perturbing a target solution, 𝑋𝑖1,𝑔 with 

a scaled difference as follows: 

 𝑉𝑖,𝑔 = 𝑋𝑖1,𝑔 + 𝑓(𝑋𝑖2,𝑔 − 𝑋𝑖3,𝑔)       (1) 

Where i is an integer within [1, NP], i1, i2, and i3 are random integers within [1, NP] such that i ≠ i1 ≠ 

i2 ≠ i3, and then f is a scaled factor within (0,). 

 

2.1.2 Crossover 

At the crossover phase, an offspring vector, Ui, g is usually generated by applying binomial crossover 

operator as follows: 

𝑢𝑖,𝑔
𝑗

= {
 𝑣𝑖,𝑔

𝑗
  𝑖𝑓 𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑅

𝑥𝑖,𝑔
𝑗

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
       (2) 

Where i an integers within [1, NP], j is an integer within [1, d], rand(j)  U(0,1) and the crossover rate, CR  

(0,1). 

 

2.1.3 Selection 

In the selection phase, the parent solution in the current population and its offspring vector are 

compared to determine which will remain in the next generation (iteration). The fitter solution is selected and 

added to the new population. For the maximizing problem, the solution vector for the next iteration is chosen 

according to the following; 

𝑋𝑖,𝑔+1 = {
𝑈𝑖,𝑔     𝑖𝑓 𝑓(𝑈𝑖,𝑔) > 𝑓(𝑋𝑖,𝑔)

𝑋𝑖,𝑔      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
      (3) 

Where 𝑓(𝑈𝑖,𝑔) indicates the fitness value of offspring and 𝑓(𝑋𝑖,𝑔) denotes the fitness value of ith 

parent in the current population. 

 

2.2. Different Mutation Strategies in Differential Evolution 

Recent research works proposed numerous variants to the basic DE. In the literature, a notation of 

DE/x/y/z is commonly used to categorize these different variants [1]. In this notation, x indicates the way of 

choosing a target solution, y specifies the number of pairs of difference vectors applied, and the last symbol, z, 

identifies the adopted crossover operator. This paper intends to describe various mutation strategies. Thus, the 

notation DE/x/y is applied, and the character z is omitted. The random mutation strategy, DE/rand/1 is typically 

used in a standard DE algorithm. The mutation strategies [2, 3] that are frequently used are as follows. 
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2.2.1. Random Mutation Strategy 

DE/rand/1 and DE/rand/2 are the random mutation strategies that use one difference vector and two 

difference vectors, respectively. As mentioned in above, DE/rand/1 creates the trial vector with three randomly 

chosen solution vectors while DE/rand/2 uses five randomly selected solution vectors to generate the trial 

vector according to the following equation; 

𝑉𝑖,𝑔 = 𝑋𝑖1,𝑔 + 𝑓1(𝑋𝑖2,𝑔 − 𝑋𝑖3,𝑔) + 𝑓2(𝑋𝑖4,𝑔 − 𝑋𝑖5,𝑔)      (4) 

Where 𝑓1 𝑎𝑛𝑑 𝑓2 are two control parameters to scale differences of vectors, i1, i2, i3, i4, and i5 are 

disjoint randomly generated integers within [1, NP]. 

 

2.2.2. Best Mutation Strategy 

The best mutation strategy applies the fittest solution vector in the population as the target vector. 

DE/best/1 and DE/best/2 represent two types of the best mutation strategy that use one difference vector and 

two difference vectors, respectively. These strategies generate the trial vectors as follows; 

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓(𝑋𝑖1,𝑔 − 𝑋𝑖2,𝑔)        (5) 

𝑉𝑖,𝑔 = 𝑋𝑏𝑒𝑠𝑡,𝑔 + 𝑓1(𝑋𝑖1,𝑔 − 𝑋𝑖2,𝑔) + 𝑓2(𝑋𝑖3,𝑔 − 𝑋𝑖4,𝑔)    (6) 

Where f, f1 and f2 are the scaling factors within (0,), and i1, i2, i3, and i4 are disjoint randomly 

generated integers within [1, NP]. 

 

2.2.3. Current to Random Mutation Strategy 

The notation DE/current-to-rand/1 indicates the current to random mutation strategy. This strategy 

uses a parent solution as a target vector and employed two difference vectors to produce a trial vector. The first 

difference is the difference between one random solution and the parent solution, whereas the rest is computed 

from two randomly selected vectors. DE/current-to-rand/1 produces the trial vector according to the following 

equation; 

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝑓1(𝑋i1,𝑔 − 𝑋𝑖,𝑔) + 𝑓2(𝑋𝑖2,𝑔 − 𝑋𝑖3,𝑔)     (7) 

Where f1 and f2 (0,) are the scaling factors, and i1, i2 and i3 are different randomly generated indexes 

within [1, NP]. 

