MINIREVIEW

Polish Journal of Microbiology 2021, Vol. 70, No 1, 13–23 https://doi.org/10.33073/pjm-2021-005

Epidemiology and Pathogenesis of *Staphylococcus* Bloodstream Infections in Humans: a Review

KLAUDIA LISOWSKA-ŁYSIAK¹⁽), RYSZARD LAUTERBACH²⁽), JACEK MIĘDZOBRODZKI¹⁽) and MAJA KOSECKA-STROJEK¹*⁽)

¹Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland ²Department of Neonatology, Collegium Medicum, Jagiellonian University, Kraków, Poland

Submitted 22 October 2020, revised 18 December 2021, accepted 12 January 2021

Abstract

Staphylococci are among the most frequent human microbiota components associated with the high level of bloodstream infection (BSI) episodes. In predisposed patients, there is a high risk of transformation of BSI episodes to sepsis. Both bacterial and host factors are crucial for the outcomes of BSI and sepsis. The highest rates of BSI episodes were reported in Africa, where these infections were up to twice as high as the European rates. However, there remains a great need to analyze African data for comprehensive quantification of staphylococcal BSI prevalence. The lowest rates of BSI exist in Australia. Asian, European, and North American data showed similar frequency values. Worldwide analysis indicated that both *Staphylococcus aureus* and coagulase-negative staphylococci (CoNS) are the most frequent BSI agents. In the second group, the most prevalent species was *Staphylococcus epidermidis*, although CoNS were not identified at the species level in many studies. The lack of a significant worldwide decrease in BSI episodes indicates a great need to implement standardized diagnostic methods and research etiological factors using advanced genetic methods.

K e y w o r d s: bacteremia, carriage, infection, sepsis, Staphylococcus

Introduction

Staphylococcus aureus is one of the most frequently isolated pathogens from the hospital or communityacquired infections. Staphylococci are a large group of bacteria in every environment; however, these bacteria can proliferate only in humans or animals. Many staphylococcal species colonize the skin and mucosal membranes, especially the perineum and pharynx. The other sites that harbor these bacteria are the gastrointestinal tract, vagina, and axilla, but carriage in those areas is less frequent (Kosecka-Strojek et al. 2018). Traditionally, staphylococci have been divided into two groups based on the production of extracellular enzyme coagulase: coagulase-positive staphylococci (CoPS) and coagulase-negative staphylococci (CoNS). The first group is represented by well-known opportunistic pathogens such as Staphylococcus aureus, Staphylococcus schleiferi, Staphylococcus intermedius, and Staphylococcus pseudintermedius, and the second group traditionally includes nonpathogenic or opportunistic pathogens; however, recently, several clinical reports have presented CoNS as dangerous pathogens, particularly for newborns or immunocompromised patients (Heilmann et al. 2019). A few species, namely *Staphylococcus hyicus*, *Staphylococcus agnetis*, and *Staphylococcus felis*, belong to the third group – coagulase-variable staphylococci. These species are usually grouped with CoPS but cannot produce clumping factors, and coagulase production tests give variable results (Becker et al. 2014). As opportunistic pathogens, staphylococci exhibit saprophytic characteristics under physiological conditions, but the bacteria become severe pathogens under additional infection-facilitating conditions.

Staphylococci are etiological agents of diseases with various localizations, manifestations and/or courses of infection. The most frequent infections are local infections, and the bacteria can cause lesions in various anatomical tissues. Overall, the infections are grouped into skin and soft tissue infections (SSTIs) with

Corresponding author: M. Kosecka-Strojek, Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland, e-mail: maja.kosecka-strojek@uj.edu.pl
2021 Klaudia Lisowska-Łysiak et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

manifestations such as dermatitis, abscesses, furunculosis, boils, folliculitis, impetigo, or mastitis, and also includes other severe diseases such as staphylococcal foodborne disease, toxic shock syndrome, and staphylococcal scalded skin syndrome (SSSS) (Foster 2012; Tong et al. 2015). Staphylococci are also common pathogens of deep tissue infections, including foreign bodies infection. Most studies focused on *S. aureus* infections, but there is strong evidence of the CoNS involvement in severe diseases. Osteomyelitis, otitis, wound infection, endophthalmitis, urinary tract infection, meningitis, or even pneumonia may be caused by *S. epidermidis, Staphylococcus saprophyticus, Staphylococcus lugdunensis*, and *S. schleiferi* (von Eiff et al. 2002; Becker et al. 2014; Argemi et al. 2019). When staphylococci gain

temic as bacteremia and then advances to infection. The literature was screened based on a PubMed search using the terms "staphylococci", *"Staphylococcus*" and "bloodstream infections" and/or "sepsis". The publications were then evaluated based on a citation index. Specific criteria were used to describe the worldwide occurrence of *S. aureus*, and CoNS bloodstream infections and/or sepsis, such as: only original articles were included; the data from different geographical regions/countries were analyzed; the articles with the highest number of participants and bacterial strains isolated, and those containing long-term studies or the recent data, were selected to the analysis.

entry into the bloodstream, colonization becomes sys-

Bacteremia, bloodstream infection, and sepsis

Bacteremia. Bacteremia is characterized by the presence of pathogens in the blood (Pai et al. 2015). Transient bacteremia is limited to one or two days, without any manifestations, and may be caused by some staphylococcal species. Furthermore, the phenomenon does not indicate any further manifestation in healthy hosts (Samet et al. 2006). The presence of bacteria in the blood is eliminated by immunological defense systems and is known in the literature as "natural bacteremia".

Bloodstream infection. However, in predisposed hosts, bacteremia advances to bloodstream infection (BSI), manifesting as an inflammatory response against microorganisms or/and against their metabolites present in the body (Dayan et al. 2016). The BSI can be successfully treated or advances to sepsis (Thomer et al. 2016; Michalik et al. 2020). Sepsis is related to organ dysfunction, perfusion disturbances, or hypotension with accompanying lacticaemia, oliguria, and/or psychological disorders (Samet et al. 2006; Hotchkiss et al. 2016).

Therefore, some *S. aureus* bacteremia complications, such as endocarditis, attributable mortality, embolic

stroke, or recurrent infection during the 12-week follow-up period, are circumstances associated with the increased sepsis frequency from 11% to 43%. When the inflammatory response is triggered by the massive release of pro-inflammatory Th1 cytokines, such as TNF- α , IL-1 β , IL-6, and IFN- γ , a septic shock may occur (Dayan et al. 2016).

Sepsis. Sepsis is the incorrect, inflammatory response of the host organism to infection, and often, it is a result of systemic bloodstream infections. Recently, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection (Singer et al. 2016). Untreated sepsis can lead to severe sepsis or septic shock and, consequently, multiple organ failure (Sequential Organ Failure Assessment, SOFA) and death (Stevenson et al. 2016). Sepsis is a critical clinical stage of general toxemia and organ dysfunction, and a patient's inflammatory response interferes with the functioning of vital organs, such as the heart, kidneys, lungs, or liver. Sepsis-3 recommends a new sepsis scoring system, rapid sequential assessment of organ failure (qSOFA), consisting of 3 elements: an altered mental state, respiratory rate, and systolic blood pressure (Minejima et al. 2019). Patients with suspected infection expected to have a prolonged ICU stay can be identified at the bedside with quick SOFA, i.e., alteration in mental status, systolic blood pressure $\leq 100 \text{ mmHg}$, or respiratory rate \geq 22/min. Moreover, patients with septic shock can be identified with a clinical construct of sepsis with persisting hypotension requiring vasopressors to maintain MAP \geq 65 mmHg and having a serum lactate level >2 mmol/l (18 mg/dl) despite adequate volume resuscitation (Singer et al. 2016).

Pathogenicity of staphylococcal bloodstream infections

Antibiotic resistance. Staphylococci exhibit a wide resistance to antibiotics. One of the most dangerous features of staphylococci is their multi-resistance. Research indicates that both the CoPS and CoNS species have staphylococcal chromosome cassettes mec (SCCmec) that determine resistance to methicillin in both groups. Furthermore, the SCCmec elements of CoNS present extreme diversity, which causes many diagnostic problems (Hosseinkhani et al. 2018). The increase of methicillin-resistant S. aureus (MRSA) isolates in hospital and the community due to horizontal gene transfer across bacterial species occurred. The environmental and animal-associated CoNS may be underestimated factor for the spread of the resistance genes into more pathogenic species like S. aureus (Kosecka-Strojek et al. 2016; Lisowska-Łysiak et al. 2019). Methicillin and vancomycin resistance remain the major antimicrobial resistance phenotype of concern. Although still relatively infrequent, multi-resistant CoNS with reduced susceptibility to glycopeptides are emerging pathogens of clinical concern and should be kept in mind in empirical and rational therapy of BSI (Veach et al. 1990; Natoli et al. 2009). In recent years an emerging spread of linezolid-resistant *Staphylococcus capitis* and *S. epidermidis* strains in Europe was shown (Tevell et al. 2017; Kosecka-Strojek et al. 2020). An increased resistance is the result of antibiotic pressure, which could select resistant clones among staphylococci.

Virulence determinants and other invasion/evasion determinants. Staphylococci exhibit a strong capacity to infect human hosts by using specific strategies to enable the adherence, invasion, persistence, and evasion of the host's immunity mechanisms. However, the infection ability is not similar for all species within the Staphylococcus genus. In general, CoNS isolates present lower levels of virulence determinants than CoPS, but the factors involved in colonization support invasion in the host (Becker et al. 2014). It is especially true in extremely immature infants, in whom more than 80% of late-onset sepsis (diagnosed after 72 hours of life) is caused by CoNS (Lauterbach et al. 2016; Wójkowska-Mach et al. 2019). However, despite the relatively low level of virulence, immature infants with sepsis caused by these pathogens present a wide range of clinical symptoms (Lauterbach et al. 2016). It was shown that S. lugdunensis was responsible for sepsis and endocarditis on the 1st day of life in a term newborn, which underwent lotus birth (Ittleman and Szabo 2018). In contrast, S. aureus strains often exhibit a vast arsenal of toxins and enzymes involved in staphylococcal pathogenesis. Toxins can lead to a weak response of the human organism because they can degrade certain host cells, manipulate the innate and adaptive immune response, and degrade intercellular junctions, contributing to the S. aureus proliferation (Oliveira et al. 2018).

