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Abstract

Recent U.S. Air Force Research Laboratory strategy documents have suggested 

the need for research in human-agent teaming. Teaming supports a dynamic shift in roles 

between the human and the agent, depending upon human performance and mission 

needs. Further, because the performance of these agents will be highly dependent upon 

the state of the human and the mission, this strategy suggests the need for increased use 

of modeling to provide a broader understanding of the automated agents’ behavior.  This 

thesis applies a combination of static modeling in SysML activity diagrams, dynamic 

modeling of human and agent behavior in IMPRINT, and human experimentation in a 

dynamic, event-driven environment.  The dynamic models and human experiments are 

used to understand the effects of agent delay time on human behavior, performance, and 

workload, as well as team dynamics. The models and experiments illustrate that agent 

delay time has a significant effect upon team behavior, performance, and the roles 

assumed by the human and agent.  Therefore, it is proposed that the consequences of 

agent timing are significant in the context of human agent teaming and that models, 

which incorporate the human and agent within a common modeling environment, can be 

useful in understanding this effect.  
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UNDERSTANDING EFFECTS OF AUTONOMOUS AGENT TIMING ON 
HUMAN-AGENT TEAMS USING ITERATIVE MODELING, SIMULATION 

AND HUMAN-IN-THE LOOP EXPERIMENTATION 

I.  Introduction 

General Issue 

Autonomous systems have provided a significant impact on modern warfare. This 

can be observed in the recent advancement of systems such as Unmanned Aerial and 

Ground Vehicles. According to the Department of Defense (DoD), “autonomy is a 

capability (or set of capabilities) that enables a particular action of a system to be 

automatic or, within programmed boundaries, ‘self-governing’ ” (The role of autonomy in 

DoD Systems, 2012). The purpose of autonomous systems is not to replace humans in 

military systems, but to complement human ability to improve system performance.  

Autonomy has the potential to impact several domains within the Air Force, including 

manned and unmanned aircraft, space, cyber, intelligence, surveillance, and many more 

operations. The benefits autonomy can provide to the Air Force include: 

Increasing range and speed of operations

Reducing unnecessary manual labor and reducing system manning costs 

Reducing the time required to conduct time-critical operations 

Providing increased levels of operational reliability, persistence and resilience 

Removing the human operator from harm’s way (M.R. Endsley, 2015; The 

role of autonomy in DoD Systems, 2012). 
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As the use and sophistication of autonomy increases, the presence of human 

interaction will still be necessary (The role of autonomy in DoD Systems, 2012). 

Developing autonomous systems introduces new levels of complexity and opportunity for 

failures, bugs and vulnerabilities. When these systems leave the development and testing 

environment and are introduced into a real, wartime environment, the systems may 

encounter situations that the developers never considered (M.R. Endsley, 2015). 

Therefore, it is believed that the development of autonomy will not result in the exclusion 

of human presence, but rather future operations will require human and autonomy 

collaboration to achieve mission success.  

The role of the autonomous system is evolving from a tool, simply providing aid, 

to a fully functional teammate that engages and interacts with the human operator. The 

Air Force has recognized the evolution of autonomy and has put an emphasis on teaming 

to approach humans and autonomy working together (M.R. Endsley, 2015). The 

fundamental aspect of teaming is that humans and autonomy will “interchange initiative 

and roles across mission phases to adapt to new events, disruptions and opportunities as 

situations evolve” (The role of autonomy in DoD Systems, 2012).  

This dynamic relationship between humans and automated systems has not been 

fully realized in current systems due to numerous challenges associated with autonomous 

system development. Two specific challenges are addressed in this research. An 

anticipated difficulty in system design is a similar issue that has been experienced in 

previous development of automated systems. Automation and automatic capabilities are 

designed with the intent of assisting the operator, but to some extent systems have caused 
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adverse effects towards human workload and situation awareness (M.R. Endsley, 2015). 

Another challenge within autonomous system design is the ability to properly test and 

evaluate the system. As the potential actions conducted by the autonomy expands within 

a dynamic environment, traditional methods of test and evaluation are inefficient and 

impractical.  

 The ability to effectively use automation in past operations was hindered by 

several factors including reduced human situation awareness and undesirable workload 

levels. It has been suggested that these similar issues may arise in autonomous systems as 

well (M.R. Endsley, 2015). Maintaining proper levels of situation awareness is essential 

for the human to ensure the autonomy is operating properly and responding to situations 

as desired. When people supervise automation, it can be easy for the human to become 

“out-of-the-loop”, in which case, they can become slow to detect and diagnose a problem 

(Endsley and Kaber, 1999). Another challenge presented by autonomy is managing 

workload levels for the human. Low workload levels, which may arise from tasks such as 

monitoring automation, may cause the operator to become complacent and “out-of-the-

loop”. High workload levels result in strain upon the operator. They are unsustainable for 

extended periods of time and are likely to result in errors or omissions as the human in 

unable to respond appropriately. Roles, responsibilities, and tasks should be allocated 

between the human and autonomy to sustain the operator’s awareness and manage their 

workload levels.  

 One aspect of autonomous system design that may have considerable impact on 

team member roles and initiative, as well as human situation awareness and workload, is 
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the autonomy’s task timing. The timing of task execution in highly dynamic, event-driven 

domains is assumed to influence the performance and behavior of the team. Considering 

that automated systems have the potential to respond much faster than their human 

counterparts, it is posited that their response time can affect task responsibility. If the 

autonomy’s response time is too quick, the human operator may assume a supervisory 

role as the automation will always respond to an event faster than its human counterpart 

is capable of responding.  If its response is excessively delayed, the automation will be 

incapable of a timely response and the human is likely to assume responsibility for the 

event and attempt to respond before the automation. However, the proper timing and 

changes in the behavior of human team members as a function of automation response 

time is not apparent in the literature. The influence of task timing within the range of the 

two extreme times, too quick or too slow, is uncertain, yet potentially significant to 

understanding human and autonomy interactions.    

 The Air Force Research Laboratory has identified enduring problems regarding 

autonomous system development (Clark, Kearns, & Overholt, 2014). In addition to issues 

in human autonomy teaming, another enduring problem is the proper testing, evaluation, 

verification, and validation of the system. This issue arises as the range of actions that 

could potentially be performed by autonomy is exponentially greater than previous 

automation systems, which do not significantly adapt their response to environmental 

stimulus. As autonomy’s software is adaptive and learns to respond to a large range of 

environmental conditions, autonomy has several potential outputs per input it receives. 

Traditional methods of test and evaluation involved placing the automation into a scripted 
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scenario and observing how it responds. It is not feasible to perform this same style of 

testing as the space of autonomous actions cannot be “exhaustively searched, examined 

or tested” (Clark et al., 2014). Inserting these systems into unpredictable and unknown 

environments compounds this problem. Therefore, there is great uncertainty in the 

consequences of the behavior of the system and its interactions with the human operator.  

 The vision that has been proposed to address this issue relies upon modeling and 

simulations to understand autonomous systems and the consequences of their actions 

(Clark et al., 2014). Identifying effective methods of reusing test and evaluation results 

has been a challenge. Modeling and simulation provides the developers the opportunity to 

efficiently examine expected responses from the system in a wide range of environments. 

Through iterative, continuous and evolutionary modeling and simulation, it may be 

possible to evaluate a greater range of autonomy responses and actions. In autonomous 

systems that adapt the human’s task environment, developers may be able to understand 

human autonomy interactions and the effects of system design on human behavior, 

workload, situation awareness and performance through the use of models which include 

human and automation behavior.  

 Overall, this thesis examines the effects of an autonomous agent’s task timing on 

the distribution of roles and responsibilities within the human agent team, as well as the 

effects of this variable on human behavior and workload. The human behavior that 

typically results from automation executing actions too soon or too late is fairly 

understood. However, research is lacking as to the effects of autonomy’s timing of 

execution within that timeframe. To examine the effects of autonomy task timing, 



14 

 

research is conducted using modeling and simulation techniques, in alignment with 

AFRL’s vision for autonomy testing and evaluation.  

Problem Statement 

 This thesis addresses a primary and secondary problem in the field of human 

agent interaction. The main problem is the uncertainty of the effects of agent task timing 

on human autonomy teaming. This research seeks to understand the effect of agent’s 

timing on team roles, responsibilities, and performance, as well as, the change in human 

behavior and workload. The secondary problem is developing an approach to modeling 

and simulation that contributes to AFRL’s goal of establishing effective autonomy design 

methods using progressive sequential modeling, simulation, test and evaluation.   

Research Objectives 

The task force report by the DoD refers to the human autonomy team and a need 

to understand team dynamics (The role of autonomy in DoD Systems, 2012). A 

significant aspect of team dynamics is the dynamic allocation of roles and responsibility 

amongst team members. It appears that the agent’s task timing, as a contributing 

teammate, may have significant effects on human behavior and team performance. 