 

2.2.4. Current to Best Mutation Strategy 

This strategy is also known as the target to best mutation strategy and represented by the notation 

DE/current-to-best/1. It uses the parent solution as a target vector and applies two difference vectors to mutate 

the target vector. The first difference vector is calculated from the best and parent solutions, whereas the rest 

is computed from two randomly selected vectors. The trial vector is produced as followings; 

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝑓1(𝑋𝑏𝑒𝑠𝑡,𝑔 − 𝑋𝑖,𝑔) + 𝑓2(𝑋𝑖1,𝑔 − 𝑋𝑖2,𝑔)     (8) 

Where f1 and f2 (0,) are the scale number for controlling difference vector, and i1 and i2  [1, NP] 

that are different randomly generated indexes. 

 

3. DIFFERENTIAL EVOLUTION BASED CLUSTERING ALGORITHM 

DE maintains a number of possible solutions to the problem as a population. Each possible solution 

is encoded as a chromosome (individual). For applying DE to solve clustering problems, a cluster solution for 

the given data set is encoded as an individual. And then, cluster validity measures are used as objective 

functions to evaluate the fitness of the solution [11]. 

In this paper, centroid-based representation is used where a chromosome is encoded by real numbers, 

which represents the coordinates of centroids of a cluster solution. If a chromosome encodes k clusters of a d-

dimensional dataset, k*d is the length of this chromosome. Each chromosome of the initial population is 

constructed as follows; 𝑋𝑖 = {𝒙𝒊
𝟏, 𝒙𝒊

𝟐, . . , 𝒙𝒊
𝒅, 𝒙𝒊

𝒅+𝟏, 𝒙𝒊
𝒅+𝟐, . . , 𝒙𝒊

𝟐𝒅, . . , 𝒙𝒊
(𝒌−𝟏)𝒅+𝟏, 𝒙𝒊

(𝒌−𝟏)𝒅+𝟐, . . , 𝒙𝒊
𝒌𝒅} where the very 

first d-dimensional vector stands for the first cluster centroid, the second d-dimensional vector denotes the 

coordinate of the second cluster center, and the last d-dimensional vector represent the kth cluster centroid for 

the given data set. The total intra-cluster distance [7] is used as an objective function to compute the fitness of 

each chromosome.  

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ ∑ 𝐷𝑖𝑠𝑡(𝑑, 𝑐𝑗)𝑑∈𝐶𝑗

𝑘
𝑗=1     (9) 

Where k is the number of cluster, Cj is the jth cluster, d is a data point in Cj, cj is the center of Cj, and 

Dist is the Euclidean distance [12] between data point d and the center cj of the cluster Cj. 

In DE based clustering algorithm, each chromosome is initialized with k randomly selected cluster 

centers from a given dataset to construct an initial population. To compute the fitness of each chromosome, 

Euclidean distance between each data point and all cluster center of the chromosome is firstly calculated, and 

then the data points are assigned to the closet cluster, and finally, the sum of intra-cluster distance of each 
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cluster is calculated. The population for the next generation is produced by mutation, crossover and selection. 

The best solution of the final population is the optimal cluster solution for the given dataset. The process of 

DE based clustering algorithm is given in Algorithm 1. 

 

Algorithm 1. Differential Evolution based Clustering Algorithm (DE-C) 

1: Input: Dataset (D), Number of cluster (k), Maximum iteration(Itr), Number of population (NP), 

Scaled factor (f), Crossover rate (CR) 

2: Output: Cluster solution 

3: Generate each chromosome by selecting k data points from D 

4: For each chromosome do 

5: For each data point p 

6: Compute the Euclidean distance between data point p and all of the cluster centers 

7: Assign the data point to the closet cluster 

8: Compute the fitness of the chromosome according to eq. (9) 

9: End. 

10: End. 

11: While the number of iteration is not equal to Itr do 

12: Create a trial vector by applying the mutation operation 

13: Create an offspring by applying the binomial crossover operator 

14: Compute the fitness of the offspring 

15: Update the population by evaluating the fitness of the parent and offspring vectors based on the 

selection operation 

16: End. 