Toxins. One of *S. aureus* toxicity mechanisms is damage to host cell membranes caused by hemolysins, bicomponent leukocidins, or phenol-soluble modulins (Herrera et al. 2016). However, it has been proven that CoNS also secrete toxins and enzymes. Based on CoNS strains whole-genome sequencing (WGS) performed by Argemi et al. (2019), the presence of proteases, lipases, and hemolysins genes in *S. epidermidis*, *S. capitis*, and *Staphylococcus caprae* was shown. Moreover, enterotoxin genes in *S. epidermidis* and *Staphylococcus haemolyticus* genomes were shown (Nanoukon et al. 2018; Argemi et al. 2019). Other toxins produced by *S. aureus* are usually infection-specific, such as enterotoxins or toxic shock syndrome toxin. Furthermore, bacteria-host interactions depend on extracellular

enzymes, and the largest group of enzymes includes proteases. This category consists of serine proteases, the metalloprotease aureolysin, and staphopains that are engaged in the evasion of complement-mediated killing, host tissue destruction, immunoglobulin degradation, and deregulation of fibrinolysis (Miedzobrodzki et al. 2002; Sabat et al. 2008; Kalińska et al. 2012; Martínez-Garcia et al. 2018).

Biofilm formation. Biofilm formation is an additional factor associated with CoPS and CoNS infections (Grzebyk et al. 2013; Argemi et al. 2019). Biofilm formation is one of the staphylococcal survival strategies within host organisms. The presence of staphylococcal biofilms is a key factor involved in bacterial resistance to various groups of antibiotics. Bacterial biofilms are defined as communities of bacterial colonies attached to the host surface and surrounded by exopolymeric matrix substances strictly regulated by numerous proteins engaged in the biofilm life cycle. It was shown that biofilms could evade the host immune response, which leads to the persistence of staphylococci. Bhattacharya et al. (2018) proved that S. aureus biofilms could release leukocidins, which affect extracellular trap formation and allow evasion of neutrophil-mediated killing. Biofilm production has also been proven for CoNS species, including S. lugdunensis that produces adhesins and other biofilm promoters (Argemi et al. 2017). Staphylococcal pathogenesis is a process that involves an array of extracellular proteins, biofilm, and cell wall components that are coordinately expressed in different phases of infection. The expression or suppression of two divergent loci, accessory gene regulator (agr) and staphylococcal accessory regulator (sar) are recognized as critical regulators of virulence in staphylococci (Arya and Princy 2013).

Risk factors present in humans: predisposed patients. Several studies have shown that host risk factors may significantly enhance the effects of BSIs, including mortality. The high-risk group of staphylococcal infections contains mostly patients with indwelling medical devices. The highly predisposed groups also contain premature newborns or elderly patients or multimorbid, chronically ill, or immunosuppressed patients. A large group of the patients infected is also those with inserted foreign plastic bodies, such as implants and venflons.

The essential patients' factors that determine bloodstream infections and complications are age, presence of comorbidities, and appropriate initial antibiotic treatment (Ayau et al. 2017). Bloodstream infections occur in elderly patients over 75 years old, resulting in increased mortality (Gasch et al. 2013). A 9-year study performed by Ayau et al. (2017) underlined risk factors that increased the probability of mortality, such as age, cancer, heart disease, neurological disease, nursing home residence, and Charlson score greater than 3. In fact, cancer itself increases the 30-day mortality, but Bello-Chavolla et al. (2018) reported additional risk factors, including hematologic malignancy, hyperglycemia, abdominal source of infection, and endocarditis, based on studies conducted on patients with cancer. Malignancy was also confirmed to be a key factor associated with poor outcomes of infection in other studies (Papadimitriou-Olivgeris et al. 2019).

Epidemiology: Worldwide distribution of staphylococcal bloodstream infections

Staphylococcal bloodstream infections are currently a challenging issue for clinicians, diagnosticians, and microbiologists, primarily due to their high frequency worldwide. Studies on bloodstream infection episodes differ slightly from each other because of the high number of patients and the number of institutions involved in providing the data. Interestingly, all of these studies confirmed a high number of staphylococci isolated from blood samples, ranging from 23.9 to 79.2% (Table I). In many cases, S. aureus, usually MRSA isolates, and CoNS were the predominant species involved in BSI episodes. However, most importantly, staphylococcal bloodstream infections affect the whole world, not only developing countries. It is imperative to analyze the data to implement standard diagnostic methods, to compare the results among various countries, to evaluate existing preventive measures, and to plan effective infection prevention and control programs or establish new programs, including the use of advanced genetic methods (Dik et al. 2016; Sabat et al. 2017; Kosecka-Strojek et al. 2019). This study compares staphylococcal bloodstream infections in the world. The evaluation of S. aureus and CoNS as etiological agents of BSI of the cited publications was made under the following criteria: the studies included patients with symptoms of BSI/sepsis; pathogens grew on at least one percutaneous blood culture and a culture of the catheter tip; bacteria have been identified as S. aureus or CoNS species using commercial/automated identification tests; susceptibility testing was performed, and CoNS species from positive blood samples were included in comprehensive data for analysis except where specified in the laboratory records as contaminants.

Europe. The epidemiology of BSI episodes in Europe was analyzed in detail. The European Centre for Disease Prevention and Control (ECDC 2008; 2018) presented that CoNS were the most numerous bloodstream infections pathogens isolated in Europe. Moreover, the biggest groups of infected patients consisted of neonates and children, and the probability of serious complications such as long-term adverse neurological outcomes or mortality remained high for these infections (Zingg et al. 2017). Deptuła et al. (2018) reported that catheterrelated BSI episodes in Poland occurred in 48.9% of the patients analyzed, and the predominant pathogens were CoNS. These results suggest a strong need for the construction of functional incidence-based surveillance programs in Poland to reduce BSI episodes. The Neonatology Surveillance Network (PNSN) prepared one of these programs and focused on late-onset BSI (LO-BSI) in very-low-birth-weight infants. The study showed that CoNS were the most common cause of LO-BSI (Wójkowska-Mach et al. 2014). Both studies confirmed that it is necessary to implement a national program for infectious disease monitoring and prevention.

Another study in Germany focused on pediatric BSI was based on 20 years of sample collection at a tertiary care hospital. This study conducted a complex observation of a large group of BSI episodes. The results showed an increasing number of CoNS to be responsible for these infections (Hufnagel et al. 2008). Similar results were published by Buetti et al. (2017), which were based on a 7-year surveillance study in Switzerland, although the major pathogen isolated was *Escherichia coli*. These findings were confirmed by other studies performed in Switzerland when staphylococci caused a big group of BSI episodes, but the major isolated pathogens were Gram-negative rods (Papadimitriou-Olivgeris et al. 2019).

On the other hand, an increase in the presence of CoNS was observed, but a minority of studies identified bacteria to the species level. One of these studies was performed in Sweden and showed the CoNS were related to newborns' sepsis from 1987 to 2014. The authors presented that S. epidermidis (67.4%) was the most frequent pathogen, followed by S. haemolyticus (10.5%), and S. capitis (9.6%) (Ehlersson et al. 2017). The epidemiological study in France was partially consistent with previously mentioned research and showed that E. coli was the primary pathogen in 36% of BSI episodes, followed by S. aureus (16%), and CoNS (8%). The other investigation from France showed the median rate of CoNS in sepsis (12.2%), and all of these strains belonged to S. capitis species (Butin et al. 2017). However, studies in the United Kingdom, Greece, Netherlands, and Romania confirmed that CoNS were predominant pathogens in BSI episodes and sepsis (Cailes et al. 2018; Zlatian et al. 2018; Gkentzi et al. 2019; Zonnenberg et al. 2019).

Asia. A study designed in Japan by Takeshita et al. (2017) showed that the major pathogens isolated from BSIs were CoNS (736 cases, 23%), but *S. aureus* isolates were also among the most commonly isolated strains. These results were comparable to those observed in Europe (Takeshita et al. 2017). The authors also focused on 30-day mortality associated with the species and the

Table I	Worldwide distribution of staphylococcal bloodstream infections. The gray areas consist of the primary pathogen isolated in studies provided according to adequate reference.
---------	---

