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 Melanoma, the most serious type of skin cancer, forms in cells (melanocytes) 

that produce melanin, the pigment that gives color to the skin. There are low-

income regions that lack specialized dermatologists, causing skin cancer to 

be diagnosed in advanced stages. In Peru, in high Andean communities with 

low resources, the problem is aggravated by the high incidence of ultraviolet 

radiation and lack of medical resources to make the diagnosis. Normally, 

mole images are obtained from dermatoscopes. The present work seeks to 

use mole images obtained from smartphones to make the classification of 

them as suspected or not suspected of being melanoma, by means of a feature 

extraction algorithm. The first step is to make color and lighting corrections. 

After this, the image is segmented using the K-Means algorithm, and we 

obtain the areas of the mole and skin. With the segmented mole we proceed 

to extract the main visual characteristics and then use classification 

algorithms such as support vector machine (SVM), random forest and naïve 

bayes, which obtained an accuracy of 0.9473, 0.7368 and 0.6842, 

respectively. These results show that it is possible to use images obtained 

from smartphones to develop a classification algorithm with 94.73% 

accuracy to detect melanoma in skin moles. 
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1. INTRODUCTION 

Skin diseases are the fourth leading cause of the global disease burden, affecting 30-70% of 

individuals and prevailing in all geographical regions and age groups [1]. The most common form of cancer 

in the United States is skin cancer, with about 5 million cases occurring annually [2-4]. Melanoma is the most 

dangerous type of skin cancer, causing more than 9.000 deaths per year [2, 3]. Although most melanomas are 

first discovered by patients [5], the diagnostic accuracy of unaided expert visual inspection is only 60% [6]. 

Melanoma is a cancer of the melanocytes and can develop as a new mole, or as part of a pre-existing 

mole [7]. According to the American Cancer Society, melanoma is less common than some other types of 

skin cancer, although it is more likely to grow and spread [8]. However, if detected in its early stage it can be 

treated effectively. For this reason, it is important to recognize the warning signs to watch for. ABCDE 

screening, according to Rigel [9] for early detection of this type of cancer, is a simple skin inspection method 

that allows the first signs to be determined so that one knows when to go to the dermatologist. This method, 

according to the American Academy of Dermatology, consists of checking the mole, with A being for 

https://creativecommons.org/licenses/by-sa/4.0/
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asymmetry, B for the observation of borders, C for color, D for diameter and finally E for the evolution of the 

mole over time. 

In this context, new algorithms have been developed in artificial intelligence for the classification of 

images [10], which have been applied to identify different diseases in the skin. These techniques are applied 

to dermatoscopic images [11, 12], which have high resolution and detail. L. Yu et al. in [13], developed a 

two-part algorithm; the first part is segmentation of the dermoscopic image and the second is classification. 

The first part uses a fully convolutional neural network (FCRN) for precise segmentation of skin lesions, and 

further enhances its capabilities by incorporating a multi-scale contextual information integration scheme and 

the second part uses a classification network. They processed 900 training and 350 test images, and obtained 

a 0.799 accuracy and a 0.844 segmentation Jaccard index.  

Nasr-Esfahani et al. in [14], expose a classification algorithm using a data pre-processing, enhanced 

images are fed into a pre-trained convolutional neural network (CNN), which is a member of deep learning 

models. The CNN classifier, which is trained by a large number of samples, distinguishes between melanoma 

and benign cases. For 6120 images they obtain a sensitivity of 0.82, a specificity of 0.87 and an accuracy of 

0.81. 

In addition to the deep learning techniques, it is also possible to extract useful features from the 

images and use machine learning algorithms to perform the classification, in Mustafa et al. [15] it is based on 

the ABCDE features of the moles to perform the characterization of the images and in the end it uses an 

SVM classifier for the identification of the melanoma obtaining an accuracy of 86.67%. 

In Murugan et al. [16], they compare classification algorithms for the detection of skin cancer. The 

algorithms used are SVM, random forest and kNN classifier. For feature extraction they are also based on the 

ABCD rule, obtaining an accuracy of 89.43%, 76.87% and 69.54% for SVM, random forest and kNN 

classifiers respectively. 

Arasi [17] proposes to use naive bayesian and decision tree techniques for the classification of 

images obtained from a dermatoscope, and to identify melanoma. This technique is also based on the use of 

the ABCD rule. Using only the texture characteristics in the analysis of the images, 84.5% accuracy is 

obtained when using the naive bayes classifier and 77.4% when using decision tree. 

