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ROAD SAFETY FOR CYCLISTS BASED ON THE CALORIES NEEDED 
  

Summary. Cyclists are a vulnerable group of road users, especially when no separate 
infrastructure for cyclists is provided. Then, road factors such as distance and altitude 
differences can indirectly affect cyclists' safety. Therefore, the authors proposed a 
procedure based on the geometric characteristics of the road that can determine riding 
difficulties for cyclists. The proposed procedure can be used both by the public authorities 
who manage cyclists' safety and as a method of classifying the road network for cycling.  

The proposed procedure, based on the use of pattern recognition techniques, analyses data 
from a sample of nine riders who travelled on rural roads within the Municipality of 
Messina (Italy) to classify the roads according to their cycling difficulty. For each rider, 
duration, distance, road slope, altitude difference and spent calories have been measured 
and analysed. 

The collected data were used for the development of a model capable of predicting the 
cyclist’s physical effort as a function of the road alignment itself. Knowing the effort 
required to cycle along a route can contribute to a more complete assessment of road 
classification, commonly defined according to motor vehicles. Moreover, it may constitute 
a measure determining the safety of cycling by encouraging cyclists to travel along roads 
compatible with their physical abilities. 

 
 

1. INTRODUCTION 
  

Cyclists’ safety has been discussed in recent years, especially as the use of this mode of transport has 
been increasing worldwide.  While this success has been enthusiastically welcomed by those focusing 
on positive environmental effects, others indicate  a huge increase in accidents, even beyond the official 
reports [1-3].  

The increase in the number of bicycles has rarely determined adjustments of the road infrastructure, 
which is traditionally designed to satisfy the needs of motorized vehicles only [4, 5]. Even if the urban 
areas, mainly in Northern Europe, include a dense network of bicycle paths assuring higher safety for 
cyclists, the rural roads contain all the traffic components within the same cross-section, without any 
passive or active protection for vulnerable users [6]. 

In recent years, scientific research has investigated a series of factors that may influence and reduce 
the risk of accidents. For instance, separation of bike flows from motor vehicles has represented a 
strategical step towards safer infrastructures, even if critical issues remain in connection areas, where 
the various flows dangerously converge in extremely complex scenarios [7-10]. From a functional 
perspective, one of the best solutions is to introduce roundabouts, solving most of the safety problems 
of the various traffic components. Advanced Driver Assistance Systems (ADAS), i.e., electronic 
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systems that may support the driver in danger or emergencies, may represent another helpful strategy 
towards reducing the probability of accidents. Preliminary applications, even for bicycles, are already 
available and the results appear to be positive [11].  

When the road infrastructure is used by all the traffic components, the scenario becomes the most 
dangerous one and it may be further complicated by other factors, such as road pavement quality, road 
width, parked cars, the practice of cyclists staying in groups, access frequency and considerable speed 
differences between bicycles and motor vehicles [12].  

Unlike the materials that make up road pavements, the human factors influencing the driving actions 
of cyclists and car drivers are characterized by high uncertainty and dispersion, due to the heterogeneous 
nature of the users [13-15]. Gildea and Simms [16] assessed the causes of collisions in Ireland. Although 
the involvement with motor vehicles is predominant (56%), the percentage of accidents with 
autonomous or other cyclists (29% + 8%, respectively) is high. The analysis was very thorough and 
focused not only on traffic and road characteristics but also some human factors of cyclists. Among 
them, it was found that men are more often involved in accidents than women, irrespective of factors 
such as familiarity with the infrastructure, wearing protective clothing, consuming alcohol or using 
mobile phones when cycling. 

A psycho-physical state may be a further aggravating issue for cyclists’ safety. High alcohol or drug 
levels have disrupting effects on attention capacity and reaction time, besides consequences on the 
physical capacity required for driving [17]. 