However, there is uncertainty in how agent’s timing, within the context of teaming in a 

changing environment, affects team dynamics as well as, human behavior and workload. 

Therefore, the primary objective within this research is to assess the human agent team 

and the effects of agent timing.  
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Model Based Systems Engineering (MBSE) is often used to help developers 

perceive and understand a system in the conceptual phases of a system’s lifecycle. The 

use of models and simulations early in the product lifecycle can provide a cost effective 

method to understand and influence several aspects of the project including budgeting, 

scheduling, requirements, construction, and operational capabilities of the system.  

Therefore, it is critical to establish accurate representations of the system when 

incorporating MBSE in a design process. With the integration of autonomous systems 

into military operations being relatively new, modeling guidelines and principles are 

limited. The secondary objective of this research is to understand the considerations and 

requirements needed to properly model interaction between the human and autonomous 

agent.  

Investigative Questions 

Understanding the primary objective for this research will provide insight and 

contribute to answering the following investigative questions:  

1. What are the considerations needed when modeling a process that involves 

human-agent interaction?

2. How can modeling and simulation tools be used to infer agent timing that 

simultaneously improves operator performance and reduces workload?

3. How does the timing of an agent affect operator behavior and workload, as well 

as team performance and dynamics?
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Methodology

The application environment for this research is a route generation game called 

Space Navigator. Space Navigator provides an environment that can be performed solely 

by a human operator or include an automated agent. This research consisted of three 

phases. The first phase involved modeling the process of an operator playing the game 

through an activity diagram. Then, the automated agent was introduced and the models 

were reconfigured to more accurately represent human behavior. The models were 

evaluated to understand the significant differences between them, as well as the 

requirements needed to develop a model that contains human-agent interaction. The 

second phase included the development of a workload simulation model that was used to 

estimate operator workload and performance across varying agent trigger times.  The 

final step included human test subjects’ experiment where participants operated the game 

with varying agent delay times and the results were collected. Performance and workload 

data from the simulations were compared to the test subject data with the intent of 

validating the models that were developed. 

Assumptions and Limitations 

The biggest limitations to the research are that the human test subjects do not truly 

represent the population of military operators, and the game used in these experiments 

does not replicate the use of a militarized autonomous system. Nonetheless, Space 

Navigator provides a controlled representation of a highly-dynamic, event-driven 

environment.  The environment also permits the control of the event rate and other 

potentially confounding variables, logging of human response, and the creation of 
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automations that can be enabled to assist the operator during high event rate conditions.  

Additionally, the environment includes a single, clearly defined, top level goal (i.e., score 

the most points) as opposed to most games which provide multiple, often conflicting 

goals (e.g., leveling up and score).  The use of the relatively intuitive game environment 

simplifies participant recruitment and training.  

Thus, the primary assumption of this research is that although the subjects and 

environment do not directly represent the types of autonomous systems that would be 

used by the DoD, the results will apply to the general field of human-agent interaction.  

Expected Contributions 

All results and conclusions from this research will be able to contribute to the 

research and development of autonomous systems for the Department of Defense. The 

Department of Defense and the Air Force have identified autonomous systems as a key 

contributor to militaristic efforts (M.R. Endsley, 2015; The role of autonomy in DoD 

Systems, 2012) and is in need of further research regarding this new technological 

frontier. Therefore, if considerations extracted from the development of human-agent 

modeling are validated, design tools can be established to help create accurate models of 

human-agent interaction. Statistical analysis from the simulations and human test subject 

experiments can provide further insight as to how people interact with automated agents. 

Understanding gained from these experiments can aid future research in the field of 

autonomy. 
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Preview 

This document consists of three individual, yet interrelated, articles that provide 

in depth processes, results, and applications from this research. Chapter 2 includes the 

article, “Incorporating Automation: Using Modeling and Simulation to Enable Task Re-

Allocation” (Goodman, Miller, & Rusnock, 2015) which provides insight to modeling 

considerations for human-agent interaction. Chapter 3, “Timing Within Human-Agent 

Interaction and its Effects on Team Performance and Human Behavior” (Goodman, 

Miller, Rusnock, & Bindewald, 2016) details the development of a simulation to predict 

human performance and workload with respect to agent trigger time.  Chapter 4, “Timing 

and its Effects on Human-Machine Teaming” (manuscript in preparation for Journal of 

Cognitive Engineering and Decision Making) compares the simulation results to human 

test subject experimentation and discusses some insights gained  in regards to humans’ 

interactions with agents. The Conclusion, Chapter 5, addresses the research objectives, 

answers investigative questions, and discusses the role of timing within a human-agent 

team and application to military systems.  
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II. Incorporating Automation: Using Modeling and Simulation to Enable Task Re-

Allocation 

Abstract

Models for evaluating changes in human workload as a function of task allocation 

between humans and automation are investigated. Specifically, SysML activity diagrams 

and IMPRINT workload models are developed for a tablet-based game with the ability to 

incorporate automation. Although a first order model could be created by removing 

workload associated with tasks that are allocated away from the human and to the 

computer, we discuss the need to improve the activity diagrams and models by capturing 

workload associated with communicating state information between the human and the 

automation.  Further, these models are extended to capture additional human tasks, which 

permit the user to maintain situation awareness, enabling the human to monitor the 

robustness of the automation.  Through these model extensions, it is concluded that 

human workload will be affected by the degree the human relies upon the automation to 

accurately perform its allocated tasks.  

Introduction 

In Systems Engineering, a significant step during preliminary system design 

involves the allocation of functions to various subsystems (Blanchard and Fabrycky 

2000).  At the highest level, this allocation decision involves assigning functions to a 

human operator or a machine.  Because the quality of this allocation decision is subject to 

many constraints and considerations, and this decision is typically made very early in the 
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system lifecycle, before system prototyping and in-depth understanding of the system is 

acquired, this process is often considered an art which cannot be addressed by analytic 

means (Fuld 2013; Dekker and Woods 2002).  Due to the uncertainty inherent in this 

decision, low risk solutions, for example employing allocations similar to that employed 

in legacy systems, are often pursued.  While low risk, such solutions are not particularly 

desirable when a primary goal of the system development is to improve human 

performance or reduce manpower to reduce operational costs.  Fortunately, the quality of 

these allocation decisions can be improved through modeling and simulation of the 

system and human performance (“Improved Performance Research Integration 

(IMPRINT) Tool,” 2010). For example, modeling of operator workload can provide 

insight into the system performance consequences of various allocation decisions.  While 

it is acknowledged that optimizing task allocation based upon workload is only one of 

many potential criteria (Older, Waterson, and Clegg 2010), this paper explores the use of 

SysML diagrams and human workload models to aid the allocation decision.  

Specifically, this paper seeks to address the effect that potential changes in allocation, or 

re-allocations, have upon the structure of task representations within a workload model.  

By addressing this issue, this paper improves the robustness of human workload models 

and allows for more accurate and effective task re-allocations.  

Perhaps the most frequently cited reference in the function allocation literature is 

a technical report, which acknowledges that machines perform certain types of tasks 

better than humans and that humans perform other tasks (e.g., inductive reasoning, 

flexibility, judgment, selective recall) better than machines (Fitts et al. 1951).  Equally 
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important, however, Fitts and his colleagues acknowledge that humans cannot employ 

their capabilities properly when overloaded due to excessive task demands or when they 

are unable to maintain alertness due to underactivity, for example when not actively 

participating in system control.  The relationship between human performance and 

perceived workload resulting from a level of task demand, commonly referred to as the 

Hebb-Yerkes-Dodson Law, indicates that human performance follows an inverted-U-

shaped function with maximum performance occurring at moderate levels of arousal, 

which permit the human to concentrate on relevant cues within the environment (Teigen, 

1994).  This relationship has been extended to explain the impact of stress and perceived 

workload on human performance, with human performance nearing an optimal for 

moderate perceived workload levels (de Waard, 1996).  Perceived workload generally 

increases with an increase in the number or complexity of tasks to be performed by the 

human and as the time available to perform these tasks decreases (Hart & Staveland, 

1988; Reid & Nygren, 1988).  The level of perceived workload is thus highly linked to 

the allocation of tasks between the human and computer, which in turn has a significant 

impact on the performance of the human operator and therefore the performance of the 

entire system.  As a result, Kaber and colleagues have suggested that a decision regarding 

the level of automation to be applied should be made to minimize a cost function which 

includes a nonlinear function of workload (Kaber et al. 2009).    