In all the works cited above, images obtained from a dermatoscope have been used to make the 

identification of melanoma in the skin. In this work we propose the possibility of using other sources of 

images, in particular we will use images obtained from smartphones, which have been captured by nurses in 

health centers in Peru. With this dataset we propose to extract characteristics of the mole based on the ABCD 

rule and use machine learning techniques such as SVM, random forest and naive bayes to make the 

identification of the melanoma. Machine learning was chosen instead of deep learning because in the articles 

cited it is concluded that its accuracy is similar to the deep learning methods and also has less computational 

load when processing. 

 

 

2. RESEARCH METHOD 

In this article we propose an algorithm to obtain the characteristics according to ABCD of a skin 

mole, in order to determine whether this mole is suspected of being a melanoma or not. As can be seen, the 

evolution of the mole over time is not taken into account. The block diagram of the proposed algorithm is 

shown in Figure 1.  

 

 

 
 

Figure 1. Block diagram of the proposed algorithm 

 

 

2.1.  Acquisition of the images 

The images of the moles were captured with smartphones that were available at the health centers, the 

models were: Samsung S7 (resolution 12 MP), Samsung S6 (resolution 16 MP), ZTE Blade (resolution 15.9 MP) 

and LG K10 (resolution 13 MP). In each image a marker is added that has a size of 25x15 mm as shown in 
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Figure 2. All the images were acquired during the development of the MELap project that had a duration of 

24 months during the years 2017 and 2018, carried out by the Universidad Peruana Cayetano Heredia. These 

images were obtained from 15 centers in which dermatological consultations are performed, located in 

Huancavelica, Arequipa, Tacna, Callao, Lima [18]. 

 

 

 
 

Figure 2. Initial image of the mole with marker 

 

 

2.2.  Selection of the area of interest 

Because the entire image does not need to be processed, the area of interest in the image obtained 

initially, including the marker, is selected and then a perspective correction is performed [19]. A bilinear 

transformation is applied to the image to make the correction. Let A be the original color image and select 4 

coordinates (𝑥1𝑎, 𝑦1𝑎), (𝑥2𝑎, 𝑦2𝑎), (𝑥3𝑎, 𝑦3𝑎) , (𝑥4𝑎 , 𝑦4𝑎), as shown in Figure 3(a). 

 

 

 
 (a) 

 
(b) 

 

Figure 3. Selection of the area: (a) Selection of the 4 points on the picture, (b) Image after transformation size 

300x300 pixels 

 

 

To the selected coordinates, the change of perspective is applied and 4 new coordinates are obtained 

(𝑥1𝑟 , 𝑦1𝑟), (𝑥2𝑟 , 𝑦2𝑟), (𝑥3𝑟 , 𝑦3𝑟) , (𝑥4𝑟 , 𝑦4𝑟) in the resulting picture R, as shown in Figure 3(b). In order to 

perform the perspective correction [19], a transformation matrix of 4x2 is defined, which transforms the 

coordinates of the original image and obtains the new desired coordinates as defined in (1). 

 

[
𝑥𝑖𝑟

𝑦𝑖𝑟
] = [

𝑐11 𝑐12 𝑐13 𝑐14

𝑐21 𝑐22 𝑐23 𝑐24
] ∙ [

𝑥𝑖𝑎

𝑦𝑖𝑎

𝑥𝑖𝑎 ∙ 𝑦𝑖𝑎

1

] (1) 

 

where 𝑖 = 1,2,3,4, indicates each of the four coordinates. 

The transformation matrix has 8 unknowns to solve that would be 𝑐11, 𝑐12, 𝑐13, 𝑐14, 𝑐21, 𝑐22, 𝑐23, 𝑐24 

and each pair of points produces 2 equations, so selecting 4 points on the image is enough to solve the 

equation. To the obtained image 𝑅 that has a dimension of 300x300 pixels, another correction of perspective 

is made having as reference the squares that have the marker that was added to the image. It is known that 

each square measures 3𝑥3 mm, Figure 4(a) shows the image with that marker. The equivalence made is  

1 mm equal to 20 pixels and using this correspondence the size of the final image is calculated using (2) and 