In terms of the physical state, some research focused on the role of fatigue in cyclists’ safety and 
analysed the variables that mainly influence it, such as the path length or the road elevation trend [18-
21]. In the literature, only specific experiments are reported that cannot be generalized to other contexts, 
probably owing to difficulties related to including the human factors in an analytical procedure [22]. 

Physical fatigue cannot be quantified by direct methods but can only be inferred from voluntary 
admission of the cyclist involved, which excludes all fatal accidents from the report. 

Despite this, there is no doubt that the energy spent leads to a series of consequences on riding 
behaviour that can be extremely dangerous, such as deficit in attention [23, 24], slowness in reaction 
times, greater irregularity in trajectories, lower speed and, consequently, greater speed difference 
between a bicycle and any motor vehicle moving in the same direction. 

In this respect, recent research has highlighted some factors that favour cycling and others that 
discourage it. Among the former, health improvements, the cost and time savings are noted, while the 
risk of accidents and adverse weather conditions stand out among the latter. Even if the study does not 
investigate the role of these variables, there is a strong link between the cyclist's physical abilities and 
the safety that he or she perceives [25]. 

Also, Bulsink et al. [26] and Kiewiet et al. [27] have carried out experiments on elderly cyclists, 
ascertaining that one reason for the disrupted stability involved a more complex and slower recovery 
manoeuvre than that of the younger cyclists, demonstrating that the contribution of physical resistance 
is necessary to ensure the safety of the journey. Elderly cyclists present not only physical problems but 
also psychological stress in particular situations of environmental complexity. In this respect, Vlakveld 
et al. [28] reported an increase in workload measurements compared to younger users and a simultaneous 
decrease in speed, a sign that the latter cannot always be taken as a reference for safety. In terms of the 
factors that influence cyclists' stress, Gadsby et al. [29] published a large study involving trials in the 
Netherlands and the United States. Among the causes reported by users, those relating to interaction 
with motor vehicles, pavement conditions and road geometry are the most commonly reported. 

Cycling design standards, issued by some European countries or cities, lend very limited importance 
to the problems generated by vertical alignment of the road. The question is deliberately simplified 
because it is believed that the majority of cyclists are not interested in travelling on long and sloping 
roads and, in any case, the terrain of the countries of central Europe such as Holland, Belgium and 
Denmark, especially in urban sites, is basically flat [30-36]. 

However, even if it does not represent the majority of cases, it is always necessary to check the 
cyclists' safety on roads with high slopes as uphill terrain increases the energy spent considerably and 
reduces comfort and safety. On the contrary, downhill terrain leads to a considerable increase in speed 
and, therefore, a greater dispersion of the trajectories with negative consequences on safety. 
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In this paper, the authors attempt to overcome the limitation of the existing literature and propose a 
general procedure for allowing the analyst to forecast the physical performance required by the cyclist 
along a specific road. This procedure relies on the evaluation of a very simple indicator, the calories 
burned, determined considering several relevant indicators representing the main features of the road. 
This indicator might be used with others, such as construction and functional aspects of the road, to 
determine cyclists’ safety during the ride. The authors want to highlight that in this research, there is a 
link between physical effort and road alignment that has never been considered in an analytical 
relationship in the literature summarized before. Furthermore, to generalize the results and make them 
useful for future applications, this link has been treated with statistical methodologies that will be 
illustrated in the Methods section. 

  
  

2. METHODS 
  

2.1. Premise 
  

The authors, in line with what was reported in some studies, believe that cyclists’ safety depends on 
physical and functional aspects of the road but, mainly, on psycho-physiological characteristics of the 
users. Unlike car drivers, for whom the workload is mainly related to mental effort, cyclists are strongly 
influenced by physiological fatigue. This variable is highly uncertain, as it is a function of the health 
status, age, physiology and the impact of the road construction characteristics on his or her performance. 

