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 Question-answering platforms serve millions of users seeking knowledge and 

solutions for their daily life problems. However, many knowledge seekers 

are facing the challenge to find the right answer among similar answered 

questions and writer’s responding to asked questions feel like they need to 

repeat answers many times for similar questions. This research aims at 

tackling the problem of learning the semantic text similarity among different 

asked questions by using deep learning. Three models are implemented to 

address the aforementioned problem: i) a supervised-machine learning model 

using XGBoost trained with pre-defined features, ii) an adapted Siamese-based 

deep learning recurrent architecture trained with pre-defined features, and iii) a 

pre-trained deep bidirectional transformer based on BERT model. Proposed 

models were evaluated using a reference Arabic dataset from the 

mawdoo3.com company. Evaluation results show that the BERT-based 

model outperforms the other two models with an F1=92.99%, whereas the 

Siamese-based model comes in the second place with F1=89.048%, and finally, 

the XGBoost as a baseline model achieved the lowest result of F1=86.086%. 
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1. INTRODUCTION 

Semantic text similarity (STS) is a measurement used to determine how linguistic terms are 

equivalent to each other. Linguistic terms that usually studied are documents, sentences, words, and questions [1]. 

The STS improves the understanding of the semantic similarity between linguistic terms and increases the 

accuracy of several knowledge-based applications. This understanding gives the STS a great impact on many 

applications in artificial intelligence and the computational linguistics such as information retrieval, word 

sense disambiguation, knowledge acquisition, and natural language processing (NLP) [2, 3]. 

Regarding to the NLP field, STS applications can be extend from paraphrase identification and 

question similarity to machine translation [4]. The research in the STS has been greatly increased during the 

past few years, most of them driven by the annual SemEval competitions [5]. SemEval is an international 

workshop for semantic evaluation driven by the SIGLEX [1]. 

With the advent of Web 2.0 and social computing advancements, platforms for question answering 

has become widely used. According to the Quora, a well-known platform for question answering and 

knowledge sharing, over 10 million users visit Quora every month. With such a large number of visitors, 

similar questions definitely would be asked and answered by several users, hence confusing other users in 

https://creativecommons.org/licenses/by-sa/4.0/
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finding the right answer and causing the writers to feel like they have to write the same answer several times 

responding to similar questions. 

Two questions asking about the same thing can be formed using a different set of vocabulary and 

syn-tactic structure. This makes detecting the semantic similarity between the questions is a challenging task. 

This research proposes three models for analyzing the semantic similarity of Arabic question pairs;  

i) a supervised-machine learning model using XGBoost [6] trained with pre-defined features, ii) an adapted 

Siamese deep learning recurrent architecture based on the work of [7], and iii) a pre-trained deep 

bidirectional transformer based on BERT model [8]. 

This paper presents several new non-trivial extensions to our preliminary work described in [9]: 

 Our preliminary work [9] contains only traditional machine learning models such as XGBoost, SVM, and 

decision tree. In this manuscript, we have designed and implemented various deep learning models using 

transfer learning technique. 

 We enlarged the dataset used for training and testing. In [9], we trained our models on 9,568 pairs of questions 

whereas in this paper, we trained our models on 15,712 pairs of questions, i.e., 31,424 distinct questions. 

 Similar to our preliminary work in [9], two of our models trained using pre-engineered features including 

character-level features, word-level features, morphological features, semantic features, and word 

embedding features. Unlike our preliminary work, our best-achieved model, the BERT-based model, was 

able to learn the semantic similarity among pair of Arabic questions without the need for pre-engineered 

features. Hence, increasing the generality and the applicability of our approach. 

 On top of the previous technical contributions, we discussed our work in light of other related research effort 

in the area of Arabic text similarity detection using deep learning. Moreover, the paper provides detailed 

description of the models along with the used parameters for training our models to give the best results. 

The rest of this paper is organized as follows: Section 2. presents a brief survey of the literature for 

STS Then, section 3. describes our method for detecting similar Arabic questions. Section 4. presents the 

results of our intensive experiments. In section 5, results are analyzed and discussed. Finally, section 6. 

concludes the paper with avenue of future work. 

 

 

2. RELATED WORK 

Many researchers from various fields utilized semantic text similarity (STS) on different 

applications. This section compares and contrasts our research contribution in light of other research work in 

the field. Our work is related to the research body that applied machine learning and deep learning techniques 

to solve STS problems including [10-26]. However, all of the previously mentioned approaches designed 

their STS models for English language texts. Even though some of their models can be applied to Arabic 

texts, they will not produce high accuracy since their models are not designed nor trained on Arabic text. 