(3), obtaining the image 𝑅𝐴 that has a dimension of 𝑇𝑥 × 𝑇𝑦 pixels, shown in Figure 4(b). 
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𝑇𝑥 =
20∙3∙300

∆𝑥
 (2) 

 

𝑇𝑦 =
20∙3∙300

∆𝑦
 (3) 

 

 

 
(a) 

 
(b) 

 

Figure 4. Transformed with the equivalence of 1mm equal to 20 pixels; (a) 𝑅 image,  

(b) 𝑅𝐴 image of size 𝑇𝑥 × 𝑇𝑦 

 

 

2.3.  Image enhancement 

At this stage, an image intensity level correction is performed [20], because when the image is 

obtained, it may have different levels of illumination, which is not uniform. The marker in the image is used 

for this correction, as the black square will represent intensity level 0 and the white square in the marker will 

represent intensity level 255. 

 

𝐼 =
(𝑅𝐴−𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑖𝑛)∙255

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑎𝑥
 (4) 

 

where, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑖𝑛  and  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑎𝑥, are the intensity of the black marker of the image and the intensity 

of the white marker of the image 𝑅𝐴 respectively. Since when applying (4) the resulting image 𝐼 can have 

intensities greater than 255 or less than zero, an adjustment is made by applying (5) and the final corrected 

image 𝐼𝐶  is obtained. 

 

𝐼𝐶 = {
255 , 𝐼 > 255

𝐼 , 0 ≤ 𝐼 ≤ 255
0 , 𝐼 < 0

 (5) 

 

In Figure 5(a), the image 𝑅𝐴 is shown and in Figure 5(b) the enhanced image 𝐼𝐶  is shown. This 

lighting correction process is important to extract the characteristics of the mole correctly. The image is then 

cropped to just have the mole, without the initial marker. The resulting image 𝐼𝑅 is shown in Figure 6. 

 

 

 
(a) 

 
(b) 

 

Figure 5. Image enhancement process, (a) R image 

and (b) corrected image 𝐼𝐶  

 
(a) 

 
(b) 

 

Figure 6. Image cropping process, (a) input image 𝐼𝐶  

(b) cropped image 𝐼𝑅 
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2.4.  Segmentation 

To the 𝐼𝑅 image, the segmentation is made by means of the iterative K-Means grouping method [21], 

which consists of grouping each pixel according to the smallest distance d, from its centroid 𝑐𝑘, and then 

recalculating its centroid, this process is repeated until the difference of the centroids is less than 0.001. The 

flowchart of the K-means segmentation is shown in Figure 7. For this segmentation 2 classes were defined, 

one class for the mole and one class for the skin. Therefore, the value of k can be, 𝑘 = 1, 2; which results in 

the image 𝐼𝐾  shown in Figure 8.  

 

 

 
 

Figure 7. K-mean segmentation flowchart 

 

 

 
 

Figure 8. Image 𝐼𝐾  showing the 2 classes (two colors) 

 

 

To have the two regions, you assign the value of 1, to the pixels that belong to the mole group; and 

you assign 0 to the pixels that belong to the skin group. This is assigned in (6), resulting in the 𝐼𝑆 image, 

shown in Figure 9(a). 

 

𝐼𝑆 = {

0 , 𝐼𝐾 == 𝑠𝑘𝑖𝑛 𝑐𝑙𝑎𝑠𝑠

1 , 𝐼𝐾 == 𝑠𝑘𝑖𝑛 𝑚𝑜𝑙𝑒 𝑐𝑙𝑎𝑠𝑠
 (6) 

 

Once the segmentation in the 𝐼𝑆 image is obtained with the K-Means algorithm, morphological 

operations are applied to correct, eliminate imperfections and close possible holes. This process is performed 

in (7), (8), (9) and (10). 

 

𝐼𝐺1 = (𝐼𝑆⨁𝐾) ⊖ 𝐾 (7) 

 

𝐼𝐺2 = (𝐼𝐺1⨁𝐾) ⊖ 𝐾 (8) 

 

𝐼𝐺3 = (𝐼𝐺2⨁𝐾) ⊖ 𝐾 (9) 

 

𝐼𝐵 = (𝐼𝐺3⨁𝐾) ⊖ 𝐾 (10) 

 

where, 𝐾 is the structural element shown in (11). Figure 9(b) shows the obtained image 𝐼𝐵. 