Therefore, there is a need to find an indicator to represent the cyclist’s stress, with a satisfactory level 
of accuracy. Whether the aim is to build a model with general valence and one that is easy to configure, 
it is important to identify the easily measurable input variable using low-cost devices. 

From these statements, two fundamental considerations emerge: 
- the input variables should be related to the infrastructure, not the cyclists, so as the model, once 

calibrated, can process different roads without novel cycling measures and 
- the numerous uncertainties should be controlled as much as possible, but it is not possible to 

eliminate them completely. 
First, normalization of the calories burned is required, to balance unavoidable physiological 

differences among the analysed cyclists. Second, it is convenient to classify this variable into a sufficient 
number of classes (three in this case), representing the difficulties, more or less evident, of the cyclist. 
However, all the other variables should be normalized too (in the [0,1] range), to avoid overbalancing 
in the analytical model towards those variables with the highest absolute values. 

  
2.2. Some details of the experiments 

  
To prepare an appropriate dataset for the forecasting model, the activity of a sample of nine cyclists 

moving along a rural road has been considered. During cycling experiments, several variables have been 
measured, such as elapsed time, total distance, grade, elevation and the calories burned (used as an 
output variable) as a function of the heart rate.  

The definition of a specific analytical model allowed the analysts to estimate the effort for a medium-
capacity cyclist along a road, knowing only the main geometrical characteristics of the road. The 
experiments were conducted on two different rural roads in the city of Messina (Italy), in a suburban 
area, characterized by low volumes of traffic. The main features of the road are as follows: 7 m wide, 
no shoulders, around 9 km long, average grade equal to 5% and pavement in good condition. 

The users’ sample is made up of amateur cyclists, with a similar level of fitness to each other, aged 
between 40 and 50 years, with a good health status (certified by medical documentation), who did not 
cycle together. The cyclists, unaware of the purpose of this scientific research, used road bikes equipped 
with computers able to measure some physiological, dynamic and physical variables (heart rate, burned 
calories, cadence, time, distance, speed, grade, elevation, etc.), without this instrumentation causing an 
impediment to normal riding. After the experiments, all the measured variables were entered into a 
notebook and processed using Pattern Recognition techniques in the Matlab® Statistical Toolbox 
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environment. This methodology allowed the analysts to classify the various observations into three 
proper classes, related to different ranges of burned calories and, thus, the cycling fatigue. The 
classification of events alone would have represented only a modest scientific result. The advantage of 
such an analytical model is to provide a similar forecast on other roads not used to build the model too, 
considering only input data, without other contributions by actual cyclists. 

Naturally, the same path may determine a slightly different consumption of calories for each cyclist, 
depending on his or her weight, training level, heart rate, etc. To take into account this aspect, the various 
data were normalized according to the following: 

 Caln= (Obsn-Calmin)/(CalMAX-Calmin) (1) 
where Caln are the normalized calories burned for the n-th observation, Obsn is the absolute calories 
burned for the n-th observation, Calmin is the calories burned at the beginning of the road and CalMAX is 
the calories burned at the end of the road. Calmin, generally, is equal to zero but if the section of the road 
to be analysed is included within a longer section, it can be different from zero. 

In this way, each cyclist has Cal values in the [0,1] range comparable with other users of the sample. 
The three classes into which the measures  can be classified are as follows: 

Class 1: 0 £ Cal <0.3. 
Class 2: 0.3 £ Cal < 0.6. 
Class 3: Cal ³ 0.6. 
The other variables have been normalized using a similar procedure as well. 
Obviously, there are other factors that influence the consumption of calories, such as the weight of 

bicycles and cyclists and the presence of wind, as they determine some important resistance. In this case, 
the sample is very homogeneous, as the racing bikes used in this research weigh between 8 kg and  
8.50 kg, and cyclists weighed between 70 and 75 kg. Furthermore, during the experimentation, there 
was no wind of at least appreciable intensity.  