Therefore, these approaches cannot solve the problem we are trying to solve, that is accurately and efficiently 

detecting similar Arabic questions. 

Although the majority of the researchers in the STS field developed techniques for the English 

languages, few of them developed STS approaches for the Arabic language. Next we discuss the main 

research efforts for detecting the semantic similarity of Arabic texts. Mohammad et al. [27] proposed an 

enhanced approach for paraphrase identification (PI) and STS in Arabic tweets. Sagher et al. [28] proposed a 

CNN deep learning model to classify Arabic sentences into three categories. [29] used and compared 

different STS methods to measure the cross-language semantic similarity for short sentences and phrases. 

Various approaches used STS to detect plagiarism in Arabic texts such as [30-32]. Ferrero et al. [33] proposed 

two different approaches to measure the STS of cross-language sentences for Arabic-English text. Moreover, 

[34] proposed a query-based Arabic text summarization approach that accepts Arabic document as well as 

user queries. Finally, [35] adopted morphological word2vec method for Neural machine translation for low 

resource settings  

 

 

3. RESEARCH METHOD 

This section describes our method in developing a machine-learning approach for accurately and 

efficiently detecting if two Arabic questions are similar or not. 

 

3.1. Arabic questions pair’s dataset 

In order to evaluate our models, the Arabic questions pairs dataset provided by mawdoo3.com 

company is used. The dataset was manually annotated by mawdoo3’s data annotation team. As shown in Table 1, 

the dataset consists of around 15k pairs of Arabic questions annotated as “similar” or “not”. The data was 

divided into two files, training data with 11.997 pairs of questions and testing file with 3.715 pairs of questions. 
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Table 2 shows an example of two pairs of questions selected from the dataset and representing the 

two main categories: similar shown as “Yes” or not similar shown as “No”. In the first row of the Table 2, 

Question1 asks about the birth city of the comprehensive thinker, Al-Razi, and Question2 asks about the city 

of Al-Razi museum. Clearly, those two questions are not similar since they are asking about two different 

things. On the other hand, Question1 and Question2 in the second row of the Table 2 are asking about the 

first country where communism political ideology was started. Those two questions were written in two 

different ways but they still have a similar meaning. 

The utilized dataset is nearly balanced with 55.01% labeled as “not similar” and the rest, 44.99%, 

labeled as “similar” In order to further analyze the dataset, we computed the common words among each 

question pair. Figure 1 shows that the number of overlapping words between pair of “similar” and “not 

similar” questions is around 2 words. Therefore, relying on the overlapped words between pair of questions 

to know if they are similar will not give good results. Thus, Figure 1 shows that our problem is very 

challenging to solve. 

 

 

Table 1. Number of instances in the dataset 
Train dataset Test dataset Total 

11,997 3,715 15,712 

 

 

Table 2. An example of two instances, two pairs of questions, from the two classes 
Question1 Question2 Label 

   
  
    في أي مدينة يقع متحف الرازي؟  

 
 
 
 No أين ولد الرازي 

 Yes أين بدأت الشيوعية؟ في أي دولة ظهرت الشيوعية؟

 

 

 
 

Figure 1. The distribution of common words in similar and non-similar questions for the training dataset 

 

 

3.2. Data pre-processing 

In order to prepare the dataset for further processing and to enhance the accuracy and reduce the 

noise in the data, various Arabic pre-processing steps were applied such as: 

 Removal of non-Arabic words. 

 Removal of hyperlinks and hashtags in all posts. 

 Removal of Arabic diacritics such as 

 Removal of punctuation and symbols such as “?, (, ), , ’ ! @ $ # —”. 

 Normalization, which is used to remove “HAMZA/ ” from the “ALEF/ ” (i.e., the replaced with the 

abstract version of the letter (((( ))). 

 Removal of Arabic stop words. 

The NLTK library [36] written in python was used to implement the data pre-processing and data 

cleaning phase. 
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3.3. Features extraction 

As mentioned earlier two out of three models developed in this research were trained with pre- 

engineered features. After the data was cleaned, the following features were extracted: 

 Character level features: This set of features includes: the total number of characters for the pair of 

questions, the number of different characters among the question pairs, the ratio of the different characters, 

the number of similar characters among the question pairs, and the ratio of the similar characters. 