 

𝐾 = [
0 1 0
1 1 1
0 1 0

] (11) 
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(a) 

 
(b) 

 

Figure 9. Segmentation result: (a) Image 𝐼𝑆, (b) Image 𝐼𝐵 

 

 

Obtaining the 𝐼𝐵 image, it will serve as a mask to be able to segment the object of interest, which is 

the mole, this is obtained from the 𝐼𝑅 image, this is done by applying (12). The resulting 𝐼𝐹  image is shown in 

Figure 10(c). 

 

𝐼𝐹 = 𝐼𝑅 ∙ 𝐼𝐵 (12) 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 10. Mole segmentation: (a) The image 𝐼𝑅 (b) the image 𝐼𝐵 and (c) the segmented mole in the image 𝐼𝐹  

 

 

2.5.  Feature extraction 

The proposal made for the analysis of the mole is the extraction of characteristics according to the 

ABCD method used by the dermatologist for the classification of suspected or non-suspected melanoma. The 

𝐼𝐹  image of the segmented mole is the image used to perform the feature extraction. The asymmetry will be 

obtained, then the irregularity of the edges, color and finally the diameter. 

 

2.5.1. Asymmetry 

To obtain this characteristic, first the shape of the mole is approximated to an ellipse [22] as shown 

in Figure 11(a). Once the approximation is obtained, the main axes of the ellipse and the quadrilateral that 

circumscribes the ellipse are located as shown in Figure 11(b). After this, the image is rotated by taking the 

circumscribed quadrilateral as shown in Figure 11(c) and finally the image of the mole is cut into four equal 

parts as shown in Figure 11(d).  

For the analysis of the asymmetry a similarity comparison is made of the 4 sub-images obtained 

from the division of the 𝐼𝐹  image, having the upper right side image defined as 𝐹𝑅𝑈, the upper left side image 

defined as 𝐹𝐿𝑈, the lower right side image defined as 𝐹𝑅𝐷 and the lower left side image defined as 𝐹𝐿𝐷. These 

images are shown in Figure 11(d). To analyse the similarity, the logical operation of OR-EXCLUSIVE is 

performed by applying (13) to each sub-image with its side and bottom and top sides as appropriate. 

 
𝐶1 = 𝐹𝐿𝑈 ⊕ 𝐹𝑅𝑈

𝐶2 = 𝐹𝐿𝑈 ⊕ 𝐹𝐿𝐷

𝐶3 = 𝐹𝑅𝐷 ⊕ 𝐹𝑅𝑈

𝐶4 = 𝐹𝑅𝐷 ⊕ 𝐹𝐿𝐷

 (13) 

 

The images resulting from this operation are 𝐶1, 𝐶2, 𝐶3, y 𝐶4 ; which are the differences that exist 

between each of the sub-images as shown in Figure 12. From each of these images its area of difference is 

obtained by adding the number of pixels and dividing by 𝑁, which represents the total size of the image, 
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according to (14). These differentiation values will also be used for edge analysis. From the asymmetry 

analysis, 4 descriptors will be obtained. 

 

𝑃𝑑𝑖𝑓 =
1

𝑁
∑ ∑ 𝐶𝑖(𝑥, 𝑦)𝑦𝑥  (14) 

 

where 𝑖 = 1,2,3,4, indicates each of the four sub images. 

 

 

 
(a) 

 
(b) 

 
(c) 

  

  

(d) 

 

Figure 11. Analysis of the asymmetry: (a) Approximation of the shape to an ellipse, (b) Main axes and 

quadrilateral circumscribing the ellipse, (c) Image of the rotated mole according to the circumscribing 

quadrilateral, (d) the four sub-images, upper left side 𝐹𝐿𝑈, upper right side 𝐹𝑅𝑈, lower left side 𝐹𝐿𝐷 and lower 

right side 𝐹𝑅𝐷 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 12. Asymmetry result: (a) 𝐶1, image differentiates between 𝐹𝐿𝑈 and 𝐹𝑅𝑈, (b) 𝐶2, image differentiates 

between 𝐹𝐿𝑈 and 𝐹𝐿𝐷 (c) 𝐶3, image differentiates between 𝐹𝑅𝐷 and 𝐹𝑅𝑈, (d) 𝐶4, image differentiates between 

𝐹𝑅𝐷 and 𝐹𝐿𝐷 

 

 

2.5.2. Border 

The second characteristic obtained is the irregularity of the edges that could exist, for this we 

analyze the edge of the mole. The same procedure as Sancen-Plaza et al. in [23] is followed with the area 

obtained in the process of application (10) shown in Figure 10(b). From this process, 9 descriptors of the 

degree of irregularity of the border are obtained, according to Santiago-Montero et al. [24]. 