For different values of these quantities, the cyclist's calorie expenditure in absolute terms will vary 
proportionately. However, the final result is expressed in caloric expenditure classes, rather than in 
absolute values and, therefore, any accuracy errors are insignificant because their values are 
considerably lower than the class interval in the approximation of the result. 

  
2.3. Brief note about the Linear Discriminant Analysis (LDA) 

  
Our goal, therefore, is to verify that a particular observation (as a set of features) is representative of 

the output, which, in our case, is the calories spent. 
Besides, when the input variables assume different values, the model must understand whether and 

in which way the output will change. Pattern recognition and, in particular, discriminating models, only 
work well if the final result is a class rather than a purely numerical value [37]. 

The separation of the detected observations (or objects) can be achieved with linear separation 
surfaces or, more precisely, with straight lines in a two-dimensional space, planes in a 3D space or, 
moreover, hyperplanes in an nD space (where n is the number of input variables). 

In general, it is possible to state that all the surveyed observations, reported in a data set X of [m ´ 
n] dimension (where m is the number of features and n is the number of objects), will be assigned to the 
C classes that, in this case, represent different functional classes.  

Therefore, Ni objects belonging to the class wi are obtained. Each object x is described by the 
corresponding values taken by the m variables: x = (x1, x2, …, xm). 

Then, the purpose is to project the objects belonging in X on a C-1 dimension hyperplane called Y, 
where it is more convenient to perceive the separation between the classes. 

For example, in the simplest case where C=2, the m-dimension data set will have a number of N1 
samples belonging to w1 and N2 belonging to w2. Thus, the goal is to obtain any scaling for projecting 
the x observations on an opportune straight line: 
 y=wTx (2) 
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where 

 𝑥 = #
𝑥!
. . .
𝑥"
% (3) 

and 

 𝑤 = #
𝑤!
. . .
𝑤"

% (4) 

The following procedure will be applied to obtain the axis that guarantees the best separability 
between the classes. 
First, it is necessary to identify some indices measuring the class separation, as the mean vectors in x 
and y (Eq. (5) and Eq. (6)), as follows: 
 𝜇# =

!
$!
∑ 𝑥%∈'!  (5) 

 𝛭*# =
!
$!
∑ 𝑦 =  !

$!
∑ 𝑤(𝑥%∈'!)∈'! = 𝑤( !

$!
∑ 𝑥 = 𝑤(𝜇#%∈'!  (6) 

The distance between projected averages (similar to the distance between centroids), calculated 
through Eq. (6), represents an acceptable criterion for the final decision: 
 𝐽(𝑤) = |𝜇1! − 𝜇1*| = |𝑤(𝜇! −𝑤(𝜇*| = |𝑤((𝜇! − 𝜇*)| (7) 

However, in this way, there will be no information about dispersion within the classes. For this 
reason, Fisher [38] introduced into the above-mentioned objective function J(w) normalization with 
respect to a measured representative of this dispersion, called scatter. S"!" represents, in this way, the 
variability within the class wi after projecting it along the new y axis, as in Eq. (8): 
 𝑆4#* = ∑ (𝑦 − 𝜇1#)*)∈'!  (8) 

The sum S"#" + S"""corresponds to the variability in the two classes after the projection on the new y 
axis and the analyst's aim is to find the wTx linear function that maximizes the function J(w), reported 
in Eq. (9): 

 𝐽(𝑤) = |,-".,-#|#

/0"#1/0##
 (9) 

In conclusion, in the ideal representation on the new axis, the observations belonging to the same 
class are very close to each other and, at the same time, the averages between the different classes are 
as far as possible. It is necessary to express J(w) as an explicit function of w to find the function 
maximum. Then, it is possible to define a scatter in the multivariate space x, like Eq. (10) and Eq. (11): 
 𝑆# = ∑ (𝑥 − 𝜇#)(𝑥 − 𝜇#)(%∈'!  (10) 
 𝑆2 = 𝑆! + 𝑆* (11) 
where Si is the covariance matrix of the wi class and Sw is the within-class scatter matrix. 