	No.	Continent	Country	No. of institutions	Years of isolation	Total number of BSI episodes	Staphylo- coccus	Staphylo- coccus (%)	S. aureus	S. aureus (%)	CoNS	CoNS (%)	Reference
Africa: Egypt. 1 2013-2015 65 40.1 6 9.3 20 30.8 Africa: Ethopia 1 2016-2017 88 84 0.0 7 6 0.3 Africa: Ethopia 1 2016-2017 88 84 9.0 76 20 20 Asia Ipam 5 2012-2013 3.34 10.90 3.22 24 9.2 75 Asia Noth Koras 55 2012-2013 735 549 9.6 69 9.2 756 346 Asia Noth Koras 55 2012-2014 133 549 9.6 69 76 60 75 60 Asia Noth Koras 55 2012-2014 183 57 247 42 22 23 345 Asia Noth Koras 1 2012-2014 183 37 22 245 23 Asia Noth Koras 1	1	Africa	Ghana	1	2010-2013	1,763	507	28.8	76	4.3	431	24.4	Labi et al. 2016
Africa: Ethopia 1 2016-2017 88 38 430 16 180 22 250 Africa: Pamina 1 2013-2014 103 123 120 6 6 7 60 Asia Bamina Sumbiace 5 2012-2013 333 133 120 64 123 268 73 640 Asia Sumbiaces 5 2012-2015 733 349 865 17 2.2 273 345 Asia Chinace 1 2015-2016 133 64 892 117 193 568 75 56 57 55 55 55 55 55 55 565 51 565 545 </td <td>2</td> <td>Africa</td> <td>Egypt</td> <td>1</td> <td>2013-2015</td> <td>65</td> <td>26</td> <td>40,1</td> <td>9</td> <td>9.3</td> <td>20</td> <td>30.8</td> <td>Seliem and Sultan 2018</td>	2	Africa	Egypt	1	2013-2015	65	26	40,1	9	9.3	20	30.8	Seliem and Sultan 2018
Africa Zambia 1 Z013-Z014 103 13 120 6 6 7 6 Asia Japun 5 202-2013 3.344 1.030 3.22 294 9.2 736 237 Asia Asia Varb Sutes 5 2012-2016 73 3.45 17 3.45 17 2.0 2.94 9.2 736 233 3.45 Asia Chub Sutes 1 2015-2016 133 641 603 8 7.5 56 3.45 Asia Indian 1 2015-2016 133 641 633 8 7.5 56 3.45 Asia Indian 1 2012-2016 203 2013 2014 201 203 <td>Э</td> <td>Africa</td> <td>Ethiopia</td> <td>1</td> <td>2016-2017</td> <td>88</td> <td>38</td> <td>43.0</td> <td>16</td> <td>18.0</td> <td>22</td> <td>25.0</td> <td>Sorsa et al. 2019</td>	Э	Africa	Ethiopia	1	2016-2017	88	38	43.0	16	18.0	22	25.0	Sorsa et al. 2019
Asia Japan 5 2012-2013 3.284 10.30 3.22 294 9.2 736 2374 Asia South Korea 55 2013-2014 717 349 487 81 11.3 206 345 Asia Charab States 5 2013-2014 135 56 393 87 72 23 23 345 Asia Thab States 1 2015-2014 183 64 19.6 39 345 Asia Tinvant 1 2012-2014 183 87 47.4 42 22.9 45 245 Asia Asia 1 2008-2015 244 142 144 146 146 146 146 146 143	4		Zambia	1	2013-2014	103	13	12.0	9	6.0	7	6.0	Kabwe et al. 2016
Asia South Korea 55 2013-2014 717 349 487 11.3 268 37.45 Asia Arab States 4 2013-2015 785 289 36.85 17 2.2 273 3465 Asia Parb States 4 1 2015-2015 785 58 77 2.7 546 52.8 Asia Indivat 1 2012-2014 183 87 47.4 420 429 52.6 52.8 54.8 <t< td=""><td>5</td><td></td><td>Japan</td><td>5</td><td>2012-2013</td><td>3,284</td><td>1,030</td><td>32.2</td><td>294</td><td>9.2</td><td>736</td><td>23.0</td><td></td></t<>	5		Japan	5	2012-2013	3,284	1,030	32.2	294	9.2	736	23.0	
Aia Arab States 4 D13-D15 755 265 36.85 17 2.2 2.75 36.65 Aia Inna 1 D13-D16 133 64 60.3 8 7.5 56 528 Asia Inna 1 D12-D16 133 64 60.3 8 7.5 55 <t< td=""><td>9</td><td></td><td>South Korea</td><td>55</td><td>2013-2014</td><td>717</td><td>349</td><td>48.7</td><td>81</td><td>11.3</td><td>268</td><td>37.4</td><td>Lee et al. 2015</td></t<>	9		South Korea	55	2013-2014	717	349	48.7	81	11.3	268	37.4	Lee et al. 2015
Asia China 1 2015-2016 133 64 60.3 8 7.5 56 5.3 Asia Nepal 1 2017-2014 133 64 60.3 8 7.5 56 53 Asia Taiwarn India 1 2012-2014 183 87 474 42 273 435 234 Asia Australia 1 2008-2015 2043 115 403 46 16 173 245 Australia 1 1 2008-2016 203 203 316 453 33.1 453 36.3 453 53.2 54.3 53.3 53.5		Asia	Arab States	4	2013-2015	785	289	36.85	17	2.2	272	34.65	
Atia Nepal 1 2017 56 50 89.2 11 19.6 39 69.6 Asia India 1 2012-2014 183 87 47.4 42 2.2 4.3 2.45 Asia India 1 2002-2014 183 87 47.4 42 2.7 4.35 2.45 Astralia 1 1.2 2005-2016 2.03 9.418 7.14 40 7.71 4.93 5.3 Australia 1.1 2005-2016 2.03 5.42 5.41 5.46 5.6 4.6 5.0 4.7 Australia 1 2005-2016 2.05 5.16 7.33 4.6 5.7 5.3	~		China	1	2015-2016	133	64	60.3	8	7.5	56	52.8	Jiang et al. 2016
Asia India I 2012-2014 I83 87 47.4 4.2 2.29 45 2.45 Asia Taiwarn I 2008-2013 2,090 485 23.2 57 243 205 Australia Australia 1 2008-2013 2,090 485 5,31 6,45 2,7 428 20 Australia Australia 1 2008-2016 203 1,15 403 46 16.1 69 24.2 Australia Australia 1 2005-2016 2014 1,833 554 543 646 616 650 79 456 53 13.0 Australia 1 2012-2015 1,823 532 530 150 235 532 532 533 63 536 Europe Funder 1 2012-2015 1,833 539 50 235 537 64 53 161 67 53 14 153	6		Nepal	1	2017	56	50	89,2	11	19.6	39	69,69	Thapa et al. 2019
Asia Taiwarn I 2008–2013 2,090 485 2.32 57 2.7 428 20.5 Australia Australia Australia 1 2008–2012 9,418 31,60 465 16.1 69 24.3 Australia Australia 1 2005–2016 203 1145 403 46 16.1 69 24.3 Australia Australia 1 2005–2016 203 1145 403 46 53 36.3 36.3 Australia Australia 1 2005–2016 925 542 58.6 46 5.0 496 53.5 Australia 1 2012–2015 1.823 533 300 170 235 13.0 Europe Switzerland 1 1 2012–2015 1.823 53.0 496 51.1 24.3 Europe Switzerland 1 1 1882-1955 170 18.9 10.5 14.9 10.5	10		India	1	2012-2014	183	87	47.4	42	22.9	45	24.5	Bandyopadhyay et al. 2018
AustraliaAustralia 1.33 $2008-2012$ 9.418 3.160 $5.4.4$ 1.429 18.0 1.731 18.4 AustraliaAustralia 1.1 $2005-2016$ 203 115 40.3 46 16.1 69 24.2 AustraliaAustralia 1.1 $2005-2016$ 203 116 79 54.1 26 178 53 36.3 AustraliaAustralia 1.1 $2005-2016$ 925 54.1 26 17.8 53 36.3 AustraliaAustralia 1.1 $2003-2009; 2010-2016$ 925 54.1 26 17.8 53 30.0 EuropeSwitzerland 1.1 $2003-2009; 2010-2016$ 18.0 170 300 170 235 31.0 EuropeSwitzerland 1.1 $2003-2009; 2010-2016$ 1.823 53.5 30.0 300 170 235 13.0 EuropeSwitzerland 1.1 $2012-2015$ $32995; 1997-2006$ 1.646 650 79.2 241 409 75.3 140 EuropeRomania 1.1 $2006-2017$ 1.83 8.4 90.4 75.3 14.0 75.3 14.0 75.3 EuropeRomania 1.1 $2006-2017$ 1.70 239 14.2 70 75.3 14.2 75.3 14.2 EuropeRomania 1.2 $2008-2014$ 9.3 3.901 20.4 70 70.2 23.3 43.1 <	11	Asia	Taiwan	1	2008-2013	2,090	485	23.2	57	2.7	428	20.5	Chen et al. 2016
AustraliaAustraliaI $2005-2016$ 203 115 40.3 46 16.1 69 24.2 AustraliaAustralia 1 $2005-2016$ 146 79 54.1 26 17.8 53 36.5 BuropeTurkey 1 $2003-2009$, $2010-2016$ 925 542 58.6 46 5.0 496 53.6 BuropeSwitzerland 1 $2003-2009$, $2010-2016$ 925 535 300 17.0 235 13.0 BuropeSwitzerland 1 $2014-2017$ 404 78 $19,3$ 68 16.8 10 29.5 BuropeSwitzerland 1 $2014-2017$ 404 78 $19,3$ 68 16.8 109 2.5 BuropeSwitzerland 1 $2012-2015$ $32997-2006$ $1,646$ 650 79.2 241 28.1 28.1 28.1 28.1 28.1 109 BuropeRomania 1 $2012-2017$ 170 81 47.65 63 37.06 18 105.9 BuropeHolland 1 $2012-2017$ 170 81 47.65 63 37.06 18 105.9 BuropeVende 1 $2012-2012$ $2012-2012$ 201 201 202 204 201 201 BuropeVende 1 1 $202-2014$ 303 24.66 650 233 8.0 2.233 43.1 BuropeVende	12	Australia	Australia	23	2008-2012	9,418	3,160	36.4	1,429	18.0	1,731	18.4	Si et al. 2016
Australia Australia I 2005-2016 146 79 54.1 26 17.8 53 36.3 Europe Turkey 1 2003-2009, 2010-2016 925 54.2 58.6 46 5.0 496 53.6 Europe Switzerland 1 2013-2009, 2010-2015 925 535 30.0 300 17.0 235 13.0 Europe Switzerland 1 2014-2017 404 78 19.3 68 16.1 97 29.5 Europe Poland nd 2012-2015 32.9 150 45.6 53 16.1 97 29.5 Europe Poland 1 2012-2015 32.9 150 45.6 53 16.1 97 29.5 Europe Remains 1 2012-2015 170 81 47.65 63 37.06 18 15.1 Europe Fance 1 2012-2012 2011 28 43.1	13		Australia	1	2005-2016	203	115	40.3	46	16.1	69	24.2	Worth et al. 2018
EuropeInrkey1 $2003-2009$, $2010-2016$ 925 542 58.6 46 5.0 496 53.6 EuropeSwitzerland20 $2008-2014$ $1,823$ 535 300 170 235 13.0 EuropeSwitzerland1 $2014-2017$ 404 78 930 68 16.8 10 2.5 EuropeSwitzerlandnd $2012-2015$ 3297 150 792 2912 2012 EuropeGermany1 $1085-1995; 1997-2006$ $1,646$ 650 792 241 281 409 51.1 EuropeRomania1 $2012-2015$ 1700 811 47.65 633 37.06 18 10.59 EuropeRomania1 $2012-2015$ 1700 2012 2014 2012 2012 2012 2012 EuropeHolland1 $2012-2015$ 1700 819 650 722 241 8105 723 8105 12.2 EuropeUnited Kingdom 300 $205-2014$ $3,903$ 2466 650 722 203 8105 12.2 EuropeUnited Kingdom 300 $205-2014$ $3,903$ 844 904 70 723 8105 12.2 EuropeUnited Kingdom 300 $205-2014$ $3,903$ 842 70 726 8105 720 EuropeUnited Kingdom 300 1000 1000 1000 1000 <td>14</td> <td></td> <td>Australia</td> <td>1</td> <td>2005-2016</td> <td>146</td> <td>79</td> <td>54.1</td> <td>26</td> <td>17.8</td> <td>53</td> <td>36.3</td> <td>Gowda et al. 2017</td>	14		Australia	1	2005-2016	146	79	54.1	26	17.8	53	36.3	Gowda et al. 2017