 

4. EXPERIMENTAL STUDY 

The main aim of this work is to provide some valuable information for developing a simple, efficient 

and robust DE based clustering algorithm. The most well-known, simple and efficient mutation strategies were 

taken into account in this work. The clustering performance of DE algorithms with six different mutation 

strategies is tested on some real datasets from the UCI machine learning repositroy [13]. Seven UCI standard 

datasets that are frequently used for metahuristics-based clustering [14] are utilized. The summary of these 

datasets is shown in Table 1.  

 

4.1. Experimental Setup 

For all DE based clustering algorithms with different mutation strategies, the crossover rate and the 

size of the population were respectively set to 0.9 and 100 [7, 15], and the scaling factor was set as follows: 

f=0.5, f1=0.3 and f2=0.3. The number of maximum iteration was set to 100. The initial population was 

constructed in a similar fashion such that each chromosome was composed of k distinct data points that were 

randomly selected from the dataset. The algorithms were implemented in java programming language on Intel 

Core i7 processor, 8GB memory, and 64-bit operating system. Each algorithm was executed 30 times 

independently for each dataset. 

 

Table 1. Summary of the used datasets 
Datasets No. of Attributes No. of Instances No. of Cluster 

Iris (Iris plant data) 4 150 3 

Wine (Wine recognition data) 13 178 3 

Thyroid (Thyroid Disease Data) 5 215 3 

Breast Cancer (Wisconsin Diagnostic 

Breast Cancer Data) 

9 683 2 

Pima (Pima Indians Diabetes Data) 18 768 2 

Glass (Glass Identification Data) 10 214 6 

Ecoli (Protein Localization Sites) 8 336 8 

 

The quality of obtained cluster solutions and convergence speed of different DE variants were 

compared. The quality of clustering solutions was compared according to the following criteria: 

• The objective function values (total intra-cluster distance defined in eq. (9) ) 

• Sum of squared error (SSE) [12]: It calculate the sum of the squared distances from each data point 

in a cluster to the center of this cluster as follows: 



IJEEI  ISSN: 2089-3272  

 

Evaluation of Differential Evolution Algorithm with Various Mutation…. (P. P. W. Cho et al) 

727 

𝑆𝑆𝐸 =  ∑ ∑ 𝐷𝑖𝑠𝑡(𝑑, 𝑐𝑗)
2

𝑑∈𝐶𝑗

𝑘
𝑗=1      (10) 

Where k represents the number of clusters, Cj stands for the jth cluster, d is a data point in Cj, cj is the 

center of Cj, and Dist is the Euclidean distance between data point d and the center cj of the cluster Cj. Minimum 

SSE indicates better cluster solutions. 

 

Table 2. Comparison of objective function values 
Dataset Mutation Strategy Worst Best Mean Std 