Importantly, task load and the resulting perceived workload is not constant during 

system operation.  Instead, changes in the environment can influence the number and 

complexity of cues that an operator must process to correctly perceive the environment.  
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For example, consider the number of potential hazards one can encounter when driving 

on a deserted rural highway versus driving in a crowded city center.  The number and 

complexity of the tasks that must be performed also differ as goals change.  For example, 

consider the complexity of maintaining level flight versus performing a landing, 

particularly in clear versus adverse weather conditions.  This variability in workload is 

particularly important when investigating automation as the tendency of the automation 

designer is to automate the functions which are the easiest to automate, potentially 

creating systems in which the human operator is relegated to a monitor during times that 

they are easily capable of controlling the system, while performing unassisted during 

times that they experience peak workload (Colombi et al., 2011).  Therefore, it is 

necessary for any model used for allocation to consider this variability within the context 

of the work to be performed by the human operator within the allocated system  

(Dearden, Harrison, and Wright 2000).  

To account for this variability, this study uses Improved Performance Research 

Integrated Tool (IMRINT) a discrete event simulation environment (Army Research 

Laboratory 2010).  This environment models human workload and performance as a 

function of time by tracking activities performed by a human or a machine. These 

activities are described in a task network, which captures the task sequencing and 

decision points..  The frequency of the tasks, as well as the time necessary to perform 

each task result from a stochastic process, permitting the modeler to represent the 

variability within the system.  Different task networks can be derived for different goals 

and a workload level is assigned to each task performed by the human operator.  Various 
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system allocations can then be modeled by allocating specific tasks to be performed by 

the human operator or machine (hardware or software) component.  However, to employ 

this tool to accomplish this goal, the modeler must begin with a activities to be performed 

by the system, allocate these activities to the human or machine and then derive the tasks 

or actions necessary to perform these functions.  Once these activities are allocated to a 

component, human or machine, other inherent tasks may become necessary to facilitate 

communication of system state as control is passed between the human and machine 

(Bindewald, Miller, & Peterson, 2014).  

IMPRINT enables the quick re-allocation of tasks by simply changing the 

“assignee” for the task from a human operator to an automated component.  However, 

attempts to incorporate automation from a simple re-allocation of tasks previously 

performed by a human operator to the automated system are unlikely to be sufficient.  

The current paper develops function and task networks to explore the impact of task re-

allocation on changes in the task networks. Specifically, this paper demonstrates that re-

allocating tasks previously handled by a human operator to a machine results in the 

necessary creation of new tasks.  This creation of new tasks has implications for the 

design of the system as well as impacts to the operator’s expected workload.  While a 

simple re-assigning of tasks is expected to reduce operator workload and enhance system 

performance, to be truly accurate workload modeling must account for additional tasks 

caused by required communications and operator attempts to maintain situation 

awareness.  Through this process we seek to understand and explain the considerations 

necessary when modeling human workload to support function allocation.   
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Method

 Systems Modeling Language 

Recent developments in Systems Engineering have led to increased adoption of 

Model-Based Systems Engineering (MBSE), which commonly includes a modification of 

the Unified Modeling Language referred to as the Systems Modeling Language (SysML) 

(Delligatti, 2013).  SysML captures process allocation through activities and actions 

within Activity Diagrams.   Allocation decisions are captured in Activity diagrams with 

each actor indicated by unique partition--each partition is colloquially referred to as a 

“swim lane”.  

Elements within the activity diagram include action nodes, control nodes, pins, 

and flows. The actions are the “building blocks” of the diagram which accept inputs and 

transform them to outputs. The input and output buffers on each activity are pins. Flows 

connect the output pin of one action to the input pin of another action to enable the 

passage of information or objects. In the constructed diagrams, the control nodes consist 

of the decision, merge, fork, and join nodes.    

Within this paper, activity diagrams were created within a systems modeling tool, 

called Enterprise Architect.  As appropriate, these diagrams include not only the actions 

and control logic necessary to depict the necessary “functions,” they also include swim 

lanes to depict particular allocations of these actions to performing entities.  These 

diagrams provide the basis for task networks within IMPRINT.  
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 IMPRINT 

As noted earlier, the Improved Performance Research Integrated Tool (IMPRINT) 

provides an environment to enable discrete event modeling of human workload.  The task 

networks developed in the activity diagrams were transferred to this modeling 

environment, capturing the flow of actions and decision logic.  Completion of these 

models would then require development of task time probability distributions for each 

action and a mental workload value for each action performed by the human operator.  

Other values, such as action completion accuracy may also be captured for the human or 

computer as well.  While we acknowledge that completion of a model requires the 

development of these distributions and workload values, as the focus of this paper is to 

understand the changes in function and task networks necessary to capture changes in 

allocation, neither the development of these model inputs or the results of the modeling 

activity are discussed within the current paper.  

Application Environment 

To explore the decision to re-allocate tasks from a human to an automated 

component, it was necessary to select an application environment which was simple 

enough to permit the task network to be depicted in small activity diagrams and complex 

enough to provide a series of activities which could be allocated to either a human or a 

machine. The environment employed in this paper is a tablet computer based game called 

Space Navigator, which includes a number of activities that can be allocated to a human 

or a machine (Bindewald, Peterson, and Miller 2015). The game contains four stationary 

planets present on the screen. Each planet has one of four colors: red, green, blue, or 
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yellow. Spaceships appear at a set interval from a random location at the side of the 

screen. Each spaceship is red, green, blue, or yellow. The player must direct each 

spaceship to the destination planet of the same color by drawing a trajectory line on the 

game touch screen using their finger. The spaceship then follows this line at a constant 

rate. Spaceships continue to appear until an allotted time of five minutes is over. If 

desired, trajectories may be re-drawn, to avoid a collision and account for dynamic 

changes in the environment. Points are earned when a ship successfully reaches its 

destination planet or traverses any of a number of small bonuses that appear throughout 

the play area. Upon reaching its destination planet, a spaceship disappears from the 

screen. When spaceships collide, points are lost and each spaceship involved in the 

collision is lost.  

Additionally, points are lost when a spaceship traverses one of several “no-fly 

zones” that move to different random locations on the screen at a set time interval. The 

objective of the game is to earn as many points as possible in five minutes. Figure 1 

shows an annotated screen capture from Space Navigator, which illustrates various 

elements of the game.  
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Figure 1: Pictorial representation of the Space Navigator application environment. 

 Procedure 

We coordinated SysML, IMPRINT, and the Application Environment by creating 

task networks in Activity Diagrams for the application environment and transferring 

these task networks to IMPRINT.  Initially, these activity diagrams were constructed with 

the assumption that the human operator was to perform all tasks associated with playing 

the game.  This provided a baseline model, referred to as the Manual System, that 

accurately demonstrates the actions that were necessary for the human to successfully 

play the game. A second model, Automation with Direct Re-Allocation, introduces swim 

lanes to indicate the allocation of actions to the computer or human operator.  In this 

model, the actions were split such that the machine was responsible for indicating the 

ship which required the most immediate attention by the human operator, while the 

human operator remained responsible for generating the ship’s route.  This task allocation 
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model was revised into a third model, Automation with   Handover, to recognize that 

automation would change the human’s task management strategy, with the operator fully 

reliant on the machine to perform its target selection actions appropriately.  This 

handover model provides additional actions which permits the automated system to 

communicate with the human operator.  A final task network, Automation with 

Supervision, is explored for a condition where the human is not fully reliant on the 

machine but instead monitors the environment to maintain situation awareness, enabling 

the human to monitor and override the machine in the event of an error.   

Results and Discussion 

The SysML model activity diagram of the Manual System, as displayed in Figure 

2, displays one complete instance of two high level activities: 1) determining which ship 

to move and 2) which route to draw for it. The operator attempts to attain awareness of 

the current state of the game environment by identifying all bonuses, ships, likely 

collisions, no-fly zones, and ships heading for no-fly zones. Based on the operator’s 

priorities, he or she will determine the best ship to move. Potential routes are created by 

the operator and one is chosen based on earning the highest amount of points possible. 

The desired ship is selected and the route is drawn.  As shown in this diagram, each 

action performed by the human operator is depicted within an round-tangle.  Parallel 

actions are enabled through the use of the horizontal bars within the figure, depicting 

splits and joins.  The arrows (flows) show the information or control logic which is 

created within one action and is necessary for the performance of the receiving action. An 

IMPRINT model corresponding to the activity diagram in Figure 2 is shown in Figure 3.   
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As shown, each of the actions represented in the activity diagram are depicted in the 

IMPRINT task network.    

 

Figure 2: Activity Diagram for the Manual System. 
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Figure 3:  Imprint model illustrating the Manual System.  Although not shown, the 

final model will also likely include the system events (e.g., ship spawn frequency), 

which are likely to influence human performance. 