 Word level features: This set includes: the total number of words for the pair of questions, the number of 

different words among the question pairs, and the ratio of the different words, the number of similar 

words among the question pairs, and the ratio of the similar words. Moreover, the type of similarity of 

question pairs is used as another feature. This feature is computed as a binary feature and depending  on 

the question interrogative particles (i.e. similarity of the first word in each question). Also, the text 

overlap features were computed on the word level and based on our previous research [27]. The text 

overlap features include the number of overlapping words divided by the number of words in question1, 

the number of overlapping words divided by the number of words in question2, and the harmonic mean of 

the previous two features. 

 Morphological features: Stemming was used to represent each question. The Arabic language is 

morphologically rich [37], therefore, representing the pair of questions using their stem words increases 

the chance of word similarity on the surface level. 

 Semantic level features: This feature set includes: TF-IDF, Jaccard, and Cosine similarity measures. 

These features were computed for each pair of questions. The lexical similarity measures are computed 

on both the original questions and their stemmed features. 

 Word Embedding features: The pre-trained model for Arabic content AraVec 3.0 [38] is used to compute 

the embeddings features for the input questions. The Twitter-CBOW with embedding size of 100 is used 

out of the AraVec available pre-trained models. 

 

3.4. The developed models 

This research implements three models for analyzing the semantic similarity of Arabic questions’ 

pairs: i) a supervised-machine learning model using XGBoost [6], ii) an adapted Siamese deep learning 

recurrent architecture based on the work of [7], and iii) a pre-trained deep bidirectional transformer based on 

BERT model [8].  

We have extracted features from the dataset to train the first two models, the XGBoost and the 

Siamese neural network. However, the BERT model is adapted directly without any feature extraction step. 

We have carefully selected these three models among many other models for many reasons. The XGBoost 

was the best performing model in [9], the Siamese deep learning model works well in semantic text similarity 

[7, 39], and the Google BERT model is the state-of-the-art model used for several natural-language 

processing (NLP) applications. 

 

3.4.1. Supervised-machine learning model using XGBoost 

XGBoost [6] is a short standing for eXtreme gradient boosting. XGBoost is a scalable machine 

learn- ing system for tree boosting and it is available as an open-source package. In the machine learning 

competition published by Kaggle in 2015, among the 29 winning solutions, 17 solutions adapted XGBoost. 

Among these 17 solutions, 8 solutions used XGBoost to train the model, while the rest 9 combined XGBoost 

with the artificial neural network as ensembles. 

XGBoost approach provides a parallel tree boosting known as gradient boosted regression tree 

(GBRT) or gradient boosting machine (GBM) which is a scalable and efficient implementation of gradient 

boosting framework proposed by [40, 41]. XGBoost algorithm combines weak base learning models into a 

stronger learner in an iterative manner. It is available in several languages such as Python, R, and Julia. 

XGBoost can be integrated with several language data science pipelines as scikitlearn. The XGBoost model 

is trained in an additive manner. As shown in (1), 𝑓𝑡 needs to be added to minimize the objective 𝑡(𝑡). Where 

𝑦𝑖𝑡−1 is the prediction of the 𝑖 − 𝑡ℎ instance at the 𝑡 − 𝑡ℎ iteration. 

 

𝑡(𝑡) =
𝑛
1

|(𝑦𝑖�̂�𝑖)
𝑡−1 + 𝑓𝑡(𝑋𝑖)) + Ω(𝑓𝑡) (1) 

 

In this work, we used the XGBoost Python package introduced in [6] to train the model with the pre-

defined features in order to enhanced approach for learning semantic similarities in Arabic questions. The 

XGBoost classifier was trained using the extracted features as explained in 3.3. The XGBoost model was 

trained with a maximum tree depth of 6 and a learning rate (eta)=0.06, 0.04, and 0.02 for 6.000 epochs on each. 
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3.4.2. A Siamese deep learning recurrent architecture 

Siamese neural network implements two symmetric neural networks with shared wights to learn 

semantic similarities among inputs. Siamese neural networks is used in many semantic similarity applications 

such as: face verification using symmetric convolutional networks [42], speech understanding and speaker- 

specific information extraction [43], and in semantic text similarity [7, 39]. 

In this research, we utilized the Siamese neural network architecture to develop an enhanced 

approach for learning semantic similarities in Arabic questions. The model consists of two symmetric layers 

each contains an embedding layer followed by a bi-directional long short term memory (LSTM) layer and 

then an LSTM layer. Being Siamese-based the weights used to train both bi-LSTEM and LSTM layers for 

both questions are shared see Figure 2. The output of the symmetric layers are then concatenated with the 

output of the features layer and fed to fully connect dense layers with batch normalization [44] and Dropout 

[45] layers. The final layer is dense classification layer with activation of ’sigmoid’ to get binary 

classification value whether questions are similar or not. 