Europe Switzerland 20 2008–2014 1,823 535 30.0 30.0 17.0 235 13.0 Europe Switzerland 1 2014–2017 404 78 19.3 68 16.8 10.0 2.55 Europe Poland nd 2012–2015 329 150 45.6 53 16.1 97 29.5 Europe Romania 1 1985–1995; 1997–2006 1,646 650 79.2 241 28.1 409 51.1 Europe Romania 1 2016–2017 170 81 47.65 63 37.06 18 10.59 Europe Holland 1 2016–2017 170 81 47.65 63 37.06 18 10.59 Europe Holland 1 2016–2017 2014 39,3 24,4 17 28,1 409 51.1 Europe United Kingdon 30 2012 241 24 24	15		Turkey	1	2010	925	542	58.6	46	5.0	496	53.6	Mutlu et al. 2019
EuropeSwitzerland12014-20174047819.36816.810.8102.5EuropePolandnd2012-20153291504565316.19729.5EuropeGermany11985-1995, 1997-20061,64665079.224128.140951.1EuropeGermany12016-20171708147.656337.061810.59EuropeHolland12016-2014938490.47075.314415.1EuropeHolland12016-201439.02012812.200.02337.06EuropeFrance12011-20122011 <th< td=""><td>16</td><td></td><td>Switzerland</td><td>20</td><td>2008-2014</td><td>1,823</td><td>535</td><td>30.0</td><td>300</td><td>17.0</td><td>235</td><td>13.0</td><td>Buetti et al. 2017</td></th<>	16		Switzerland	20	2008-2014	1,823	535	30.0	300	17.0	235	13.0	Buetti et al. 2017
EuropePolandnd $2012-2015$ 329 150 45.6 53 16.1 97 29.5 EuropeGernany 1 $1985-1995; 1997-2006$ $1,646$ 650 79.2 241 28.1 409 51.1 EuropeRomania 1 $2016-2017$ 170 81 47.65 63 37.06 18 10.59 EuropeHolland 1 $2016-2017$ 170 81 47.65 63 37.06 18 10.59 EuropeHolland 1 $2016-2017$ 201 201 204 70 75.3 14 15.1 EuropeHolland 1 $2011-2012$ 2011 393 2466 65.0 233 8.0 2.33 57.0 EuropeGreece 16 $2011-2012$ $2012-2015$ 3.903 2.466 65.0 233 8.0 2.33 57.0 EuropeGreece 16 $2012-2015$ 8.196 4.254 51.9 70 8.8 3.533 43.1 North AmericaUSA 1 $2002-2012$ 8.196 4.254 51.9 70 8.8 3.533 43.1 North AmericaUSA 1 $2002-2012$ 8.196 4.254 51.9 70 8.8 3.533 43.1 North AmericaUSA 1 $2002-2012$ 8.196 4.254 51.9 70 8.8 3.533 43.1 North AmericaUSA 1 $2012-201$	17	Europe	Switzerland	1	2014-2017	404	78	19.3	68	16.8	10	2.5	Papadimitriou-Olivgeris et al. 2019
EuropeGermany11985-1995; 1997-20061,64665079.224.128.140951.1EuropeRomania12016-20171708147.656337.061810.59EuropeHolland12008-2014938490.47075.314415.1EuropeHolland12008-2014938490.47075.314415.1EuropeHolland12011-20122011201120112011201220138490.4707314415.1EuropeFrance12011-201220143,9032,46665.02338.02,23357.0EuropeGreece162012-20158,1964,25451.97218.83.00Orth AmericaUSA12002-20128,1964,25451.97218.83.00North AmericaUSA12002-20128,1961,4002901112033.431North AmericaUSA12012-20138,1961,500290111522.0334341North AmericaUSA12013-201792399290111203343341North AmericaUSA1221111522.0335343North AmericaUSA12292112North A	18		Poland	pu	2012-2015	329	150	45.6	53	16.1	97	29.5	Deptuła et al. 2018
Europe Romania 1 2016-2017 170 81 47.65 63 37.06 18 10.59 Europe Holland 1 2008-2014 93 84 90.4 70 75.3 14 15.1 Europe Holland 1 2011-2012 2011 203 24.66 65.0 233 8.0 2.233 57.0 Europe United Kingdom 30 2005-2014 3.903 2.466 65.0 2.33 8.0 2.233 57.0 Europe Greece 16 2011-2012 3.903 2.466 65.0 2.33 8.0 2.233 57.0 Europe Greece 16 2012-2012 8.196 4.554 51.9 721 8.8 30.0 North America USA 1 2002-2012 8.196 4.554 51.9 721 8.8 3.533 43.1 North America USA 1 2005 2012 329 4.24 <td>19</td> <td></td> <td>Germany</td> <td>1</td> <td>1997</td> <td>1,646</td> <td>650</td> <td>79.2</td> <td>241</td> <td>28.1</td> <td>409</td> <td>51.1</td> <td>Hufnagel et al. 2008</td>	19		Germany	1	1997	1,646	650	79.2	241	28.1	409	51.1	Hufnagel et al. 2008
Europe Holland 1 2008–2014 93 84 90.4 70 75.3 14 15.1 Europe France 1 2011–2012 201 28 12.2 0 0.0 28 12.2 Europe United Kingdom 30 205–2014 3,903 2,466 65.0 233 8.0 2,233 57.0 Europe United Kingdom 30 205–2014 3,903 2,466 65.0 233 8.0 2,233 57.0 Europe Greece 16 2012–2015 459 140 30.4 2 0,4 138 30.0 North America USA 1 2006–2017 92 43.4 51.9 721 8.8 3,533 43.1 North America USA 1 2006–2017 92 399 42.4 7 7.6 32 34.8 North America USA 1 2006 1,500 29.0 1,115 2	20	Europe	Romania	1	2016-2017	170	81	47.65	63	37.06	18	10.59	Zlatian et al. 2018
Europe France 1 2011-2012 201 28 12.2 0 0.0 28 12.2 Europe United Kingdom 30 205-2014 3,903 2,466 65.0 233 8.0 2,233 57.0 Europe Greece 16 2012-2015 459 140 30.4 2 0.4 138 30.0 North America USA 1 2002-2012 8,196 4,254 51.9 721 8.8 3,533 43.1 North America USA 1 2006-2017 92 399 42.4 7 7 7.6 35.3 34.1 North America USA 10 2015-2018 92.0 1500 29.0 1,115 22.0 35.5 7.0 North America USA 1 2015-2018 5,066 1,500 29.0 1,115 22.0 35.5 7.0 North America USA 1 24.4 7 7 <	21	Europe	Holland	1	2008-2014	93	84	90.4	70	75.3	14	15.1	Zonnenberg et al. 2019
Europe United Kingdom 30 2,466 65.0 233 8.0 2,233 57.0 Europe Greece 16 2012-2015 459 140 30.4 2 0.4 138 30.0 North America USA 1 2002-2012 8,196 4,254 51.9 721 8.8 3,533 43.1 North America USA 1 2002-2012 8,196 4,254 51.9 721 8.8 3,533 43.1 North America USA 1 2002-2012 8,196 1,500 29.0 1,115 22.0 355 7.0 North America USA 10 2015-2018 5,066 1,500 29.0 1,115 22.0 355 7.0 North America USA 1 2013-2017 97 29 29.0 17 17.5 22.0 355 7.0 North America USA 1 201 29.0 19.0 17 17.5<	22		France	1	2011-2012	201	28	12.2	0	0.0	28	12.2	Butin et al. 2017
Europe Greece 16 2012–2015 459 140 30.4 2 0.4 138 30.0 North America USA 1 2002–2012 8,196 4,254 51.9 721 8.8 3,533 43.1 North America USA 1 2002–2012 8,196 4,254 51.9 7.1 8.8 3,533 43.1 North America USA 1 2006–2017 92 39 42.4 7 7.6 32 34.8 North America USA 10 2015–2018 5,066 1,500 29.0 1,115 22.0 355 7.0 North America USA 1 2013–2017 97 29.0 1,715 17.5 12.4 North America Brazil USA 1 2012 29.1 17.4 17.5 12.4 12.4 North America Brazil 28 20.0 29.9 17 17.5 12.4 12.4 12.4 <td>23</td> <td></td> <td>United Kingdom</td> <td></td> <td>2005-2014</td> <td>3,903</td> <td>2,466</td> <td>65.0</td> <td>233</td> <td>8.0</td> <td>2,233</td> <td>57.0</td> <td>Cailes et al. 2017</td>	23		United Kingdom		2005-2014	3,903	2,466	65.0	233	8.0	2,233	57.0	Cailes et al. 2017
North America USA 1 2002-2012 8,196 4,254 51.9 721 8.8 3,533 43.1 North America USA 1 2006-2017 92 39 42.4 7 7.6 32 34.8 North America USA 10 2015-2018 92 39 42.4 7 7.6 32 34.8 North America USA 10 2015-2018 5,066 1,500 29.0 1,115 22.0 355 7.0 North America USA 1 2013-2018 97 29 29.9 17 17.5 12.4 12.4 North America Brazil 28 2016 47 17 36.2 6 12.8 11 23.4 South America Brazil 32 201-2013 3,066 1,625 53.0 267 8.7 13.58 44.3	24		Greece	16	2012-2015	459	140	30.4	2	0.4	138	30.0	Gkentzi et al. 2019
North America USA 1 2006-2017 92 39 42.4 7 7.6 32 34.8 North America USA 10 2015-2018 5,066 1,500 29.0 1,115 22.0 355 7.0 North America USA 1 2015-2018 5,066 1,500 29.0 1,115 22.0 355 7.0 North America USA 1 2013-2017 97 29 29.9 17 17.5 12.4 South America Brazil 28 2016 47 17 36.2 6 13.8 11. 23.4 South America 32 2001-2013 3,066 1,625 53.0 267 8.7 1,358 44.3	25	North America	USA	1	2002-2012	8,196	4,254	51.9	721	8.8	3,533	43.1	Larru et al. 2016
North America USA 10 2015-2018 5,066 1,500 29.0 1,115 22.0 355 7.0 North America USA 1 2013-2017 97 29 29.9 17 17.5 12 12.4 South America Brazil 28 2016 47 17 36.2 6 12.8 11 23.4 South America Brazil 28 2016 47 17 36.2 6 12.8 11 23.4 South America 32 2001-2013 3,066 1,625 53.0 267 8.7 1,358 44.3	26		USA	1	2006-2017	92	39	42.4	7	7.6	32	34.8	Wagstaff et al. 2019
North America USA 1 2013–2017 97 29 29.9 17 17.5 12 12.4 South America Brazil 28 2016 47 17 36.2 6 12.8 11 23.4 South America Brazil 28 201-2013 3.066 1,625 53.0 267 8.7 1,358 44.3	27		USA	10	2015-2018	5,066	1,500	29.0	1,115	22.0	355	7.0	Khare et al. 2019
South America Brazil 28 2016 47 17 36.2 6 12.8 11 23.4 South America 32 2001–2013 3,066 1,625 53.0 267 8.7 1,358 44.3	28			1	2013-2017	67	29	29.9	17	17.5	12	12.4	
South America 22 2001–2013 3,066 1,625 53.0 267 8.7 1,358 44.3	29	South America	Brazil	28	2016	47	17	36.2	9	12.8	11	23.4	Braga et al. 2018
	30		Latin America	32	2001-2013	3,066	1,625	53.0	267	8.7	1,358	44.3	Escalante et al. 2018