To explore the implementation of automation through re-allocation of some of the 

actions, we assumed that the first high level activities, i.e., determine which ship to move, 

was allocated to the computer and the second high level activity, i.e., determine which 

route to draw for it, remains with the human.  As a default, this change in allocation can 

be depicted by simply introducing swim lanes to Figure 2 as shown in Figure 4, 

Automation with Direct Re-Allocation, which indicates the allocation through a 

“Computer” swimlane in the top of the diagram and a “Human” swimlane on the bottom 

of the diagram.   
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Figure 4: Activity Diagram for Automation with Direct Re-Allocation, with first 

order task allocation 

This reallocation can then be indicated in IMPRINT by assigning the actions 

associated with the Computer to the new entity, with this change indicated by the 

difference in the color of the nodes within Figure 5,where blue and lavender indicates 

computer and human control, respectively. In these diagrams, the computer is responsible 

for determining the best ship to move. Afterwards the human operator decides which 

route to implement.  
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Figure 5: IMPRINT model for Automation with Direct Re-Allocation, displaying 

computer and human control by blue and lavender nodes, respectively. 

   Note, however, that in the Manual System model, the human scanned the entire 

set of objects on the screen and assembled all of the knowledge necessary to know for 

which ship to draw a route and the reason that a new route was necessary (i.e., new ship 

without a route, impending collision, heading for new no fly zone, new nearby bonus 

available).  In the Automation with Direct Re-Allocation model, the human has no way of 

knowing which ship to move or why such a move is important, as the computer has 

assembled this knowledge but the information has not been transmitted to the human.  

The need to capture the communication of this information is inserted into a third set of 

models shown in Figure 6, Automation with Handover. Key adjustments to note are the 

replacement and addition of action nodes capturing human-computer communication, 

with the computer relaying to the human why it targeted a specific ship and which ship it 

targeted (for example by flashing a light around the targeted ship with the color of the 

light corresponding to the matter that is pressing, e.g., red is a collision, yellow is a no-fly 

zone, etc). When given this information from the computer, the human identifies the 
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relevant information surrounding the targeted ship, and then creates a set of routes after 

perceiving the environment around that particular ship, not for the entire screen.  As such, 

this automation aid has the ability to reduce the human’s workload as he or she does not 

need to assess the state of the entire game, only the portion of the game relevant to the 

highest priority ship, as determined by the game.  Unlike the Automation with Direct Re-

Allocation model, this task network appropriately identifies additional communication 

nodes required to ensure an effective handoff between the automation and the human. 

However, the addition of these communication tasks adds workload beyond what is 

captured by the simple re-allocation in the Automation with Direct Re-Allocation model.    
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Figure 6: Model displaying automation with handover including a red outline 

highlighting the communication between the human and automation. 

Although the Automation with Handover has the potential to improve the user’s 

performance, assuming that the computer accurately identifies the most important ship to 

be addressed and the human and computer perform in complete symbiosis, this 

interaction has the potential to result in less than ideal performance.  As (Stensson and 

Jansson, 2014), has indicated, human interaction with automation is necessary since the 

computer cannot be held responsible, while humans which have the ability to feel 
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remorse among other emotions are assumed to be responsible, particularly for 

catastrophic outcomes.  As such, it will often be necessary for the user to maintain overall 

situation awareness of the environment to maintain supervisory responsibility over the 

actions.  Unfortunately, as the human relinquishes all ability to verify that the computer 

has in fact chosen the most important ship to route, the human is unable to maintain 

responsibility for the task.  To enable sufficient situation awareness, many of the 

functions allocated to the computer in the Automation with Handover model, must also 

be performed with some degree of regularity by the human to enable the necessary 

awareness, as shown in Figure 7, Automation with Supervision.  Note that in this case, 

the human is performing as many actions as in the manual system, including actions from 

the first high level activity, determine which ship to move, which was allocated to the 

computer.  In this scenario, which is not uncommon for automated systems under human-

supervisory control, the automated system is unlikely to produce the expected workload 

benefits.  
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Figure 7: Partial display of the activity diagram for automation with supervision, 

incorporating communication between the automation and human, as well as the 

human’s decision to update situation awareness. 
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Discussion 

The Automation with Direct Re-Allocation Model appears to be a simple and 

efficient method in adapting a workload model to account for task re-allocations, as it 

only involves the inclusion of “swimlanes” allocating necessary actions to the human or 

computer. This provides a model that makes it easy to comprehend which actor is in 

control of specific tasks. Although this simple modification appears beneficial, it does not 

accurately capture the true system interactions that will result for incorporating 

automation.  

The major pitfall in the Automation with Direct Re-Allocation Model is that it 

displays the human operator as seamlessly interacting with the computer without gaining 

the knowledge necessary to perform the actions assigned to the human. This is a 

significant issue as it is recognized that the human must sense their environment, perceive 

relevant information from the environment, decide upon a course of action given this 

information, and then take action, with each of these phases requiring both mental 

resources and time (Parasuraman, Sheridan, & Wickens, 2000). The lack of additional 

communication actions in the baseline model of the Manual System is accurate as the 

human operator completes each of these four steps on his/her own. However, in the 

Automation with Direct Re-Allocation, the computer gains awareness of all information 

necessary to select the best ship to move, and then the human implements a route without 

perceiving the information necessary to select or implement a route. If the operator lacks 

awareness of his or her surroundings and does not know why a ship is deemed the most 
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critical to move, then he or she will not be able to draw a route that properly addresses 

the problem at hand.    

The Automation with Handover Model fills in these assumptions by including 

actions which permit the computer to communicate the necessary information to the user 

during the exchange in responsibility and actions necessary for the user to gain awareness 

of the situation enabling the decision. This automation reduces human workload by 

reducing the number of objects in the environment that the human must attend. 

Unfortunately, this action reduces the user’s situation awareness. The final model, 

Automation with Supervision, then adds additional actions the human must perform to 

regain this situation awareness.  In the final environment, the time allotted by the human 

for gaining situation awareness versus route creation will depend on the human’s trust in 

the automation, system reliability, time available, and the relative importance he or she 

assigns to each of these higher level activities, all of which will need to be captured in the 

workload model.  

Conclusions

This paper has illustrated the potential use of SysML together with IMPRINT to 

illustrate the construction of models to assess task re-allocation.  Although initial 

allocation of actions within these models appears simple and intuitive, only requiring 

designating responsibility for existing actions, key assumptions are not explicitly 

depicted in the model. Adaptation of a model to include task re-allocation requires careful 

consideration in the areas of human-automation communication and adjustments in 

behavior. It is significant for the developer to understand that task flow between a human 
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and computer involves some type of input or output from both. Any adjustments in 

human behavior, arising as a result of automation, need to be addressed and input into an 

adapted model. Revision of action nodes and the inclusion of human-computer 

communication, as well as human monitoring to gain situation awareness, results in an 

activity diagram and IMPRINT model that is able to more accurately represent the 

system and project the workload of the human operator.   

 In the development of a new system, the accuracy of a model, or set of models, is 

critical to the further development of the system. Models and simulations are often made 

in the conceptual phase of system development, capturing the fundamental elements of 

projected system attributes and behavior in a cost efficient manner. Conceptual modeling 

is the cornerstone for Model Based Systems Engineering (MBSE), affecting nearly every 

aspect of the development and implementation of the system. If the model neglects 

certain aspects of the system, this could have a negative impact on the project’s budget, 

schedule, requirements, functionality, and feasibility. Therefore, in the context of 

modeling human-computer interaction, one needs to apply careful consideration 

regarding communication, situation awareness, and behavior to properly capture system 

behavior and avoid undesired costs.  

Future Research 

The current research primarily focused on modeling theory when considering 

human-computer interaction. The next step would be the application of these theories by 

using the models to estimate system performance and human workload for each of the 

system designs discussed (Manual System, Automation with Direct Re-Allocation, 
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Automation with Handover, and Automation with Supervision). Model outputs regarding 

predicted system performance and workload could be validated using human test subjects 

for each of the system designs. This would enable a quantification of the negative 

impacts from inadequate automation task re-allocation.   
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III. Timing Within Human-Agent Interaction and its Effects on Team Performance 

and Human Behavior 

Abstract

Current systems incorporating human-agent interaction typically place the human 

in a supervisory role and the agent as a subordinate. However, a key aspect of teaming is 

the dynamic shift in roles. Depending on the situation at hand, teaming could lead to a 

peer relationship where the human and agent are working together on the same task. This 

research investigates how the timing of agent actions impacts team performance, as well 

as human workload and behavior.  A human-in-the-loop experiment demonstrated that 

when the agent performs tasks faster than the human, the human tends to become reliant 

upon the automation and assumes a supervisory role.  A human performance model 

predicts that extending agent execution time will decrease human reliance on the 

automation.  However, in the environment under investigation, a tradeoff exists between 

team performance and human involvement. 

Introduction 

 Human Machine Teaming 

The growing development and use of semi-autonomous systems has been 

beneficial in accomplishing tasks that would otherwise be error prone, dangerous, 

unmanageable, or simply impossible for humans (Millot, 2014). Research efforts in this 

field have also increased in response to the rapid rise in technological capabilities. 