 

2.5.3. Color 

We obtain the mean and variance of each of the color components that make up the images 𝐹𝑅𝑈, 

𝐹𝐿𝑈, 𝐹𝑅𝐷 y 𝐹𝐿𝐷 in the RGB, HSV, La*b* and YCrCb color models. Each of the mean and variance values 

obtained in each sub-image is subtracted with those of the other sub-images in each color model, according to 

(17) and (18). In (15) is shown the way to calculate the mean 𝐸 for each of the components where 𝑔𝑙𝑚 

represents the value of each pixel, e l and m are the rows and columns respectively, 𝑁 the total number of 

pixels and in (16) is shown the standard deviation 𝜎 for each of the components.  

 

𝐸 = ∑ ∑
1

𝑁
𝑔𝑙𝑚𝑚𝑙  (15) 

 

𝜎 = √
1

𝑁
∑ ∑ (𝑔𝑙𝑚 − 𝐸)2

𝑚𝑙  (16) 
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𝐸1𝑑𝑖𝑓 = 𝐸𝑅𝑈 − 𝐸𝐿𝑈          𝐸4𝑑𝑖𝑓 = 𝐸𝐿𝑈 − 𝐸𝑅𝐷  

𝐸2𝑑𝑖𝑓 = 𝐸𝑅𝑈 − 𝐸𝑅𝐷          𝐸5𝑑𝑖𝑓 = 𝐸𝐿𝑈 − 𝐸𝐿𝐷  

𝐸3𝑑𝑖𝑓 = 𝐸𝑅𝑈 − 𝐸𝐿𝐷          𝐸6𝑑𝑖𝑓 = 𝐸𝑅𝐷 − 𝐸𝐿𝐷 (17) 

 

𝜎1𝑑𝑖𝑓 = 𝜎𝑅𝑈 − 𝜎𝐿𝑈          𝜎4𝑑𝑖𝑓 = 𝜎𝐿𝑈 − 𝜎𝑅𝐷  

𝜎2𝑑𝑖𝑓 = 𝜎𝑅𝑈 − 𝜎𝑅𝐷          𝜎5𝑑𝑖𝑓 = 𝜎𝐿𝑈 − 𝜎𝐿𝐷 

𝜎3𝑑𝑖𝑓 = 𝜎𝑅𝑈 − 𝜎𝐿𝐷          𝜎6𝑑𝑖𝑓 = 𝜎𝑅𝐷 − 𝜎𝐿𝐷 (18) 

 

where 𝑖 = 1,2,3,4, indicates each of the four sub images. 

With the mean and variance in each of the color models we have 12 descriptors that when applied to 

the 4 models makes a total of 48 descriptors. Additionally, Haralick's textural parameters are used as color 

characteristics in the RGB color model. According to [25], 14 second order statistical variables are 

calculated, which describe properties such as contrast, energy, entropy, local uniformity, maximum 

probability, hue, importance, and correlation to the 𝐼𝐹  image. Finally, for the color characteristic there are a 

total of 62 descriptors. 

 

2.5.4. Diameter 

From the image 𝐼𝐵, we obtain the longest straight distance [26], for this we obtain the distance 

between each of the points of the edge according to (17) where 𝑝𝑠 and 𝑝𝑞 represent any two points of the 

edge with coordinates (𝑥𝑠, 𝑦𝑠) and (𝑥𝑞 , 𝑦𝑞) respectively, then we compare the 𝑇 distances that the edge of the 

image could have to find the longest distance according to (18), this value represents the diameter of the mole 

as shown in Figure 13. This distance is obtained in pixels and divided by 20, because 20 pixels is the 

equivalent of 1mm, which was obtained using the marker as a reference. In addition, the area is obtained by 

applying (19) in pixels of the object in the image 𝐼𝐵(𝑥, 𝑦) and making the equivalence of 1 𝑚𝑚2 equivalent 

to 400 pixels.  