The batch normalization [44] and dropout [45] layers are used to regularize the output of the 

Siamese layers and to avoid common problems in deep learning such as: i) Internal covariate shift (i.e. “the 

change in the distribution of network activations due to the change in network parameters during training.” [44]) 

and ii) Overfitting during neural network training. The term “dropout” refers to “randomly dropping out units 

(hidden and visible) in a neural network. By dropping a unit out, we mean temporarily removing it from the 

network, along with all its incoming and outgoing connections” [45]. The L2 regularization with value=0.001 

was used with the fully connect dense layers. 

 

 

 
 

Figure 2. The Siamese-based model architecture 
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3.4.3. A Pre-trained deep bidirectional transformer based on BERT model 

In our work, we also used bidirectional encoder representations from transformers (BERT) model [8]. 

BERT is a state-of-the-art model used for several natural-language processing (NLP) applications. BERT is a 

language representation released by Google in October 2018 utilizing the encoder-decoder transformer 

architecture to train the model representations using unannotated data. The BERT model representations are 

built over contextual representations like Semi-supervised Learning [46], ULMFit [47], and ELMo [48]. 

The BERT model has many versions, see Table 3 for more details. The Uncased versions of BERT 

model means that the text has been lower-cased before tokenization and the Cased versions means that the 

case of the text is preserved. For the sake of this research, the BERT-Base, Uncased is used. The BERT-

Base, Uncased is built out of 12 layers with 768 hidden layers, with 12 heads, and 110 M trained parameters. 

 

 

Table 3. The BERT model versions 
BERT version # Layers # Hidden # Heads # Parameters 

BERT-Large, Uncased 24 1024 16 340 M 

BERT-Large, Cased 24 1024 16 340 M 
BERT-Base, Uncased 12 768 12 110 M 

BERT-Base, Cased 12 768 12 110 M 

 

 

As shown in Figure 3, in the BERT model, the input represents a pair of sentences, which is here a 

pair of questions, in one token sequence. As shown, two questions packed together to the input token 

sequence. The first token of the sequence is a special classification token called “[CLS]”. To differentiate the 

two questions in the token sequence, a special token called “[SEP]” is used to separate them. Then, a learned 

embedding is added to every token in order to indicate whether it belongs to Question1 or Question2. The 

input embedding is denoted as “E”. The final hidden vector for the special “CLS” token is denoted as “C” 

and the final hidden vector for the ith input token is denoted as Ti. The input embeddings are represented as 

the summation of the token embeddings, the segmentation embeddings, and the position embeddings. 

 

 

 
 

Figure 3. The BERT model embedding mechanism 

 

 

As presented in Figure 4, the BERT-based model utilizes the encoder-decoder transformer 

architecture to learn the semantic similarity of the input questions. Transformers [49] implements different 

layers of multi- head self-attention with feed-forward and skipping mechanism. In contrast to traditional 

attention mechanism [50], the multi-head self-attention attends only to the input sequence of text and the 

multi-head functionality enables each layer to attend to different words within the input sequence of text. The 

positional encoding mechanism represents the input sequence order, words position within the sequence, and 

the distance between words as a vector which is then added to the embedding layer. These vectors help in 
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capturing the contextual information within the input sequence. Each self-attention layer is followed by 

residual connection represented by a normalization layer that adds the input vector of the self-attention layer 

to the output vector from the same self-attention layer helping to carry forgotten information to the next 

layer. For more information the reader is redirected to [49]. 

 

 

 
 

Figure 4. A transformer architecture of 2 stacked encoders and decoders 

 

 

4. EXPERIMENTATION AND RESULTS  

In this study, the three developed models are evaluated using the Arabic questions dataset provided 

by mawdoo3.com. These three models are XGBoost [6], Siamese neural network [7], and BERT model [8]. 

The F1 measure is used to evaluate the performance of the models. The F1 measure is the harmonic mean of 

precision and recall. 

The XGBoost classifier was trained using the pre-engineered features computed on the training 

dataset with max tree depth of 6, learning rate (eta) of 0.06, 0.04, and 0.02 for 6.000 epochs. On the other 

hand, the Siamese-based model was trained using the pre-engineered features. The shared Bi-LSTM and 

LSTM layers had 100 hidden layers and an input size of 100. The model was trained for 100 epochs with 

early stopping on the 98 epoch. The early stopping is used to avoid training overfitting is based on 

monitoring the validation loss value. Only the model with the best weights was saved and then used for 

evaluating the test dataset. We have trained the model with the following hyper-parameters: hidden=100, 

embedding size=100, batch size=512, learning rate=0.001, and number of epochs=98. 