Iris DE/rand/1 97.91498 96.91073 97.3809244 0.286711212 

DE/rand/2 104.59639 100.58503 102.1337669 1.18710493 

DE/best/1 97.66495 96.70644 97.1257265 0.287769934 

DE/best/2 96.688 96.6557 96.6670415 0.010426543 

DE/current-to-rand/1 98.56196 97.7142 98.2257235 0.2330539 

DE/current-to-best/1 96.85357 96.676285 96.7280826 0.067527291 

Wine DE/rand/1 16296.588 16291.879 16293.9099 1.798194616 

DE/rand/2 16424.855 16352.439 16386.8182 24.68133014 

DE/best/1 16324.859 16310.749 16316.9338 5.232458479 

DE/best/2 16309.574 16295.889 16300.9111 4.21486466 

DE/current-to-rand/1 16315.1 16300.865 16306.5729 4.953413693 

DE/current-to-best/1 16299.441 16294.082 16296.246 1.755794977 

Thyroid DE/rand/1 1882.7504 1866.4769 1869.45039 4.93738597 

DE/rand/2 1933.1353 1904.8689 1922.52497 8.792795624 

DE/best/1 1892.2047 1879.5593 1883.38591 3.564562431 

DE/best/2 1876.3129 1866.6946 1871.08952 2.978686652 

DE/current-to-rand/1 1896.8396 1877.1492 1888.41288 5.396856437 

DE/current-to-best/1 1884.3173 1867.5745 1874.91641 4.83995231 

Breast Cancer DE/rand/1 2971.8862 2964.4321 2966.53782 2.650869494 

DE/rand/2 3311.5127 2965.7437 3012.85072 105.5592452 

DE/best/1 3033.665 3000.5054 3018.80216 11.39918918 

DE/best/2 2977.0986 2966.4019 2971.18367 4.13411904 

DE/current-to-rand/1 2999.9495 2973.002 2987.84142 8.637445694 

DE/current-to-best/1 2974.674 2964.858 2969.47028 3.284382688 

Pima DE/rand/1 47569.33 47561.23 47563.2065 3.092244609 

DE/rand/2 47678.477 47564.79 47601.2339 38.04236253 

DE/best/1 47975.336 47780.234 47884.8688 54.80166752 

DE/best/2 47591.04 47562.61 47575.7867 10.42867773 

DE/current-to-rand/1 47614.9 47563.367 47587.5049 17.31487431 

DE/current-to-best/1 47572.508 47563.207 47566.7832 2.977584547 

Glass DE/rand/1 238.61061 214.88739 224.339602 7.936183946 

DE/rand/2 256.1896 239.43997 246.430862 4.351225392 

DE/best/1 233.55023 226.03458 229.798054 2.584396108 

DE/best/2 223.81511 217.97005 221.988005 1.830325338 

DE/current-to-rand/1 246.86244 241.1548 244.030698 2.155017781 

DE/current-to-best/1 230.9455 218.51709 222.542509 4.262207958 

Ecoli DE/rand/1 70.950424 64.20288 67.583721 2.17513627 

DE/rand/2 74.87054 71.46696 73.1026902 1.238720257 

DE/best/1 69.42949 66.73027 67.9053545 0.904321255 

DE/best/2 66.2538 64.51221 65.3631044 0.628261569 

DE/current-to-rand/1 73.64982 71.09162 72.1286431 0.66660349 

DE/current-to-best/1 69.25693 65.226425 66.9274105 1.263528514 

 

• Quantization error [16]: It calculates the average distance between data points and the cluster center 

as follows: 

𝐽𝑒 =
∑ [∑ 𝐷𝑖𝑠𝑡(𝑑,𝑐𝑗)∀𝑑∈𝐶𝑗

|𝐶𝑗|]⁄𝑘
𝑗

𝑘
      (11) 

Where k indicate the number of clusters, Cj stands for the jth cluster, d is a data point in Cj, cj is the 

center of Cj, |𝐶𝑗| is the number of data points in Cj and Dist is the Euclidean distance between data point d and 

the center cj of the cluster Cj. Lower quantization means the better cluster results. 

 

4.2 Experimental Results 

The experimental results obtained by DE based clustering algorithms with different mutation 

strategies are summarized in Table 2-4. The qualities of solutions obtained by each algorithm are tabulated in 

terms of the worst, best, mean and standard deviation (Std.). 

The vales of objective function obtained for all datasets are presented in Table 2.  According to the 

mean values of the given results in Table 2, DE/rand/1 got better results for four datasets while DE/best/2 got 

better solutions for Iris and other two datasets with high number of clusters (Glass and Ecoli).  The values of 

standard deviation obtained by DE/best/2 are smaller than these values got by other variants for Iris, Thyroid, 
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Glass, and Ecoli datasets. For Wine, Breast Cancer, and Pima datasets, the values of standard deviation 

achieved by DE/current-to-best/1 are smaller than the values acquired by others.  It can be said that DE/best/2 

and DE/current-to-best/1 is more robust than others where DE/current-to-best/1acheived more stable results 

for high-dimensional datasets (in terms of number of feature and number of data instances) than DE/best/2. 

 

Table 3. Comparison of sum of squared error 
Dataset Mutation Strategy Worst Best Mean Std 