The scatter of the projection on y, expressed as a function of the scatter matrix in the x space, is 
expressed through Eq. (12) and Eq. (13): 
 𝑆4#* = ∑ (𝑦 − 𝜇1#)* = ∑ (𝑤(𝑥 − 𝑤(𝜇#)*%∈'! =)∈'!  
 ∑ 𝑤((𝑥 − 𝜇#)(𝑥 − 𝜇#)(𝑤%∈'! = 𝑤(𝑆#𝑤 (12) 
 𝑆4!* + 𝑆4** = 𝑤(𝑆!𝑤 +𝑤(𝑆*𝑤 = 𝑤((𝑆! + 𝑆*)𝑤 = 𝑤(𝑆3𝑤 = 𝑆43 (13) 
where S"$ is the scatter matrix for the class projected on the y axis. 

Similarly, it is possible to derive the differences between averages projected on the y axis in terms 
of averages in the original x space, as reported in Eq. (14): 
 (𝜇1! − 𝜇1*)* = (𝑤(𝜇! −𝑤(𝜇*)* = 𝑤((𝜇! − 𝜇*)(𝜇! − 𝜇*)(𝑤 = 𝑤(𝑆4𝑤 = 𝑆44 (14) 

The SB matrix represents the scatter between the class of the original observations, while S"% is that 
reported on the y axis. 
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Therefore, Eq. (8) becomes Eq. (15): 

 𝐽(𝑤) = |,-".,-#|#

/0"#1/0##
= 3$/%3

3$/&3
 (15) 

where J(w) is a measure of the difference between the considered classes means, normalized by the 
value of the within-class scatter matrix. 

The derivative equal to zero, as is known, yields the maximum of the function. The final expression 
(bypassing the other steps) is represented by Eq. (16): 
 𝑆3.!𝑆4𝑤 − 𝐽(𝑤)𝑤 = 0 (16) 

By solving the eigenvalue problem, Eq. (17) is derived: 
 𝑆3.!𝑆4𝑤 = 𝜆𝑤 (17) 
where l= J(w) is a scalar. 

The so-called linear discriminant yields the optimal solution, reported in Eq. (18): 

 𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
3

𝐽(𝑤) = 𝑎𝑟𝑔𝑚𝑎𝑥
3

<3
$/%3

3$/&3
= = 𝑆3.!(𝜇! − 𝜇*)		 (18) 

If the classes are more than 2 (for example C), there will be C-1 projection vectors wi (instead of 
only y), but the procedure will be the same. 

In the processing phase, this general methodology should be calibrated to minimize the percentage 
of misclassified elements, by changing the number and quality of the input variables, number of output 
classes and the discriminant technique. This iterative procedure is needed because the choice of the 
optimum configuration is not always obvious, as it may also depend on the size and typology of the acquired 
data. 

  
  

3. RESULTS 
  

The experiments consisted of cycling on different days on the two roads shown in Figure 1a and 1b, 
respectively, 9 and 10 km long and with an average grade of 5%. The first road (named “Gesso”) was 
used to train the model and the second road (named “Salice”) was used to test it. In both cases, before 
cycling on the reference path, the cyclists cycle for 20 km at moderate speed for warm-up. 
 

 
 

Fig. 1a. The two roads selected for the experiments: a) “Gesso” road, from “Villafranca Tirrena” to “Colle San   
             Rizzo” 
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Fig. 1b. The two roads selected for the experiments: b) “Salice” road, from “Rodia” to “Portella” 
 

Table 1 lists part of the variables recorded by the bike computer during cycling on the first road (Fig. 
1a). According to the sampling frequency of the internal GPS, a measure every 5 seconds has been 
recorded. About 3300 observations have been recorded, for an average cycling time equal to 16,500 
seconds that, divided for the involved cyclists (9), provides an average cycling time of 1,833 seconds 
per user (around 30 minutes). 