 

 

 
 

Figure 13. Image 𝐼𝐵 showing the diameter of the mole 

 

 

𝑑𝑖𝑠𝑡(𝑝𝑠, 𝑝𝑞) =  √(𝑥𝑠 − 𝑥𝑞)
2

+ (𝑦𝑠 − 𝑦𝑞)
2
 (17) 

 

𝑑𝑖𝑎𝑚 = max [𝑑𝑖𝑠𝑡(𝑝𝑠, 𝑝𝑞)
1

, 𝑑𝑖𝑠𝑡(𝑝𝑠, 𝑝𝑞)
2

, … , 𝑑𝑖𝑠𝑡(𝑝𝑠 , 𝑝𝑞)
𝑇

 ] (18) 

 

𝑎𝑟𝑒𝑎 = ∑ ∑ 𝐼𝐵𝑦𝑥  (19) 

 

where 𝑥 and 𝑦 indicate the coordinate of the pixels that make up the image. Likewise, according to [27], the 

moments invariant to the transformations are used, which are desirable characteristics to recognize the 

objects more easily. Thus, the 7 Hu moments of the image 𝐼𝐵 are obtained invariant to translation, scaling and 

rotation. Finally, in this section, 9 descriptors are obtained, 2 belonging to the diameter and area and 7 to the 

moments of Hu. 

 

2.5.5. Metadata 

In addition to the characteristics obtained by image processing, data collected by the people in 

charge of taking the images in the health centers will also be used for the classifier. This information 
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corresponds to the person's age, how long the mole has been there at the time the image was obtained, 

whether there has been any discomfort, the location of the mole (head, trunk, extremities, palms) and whether 

there have been any recent changes in the mole. In Table 1, the metadata being used and their respective 

values corresponding to each of the 10 elements are shown. 

 

 

Table 1. Values of the metadata 
Time: 
Birth 

Time: 
1 year 

Time: 
2-3 years 

Time: 
4 + years 

Pain 
Location: 

Head 
Location: 

extremities 
Location: 

Palms 
Location: 

Chest 
Recent 
changes 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

1: Yes 

0: No 

 

 

2.5.6. Classifiers 

According to [16, 28], the support vector machine (SVM) are supervised learning models, which 

means that the sample data must be labeled, and can be applied to almost any type of data. It is basically 

based on the concept of decision planes that separate classes with a hyperplane. 

The size of the SVM input vector is 94 and corresponds to the 94 characteristics obtained. In the 

training phase, the classifier model was built using the cross-validation procedure to find the optimization 

parameters of the hyperplane to avoid bias with overfitting. 

Another classification method used is random forest [17, 29]. In Random Forest, several decision 

trees are built, instead of just one at the time of training. To classify a new object based on attributes, each 

decision tree gives a classification and finally the mode of the classes is taken is the output of our classifier. 

As in the case of SVM, the size of the input vector for random forest is 94 and corresponds to the 94 

characteristics obtained. Finally, Naïve Bayes is a probabilistic classifier [18, 30] that uses Bayes' rule 

together with a strong assumption that the features are conditionally independent. In this way this classifier 

can be trained in a supervised way very efficiently, because the number of parameters needed are linear with 

respect to the number of features of the classes. 

 

 

3. RESULTS AND ANALYSIS  

The dataset consists of 95 photographs of moles taken with a smartphone, by technical personnel in 

different health centers. In addition, all images have a marker on the side of the mole. In Figures 14 and 15, 

the results of the mole segmentation process are shown. The result image will be the one that will be 

analyzed to obtain its characteristics. For the processing and analysis of the images we use the Python 

programming language, and the OpenCV and scikit-learn libraries. 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 14. Mole segmentation process (a) The 

original image of the mole, (b) the binary image,  

(c) the segmented mole 

 
(a) 

 
(b) 

 
(c) 

 

Figure 15. Mole segmentation process (a) the 

original image of the mole, (b) the binary image,  

(c) the segmented mole 

 

 

Of the 95 images processed, 80% of the images are used for training and 20% for the test. The 

results for the training images, 76 images, can be seen in the confusion matrix in Table 2, where an accuracy 

of 0.9473, sensitivity of 0.8571 and specificity of 1.0 were obtained. In this case, SVM was used to perform 

the classification. For the test process, 19 images were used, of which 8 were Not Suspect and 11 Suspect. The 

accuracy for these data was 0.9473, a sensitivity of 0.909 and a specificity of 1.0. This is shown in Table 2. 