Significant and foundational pieces of literature have described autonomous systems as 
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having several levels of automation when performing tasks typically allocated to a human 

operator (Endsley & Kaber, 1999; Parasuraman et al., 2000) This description of 

automation coincides with the design of several team-based descriptions of humans and 

autonomous coordination systems, including function allocation, supervisory control, 

adaptive automation, and dynamic task allocation (Johnson et al., 2011).  

One determining factor that separates a team from an ordinary group is a shared 

goal by all members (Bruemmer, Marble, & Dudenhoeffer, 2002) where cooperation is 

needed to limit interference between members during goal completion (Hoc, 2001). The 

purpose of teaming is to “increase the level of task performance by leveraging the unique 

capabilities of each performer, taking advantage of each member’s strengths and 

available resources” (Bruemmer et al., 2002). Each team member’s unique capabilities 

can help build interdependency when tasks cannot be performed by any individual alone 

(Arthur et al., 2005). To use each team member’s strengths appropriately, teamwork is 

needed to facilitate interactions.  

Current human-machine teams typically allocate responsibility such that the 

machine is subordinate to the human, thereby limiting the potential to which the team can 

leverage each member’s unique strengths. Comparatively, effective human teams 

implement dynamic allocation of roles, responsibility, and authority dependent upon 

members’ capabilities, availability, and task load. It is suggested that human-machine 

teams should model this schema to maximize performance in a dynamic environment. In 

classic systems, the machine usually fulfills the role of tool or subordinate, never 

reaching the status of a peer or leader. By allowing the machine to attain higher status, an 
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emphasis on interdependence and communication emerges as each becomes more reliant 

upon the other (Bruemmer et al., 2002).  

Significant differences exist between humans and machines as team members.  

These differences not only include machine deficiencies, such as the limited ability to 

reason within the current context and respond to surprises in a robust manner 

(Huntsberger, 2011), machine difficulty in communicating priorities (Klein, Woods, 

Bradshaw, Hoffman, & Feltovich, 2004), and lack of machine accountability (Anderson, 

Anderson, & Armen, 2004); but also seemingly pedestrian issues, such as ill-defined 

temporal requirements for operations.     

The human information processing loop extending from perception through 

completion of an action often requires at least one third of a second and, depending upon 

the size of the muscle movements involved, can require multiple seconds.  However, an 

agent, embedded in a computing system can perform a similar sequence of events in a 

much shorter period of time.  Therefore, a designer may automate a process to improve 

system performance and decrease human workload. However, the incorporation of an 

automated tool can lead to the human adopting a supervisory role, which can be harmful 

to production. It has been documented that humans are poor monitors, a role they often 

assume when acting in a supervisory capacity, because they lose vigilance and are prone 

to fatigue (Parasuraman, 2008). Loss in vigilance can result in the human being “out of 

the loop”, ultimately losing situation awareness. Consequently, it can be difficult for a 

person to understand the full context of a situation, possible actions, and consequences if 
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they have lost situation awareness when an unusual situation arises to which the 

automation cannot respond appropriately.  

The idea of the human and machine working together as peers suggests that the 

human does not assume a supervisory role, but rather, the two are working alongside one 

another. There is a desire for the two to cooperate in such a manner where they are 

attaining adequate performance, yet the human is “in-the-loop” and maintaining situation 

awareness.  

Triggers permit the automation to respond to events in the environment and 

actions by its team members. Triggers are developed to afford the automated system the 

ability to sense, observe, or model the environment to create a relative understanding of 

the events taking place around it and alter its behavior based upon this information. The 

goal of the automated agent is to receive relevant information from the environment and 

act accordingly (Feigh, Dorneich, & Hayes, 2012a). Therefore, the trigger affects the 

automation’s timing, i.e., time at which a task is initiated.  Logically, the timing of task 

execution in highly dynamic, event-driven domains must influence the performance and 

behavior of the team. Considering that automated systems have the potential to respond 

much faster than their human counterparts, their response time can affect task 

responsibility.  If the automation’s response time is too short, the human operator may 

assume the supervisory role as the automation will always respond to an event faster than 

its human counterpart.  However, if its response is excessively delayed, the human is 

likely to assume responsibility for the event and attempt to respond before the 
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automation.  However, the proper timing and changes in the behavior of human team 

members as a function of automation response time is not apparent in the literature. 

Therefore, this research aims to understand the effect of automation’s task timing 

on the performance of the human-machine team. This effect is examined using a 

combination of human-in-the-loop experimentation and human performance modeling 

within an environment employing an autonomous agent. A previous experiment is 

described which incorporated an autonomous agent that was triggered by the co-

occurrence of an environmental event (i.e., appearance of a new task) and human 

inactivity in addressing this task (Bindewald et al., 2014). The time frame at which the 

agent considered human inactivity to be excessive was static throughout the experiment.  

However, based upon the results of this experiment, it is assumed that variation in task 

timing of the automation will have a significant impact on user behavior.  Thus, this 

research was conducted to explore the type of effects task timing has on team 

performance, as well as, human behavior and workload. 

Method for Previous Experiment 

Participants 

The experiment involved 36 volunteers with an average age of 32.5 years and a range 

of 22 to 39 years. A total of 30 males and 6 females participated.  

The experiment involved the use of a computer based tablet game environment. Thus, 

each participant was asked how often they use laptops, tablets, desktops, phones, and 

gaming consoles. On average, they used tablets roughly 1-3 times a week and gaming 
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consoles 1-3 times a month. Other computer based platforms, including smart phones, 

were reported being used 3-7 times a week.  

Apparatus and Environment 

Space Navigator is a tablet-based computer trajectory-generation game which was 

constructed to provide a controlled representation of a highly-dynamic, event-driven 

environment.  In these environments, the operator has little, if any, control of the event 

rate and there is no guarantee that the human will be capable of responding should 

unexpectedly high event rates occur.  Similar environments might include air defense 

systems and certain command and control environments.  The game, while not providing 

a high fidelity simulation of these environments, permits the control of the event rate and 

other potentially confounding variables, logging of human response, and the creation of 

automations that can be enabled to assist the operator during high event rate conditions.  

The use of the Space Navigator game for this study simplifies participant recruitment and 

training.  

Figure 8 displays a screen capture from the game and identifies several key 

objects within the game. Spaceships appear at set intervals from the screen edges. The 

player directs each spaceship to its destination planet, designated through color, by 

drawing a line on the game screen using his or her finger. The spaceship then follows the 

entire drawn trajectory unless the player draws a different route for the ship. Points 

accumulate when a ship encounters its destination planet or one of a number of small 

bonuses that randomly appear throughout the play area. Points decrement when 

spaceships collide, and each spaceship involved in the collision is lost. Points are also lost 
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when a spaceship traverses one of several “no-fly zones” that move to random locations 

within the play area at a set time interval. For every second a spaceship traverses a no-fly 

zone, the player loses points. The game ends after five minutes.  

 

Figure 8: Screen capture from Space Navigator, highlighting spaceships, planets, 

trajectories, bonuses, and no-fly zones. 

In addition to drawing the routes manually, the subjects also work in human-agent 

teams in which both the subjects and the agents draw routes.   There were three types of 

automated agents: straight line, similar to the user, and dissimilar to the user.  The 

straight line automation draws straight-line routes from the ship to the corresponding 

planet.  The similar to the user automation uses a player model developed based on 

manual game play to draw routes predicted to be similar to those that the user would 

draw under similar circumstances.  The dissimilar agent, selects random trajectories from 

the past game-play database.  To provide the human with an opportunity to draw routes, 
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the agent does not draw routes instantaneously, rather the automation triggers after a 

specified amount of on-screen time for a ship has elapsed without the subject interacting 

with that ship.  

Experimental Design and Procedure 

The experimental procedure consisted of a within subjects design in which each 

participant completed 16 five-minute instances of Space Navigator. The initial five 

instances contained no interaction from an automated agent and were used as participant 

training sessions. Following the training, participants completed three experimental 

sessions. Experimental sessions included four five-minute instances and each instance 

attributed one trajectory type to the agent throughout the entirety of a five-minute game. 

The four types of trajectories were either similar to the user, dissimilar to the user, 

straight line, and none (participant performed the task without an automated agent as a 

partner). Ships appeared on screen at a fixed rate of one ship appearing every two 

seconds. Bonuses and no-fly zones repopulated every thirty seconds.  

 Data Analysis 

Game play and NASA-TLX (Hart & Staveland, 1988) data were collected to 

assess user performance and workload per agent type. The Space Navigator environment 

actively stored information every time a ship-related action occurred. These actions 

included trajectory draws, collisions, bonus pickups, destinations reached, no-fly zone 

traversal, and off-screen movements. Subjective workload values were input by 

participants after completing each five-minute instance. Users were asked questions 

related to workload, frustration, and agent trust at the conclusion of the experiment.   