Iris DE/rand/1 83.629715 80.42072 82.0800965 0.94004685 

DE/rand/2 89.5296 84.717865 87.5544574 1.842881411 

DE/best/1 81.711655 80.14506 80.9866801 0.654303667 

DE/best/2 80.38089 79.99243 80.1618585 0.113351464 

DE/current-to-rand/1 85.98539 81.2372 83.3685664 1.488298053 

DE/current-to-best/1 80.505196 80.0851 80.3149833 0.154577131 

Wine DE/rand/1 2594709 2513174.5 2564749 27068.79947 

DE/rand/2 2655556 2447204.2 2537712.62 70151.07796 

DE/best/1 2611303 2506935 2549237.9 31776.9966 

DE/best/2 2595641.8 2510130.2 2552362.65 27419.28448 

DE/current-to-rand/1 2624745.8 2515277.8 2580781.38 32488.16905 

DE/current-to-best/1 2599812.5 2542793.5 2581293.87 21449.25797 

Thyroid DE/rand/1 35247.93 34424.89 34884.4144 239.2168449 

DE/rand/2 36917.297 32058.793 35135.2568 1563.933731 

DE/best/1 36179.496 34523.406 35391.341 533.1252703 

DE/best/2 35384.438 34568.34 35073.3447 272.6169406 

DE/current-to-rand/1 36213.64 34646.14 35288.382 537.5361905 

DE/current-to-best/1 35627.25 34905.703 35201.0054 237.0561105 

Breast Cancer DE/rand/1 19609.496 19444.648 19503.1858 58.33649301 

DE/rand/2 22647.238 19426.004 19922.5529 973.8623906 

DE/best/1 20586.848 19734.09 20163.7867 271.2584436 

DE/best/2 19747.975 19435.182 19558.3365 103.611039 

DE/current-to-rand/1 20101.18 19639.258 19871.8596 169.3518486 

DE/current-to-best/1 19715.303 19453.16 19568.6758 84.81113703 

Pima DE/rand/1 5878486.5 5873893.5 5876531.25 1418.108702 

DE/rand/2 5942486 5849599.5 5895572.6 25906.31329 

DE/best/1 6024383 5822446 5909666.1 57765.50274 

DE/best/2 5901308.5 5873936.5 5882881.75 8154.457415 

DE/current-to-rand/1 5966982 5869100.5 5916646.85 28769.17591 

DE/current-to-best/1 5882846 5872621.5 5878205.2 2936.693797 

Glass DE/rand/1 517.1698 352.20148 451.584795 51.7028711 

DE/rand/2 620.7019 490.95703 554.339182 39.59907819 

DE/best/1 534.244 470.30612 504.460414 21.25916904 

DE/best/2 511.1626 449.67932 479.885252 18.79054734 

DE/current-to-rand/1 588.00256 462.1183 521.978414 34.68964865 

DE/current-to-best/1 506.72964 400.1598 467.785169 32.75475979 

Ecoli DE/rand/1 18.250305 15.541359 17.0615069 1.064179566 

DE/rand/2 21.400398 19.9141 20.3151097 0.483599322 

DE/best/1 18.451756 15.876751 17.5507899 0.736882932 

DE/best/2 16.891884 15.218651 16.3252521 0.569443113 

DE/current-to-rand/1 20.323498 18.774597 19.4565839 0.552628073 

DE/current-to-best/1 18.026596 16.368816 17.2151671 0.597203844 

 

Table 3 and Table 4 summarized the quality of cluster solutions acquired from different mutation 

strategies in terms of the sum of squared error (SSE) and quantization error, respectively. According to the 

mean values given in both Table 3 and Table 4, the solutions acquired by random mutation strategies 

(DE/rand/1 and DE/rand/2) are better than other strategies for almost all of the test datasets. However, the 

mutation strategies that involve the best vector (DE/best/1, DE/best/2 and DE/current-to-best/1) obtained more 

stable results than others according to the standard deviation values given in both tables. 

The convergence manners of different mutation strategies for all of the test datasets are shown in 

Figure 1. Based on the same 30 separate runs as mentioned above, the figure is illustrated with the averages of 

this runs. As observed in Figure 1, the convergence speed of DE/best/2 is the fastest on all datasets, whereas 

DE/rand/2 is the slowest and worst mutation strategy for all test datasets. Although DE/best/1 is faster than all 

variants except DE/best/2, it is not able to search for better solutions in the later stages, and it easily catches to 

local optima. DE/rand/1 finds better solutions for some datasets than other strategies in the late iterations, even 

though its convergence rate is slow in the early stages. DE/current-to-rand/1 can be regarded as a second-worst 

mutation strategy because it is slower and does not reach a better solution for all datasets except Iris. The 

exploration ability of DE/current-to-best/1 is not sufficient, and it does not catch a better solution for some 

datasets, although its convergence speed is a little fast. 
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Table 4. Comparison of quantization error 
Dataset Mutation Strategy Worst Best Mean Std 