The LDA model (defined as specified in the Methods section) reached a global accuracy level of 
90.5% in identifying the class of calories burned for each observation. The 1st class includes observations 
with very low values of burned calories (<0.3), the 2nd class refers to the range [0.3-0.6], while the 3rd 
class includes observations for which the caloric consumption has been relevant (more than 0.6). All 
these values are dimensionless as ratios of quantities with the same unit of measure (calories). 

 
Table 1 

Short extract from the database powered by the experimentation for the 1st road 
 

Time(min) Distance (m) Grade (%) Altitude (m) Calories (Cal) 
… … … … … 

351,93 29491,80 7,61 505,23 180,93 
352,00 29502,50 7,56 506,05 181,38 
352,07 29512,50 7,15 506,82 181,82 
352,13 29522,90 7,50 507,63 182,27 
352,20 29533,90 7,01 508,40 182,72 
352,27 29546,50 6,72 509,14 183,17 
352,33 29559,60 5,98 509,80 183,61 
352,40 29571,00 5,58 510,42 184,03 
352,47 29581,40 5,75 511,05 184,45 
352,53 29592,90 4,92 511,57 184,85 
352,60 29604,20 4,34 512,00 185,24 
352,67 29614,40 4,83 512,45 185,64 

… … … … … 
 

Even if the problem is multidimensional, for greater clarity it was decided to represent the graphs in 
2D by comparing only two variables at a time. Figures 2a, 3a and 4a show some representations of the 
results for the 1st road. After this training phase, the test phase was performed, on the 2nd road, 
considering only 2 cyclists, for evaluating the forecasting capacity of the model. In Table 2, an extract 
of the novel dataset is provided: in this case, the burned calories are not reported, as the related class 
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must be estimated by the model. Naturally, the values were properly measured during cycling and used 
as references for testing the model. 
 

Table 2 
Short extract from the database powered by the experimentation regarding the 2nd road 

 
Time(min) Distance (m) Grade (%) Altitude (m) 

... ... ... ... 
820,0 54139 6 372 
820,6 54150 6 373 
820,0 54160 7 373 
820,0 54170 6 374 
820,8 54180 6 375 
820,0 54191 6 375 
820,0 54202 7 376 
821,0 54213 7 377 
821,0 54220 6 377 
821,0 54226 7 378 
821,2 54234 7 379 
821,0 54244 7 380 
821,0 54255 7 380,8 

... ... ... ... 
 

Figures 2b, 3b and 4b are related to the classification of the novel observations for the 2nd road, based 
on the forecasting capacity of the model. As stated, direct data measured by the bike computers have 
been used to test the efficiency of the LDA model: the test guaranteed an accuracy value equal to 89,9% 
(number of properly classified observations in the total observations). 
 

 
 
Fig. 2a. Distribution of the observations in a 2-D space (elapsed time vs. altitude): trials (1st road) 
 

 
 

Fig. 2b. Distribution of the observations in a 2-D space (elapsed time vs. altitude): new observations (2nd road) 
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Fig. 3a. Distribution of the observations in a 2-D space (elapsed time vs. distance): trials (1st road) 
 

 
 

Fig. 3b. Distribution of the observations in a 2-D space (elapsed time vs. distance): new observations (2nd road) 

 
 
Fig. 4a. Distribution of the observations in a 2-D space (altitude vs. grade): trials (1st road) 

 

 
 
Fig. 4b. Distribution of the observations in a 2-D space (altitude vs. grade): new observations (2nd road) 
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4. DISCUSSION 
  

All the trials were performed on a rural road. In the introduction, it has been underlined that urban 
scenarios face problems related to considerable encounters between cyclists and drivers of motorized 
vehicles, especially in the intersections. The rural roads in suburban areas, on the contrary, are generally 
characterized by proper length and grade and, thus, a different element for a cyclist’s safety is 
considered, i.e., the state of fatigue. 