49 

 

Although data was collected for three different agents, which performed differently from 

one another, the data analysis for the current paper was constrained to include only the 

manual condition in which there was no agent and the straight line agent, which drew a 

straight line from the ship to the appropriate planet anytime a ship resided on the screen 

for 2 s during which the participant did not draw a trajectory. 

Experiment Results and Discussion 

The expected result from this experiment was that the participants would continue 

drawing routes, relying on the automation to draw routes only when they were 

overloaded to the point that they could not draw routes quickly enough to be successful. 

The rationale behind this assumption was that this agent would be able to work alongside 

the user, but work less effectively and therefore not be trusted to draw routes unless the 

individual was task saturated to the point that they could not draw routes quickly enough.  

Therefore, it was expected that the majority of trajectories would be drawn by the 

participant. However, participants’ behavior unanimously differed from this reasoning.  

As shown in Table 1, when interacting with the game in a manual mode, without 

the agent, the human participants drew an average of 126.26 routes for the 150 ships that 

were generated during the 5 minutes of game play.  Further, they redrew 21.83 routes for 

ships that they had already designated routes. However, when the straight line agent was 

employed, the humans drew less than 1/5th as many trajectories on average (i.e., 23.19) 

than they did when playing the game manually.  Additionally, when the agent was 

present, the participants redrew just over twice as many routes (mean of 43.97) as they 

did when operating in manual mode.    
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Table 1: Manual and Straight Line Agent Data 

 

Initially, it appeared counter-intuitive that the human participants would 

relinquish most of their initial path planning to an agent when the agent is incapable of 

making decisions based upon obvious obstructions or bonuses in the environment. 

However, this behavior becomes more understandable when one computes the average 

human ship-selection cycle-time. A full ship-selection cycle for the human involves 

identifying a ship to select, physically selecting a ship with their finger, and drawing a 

designated path. Analysis of this data reveals that an average of 2.6 s is required for a 

participant’s ship-selection cycle-time whereas a new ship is spawned every 2 s.  

Therefore, it is implausible for the average human to successfully generate paths fast 

enough to provide a path for every ship.  Conversely, the agent draws a route at the same 

speed as the ship spawn rate, drawing a route for the previously generated ship when the 

subsequent ship appears. 

In this environment, with intuitive ship movement and a predictable agent, the 

participants were able to predict the behavior of the agent and then adjust undesirable 

paths. Consequently, it would appear that users began to initiate fewer trajectories, 

supervising the agent and redrawing paths to improve performance. As seen in Table 1, 

the addition of the agent increased the average score by roughly 2250 points (a 39% 

Fully Manual Agent Assistance
Mean St Dev Mean St Dev

Score 5801.57 2327.62 8043.06 1573.72
Hum. Draws 126.26 12.58 23.19 24.26
Redraws 21.83 11.94 43.97 15.55
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improvement) by having the human draw 103 fewer routes and doubling the number of 

redrawn routes. 

Given this interaction, we therefore sought to better understand the interaction of 

the autonomous agent’s timing within this environment. The trigger time employed in 

this experiment created an agent that assumed the human was overloaded if the human 

was unable to address an incoming ship within 2 s. It appeared that the automation’s task 

timing exceeded the human operator’s ability, relegating the operator to more of a 

supervisory role.  Therefore, the participant game play data from this human-in-the-loop 

experiment was leveraged to construct a model of human-machine interaction. The model 

was used to examine how variation in the automation’s timing affects team performance, 

human behavior, and workload, within the teaming environment.  

Space Navigator IMPRINT Model 

IMPRINT Simulation Software 

To examine timing in the context of a human-machine team, this study uses the 

Improved Performance Research Integrated Tool (IMPRINT), a discrete-event simulation 

environment (“Improved Performance Research Integration (IMPRINT) Tool,” 2010).  

This environment models human workload and performance as a function of time by 

tracking activities performed by a human or a machine. These activities are described in a 

task network, which includes task sequencing and decision points.  The frequency of the 

tasks, as well as the time necessary to perform each task result from a stochastic process, 

permitting the modeler to represent the variability within the system.  Different task 

networks can be derived for different goals and a workload level is assigned to each task 
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performed by the human operator.  Various system allocations can then be modeled by 

allocating specific tasks to be performed by the human operator or machine (hardware or 

software).  However, to employ this tool to accomplish this goal, the modeler must begin 

with activities to be performed by the team, allocate these activities to the human or 

machine and then derive the tasks or actions necessary to perform these activities.  Once 

these activities are allocated to a component, human or machine, other inherent tasks may 

become necessary to facilitate communication of system state as control is passed 

between the human and machine (Bindewald et al., 2014; Goodman et al., 2015). 

 IMPRINT Task Network 

The IMPRINT model is depicted in the SysML Activity Diagram (Delligatti, 

2013) shown in Figure 2.  This diagram divides the activities among three primary 

sections, separated by vertical lines known as “swim lanes”, which separate the activities 

of the environment, the human operator, and the agent. The environment nodes in Space 

Navigator are responsible for starting the model, generating ships, altering no-fly zones 

and bonus locations, operating the timer, and halting the model as shown in the center 

“swim lane” of the activity diagram.  

The player’s attention and actions during game play are facilitated through a loop, 

continuously repeating two high level functions; determining which ship to select and 

drawing a trajectory for a ship. However, the loop is completed both for ships that have 

no drawn trajectories and for those that have a non-optimal trajectory.  A view of ideal 

game play may include the person working to their capacity as they try to earn the highest 

score, leveraging the agent to draw paths they do not have time to draw.  This behavior is 
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depicted through the path in Figure 9 within the Human swim lane, which includes 

identifying background items, identifying ships without routes without waiting for the 

agent, selecting a ship and drawing a route.  However, as demonstrated in the experiment, 

the human could permit the agent to draw some initial paths permitting them to attend to 

other tasks within the game.   Thus, a task load node, indicated by the first decision node 

in the human swim lane, is used to represent a human’s decision to either initiate ship 

selection or monitor the environment, allowing the human to observe the agent as it 

creates routes. The decision to monitor is based on a reliance algorithm derived from the 

experimental data, as seen in Figure 10.  

 

Figure 9:  Activity diagram representing the actors and actions in the IMPRINT 

model. Vertical swimlanes are used to designate actions. 
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The reliance algorithm produced a probability that the human would permit the 

agent to draw a trajectory.  Analysis of the experimental data indicated that the 

probability of the agent drawing an initial route as a function of the number of ships on 

screen produced a parabolic curve. The participants performed more route draws when 

the number of ships on screen was low as they likely had ample time to interact with the 

system.  They also appear to have drawn more routes when larger numbers of ships were 

on screen to help avoid collisions, given the agents’ inability to react to neighboring 

ships, no-fly zones, and bonuses. The regression curve in Figure 10 accounted for the 

reliance of the operator on the automated agent with respect to the number of ships on 

screen. 

 

Figure 10: Graph displaying the probability of the agent drawing a route with 

respect to the number of ships on the screen. The third order regression line, with 

equation, was used in calculating the reliance algorithm in the IMPRINT model. 
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The other factor that was necessary to include in the reliance algorithm was the 

trigger time of the agent. While no data exists to construct this function, it was assumed 

that the longer the agent takes before assigning a route, the more likely the human will 

initiate tasks to avoid losing points.  At the lower limit, if the agent drew the line as soon 

as the ship appeared, the person would never have time to initiate a route.  However, in 

the case that the agent requires an infinite amount of time before drawing the route, the 

human cannot rely upon the agent to draw any route. The operators’ average cycle-time, 

time between initiating routes on separate ships, and standard deviation were derived 

from the experiment’s fully manual gameplay. Using three standard deviations above and 

one standard deviation below the mean of 2.6 s, it was assumed that a human would be 

unlikely to initiate a route for a ship at 0.1 s and the agent would be unlikely to initiate a 

route at 11.6 s. This assumption was used to determine points on a linear equation 

relating delay time to probability of agent draws.  This linear model was used to shift the 

third order regression line shown in Fig. 10 downwards as the agent’s time delay 

increased and shift the regression line upwards as the agent’s time delay decreased. For 

every second that the agent’s delay changed, the baseline probability value was 

incremented or decremented by 0.1058, within the bounds that the probability must be 

between 0 and 1.  

Returning to the task network, if the operator decides to draw a route based upon 

the reliance algorithm, they will continue to identify ships on screen. Afterwards, they 

can draw a route for a ship that does not have a route, or they can “redraw” a route for a 
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ship that has an existing route. Following the draw route node, the human attention loops 

back to determine the background items, where the number of items impose a taskload, 

which is modeled as the number of ships on screen. As shown, when the human draws a 

route, the environment is updated, permitting both the agent to be informed by recording 

the route and displaying the route for the human. 