Worldwide staphylococcal bloodstream infections

nd – no data

group of pathogens. They concluded that the highest mortality rates were exhibited by hospital-acquired BSI (HA-BSI) pathogens, followed by community-onset healthcare-associated BSI (CHA-BSI), and the most dangerous species were CoNS and Klebsiella pneumoniae. The study from South Korea showed that CoNS were the most frequent pathogens engaged in neonatal sepsis (Lee et al. 2015). Studies in India proved a high staphylococci frequency in BSI episodes, however, gram-negative rods were mostly isolated in majority from blood samples (Bandyopadhyay et al. 2018). On the other hand, CoNS became the major isolated pathogen in neonatal sepsis in China, Nepal, Taiwan, Turkey and the Arab States, which proves widespread staphylococcal-caused sepsis in Asia (Jiang et al. 2016; Chen et al. 2017; Hammoud et al. 2017; Thapa and Sapkota 2019; Mutlu et al. 2020). These findings strongly correlate with European data.

North America and South America. In the USA research performed by Larru et al. (2016) presented similar results as European or Asian studies. The most commonly isolated pathogens were CoNS and *S. aureus*, and these pathogens were associated with healthcare-acquired BSI. Moreover, the authors confirmed that all the CoNS were evidenced as pathogens and not as contaminants. Another study from the USA showed a significant majority of *S. aureus* strains involved in neonate sepsis (Khare et al. 2020). The predisposed patients' characteristics were also comparable to those observed in Europe. These studies showed that the most endangered group consists of children and infants, especially with prolonged hospitalization.

Interestingly, children hospitalized since birth exhibited a significantly low prevalence of hospitalonset S. aureus bacteremia (Burke et al. 2009). For comparison with the USA, Latin American countries were also analyzed for staphylococcal bloodstream infections. Arias et al. (2017) presented a paper summarizing the results for nine South American countries, from Mexico to Argentina. This study did not evaluate the number of coagulase-negative staphylococci but showed many MRSA strains found in BSI samples from these countries. Notably, the highest number of participants with MRSA-associated BSI was reported in Brazil. Other studies confirmed that the prevalence of intensive-care unit-acquired infections was higher in Brazilian hospitals than in European countries and in the USA (Braga et al. 2018). On the other hand, the highest rates of CoNS (44.3%) were present in NEOCOSUR studies on five Latin American countries: Argentina, Chile, Paraguay, Peru and Uruguay (Escalante et al. 2018).

Africa. The World Health Organization (WHO) reported that, to date, information regarding blood-stream infections in Africa is scarce due to the lack of

research (Bagheri Nejad et al. 2011). However, it was estimated that the incidence of bloodstream infections (up to 14.8%) in developing countries in Africa was up to twice as high as the average European prevalence (7.1%) (ECDC 2008). The studies cited were not correlated with each other with respect to the microbiological data; the major BSI-associated pathogens presented, such as Pseudomonas aeruginosa, E. coli, K. pneumoniae, Enterobacter spp., and S. aureus, varied among papers (Bagheri Nejad et al. 2011). Besides, the most recent investigations showed a significant increase in CoNS prevalence in BSI episodes in Africa. Labi et al. (2016) showed a high number of positive blood culture samples (21.9%) among neonates, and the significant pathogens were CoNS. Nanoukon et al. (2017) obtained similar results in Benin, where S. haemolyticus and S. epidermidis were identified as the most frequently isolated pathogens. Similar results were also obtained in Egypt and Malawi (Mashaly and El-Mahdy 2017; Musicha et al. 2017). CoNS were confirmed as a major pathogen isolated in further investigations on smaller groups of patients, mostly neonates in Egypt and Ethiopia (Seliem and Sultan 2018; Sorsa et al. 2019). In contrast, a study from Zambia reports that the most frequent pathogen isolated from neonates with sepsis was Klebsiella sp. (Kabwe et al. 2016).

Australia. The rate of healthcare-associated BSIs in Australia is lower than reported elsewhere in the world, which was confirmed by a study in Queensland on 23 public hospitals and by research conducted by the Victorian Healthcare Associated Infection Surveillance System (VICNISS) Coordinating Centre in Victoria (Si et al. 2016; Gowda et al. 2017; Worth et al. 2018). Papers showed that the most frequently reported pathogens responsible for BSI episodes were CoNS, from 18.4 to 24.2%, and *S. aureus*, from 15.2 to 16.1%.

The distribution of all of the aforementioned staphylococcal bloodstream infections is presented in Table I.

S. aureus is one of the most frequent bloodstream infection agents

According to the ECDC report, *S. aureus* is one of the major agents causing bloodstream infections in Europe. Based on the studies conducted in 25 European countries, the ECDC estimated the dynamic changes in *S. aureus* clones associated with BSI episodes. The report states that the *S. aureus* BSI infection mortality rate was 19.4% of the episodes' total number. Moreover, as expected, the MRSA all-cause mortality (24.4%) was higher than that of MSSA infections (17.1%).

Spa types related to S. aureus from BSI in Europe. ECDC also estimated 20 of the most frequent MRSA and MSSA spa types. The first group included the 5 most frequent spa types, namely, t032 (ST22, 17.9%), t003 (ST225, 8.8%), t008 (ST8, 8.4%), t002 (ST5, 7.7%), and t067 (ST125, 4.4%). Interestingly, the significant increase in incidence was related to the multilocus variable number of tandem repeats analysis type (MLVA type) ST22, and this lineage constituted 36% of the top-ranking isolates in 2011. This MRSA clone was first identified in England and was further detected in Ireland, Germany, Hungary, Portugal, and Northern Italy. The fifth most abundant spa type t067 was firstly described in Spain (Grundmann et al. 2014). In comparison, the rates of MSSA spa-type frequency were lower than those of MRSA isolates, and the 7 most popular types were t091 (ST7, 5.3%), t084 (ST15, 4.7%), t002 (ST5, 4.6%), t015 (ST45, 3.7%), t008 (ST8, 3.7%), t012 (ST30, 3.4%), and t0127 (ST1, 3.2%) (Grundmann et al. 2014). Two spa types (t008 and t002) were present in both MRSA and MSSA infections, which was probably a result of the high overall global frequency of these types, according to Ridom SpaServer (www. spaserver.ridom.de).

Spa types related to *S. aureus* from BSI in Poland. *S. aureus*, a key pathogen in BSI episodes, was also identified in a study conducted by our group (Ilczyszyn et al. 2016). This study, performed on neonates and children in Poland, showed the most frequent MRSA genotype to be *spa* type t003-CC5, which is consistent with the data presented by ECDC. Among MSSA strains, the most frequent genotypes belonged to the following *spa* types: t091-CC7, t037-CC30, t008-CC8, and t240-CC10. Additionally, some of the observed genotypes exhibited age-related patterns, and the *spa* type t003, *spa*-CC 002, and CC5 were strongly associated with invasive infections in infants and young children (Ilczyszyn et al. 2016).

Spa types related to *S. aureus* from BSI outside Europe. A study in China, performed for five years, examined *S. aureus* BSI samples and identified the most frequent *S. aureus* spa types and virulence factors. According to these data, the most frequent MRSA *spa* type in China was t030/t037, belonging to MLVA type ST239. These isolates also harbored SCC*mec* III cassette, which represents the hospital-acquired strains, and an *agr* system I. In comparison, the most frequent Chinese MSSA isolates presented the t318 type ST188 and also harbored *agr* I (Liu et al. 2018).

Latin American research divided the most numerous MRSA strains into three clades (A, B, and C) based on phylogenetic reconstruction. Strains in clade A belonged to ST5, ST105, and ST1011, and a majority of these strains harbored the gene cassette SCC*mec* I or II (HA-MRSA). Clade B consisted of the MLS types ST8, ST88, ST97, and ST72, accompanied by SCC*mec* IV variants. The last clade included Argentinian strains belonging to ST30 (Arias et al. 2017).

Non-S. aureus staphylococci as bloodstream infection agents

Human skin is colonized by various staphylococcal species, although the most invasive is S. aureus, followed by Staphylococcus auricularis, S. capitis, S. epidermidis, S. haemolyticus, Staphylococcus hominis, S. saprophyticus, Staphylococcus simulans and Staphylococcus warneri (Yu et al. 2017). The CoNS are among the most commonly isolated microorganisms from blood samples. Compared to S. aureus strains, which are classified as invasive pathogens, the clinical significance of CoNS needs to be proven. It is essential to estimate whether the presence of CoNS represents true bacteremia or sample contamination. Many of the studies conducted have not estimated the real impact of CoNS associated with blood infections, mainly because these species are less frequent overall; have not identified these bacteria at the species level; or have not distinguished the species' differences. However, several studies have shown that CoNS can cause serious bloodstream infections (Grzebyk et al. 2013; Li et al. 2016; Szczuka et al. 2016). Therefore, host-specific capabilities and strain-specific features need to be reconsidered for an improved understanding of the course of every particular infection, as under favorable conditions, CoNS species may become highly pathogenic (Becker et al. 2014).

CoNS as BSI agents in Europe. A study performed in Belgium showed that most isolated bloodstream infection-associated CoNS strains belonged to S. epidermidis, and 77% of these strains were identified as methicillin-resistant S. epidermidis (MRSE). All of these strains presented resistance to a wide range of antibiotics, especially erythromycin (ermA, ermC, and msrA), aminoglycosides (aacA-aphD and aadC), tetracycline (tetK), and mupirocin (mupA). Molecular typing of these strains assigned 85% of the MRSE strains to clonal complex (CC) 2, consisting of the ST2, ST5, ST59, and ST88 MLVA types (Deplano et al. 2016). Another study on S. warneri strains from Poland showed their wide range of pathogenicity factors. These strains were able to adhere to host cells, produce biofilms, invade and destroy epithelial cells, which strongly facilitated bacterial persistence (Szczuka et al. 2016). This finding warrants reconsideration of the role of CoNS in bloodstream infections.