The selected roads (Fig. 1a and 1b) have common features with roads in Eastern Sicily, as they 
connect coastal towns to mountainous ones. Then, it is possible to consider the validity of 
experimentation as generally reliable for this part of Sicily. Further, 9 km length and 5% average grade 
are typical of paths that can be covered by amateur cyclists and, thus, represent the ideal scenario for 
the aim of our research. 

It should be noticed that data in Table 1 and Table 2 are not normalized to show the real value 
assumed by the variables. The sampling frequency (one measure every 5 seconds) represents an 
acceptable balance between the need to limit the database size and to obtain, in any case, a relevant 
number of observations representative of the observed phenomenon. 

Although it was not reported in the Results section, a preliminary model included cadence and speed 
as input variables. Using 6 input variables, the model appeared slightly more accurate, but it was not 
considered because a higher number of variables is always more onerous (in data collection and 
computation). When this increase determines better performance, the related “costs” may be acceptable, 
but, in this case, the gain in accuracy was negligible (+1.3% in absolute value). Moreover, additional 
variables (cadence and speed) depend on the cyclist’s activity, while the authors aim to apply the model 
to other roads, avoiding novel tests for cyclists, but relying only on infrastructure variables. 

The final accuracy level, further, is good also because the linear PR model used (LDA) is reliable 
but does not represent the most refined solution from an analytical perspective. However, this choice is 
preferable not only for its simplicity and quickness but also for normal-size datasets and the advantages 
for use by non-expert analysts. 

A specific test of the model was performed on a novel dataset, related to a different road (Fig. 1b). 
This test consisted of forecasting the calories burned for the novel observation on the 2nd road, 
considering the measured input variables. The proposed model classified the observations into three 
classes, and the results (correct classification for 89.9% of records) confirm the reliability of the 
analytical model, despite the different causes of uncertainty included in the problem.  

The accuracy of the results, i.e., the capacity of the model to classify the various observations, may 
be verified in Figures 2a, 3a and 4a, in which only a few elements are misclassified. The meaning of 
these figures is relative, as the numerous observations in the correct class are overlapped, while those 
erroneously classified are, paradoxically, more separated and, thus, more evident. However, it is 
interesting to notice the relationship between the two variables provided in the charts. Figure 2a provides 
the classification in the 2D view Altitude - Elapsed Time. The relationship is substantially linear as the 
vertical geometry of the road is characterized by a constant grade along the entire path. This trend is 
very similar in Figure 2b too, for the 2nd road, which is, however, characterized by the same features and 
elevation trend. In this case, the observation distribution is less spread because only 2 cyclists have been 
included for testing, but also in the 1st case, the trend is defined enough. 

The same considerations may be extended to Figure 3, in which observations are presented in the 
chart Distance - Elapsed Time. The trend is, naturally, linearly increasing, but in Figure 3a, there is a 
slight dispersion from the linear trend owing to the different performance of the nine users; this is less 
evident for the 2nd road, along which the cyclists showed similar performance. Figure 4 provides 
classification results in the chart Grade – Altitude and it is more interesting as this representation is not 
immediately intuitive. In truth, no relationship is expected between these variables, but the LDA 
classifier perfectly determined the boundaries of the areas related to the three classes. It is important to 
underline that also the input variables were normalized, unlike what is reported in Tables 1 and 2 for the 
reasons already mentioned, considering that grade, min and max values are very close (between 4.5% 
and 5.5%) and there is no remarkable standard deviation. However, when normalization led to the spread 
of the values in the total range scale, there was a gradation of this percentage point on a scale ranging 
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from 0 to 1. This is the reason for the specific dispersion of the values in vertical axes, apparently without 
any relation with the x-axes. In truth, the y values have a very low oscillation around the average. The 
same considerations may be extended to the testing phase on the 2nd road. 