Simultaneously, the agent is selecting ships and drawing trajectories for them as 

well, as indicated in the Agent swim lane of Figure 9. Unlike the human, the agent does 

not have the option to perform fewer tasks. The agent is constantly monitoring all ships 

on screen and drawing a route once the time trigger has occurred.   However, unlike the 

human, the agent can only draw trajectories for ships that have not received a trajectory, 

and the agent does not redraw non-optimal trajectories.  As the agent draws a path, this 

information is provided to the environment. 

After the human or agent has designated a route for a ship, a new entity is created 

in the model, representing the ship with a route. The ship continues along its path for a 

length of time drawn from a distribution representing game play time-on-screen and is be 

removed from the simulation after the time has elapsed (not depicted in Figure 2). There 

are three possible end results for a ship: collision, destination reached, and off-screen 

traversal. Ships arrive to these nodes according to probabilities associated with the 

number of ships on screen and the human or agent that drew the route.  Once again these 

distributions are developed from the human-in-the-loop data discussed earlier. 
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Model Validation 

To validate the model, the model was exercised for conditions that matched the 

conditions of the previously explained human-subjects experiment and the results were 

compared.  The IMPRINT model replicated the experimental trials by having the agent 

create routes for ships that were on screen, and without a route, for two seconds or 

longer. The results applied for model validation were scores, number of automation 

trajectories drawn, and number of “redrawn” trajectories by the operator. These specific 

aspects of the model were chosen to ensure that performance and behavior, as predicted 

by the model, was similar to the data from the human-in-the-loop experiment. To 

compare score values and trajectories, two sample t-tests with 95% confidence intervals 

were performed.  For score, the average from the experiment was 8043 (sd 1574) while 

the mean from the model was 8053 (sd 871).  The t-test indicated that these values were 

not statistically different (t(1,169) = -0.06, p=0.955).  The average number of agent-

drawn trajectories from the experiment was 126.9 (sd 24.4) and the mean from the model 

was 122.4 (sd 3.24).  The t-test indicated that these values were not statistically different 

(t(1,109) = -1.91, p=0.06).  The average number of human redraws from the experiment 

was 44 (sd 15.5) and the mean from the model was 45.59 (sd 6.08).  The t-test indicated 

that these values were not statistically different (t(1,141) = -1.00, p=0.318). Overall, there 

was no evidence of statistical differences between the model and the experimental data, 

and thus the model is considered validated. 

The workload values collected in the human-subjects experiment were NASA-

TLX values, whereas the workload inputs in IMPRINT are from the Visual, Auditory, 



58 

 

Cognitive, and Psychomotor (VACP) workload assessment tool. Consequently, workload 

could not be directly validated. Thus, validation was conducted with a subject matter 

expert.  

As the slope of the linear equation relating agent delay time and probability of an 

agent draw was assumed during model construction, it is important to understand the 

sensitivity of the model to this slope.  Simulations were run with a 10% increase and 

decrease to this slope. At the lower bound, on average the human drew 2.5 fewer 

trajectories and scored 24 fewer points. At the upper bound, the average score increased 

by 18 points and the human drew 2.14 more trajectories. The change in both values was 

greatest during the 8.6 s delay time where in the lower bound the human drew 10 fewer 

trajectories and in the upper bound the human drew 8.35 more trajectories. The difference 

in score for both fluctuated and had no distinct pattern. The change in workload and 

redraws was negligible.  Therefore, it is believed that changes in this slope will 

significantly affect the model results for delay times near the intersection of the linear 

model with the delay time axis.  However, the characteristic shape of model output as a 

function of timing delay is likely to be robust. 

Simulation Procedure 

A series of simulations were conducted in which the trigger time of the automated 

agent was altered in each simulation. Trigger times were selected based upon participant 

performance.  As noted earlier, the participant required an average of 2.6 seconds 

between the time a ship is spawned, appearing on screen, and the time the human selects 

the ship to draw a trajectory.  The associated standard deviation of this time was 3.0 
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seconds. Six conditions are evaluated: the mean time for a participant to select a ship (2.6 

s), plus one-half, one, two and three standard deviations (ie., 0.1, 5.6, 8.6 and 11.6 s), as 

well as the original 2 s delay employed in the human-in-the-loop experiment.  The six 

scenarios were each simulated 100 times, having the same random seed value for each 

condition. At the end of each scenario, the average scores, workload, and trajectories 

drawn were calculated.  A one-way Analysis of Variance (ANOVA) was used to 

determine whether agent delay-time had a significant effect on any of the model outputs 

and Tukey Pairwise Comparisons were used to test for differences between individual 

means. 

Simulation Results 

The results from the IMPRINT simulations displayed an inverse relationship 

between performance and workload, as shown in Figure 11. As the trigger time increased 

beyond the average time of 2.6 s, the operator’s workload increased and overall team 

performance decreased.  Although performance, in terms of overall score, was recorded 

for each of 100 model runs, workload is shown for a typical single model run. 
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Figure 11: Graph displaying average score and workload per agent delay time. 

The ANOVA indicated that the effect of agent trigger time on overall score is 

statistically significant (F(5,594) = 43.28; p < 0.001).  Tukey pair-wise comparisons 

indicated that there were four groups of scores that were significantly different from one 

another. These groups in terms of agent time delay were (0.1, 2.0), (2.0, 2.6), (2.6, 5.6) 

and (8.6, 11.6). It was shown in these pairings that as the time delay increased the 

average score significantly decreased. 

As shown in Figure 12, the human and agent draws were also inversely related.  

The agent’s trigger time significantly affected agent draws (F(5,594) = 35784; p < 0.001), 

human draws (F(5,594) = 31975; p < 0.001), and redraws (F(5,594) = 174; p < 0.001). 

The ANOVA for agent and human draws produced similar results.  The number of 

human draws were statistically different for all agent redraw conditions. The effect of 

time on redraws generated three different groupings, with 0.1 s producing the most 

redraws, followed by 2.0 and 2.6 s conditions and 5.6, 8.6, 11.6 s conditions.  
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These simulations indicate that human behavior will change as a function of the 

agent’s trigger time. When the agent created routes at the same speed or faster than the 

human, the human initiated routes between 2% and 20% of the time. When the trigger 

time is one to three standard deviations slower, the number of human initiated routes 

increased from 50% to 95%. Furthermore, the model anticipated that the largest shift in 

performance would occur when the trigger time was adjusted from 5.6 to 8.6 s, 

decreasing the score by 10%. The greatest increases in workload should occur when 

delay times change from 2.6 to 5.6 s and 5.6 to 8.6 s, with a 7% and 5% increase, 

respectively. 

 

Figure 12: Graph displaying mean human draws, agent draws, and redraws per 

agent delay time 

Conclusions and Future Work 

According to the simulations, timing of the interaction between the human and 

automated agent significantly affects system performance, human workload, and 
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behavior. As a result, the agent’s task time can be determined to support system 

objectives. For example, if the only objective is to obtain the highest score possible, it 

seems appropriate to place the agent trigger at 0.1 s to obtain the best possible team score. 

However, if there is an added objective, such as keeping the user engaged in drawing a 

portion of the initial routes, the approach should vary. For the operator to respond 

correctly to any error that might occur, they need to detect and understand the context of 

the error. By having the agent trigger too quickly, the human is likely to learn to redraw 

paths without drawing initial paths.  Under conditions of low task load, as might occur as 

the spawn rate of the ships is reduced, the user may fall into performing a vigilance task 

and potentially lose the ability to maintain situation awareness.  Therefore, while it may 

be optimal to have a quick trigger to earn higher points, this same trigger could be 

detrimental if the human is unable to maintain alertness and therefore be unable to detect 

agent errors. The purpose of keeping an operator “in the loop” is to ensure they are 

capable of making appropriate decisions when tasked accordingly. Keeping the operator 

“in the loop” appears to correlate with the timing of human-agent interaction. 

Future studies could investigate how an individual’s tendency to trust an 

automated agent affects performance, workload, and behavior. This can be evaluated by 

adjusting the reliance function to represent varying levels of trust. Furthermore, the 

results from this model suggest that human-subjects experiments should be performed to 

validate the behavior predicted in this research. If those experiments affirm this research, 

it could provide insight into the significance of timing when human and agents work 

together on the same task. Finally, one might expect that agent delay time is not only 
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dependent upon the human’s response time but also upon the taskload modulated as a 

function of ship spawn rate.  Understanding interactions between these variables may 

provide an understanding of human-machine teaming based upon agent timing. 
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IV. Timing and its Effects on Human Agent Teaming 

Abstract

The research and development of automation has led to the creation of systems 

that can vary their level of automation, which is known as adaptive automation. As 

technology becomes more sophisticated, the use of autonomous agents increases within 

the context of a human-agent team. Teaming allows for the dynamic shift in roles 

between the human and agent, whereas previous technologies contained a static 

relationship between the two. A previous simulation model was used to investigate how 

the timing of agent actions impacts team performance, as well as human workload and 

behavior.  A human-in-the-loop experiment is performed, and results are compared to the 

model. The agent delay time has a significant effect upon team behavior, performance, 

and roles assumed by the human and agent. Therefore, it is postulated that understanding 

the consequences of agent timing is significant in the context of human agent teaming.  