Finally, the BERT-based model was trained for 20 epochs with data embedding size of 100, batch 

size (BS)=16, a learning rate (LR)=(2e-5-1e-5), a warm-up proportion (WP)=0.1, and number of iterations 

per loop (IPL)=(1000-250000). The model was trained on the stemmed version of the questions’ pairs 

without using the other pre-engineered features, as shown in Table 4. 

 

 

Table 4. The hyperparameters used to train the BERT-based model and their results on the test data 
BS # Epochs LR WP IPL F1-Score 

16 2 2e-5 0.1 1000 88.77% 
16 5 2e-5 0.1 10000 90.12% 

16 10 1e-5 0.1 100000 91.56% 

16 15 1e-5 0.1 150000 91.20% 
16 20 1e-5 0.1 250000 92.99% 

 

 

Table 5 shows that the BERT-based model outperforms the other two models with an F1=92.99%, 

whereas the Siamese-based model comes in the second place with F1=89.048%. Finally, the XGBoost, as a 

baseline model, achieved the lowest result of F1=86.086%. It is worth mentioning that the results we 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3519 - 3528 

3526 

obtained in this research is the best results on this dataset including our preliminary work in [9] in which the 

best model in [9] achieved F-measure of 82.61%. 

Figure 5 depicts the model accuracy on both the training and validation datasets during the training 

phase. Figure 6 shows the loss value for both the training and the validation during the model training phase. 

As depicted in both figures no model overfitting can be seen during the training phase. 

 

 

Table 5. The results obtained out of the three developed models 
Model XGBoost Siamese-based BERT-based 

F1 86.086% 89.048% 92.99% 

 

 

  
 

Figure 5. The computed accuracy of the Siamese-

based model on the training and validation datasets 

 

Figure 6. The loss values on the training and 

validation on each epoch during the Siamese-based 

training 

 

 

5. DISCUSSION  

Having a closer look to the experimentation results, it can be seen that the BERT-based model is 

outperforming the other two models in terms of F1 results with 3% higher than the Siamese-based model and 

6% higher than the XGBoost one. The results go in line with literature as the Transformers based models 

such as BERT [8], ULMFit [47], and ELMO [48] are revolutionizing the NLP research. These techniques are 

leading the developed models in many NLP tasks such as text classification and sequence-to-sequence labeling. 

In contrast to the other two developed models, the BERT-based model was able to learn the 

semantic similarity among input questions’ pairs without the need for pre-engineered features. This explains 

the power of transformers in handling NLP tasks more efficiently when compared to CNN and RNN-based 

models. Computing features can reduce the applicability of the developed model for production services. Users 

may get negative experience waiting for the model to compute the features and then classify the input text. 

Focusing on the pre-engineered features, selected features boasted the results of the developed 

models. The Siamese-based model achieved only an F1 value of 78.186% without the pre-engineered 

features (relying only on the embedding features). This indicates how powerful the features selected to train 

the models with a margin of results’ enhancement reaches 10% for the Siamese-based model. This also 

emphasizes how powerful our BERT-based model when compared to the Siamese-based model without 

features with a difference of around 15% in terms of achieved results without features. 

 

 

6. CONCLUSION AND FUTURE WORK 

This research proposes three different approaches to analyze the semantic similarity between a pair 

of Arabic questions. The first model is a supervised-machine learning model using XGBoost trained using a 

set of pre-engineered features, the second is an adapted Siamese-based deep learning recurrent architecture 

also trained using a set of pre-engineered features, and finally, a pre-trained deep bidirectional transformer 

based on BERT model. The proposed approaches were evaluated using a dataset collected by mawdoo3.com 

(see section 3.1.). The evaluation results show that the BERT-based model outperforms the other two 

proposed models with 6% of enhancement in the F1-score (see section 5). 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Using deep learning models for learning semantic text similarity of Arabic questions (Mahmoud Hammad) 

3527 

In this research, we have only considered detecting if two questions are similar or not. Detecting 

similar questions to a given question using our approach is an interesting avenue of future work. Besides that, 

we plan to enhance the BERT-based model architecture by combining the pre-engineered features to it, and 

investigate their impact on the model results. Moreover, we are planning to extract features from the BERT 

model and feed them to other machine learning approaches utilizing the flexible architecture of an encoder- 

decoder architecture in a transfer learning mechanism. 
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