In conclusion, this methodology represents an analytical instrument to identify a certain level of 
physical effort required by cyclists for cycling along a specific road. This, in turn, is only one of the 
variables influencing the cyclists’ safety, with those related to infrastructure and traffic. Since these 
variables will also be affected by some uncertainty, it is unnecessary and not convenient to pursue higher 
precision. Second, this procedure can be useful to classify the road for cycling use. The roads, in 
traditional standards, are functionally classified as a function, almost exclusively, of the needs and 
requirements of motorized vehicles. If their use is mixed, i.e., includes vulnerable users too, a 
classification methodology taking into account this means of transport is also reasonable. 

These results represent real progress compared to the scientific findings of recent years, since the 
performance of cyclists had never been analytically linked to the geometric characteristics of the road. 

However, this research does not aim to trivialize the problem of cyclists' safety. Many authors [2, 3, 
7, 9], rightly, identify other situations that can cause great dangers, such as interaction with motor 
vehicles, the complexity of urban environments and traffic volumes. 

Unlike the above, authors have evaluated a human factor variable that, as such, suffers from great 
uncertainty and difficulty in generalization to other contexts. These problems have been solved with 
appropriate statistical techniques and with the acceptance of a small level of approximation. 

Road administrators, with the proposed methodology, can rely on fully objective and evolved 
decision support. As already reported, the variables related to the vertical alignment of roads are 
generally neglected by European regulations, since there are only a few prescriptions to be applied when 
the slopes exceed a certain threshold, without further comments on or considerations of the 
consequences for the cyclist in terms of safety and comfort.  

This research at present, however, cannot be considered complete as the cyclists’ safety must be 
further investigated, at least in the directions suggested as follows: 
- The proposed procedure is useful on road sections where physical fatigue is greater, i.e., uphill roads. 

However, in terms of road safety, downhill sections are just as dangerous. In this case, it is not fatigue 
that is the prevailing variable but speed that should be studied together with the trajectories. 

- The interaction with other traffic components is also interesting, especially with motor vehicles, 
given that a large proportion of accidents are due to this cause. 
 
Therefore, the next steps of the research will aim to investigate the aforementioned conditions. 

 
  

5. CONCLUSIONS 
  

The safety of a cycling road depends on numerous variables, such as the pavement condition, 
horizontal and elevation geometry, transversal section, higher speeds of motorized vehicles and different 
sight-distances. These variables are easily identifiable and have the advantage of remaining almost 
constant for long periods. 

However, despite the higher complexity, the performance of the cyclist, especially in terms of 
physical effort and fatigue, should be taken into consideration. This information influences the 
possibility to cycle on specific paths and, indirectly, users’ safety. The issue, in general, is not practical 
to be solved to account for the huge uncertainty related to the human component that, unlike for car 
drivers, involves physical fatigue, in turn influenced by the user’s health status, age, diseases, etc. 

In this study, the physical effort and fatigue required along a certain road have been determined using 
a specific model, based on Pattern Recognition techniques, able to identify an appropriate class of effort 
according to some variables related to the features of roads: distance, elapsed time, grade and elevation. 
A sample of nine cyclists has been monitored, measuring also the burned calories (as a function of the 
heart rate) during cycling on the selected road. The aim was to assess if any dependence between the 
burned calories and the road characteristics exists. The excellent results, in terms of classification 
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accuracy (around 90%), evidence the possibility to estimate the physical effort of the cyclist, by simply 
considering the main geometrical characteristics of the road. 

In any case, this procedure may allow the infrastructure manager to identify a suitable class that 
contains information on the difficulty of travelling. If the level of achieved safety or expected class is 
not satisfactory, it is possible to implement a series of mitigation measures, such as roadside renovation, 
a parking ban, specific information and signage indicating the presence of vulnerable users, widening 
of the cross-section, separation of traffic currents, appropriate signs and so on. 
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