CoNS as BSI agents in the USA. In studies conducted in the USA, many CoNS isolates (n = 602) were found in blood samples from years 2013–2014. The most frequently isolated strains belonged to *S. epidermidis*, *S. lugdunensis*, *S. hominis*, and *S. capitis* (Sader et al. 2016). A high number of blood samples was also analyzed in Japan by Yamada et al. (2017), and 314 methicillin-resistant CoNS (MRCoNS) strains were found. Among the Japanese strains, the predominant strains

belonged to *S. epidermidis* (78.6%), *S. haemolyticus* (14.3%), and *S. capitis* subsp. *ureolyticus*. A high number of CoNS-associated BSI episodes and increasing resistance rate should also be confirmation of the danger based on the presence and spread of these bacteria.

Conclusions

Staphylococci are among the most frequent pathogens causing bloodstream infections, which can advance to sepsis and are often observed in patients with indwelling medical devices or neonates. A high number of *S. aureus* and CoNS-related BSI episodes in high-risk patients had evidenced a significant challenge for clinicians. Many institutions widely document BSI episodes, and there has not been a worldwide decrease in these episodes. It is vital to improve existing prevention and control programs based on analysis of the data to implement standard diagnostic methods and conduct research on etiological factors, including via the usage of advanced genetic methods.

ORCID

Klaudia Lisowska-Łysiak https://orcid.org/0000-0001-8659-9947 Ryszard Lauterbach https://orcid.org/0000-0003-1431-6252 Jacek Międzobrodzki https://orcid.org/0000-0003-4252-880X Maja Kosecka-Strojek https://orcid.org/0000-0001-8337-6975

Authors' contributions

JM and MKS brought the idea of the project. KL-Ł and MKS performed the literature research and data analysis. KL-Ł, JM and MKS drafted the work. RL provided clinical consultation of the data. All authors critically revised the work.

Acknowledgments

This project was financed by funds No N19/MNS/000016 (to MKS) of the Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

Argemi X, Hansmann Y, Prola K, Prévost G. Coagulase-negative staphylococci pathogenomics. Int J Mol Sci. 2019 Mar 11;20(5):1215. https://doi.org/10.3390/ijms20051215

Argemi X, Hansmann Y, Riegel P, Prévost G. Is *Staphylococcus lugdunensis* significant in clinical samples? J Clin Microbiol. 2017 Nov;55(11):3167–3174. https://doi.org/10.1128/JCM.00846-17

Arias CA, Reyes J, Carvajal LP, Rincon S, Diaz L, Panesso D, Ibarra G, Rios R, Munita JM, Salles MJ, et al. A prospective cohort multicenter study of molecular epidemiology and phylogenomics of *Staphylococcus aureus* bacteremia in nine Latin American countries. Antimicrob Agents Chemother. 2017 Oct;61(10):e00816–17. https://doi.org/10.1128/AAC.00816-17 Arya R, Princy SA. An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol. 2013 Oct;8(10):1339–1353. https://doi.org/10.2217/fmb.13.92

Ayau P, Bardossy AC, Sanchez G, Ortiz R, Moreno D, Hartman P, Rizvi K, Prentiss TC, Perri MB, Mahan M, et al. Risk Factors for 30-day mortality in patients with methicillin-resistant *Staphylococcus aureus* bloodstream infections. Int J Infect Dis. 2017 Aug;61:3–6. https://doi.org/10.1016/j.ijid.2017.05.010

Bandyopadhyay T, Kumar A, Saili A, Randhawa VS. Distribution, antimicrobial resistance and predictors of mortality in neonatal sepsis. J Neonatal Perinatal Med. 2018 Jul 05;11(2):145–153.

https://doi.org/10.3233/NPM-1765

Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014 Oct;27(4):870–926.

https://doi.org/10.1128/CMR.00109-13

Bello-Chavolla OY, Bahena-Lopez JP, Garciadiego-Fosass P, Volkow P, Garcia-Horton A, Velazquez-Acosta C, Vilar-Compte D. Bloodstream infection caused by *S. aureus* in patients with cancer: a 10-year longitudinal single-center study. Support Care Cancer. 2018 Dec;26(12):4057–4065.

https://doi.org/10.1007/s00520-018-4275-1

Bhattacharya M, Berends ETM, Chan R, Schwab E, Roy S, Sen CK, Torres VJ, Wozniak DJ. *Staphylococcus aureus* biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proc Natl Acad Sci USA. 2018 Jul 10;115(28):7416–7421. https://doi.org/10.1073/pnas.1721949115

Black CG, Tavares L, Stachel A, Ratner AJ, Randis TM. Distribution of late-onset neonatal sepsis pathogens differs in inpatient and outpatient settings. Am J Perinatol. 2019 Sep;36(11):1136–1141. https://doi.org/10.1055/s-0038-1675643

Braga IA, Campos PA, Gontijo-Filho PP, Ribas RM. Multi-hospital point prevalence study of healthcare-associated infections in 28 adult intensive care units in Brazil. J Hosp Infect. 2018 Jul;99(3): 318–324. https://doi.org/10.1016/j.jhin.2018.03.003

Buetti N, Atkinson A, Kottanattu L, Bielicki J, Marschall J, Kronenberg A; Swiss Centre for Antibiotic resistance (ANRESIS). Patterns and trends of pediatric bloodstream infections: a 7-year surveillance study. Eur J Clin Microbiol Infect Dis. 2017 Mar;36(3):537–544. https://doi.org/10.1007/s10096-016-2830-6

Burke RE, Halpern MS, Baron EJ, Gutierrez K. Pediatric and neonatal *Staphylococcus aureus* bacteremia: epidemiology, risk factors, and outcome. Infect Control Hosp Epidemiol. 2009 Jul;30(7):636–644. https://doi.org/10.1086/597521

Butin M, Rasigade JP, Subtil F, Martins-Simões P, Pralong C, Freydière AM, Vandenesch F, Tigaud S, Picaud JC, Laurent F. Vancomycin treatment is a risk factor for vancomycin-nonsusceptible *Staphylococcus capitis* sepsis in preterm neonates. Clin Microbiol Infect. 2017 Nov;23(11):839–844.

https://doi.org/10.1016/j.cmi.2017.03.022

Cailes B, Kortsalioudaki C, Buttery J, Pattnayak S, Greenough A, Matthes J, Bedford Russell A, Kennea N, Heath PT; neonIN network. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Arch Dis Child Fetal Neonatal Ed. 2018 Nov;103(6):F547–F553.

https://doi.org/10.1136/archdischild-2017-313203

Chen CY, Tien FM, Sheng WH, Huang SY, Yao M, Tang JL, Tsay W, Tien HF, Hsueh PR. Clinical and microbiological characteristics of bloodstream infections among patients with haematological malignancies with and without neutropenia at a medical centre in northern Taiwan, 2008–2013. Int J Antimicrob Agents. 2017 Mar;49(3):272–281.

https://doi.org/10.1016/j.ijantimicag.2016.11.009

Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, Jansen KU, Gurtman A, Anderson AS. *Staphylococcus aureus*: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines. 2016 Nov;15(11):1373–1392. https://doi.org/10.1080/14760584.2016.1179583

Deplano A, Vandendriessche S, Nonhoff C, Dodémont M, Roisinenis O. National surveillance of *Staphylococcus epidermidis* recovered from bloodstream infections in Belgian hospitals. J Antimicrob Chemother. 2016 Jul;71(7):1815–1819.

https://doi.org/10.1093/jac/dkw086

Deptuła A, Trejnowska E, Dubiel G, Wanke-Rytt M, Deptuła M, Hryniewicz W. Healthcare associated bloodstream infections in Polish hospitals: prevalence, epidemiology and microbiology – summary data from the ECDC Point Prevalence Survey of Healthcare Associated Infections 2012–2015. Eur J Clin Microbiol Infect Dis. 2018 Mar;37(3):565–570. https://doi.org/10.1007/s10096-017-3150-1

Dik JWH, Poelman R, Friedrich AW, Panday PN, Lo-Ten-Foe JR, Assen S, van Gemert-Pijnen JEWC, Niesters HGM, Hendrix R, Sinha B. An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID). Future Microbiol. 2016 Jan;11(1):93–102. https://doi.org/10.2217/fmb.15.99

ECDC. Annual epidemiological report on communicable diseases in Europe 2008. Stockholm (Sweden): European Centre for Disease Prevention and Control; 2008.

ECDC. Healthcare-associated infections acquired in intensive care units. In: ECDC. Annual epidemiological report for 2016. Stockholm (Sweden): European Centre for Disease Prevention and Control; 2018.

Ehlersson G, Hellmark B, Svartström O, Stenmark B, Söderquist B. Phenotypic characterisation of coagulase-negative staphylococci isolated from blood cultures in newborn infants, with a special focus on *Staphylococcus capitis*. Acta Paediatr. 2017 Oct;106(10): 1576–1582. https://doi.org/10.1111/apa.13950

Escalante MJ, Ceriani-Cernadas JM, D'Apremont I, Bancalari A, Webb V, Genes L, Villarroel L, Munoz E, Tapia JL; NEOCOSUR Neonatal Network. Late onset sepsis in very low birth weight infants in the South American NEOCOSUR Network. Pediatr Infect Dis J. 2018 Oct;37(10):1022–1027.

https://doi.org/10.1097/INF.000000000001958

Foster AP. Staphylococcal skin disease in livestock. Vet Dermatol. 2012 Aug;23(4):342–e63, e63.

https://doi.org/10.1111/j.1365-3164.2012.01093.x

Gasch O, Camoez M, Dominguez MA, Padilla B, Pintado V, Almirante B, Molina J, Lopez-Medrano F, Ruiz E, Martinez JA, et al.; REIPI/GEIH Study Groups. Predictive factors for mortality in patients with methicillin-resistant *Staphylococcus aureus* bloodstream infection: impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013 Nov;19(11):1049–1057. https://doi.org/10.1111/1469-0691.12108

Gkentzi D, Kortsalioudaki C, Cailes BC, Zaoutis T, Kopsidas J, Tsolia M, Spyridis N, Siahanidou S, Sarafidis K, Heath PT, et al.; Neonatal Infection Surveillance Network in Greece. Epidemiology of infections and antimicrobial use in Greek Neonatal Units. Arch Dis Child Fetal Neonatal Ed. 2019 May;104(3):F293–F297.

https://doi.org/10.1136/archdischild-2018-315024

Gowda H, Norton R, White A, Kandasamy Y. Late-onset neonatal sepsis – A 10-year review from North Queensland, Australia. Pediatr Infect Dis J. 2017 Sep;36(9):883–888.

https://doi.org/10.1097/INF.00000000001568

Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A, Chlebowicz M, Glasner C, Sabat AJ, Weist K, Heuer O, et al.; ESCMID Study Group on Molecular Epidemiological Markers; European Staphylococcal Reference Laboratory Working Group. The dynamic changes of dominant clones of *Staphylococcus aureus* causing bloodstream infections in the European region: results of a second structured survey. Euro Surveill. 2014 Dec 11;19(49):20987. https://doi.org/10.2807/1560-7917.ES2014.19.49.20987 **Grzebyk M, Brzychczy-Włoch M, Piotrowska A, Krzyściak P, Heczko PB, Bulanda M.** [Phenotypic evaluation of hydrophobicity and the ability to produce biofilm in coagulase-negative staphylococci isolated from infected very-low-birthweight newborns] (in Polish). Med Dosw Mikrobiol. 2013;65(3):149–159.