Then using another classification method, in this case Random Forest, an accuracy of 0.9868, 

sensitivity of 0.9668 and specificity of 1.0 was obtained for the training data, showing in Table 3 their 

respective confounding matrix. And using the same method for the test data, 0.7368 precision was obtained, 

with a sensitivity of 0.5454 and a specificity of 1.0, shown in Table 3. Using the last classification method, in 
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this case Naive Bayes, an accuracy of 0.7763, sensitivity of 0.7763 and specificity of 0.9166, was obtained for the 

training data, showing in Table 4 its respective confusion matrix. And using the same method for the test 

data, 0.6842 precision was obtained, with a sensitivity of 0.6363 and a specificity of 0.75, shown in Table 4. 

 

 

Table 2. Confusion matrix SVM train and test 
  Predicted label (Train) Predicted label (Test) 

  Not suspicious Suspicious Not suspicious Suspicious 
T

ru
e 

L
ab

el
 

Not suspicious 48 0 8 0 

Suspicious 4 24 1 10 

 

 

Table 3. Confusion matrix random forest train and test 
  Predicted label (Train) Predicted label (Test) 

  Not suspicious Suspicious Not suspicious Suspicious 

T
ru

e 

L
ab

el
 

Not suspicious 48 0 8 0 

Suspicious 1 27 5 6 

 

 

Table 4. Confusion matrix Naïve Bayes train and test 
  Predicted label (Train) Predicted label (Test) 
  Not suspicious Suspicious Not suspicious Suspicious 

T
ru

e 

L
ab

el
 

Not suspicious 44 4 6 2 

Suspicious 13 15 4 7 

 

 

Tables 5 and 6 show the accuracy, sensitivity, and specificity metrics for the different classifiers. 

Sensitivity indicates the ability of our estimator to identify positive cases and specificity indicates the ability 

of the estimator to identify negative cases. We observe that specificity values are higher than sensitivity 

values, so our classifier is better at ruling out the possibility of having melanoma. 

 

 

Table 5. The performance of classificatory in train 
Metric SVM Random Forest Naïve Bayes 

Accuracy  0.9473 0.9868 0.7763 
Sensitivity  0.8571 0.9642 0.5357 
Specificity 1.0000 1.0000 0.9166 

 

 

Table 6. The performance of classificatory in test 
Metric SVM Random Forest Naïve Bayes 

Accuracy  0.9473 0.7368 0.6842 
Sensitivity  0.9090 0.5454 0.6363 
Specificity 1.0000 1.0000 0.7500 

 

 

4. CONCLUSION 

With the training images, for each of the methods, shown in Table 5, we can see that SVM has 

0.9473 accuracy compared to random forest that obtains 0.9868, however, for the test images shown in Table 

6, the one that obtains better accuracy is SVM with 0.9473 unlike random forest that falls to 0.7368. In 

addition, the sensitivity for the first classifier is 0.909 which is a big difference to random forest which gets 

0.5454. In conclusion, SVM can be taken as the best classifier, even though in training it gave a lower result, 

in the test data its performance was maintained. 

Comparing our results with works that use machine learning techniques as in the cases of Mustafa et 

al., which obtains 0.8667 and in Murugan et al., obtains 0.8943 using in both cases SVM, we can observe 

that our results using the same technique are 0.9473. These results support our hypothesis that by using 

images from different sources to a dermatoscope it is also possible to make the identification of melanoma 

with great inference power. 
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In addition, in one of the latest articles using technology assistance to identify skin diseases, such as 

Liu et al., show that the maximum accuracy obtained by their deep learning based algorithm with 

dermatoscopic images was 0.90, and in our case it was 0.94 using images taken by smartphones, the results 

obtained in both studies are similar so it can be concluded that the proposed method of using feature 

extraction using digital image processing of skin lesions is an effective approach to identify the presence of 

malignant skin lesions, besides not requiring as many computer resources as it does a deep learning based one. For 

future work we intend to make use of telemedicine to be able to use our algorithm in populations that do not 

have access to medical consultations, thus improving health in vulnerable places. We also want to increase 

our database to be able to have more diversity of samples and to be able to improve our results. 
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