Iris DE/rand/1 0.6516792 0.644194 0.648230088 0.002096196 

DE/rand/2 0.6917781 0.6613507 0.678133994 0.009085603 

DE/best/1 0.6529307 0.6434465 0.647316521 0.003001606 

DE/best/2 0.64522 0.6437538 0.643967262 0.00044599 

DE/current-to-rand/1 0.6572807 0.6491747 0.654163175 0.002575488 

DE/current-to-best/1 0.6464462 0.6439006 0.644522413 0.00101929 

Wine DE/rand/1 96.143974 95.56788 95.7610459 0.185679641 

DE/rand/2 97.008766 96.04605 96.4994756 0.295641799 

DE/best/1 96.29065 95.70694 96.0187704 0.211108131 

DE/best/2 96.216225 95.6381 95.8906245 0.181166983 

DE/current-to-rand/1 96.16913 95.63155 95.8116934 0.182229921 

DE/current-to-best/1 95.86396 95.57987 95.668115 0.12394908 

Thyroid DE/rand/1 9.302322 8.971374 9.09637795 0.115034208 

DE/rand/2 11.713471 9.0082445 9.77102625 0.735706345 

DE/best/1 9.33271 8.854203 9.15417135 0.161775128 

DE/best/2 9.221522 9.0455675 9.14978185 0.064162164 

DE/current-to-rand/1 9.469611 9.058529 9.2730773 0.107299489 

DE/current-to-best/1 9.312383 8.98903 9.1844789 0.083235219 

Breast Cancer DE/rand/1 5.21077 5.1888194 5.19391174 0.006918966 

DE/rand/2 5.765476 5.191242 5.272178 0.174804199 

DE/best/1 5.351944 5.2500167 5.29663055 0.031849959 

DE/best/2 5.2154016 5.192358 5.20259006 0.00856287 

DE/current-to-rand/1 5.2407265 5.20192 5.22435062 0.012082721 

DE/current-to-best/1 5.2095737 5.189504 5.19876374 0.007111739 

Pima DE/rand/1 67.81502 67.800385 67.803803 0.005570987 

DE/rand/2 67.93898 67.770996 67.8345055 0.051236144 

DE/best/1 68.52382 67.7503 68.247306 0.221579355 

DE/best/2 67.8479 67.802315 67.822286 0.01679569 

DE/current-to-rand/1 67.82375 67.614174 67.7693949 0.067872086 

DE/current-to-best/1 67.81558 67.802895 67.8087031 0.004526859 

Glass DE/rand/1 1.7753247 1.1713182 1.42850018 0.216891528 

DE/rand/2 1.7360297 1.1389076 1.459802 0.189753391 

DE/best/1 1.6024362 1.2440042 1.36619334 0.120531122 

DE/best/2 1.5341662 1.1582086 1.32218297 0.097018546 

DE/current-to-rand/1 1.8478018 1.2105691 1.5327666 0.193121642 

DE/current-to-best/1 1.6957501 1.2079638 1.38235998 0.156474922 

Ecoli DE/rand/1 0.2327994 0.1982598 0.212012397 0.010604917 

DE/rand/2 0.2355672 0.2026296 0.221384451 0.008893089 

DE/best/1 0.2153705 0.1989665 0.205757483 0.004651351 

DE/best/2 0.2163881 0.1932458 0.203574999 0.008118651 

DE/current-to-rand/1 0.2319987 0.199595 0.2186906 0.008642931 

DE/current-to-best/1 0.2503893 0.1883661 0.206791102 0.020067601 
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Figure 1. The convergence performance of different mutation strategies on six datasets 
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According to the overall experimental results, it is noticed that as follows: the mutation strategies 

based on the best solution are more robust and faster than others because these use the guidance information 

of the best solution to increase the exploitation ability and convergence speed of DE. Among them, DE/best/2 

is more effective and robust for datasets with high number of clusters (Glass and Ecoli) due to the guidance 

information from the best solution and the application of two differentials. DE/rand/1 is able to find better 

solutions not only for high dimensional datasets (Breast Cancer and Pima) but also for moderate size of datasets 

because it can keep good diversity. 

 

5. CONCLUSION 

This paper presents an experimental investigation to analyze different mutation strategies of the DE 

algorithm for clustering problems. The performance of six mutation strategies has been tested on some UCI 

standard datasets mostly used in EAs based clustering. The quality of solutions and the convergence speed of 

different DE variants were compared to investigate the outcomes of the experiments. The experimental analysis 

pointed out that DE/rand/1 accomplishes to find better solutions for the moderate size of datasets. Besides, it 

shows good exploitation behavior in the later stages, while DE/best/2 shows good exploration behavior in the 

early stages.  The test also showed that the mutation strategies that used the best solution achieve to find more 

stable results. Future work is to propose an effective mutation strategy for addressing large-scale clustering 

problems by applying the information from this experimental study. 
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