Hammoud MS, Al-Taiar A, Al-Abdi SY, Bozaid H, Khan A, AlMuhairi LM, Rehman MU. Late-onset neonatal sepsis in Arab states in the Gulf region: two-year prospective study. Int J Infect Dis. 2017 Feb;55:125–130.

https://doi.org/10.1016/j.ijid.2017.01.006

Heilmann C, Ziebuhr W, Becker K. Are coagulase-negative staphylococci virulent? Clin Microbiol Infect. 2019 Sep;25(9):1071–1080. https://doi.org/10.1016/j.cmi.2018.11.012

Herrera A, Vu BG, Stach CS, Merriman JA, Horswill AR, Salgado-Pabón W, Schlievert PM. *Staphylococcus aureus* β-toxin mutants are defective in biofilm ligase and sphingomyelinase activity, and causation of infective endocarditis and sepsis. Biochemistry. 2016 May 03;55(17):2510–2517. https://doi.org/10.1021/acs.biochem.6b00083 Hosseinkhani F, Tammes Buirs M, Jabalameli F, Emaneini M, van Leeuwen WB. High diversity in SCCmec elements among multidrug-resistant *Staphylococcus haemolyticus* strains originating from paediatric patients; characterization of a new composite island. J Med Microbiol. 2018 Jul 01;67(7):915–921.

https://doi.org/10.1099/jmm.0.000776

Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016 Dec 22;2(1):16045. https://doi.org/10.1038/nrdp.2016.45

Hufnagel M, Burger A, Bartelt S, Henneke P, Berner R. Secular trends in pediatric bloodstream infections over a 20-year period at a tertiary care hospital in Germany. Eur J Pediatr. 2008 Oct;167(10): 1149–1159. https://doi.org/10.1007/s00431-007-0651-4

Ilczyszyn WM, Sabat AJ, Akkerboom V, Szkarlat A, Klepacka J, Sowa-Sierant I, Wasik B, Kosecka-Strojek M, Buda A, Miedzobrodzki J, et al. Clonal structure and characterization of *Staphylococcus aureus* strains from invasive infections in paediatric patients from South Poland: association between age, spa types, clonal complexes, and genetic markers. PLoS One. 2016 Mar 18;11(3):e0151937. https://doi.org/10.1371/journal.pone.0151937

Ittleman BR, Szabo JS. *Staphylococcus lugdunensis* sepsis and endocarditis in a newborn following lotus birth. Cardiol Young. 2018 Nov; 28(11):1367–1369. https://doi.org/10.1017/S1047951118001300

Jiang Y, Kuang L, Wang H, Li L, Zhou W, Li M. The clinical characteristics of neonatal sepsis infection in Southwest China. Intern Med. 2016;55(6):597–603.

https://doi.org/10.2169/internalmedicine.55.3930

Kabwe M, Tembo J, Chilukutu L, Chilufya M, Ngulube F, Lukwesa C, Kapasa M, Enne V, Wexner H, Mwananyanda L, et al. Etiology, antibiotic resistance and risk factors for neonatal sepsis in a large referral center in Zambia. Pediatr Infect Dis J. 2016 Jul; 35(7):e191–e198. https://doi.org/10.1097/INF.0000000000001154

Kalińska M, Kantyka T, Greenbaum DC, Larsen KS, Władyka B, Jabaiah A, Bogyo M, Daugherty PS, Wysocka M, Jaros M, et al. Substrate specificity of *Staphylococcus aureus* cysteine proteases – Staphopains A, B and C. Biochimie. 2012 Feb;94(2):318–327. https://doi.org/10.1016/j.biochi.2011.07.020

Khare R, Kothari T, Castagnaro J, Hemmings B, Tso M, Juretschko S. Active monitoring and feedback to improve blood culture fill volumes and positivity across a large integrated health system. Clin Infect Dis. 2020 Jan 2;70(2):262–268. https://doi.org/10.1093/cid/ciz198

Kosecka-Strojek M, Buda A, Międzobrodzki J. Staphylococcal ecology and epidemiology. In: Savini V, editor. Pet-to-man travelling staphylococci. A world in progress. Cambridge (USA): Academic Press; 2018. p. 11–24.

https://doi.org/10.1016/B978-0-12-813547-1.00002-9

Kosecka-Strojek M, Ilczyszyn WM, Buda A, Polakowska K, Murzyn K, Panz T, Bialecka A, Kasprowicz A, Jakubczak A, Krol J, et al. Multiple-locus variable-number tandem repeat fingerprinting as a method for rapid and cost-effective typing of animalassociated *Staphylococcus aureus* strains from lineages other than sequence type 398. J Med Microbiol. 2016 Dec 16;65(12):1494–1504. https://doi.org/10.1099/jmm.0.000378

Kosecka-Strojek M, Sabat AJ, Akkerboom V, Becker K, van Zanten E, Wisselink G, Miedzobrodzki J, Kooistra-Smid AMDM, Friedrich AW. Development and validation of a reference data set for assigning *Staphylococcus* species based on next-generation sequencing of the 16S-23S rRNA region. Front Cell Infect Microbiol. 2019 Aug 7;9:278.

https://doi.org/10.3389/fcimb.2019.00278

Kosecka-Strojek M, Sadowy E, Gawryszewska I, Klepacka J, Tomasik T, Michalik M, Hryniewicz W, Miedzobrodzki J. Emergence of linezolid-resistant *Staphylococcus epidermidis* in the tertiary children's hospital in Cracow, Poland. Eur J Clin Microbiol Infect Dis. 2020 Sep;39(9):1717–1725.

https://doi.org/10.1007/s10096-020-03893-w

Labi AK, Obeng-Nkrumah N, Bjerrum S, Enweronu-Laryea C, Newman MJ. Neonatal bloodstream infections in a Ghanaian Tertiary Hospital: are the current antibiotic recommendations adequate? BMC Infect Dis. 2016 Dec;16(1):598.

https://doi.org/10.1186/s12879-016-1913-4

Larru B, Gong W, Vendetti N, Sullivan KV, Localio R, Zaoutis TE, Gerber JS. Bloodstream infections in hospitalized children: epidemiology and antimicrobial susceptibilities. Pediatr Infect Dis J. 2016 May;35(5):507–510. https://doi.org/10.1097/INF.000000000001057

Lauterbach R, Wilk B, Bocheńska A, Hurkała J, Radziszewska R. Nonactivated protein c in the treatment of neonatal sepsis: a retrospective analysis of outcome. Pediatr Infect Dis J. 2016 Sep;35(9): 967–971. https://doi.org/10.1097/INF.000000000001247

Lee SM, Chang M, Kim KS. Blood culture proven early onset sepsis and late onset sepsis in very-low-birth-weight infants in Korea. J Korean Med Sci. 2015 Oct;30(Suppl 1):S67–74.

https://doi.org/10.3346/jkms.2015.30.S1.S67

Li S, Guo Y, Zhao C, Chen H, Hu B, Chu Y, Zhang Z, Hu Y, Liu Z, Du Y, et al. *In vitro* activities of tedizolid compared with other antibiotics against Gram-positive pathogens associated with hospitalacquired pneumonia, skin and soft tissue infection and bloodstream infection collected from 26 hospitals in China. J Med Microbiol. 2016 Oct 18;65(10):1215–1224.

https://doi.org/10.1099/jmm.0.000347

Lisowska-Łysiak K, Kosecka-Strojek M, Białecka J, Kasprowicz A, Garbacz K, Piechowicz L, Kmet V, Savini V, Międzobrodzki J. New insight into genotypic and phenotypic relatedness of *Staphylococcus aureus* strains from human infections or animal reservoirs. Pol J Microbiol. 2019;68(1):93–104.

https://doi.org/10.21307/pjm-2019-011

Liu Y, Du F, Liu P, Mei Y, Wan L, Wei D, Xu H, Zhang W. Molecular epidemiology and virulence features of *Staphylococcus aureus* bloodstream isolates in a regional burn center in China, 2012–2016. Microb Drug Resist. 2018 Nov;24(9):1354–1360.

https://doi.org/10.1089/mdr.2017.0209

Martínez-García S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Extracellular proteases of *Staphylococcus epidermidis*: roles as virulence factors and their participation in biofilm. APMIS. 2018 Mar;126(3):177–185.

https://doi.org/10.1111/apm.12805

Mashaly GES, El-Mahdy RH. Vancomycin heteroresistance in coagulase negative *Staphylococcus* blood stream infections from patients of intensive care units in Mansoura University Hospitals, Egypt. Ann Clin Microbiol Antimicrob. 2017 Dec;16(1):63. https://doi.org/10.1186/s12941-017-0238-5

Michalik S, Sundaramoorthy N, Murr A, Depke M, Völker U, Bröker BM, Aamot HV, Schmidt F. Early-stage *Staphylococcus aureus* bloodstream infection causes changes in the concentrations of lipoproteins and acute-phase proteins and is associated with low antibody titers against bacterial virulence factors. mSystems. 2020 Jan 21;5(1):e00632–19. https://doi.org/10.1128/mSystems.00632-19 Miedzobrodzki J, Kaszycki P, Bialecka A, Kasprowicz A. Proteolytic activity of *Staphylococcus aureus* strains isolated from the colonized skin of patients with acute-phase atopic dermatitis. Eur J Clin Microbiol Infect Dis. 2002 Apr;21(4):269–276.

https://doi.org/10.1007/s10096-002-0706-4

Minejima E, Delayo V, Lou M, Ny P, Nieberg P, She RC, Wong-Beringer A. Utility of qSOFA score in identifying patients at risk for poor outcome in *Staphylococcus aureus* bacteremia. BMC Infect Dis. 2019 Dec;19(1):149. https://doi.org/10.1186/s12879-019-3770-4 Musicha P, Cornick JE, Bar-Zeev N, French N, Masesa C, Denis B, Kennedy N, Mallewa J, Gordon MA, Msefula CL, et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. Lancet Infect Dis. 2017 Oct;17(10):1042–1052.

https://doi.org/10.1016/S1473-3099(17)30394-8

Mutlu M, Aslan Y, Aktürk Acar F, Kader Ş, Bayramoğlu G, Yılmaz G. Changing trend of microbiologic profile and antibiotic susceptibility of the microorganisms isolated in the neonatal nosocomial sepsis: a 14 years analysis. J Matern Fetal Neonatal Med. 2020 Nov; 33(21): 3658–3665. https://doi.org/10.1080/14767058.2019.1582633

Nanoukon C, Affolabi D, Keller D, Tollo R, Riegel P, Baba-Moussa L, Prévost G. Characterization of human type C enterotoxin produced by clinical *S. epidermidis* isolates. Toxins (Basel). 2018 Mar 27;10(4):139. https://doi.org/10.3390/toxins10040139

Nanoukon C, Argemi X, Sogbo F, Orekan J, Keller D, Affolabi D, Schramm F, Riegel P, Baba-Moussa L, Prévost G. Pathogenic features of clinically significant coagulase-negative staphylococci in hospital and community infections in Benin. Int J Med Microbiol. 2017 Jan;307(1):75–82. https://doi.org/10.1016/j.ijmm.2016.11.001 Natoli S, Fontana C, Favaro M, Bergamini A, Testore GP, Minelli S, Bossa MC, Casapulla M, Broglio G, Beltrame A, et al. Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect Dis. 2009 Dec;9(1):83.

https://doi.org/10.1186/1471-2334-9-83

Nejad SB, Allegranzi B, Syed S, Ellis B, Pittet D. Health-care-associated infection in Africa: a systematic review. Bull World Health Organ. 2011 Oct 1;89(10):757–765.

https://doi.org/10.2471/BLT.11.088179

Oliveira D, Borges A, Simões M. *Staphylococcus aureus* toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018 Jun 19;10(6):252. https://doi.org/10.3390/toxins10060252

Pai S, Enoch DA, Aliyu SH. Bacteremia in children: epidemiology, clinical diagnosis and antibiotic treatment. Expert Rev Anti Infect Ther. 2015 Sep 02;13(9):1073–1088.

https://doi.org/10.1586/14787210.2015.1063418

Papadimitriou-Olivgeris M, Psychogiou R, Garessus J, Camaret AD, Fourre N, Kanagaratnam S, Jecker V, Nusbaumer C, Monnerat LB, Kocher A, et al. Predictors of mortality of bloodstream infections among internal medicine patients in a Swiss hospital: role of quick Sequential Organ Failure Assessment. Eur J Intern Med. 2019 Jul;65:86–92. https://doi.org/10.1016/j.ejim.2019.05.003 Sabat AJ, van Zanten E, Akkerboom V, Wisselink G, van Slochteren K, de Boer RF, Hendrix R, Friedrich AW, Rossen JWA, Kooistra-Smid AMD. Targeted next-generation sequencing of the 16S–23S rRNA region for culture-independent bacterial identification – increased discrimination of closely related species. Sci Rep. 2017 Dec;7(1):3434.

https://doi.org/10.1038/s41598-017-03458-6

Sabat AJ, Wladyka B, Kosowska-Shick K, Grundmann H, van Dijl J, Kowal J, Appelbaum PC, Dubin A, Hryniewicz W. Polymorphism, genetic exchange and intragenic recombination of the aureolysin gene among *Staphylococcus aureus* strains. BMC Microbiol. 2008;8(1):129. https://doi.org/10.1186/1471-2180-8-129

Sader HS, Farrell DJ, Flamm RK, Streit JM, Mendes RE, Jones RN. Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative *Staphylococcus* causing infection in US hospitals. Diagn Microbiol Infect Dis. 2016 May;85(1):80–84.

https://doi.org/10.1016/j.diagmicrobio.2016.01.010

Samet A, Bronk M, Sledzińska A, Labon M, Rybak B. [Nosocomial bacteremia] (in Polish). Przegl Epidemiol. 2006;60(1):35–41.

Seliem WA, Sultan AM. Etiology of early onset neonatal sepsis in neonatal intensive care unit – Mansoura, Egypt. J Neonatal Perinatal Med. 2018 Sep 28;11(3):323–330.

https://doi.org/10.3233/NPM-17128

Si D, Runnegar N, Marquess J, Rajmokan M, Playford EG. Characterising health care-associated bloodstream infections in public hospitals in Queensland, 2008–2012. Med J Aust. 2016 Apr; 204(7):276. https://doi.org/10.5694/mja15.00957

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016 Feb 23; 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

Sorsa A, Früh J, Stötter L, Abdissa S. Blood culture result profile and antimicrobial resistance pattern: a report from neonatal intensive care unit (NICU), Asella teaching and referral hospital, Asella, south East Ethiopia. Antimicrob Resist Infect Control. 2019 Dec;8(1):42. https://doi.org/10.1186/s13756-019-0486-6

Stevenson M, Pandor A, Martyn-St James M, Rafia R, Uttley L, Stevens J, Sanderson J, Wong R, Perkins GD, McMullan R, et al. Sepsis: the LightCycler SeptiFast Test MGRADE*, SepsiTest[™] and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi – a systematic review and economic evaluation. Health Technol Assess. 2016 Jun;20(46):1–246. https://doi.org/10.3310/hta20460 Szczuka E, Krzymińska S, Kaznowski A. Clonality, virulence and the occurrence of genes encoding antibiotic resistance among *Staphylococcus warneri* isolates from bloodstream infections. J Med Microbiol. 2016 Aug 01;65(8):828–836.

https://doi.org/10.1099/jmm.0.000287

Takeshita N, Kawamura I, Kurai H, Araoka H, Yoneyama A, Fujita T, Ainoda Y, Hase R, Hosokawa N, Shimanuki H, et al. Unique characteristics of community-onset healthcare-associated bloodstream infections: a multi-centre prospective surveillance study of bloodstream infections in Japan. J Hosp Infect. 2017 May; 96(1):29–34. https://doi.org/10.1016/j.jhin.2017.02.022

Tevell S, Hellmark B, Nilsdotter-Augustinsson Å, Söderquist B. *Staphylococcus capitis* isolated from prosthetic joint infections. Eur J Clin Microbiol Infect Dis. 2017 Jan;36(1):115–122.

https://doi.org/10.1007/s10096-016-2777-7

Thapa S, Sapkota LB. Changing trend of neonatal septicemia and antibiotic susceptibility pattern of isolates in Nepal. Int J Pediatr. 2019 Feb 06;2019:1–7. https://doi.org/10.1155/2019/3784529

Thomer L, Schneewind O, Missiakas D. Pathogenesis of *Staphylococcus aureus* bloodstream infections. Annual Review of Pathology: Mechanisms of Disease. 2016 May 23;11(1):343–364. https://doi.org/10.1146/annurev-pathol-012615-044351

Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. *Staphylococcus aureus* infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015 Jul;28(3):603–661. https://doi.org/10.1128/CMR.00134-14

Veach LA, Pfaller MA, Barrett M, Koontz FP, Wenzel RP. Vancomycin resistance in *Staphylococcus haemolyticus* causing colonization and bloodstream infection. J Clin Microbiol. 1990;28(9):2064–2068. https://doi.org/10.1128/JCM.28.9.2064-2068.1990

von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulasenegative staphylococci. Lancet Infect Dis. 2002 Nov;2(11): 677–685. https://doi.org/10.1016/S1473-3099(02)00438-3

Wagstaff JS, Durrant RJ, Newman MG, Eason R, Ward RM, Sherwin CMT, Enioutina EY. Antibiotic treatment of suspected and confirmed neonatal sepsis within 28 days of birth: A retrospective analysis. Front Pharmacol. 2019 Oct 15;10:1191.

https://doi.org/10.3389/fphar.2019.01191

Wójkowska-Mach J, Chmielarczyk A, Strus M, Lauterbach R, Heczko P. Neonate bloodstream infections in organization for economic cooperation and development countries: an update on epidemiology and prevention. J Clin Med. 2019 Oct 21;8(10):1750. https://doi.org/10.3390/jcm8101750

Wójkowska-Mach J, Gulczyńska E, Nowiczewski M, Borszewska-Kornacka M, Domańska J, Merritt TA, Helwich E, Kordek A, Pawlik D, Gadzinowski J, et al. Late-onset bloodstream infections of very-low-birth-weight infants: data from the Polish Neonatology Surveillance Network in 2009–2011. BMC Infect Dis. 2014 Dec; 14(1):339. https://doi.org/10.1186/1471-2334-14-339

Worth LJ, Daley AJ, Spelman T, Bull AL, Brett JA, Richards MJ. Central and peripheral line-associated bloodstream infections in Australian neonatal and paediatric intensive care units: findings from a comprehensive Victorian surveillance network, 2008–2016. J Hosp Infect. 2018 May;99(1):55–61.

https://doi.org/10.1016/j.jhin.2017.11.021

Yamada K, Namikawa H, Fujimoto H, Nakaie K, Takizawa E, Okada Y, Fujita A, Kawaguchi H, Nakamura Y, Abe J, et al. Clinical characteristics of methicillin-resistant coagulase-negative staphylococcal bacteremia in a tertiary hospital. Intern Med. 2017;56(7):781–785. https://doi.org/10.2169/internalmedicine.56.7715

Yu W, Kim HK, Rauch S, Schneewind O, Missiakas D. Pathogenic conversion of coagulase-negative staphylococci. Microbes Infect. 2017 Feb;19(2):101–109.

https://doi.org/10.1016/j.micinf.2016.12.002

Zingg W, Hopkins S, Gayet-Ageron A, Holmes A, Sharland M, Suetens C, Almeida M, Asembergiene J, Borg MA, Budimir A, et al.; ECDC PPS study group. Health-care-associated infections in neonates, children, and adolescents: an analysis of paediatric data from the European Centre for Disease Prevention and Control point-prevalence survey. Lancet Infect Dis. 2017 Apr;17(4):381–389. https://doi.org/10.1016/S1473-3099(16)30517-5

Zlatian O, Balasoiu A, Balasoiu M, Cristea O, Docea A, Mitrut R, Spandidos D, Tsatsakis A, Bancescu G, Calina D. Antimicrobial resistance in bacterial pathogens among hospitalised patients with severe invasive infections. Exp Ther Med. 2018 Sep 14;16(6):4499–4510. https://doi.org/10.3892/etm.2018.6737

Zonnenberg IA, van Dijk-Lokkart EM, van den Dungen FAM, Vermeulen RJ, van Weissenbruch MM. Neurodevelopmental outcome at 2 years of age in preterm infants with late-onset sepsis. Eur J Pediatr. 2019 May;178(5):673–680.

https://doi.org/10.1007/s00431-019-03339-2