Introduction 

 Adaptive Automation 

As technology’s sophistication continues to exponentially increase, automated 

systems will continue to infiltrate and influence daily human operations. Automated 

systems and human operators bring unique qualities, abilities, strengths, and weaknesses 

to any working environment. Automated systems can successfully execute monitoring 

tasks, as well as generate, select, and implement alternatives (Endsley, and Kaber, 1999), 

whereas, humans have been documented as being poor monitors, (Parasuraman and 
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Manzey, 2010) yet are not limited to adhere to a strict underlying code, enabling them to 

be flexible decision makers in response to unusual or unforeseen circumstances. 

Understanding these differing abilities may result in a clear direction to employ either an 

automation or human to accomplish simple tasks. However, as task complexity increases, 

task assignment to human or automation may not be as clear. Rouse originally proposed 

that it is “reasonable to expect humans and computers to have overlapping or intersecting 

abilities and responsibilities” (Rouse, 1977). Thus, some tasks may result in suitable 

outcomes, regardless of the actor performing the action.  

Overlapping abilities and responsibilities can be arranged through the 

development of an automated system containing several levels of automation, signifying 

that a task does not need to be addressed either fully manual or fully automated.  Rather, 

these are two extremes on a spectrum including variations in automation’s purpose and 

interactions with the human operator (Parasuraman et al., 2000; Parasuraman, Bahri, 

Deaton, Morrison, & Barnes, 1992). For instance, an intermediate level of automation 

could be a system that provides the human with a set of alternatives and allows the 

human to select a decision. In this circumstance, the automation only completes part of 

the task, generating alternatives, and proceeds to relinquish control of the next phase to 

the human. Although an automated system may contain varying levels of automation, it is 

still a static system conducting behavior changes through user input or system design. 

Consequently, automated systems do not attempt to understand when the human would 

benefit from assistance and therefore, do not assist the human at an optimal level in 

naturalistic environments where human task demands and capabilities are constantly 
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changing.  The need for the automation to respond to human task demands and 

capabilities has led to research and increasing discussion of and implementation of 

adaptive automation. 

Adaptive automation generally refers to the technological component of joint 

human and automation systems where the automation’s level of control and behavior 

adjusts in response to real-time and context specific information (Feigh et al., 2012; 

Sheridan, 2011). The change in behavior attempts to respond to situational demands to 

meet user needs often without explicit instructions. Adaptive automation reacts to 

perceived circumstances by tracking and sensing information about the operator, tasks, 

and environment (Feigh et al., 2012). The adaptive approach aims to achieve optimal 

system performance through the dynamic regulation of automation, thus maintaining 

automation’s benefits while reducing costs (Feigh et al., 2012). Parasuraman provided an 

example of adaptive automation within the context of an air defense system that alerted 

the user with a specific automated sequence if critical events occurred. In this setting, the 

automation is considered adaptive because it is scanning the environment and is invoked 

when the critical events occur; otherwise, the automation does not intervene 

(Parasuraman, Sheridan, & Wickens, 2008). 

 Dynamic Task Allocation and Triggers 

Dynamic task allocation is employed in system design to actively assign and 

reassign tasks between the human and automation (Feigh et al., 2012). Dynamic task 

allocation creates an environment where the automation performs tasks contextually and 

the distribution of task responsibility, between the human and automation is concurrently 
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dependent upon real time circumstances.  As a result, the task environment can be 

restructured to designate responsibilities (Byrne & Parasuraman, 1996).  

This class of dynamic task allocation requires an administrative agent that has the 

authority to dictate the level of control (Sheridan, 2011). Allocation authority can either 

be allocated to the human operator, automation, or other mechanism.. In circumstances 

where the allocation authority is allocated to the automation, decisions are made in 

response to a trigger. A trigger is a criteria, state, threshold or event that causes the 

allocation authority to implement relevant adaptive automation behavior. Triggers are 

designed relative to information that can be sensed, observed, or modeled by the adaptive 

automation to establish an understanding of the current context. An adaptive automation 

system in which changes in the level of control is allocated to the machine uses triggers 

to recognize when, and how long, to engage and disengage certain adaptation behaviors 

(Feigh et al., 2012).  

Triggers are generally classified as being based on operator, system, environment, 

task or mission, or spatiotemporal metrics (Feigh et al., 2012). Triggers are designed to 

recognize important information and implement change according to critical events, 

operator performance, physiological data, cognitive and task models, or other feedback. 

The trigger implemented in this research does not assess a singular condition, but tracks 

the state of multiple criteria. Nonetheless, the metric used as the independent variable in 

this study is time. Time is a simple mechanism to manage the engagement and 

disengagement of automation. In previous literature, researchers have found the benefits 

and costs of short-cycle versus long-cycle adaptive automation (Hilburn, Molloy, Wong, 
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& Parasuraman, 1993). Automation that was engaged for short periods of time, or short-

cycle, only led to performance enhancement. Automation that was extended for a long 

period of time, or long-cycle, placed increased demand on the human operator to monitor 

for potential automation problems because humans are not well suited for extended 

monitoring tasks, as they are prone to lose vigilance ( Parasuraman, 2008). It has been 

observed in this research that time triggers have limited applicability in effectively using 

adaptive automation; however, the research conducted by Hilburn was based solely upon 

triggers that alternated  between fully manual and fully automatic control for 

predetermined lengths of time (Feigh, Dorneich, & Hayes, 2012; Hilburn et al., 1993). 

The literature doesn’t contain depth as to the impact of automation’s timing within a 

highly dynamic task environment and circumstance where human and automation interact 

and engage in a teaming construct.  

The lack of understanding timing’s impact within a human-automation team 

environment is significant because as technology increases in sophistication, the future 

direction for automation’s application appears to be in the form of Human-Machine 

Teaming in which the machine will support the human in real time. Teaming is different 

from current adaptive automation considering that throughout dynamic task allocation, 

the automation remains subordinate to the human, thereby limiting the potential to which 

the team can leverage each member’s unique strengths. Comparatively, effective human 

teams not only dynamically allocate tasks, but also roles, responsibility, and authority 

dependent upon each team members’ capabilities (Bruemmer et al., 2002). In classic 

systems, the machine usually fulfills the role of tool or subordinate, never reaching the 
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status of a peer or leader. By allowing the machine to attain higher status, an emphasis on 

interdependence and communication emerges as each becomes more reliant upon the 

other. Timing may be a considerable factor within this team context, as humans and 

automated systems respond to events at different rates. Humans can require several 

seconds to perceive an event occurrence, process a course of action, and implement the 

desired action. An automation embedded in a computing system could potentially 

perform the same sequence of events almost instantaneously. The dichotomy in process 

time is a significant aspect when considering team member capabilities with respect to 

team performance, as many operations are time sensitive. Given the differing abilities of 

the human compared to the automation, it is assumed that the time in which automation 

executes an action has a significant impact upon the team. There is uncertainty how 

variation in automation timing affects human behavior and the team as a whole. 

Therefore, this paper aims to provide some insight to the impact of automation timing on 

a human-machine team performing within a dynamic environment.  

 Hypothesis 

This research investigated a scenario where an automation and human interacted 

within the same environment to examine the effects of automation’s task timing upon 

their relationship.  A human operator and automated agent were placed in an environment 

where they were completing some of the same tasks alongside one another with a 

particular team objective. To fulfill the team objective, we recognized that optimization 

of the agent must consider multiple objectives. The agent was designed to complete tasks, 

keep the human involved in the task (to help overcome the agent’s failings), and maintain 
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an acceptable level of human workload. We assumed that variation in the timing of the 

automation’s task initialization would have significant effects upon team performance, 

human behavior, and workload.  

To address this research objective, we employed an instrumented task 

environment which included an automated agent capable of performing the human’s 

primary task.  This environment permitted control of event generation to which the 

human must respond from rates which were clearly manageable by a human operator to 

rates that clearly exceeded the human’s ability to respond, creating highly dynamic 

environments.  Human performance modeling was applied based upon existing data to 

predict human behavior within the environment and provide a deeper insight into the 

reasons for this behavioral change (Goodman et al., 2016).  A human-subjects experiment 

was conducted to assess model performance and to further understand human behavior 

within the target environment. 

Space Navigator IMPRINT Model 

To examine timing in the context of a human-machine team, this study uses the 

Improved Performance Research Integrated Tool (IMRINT), a discrete event simulation 

environment (“Improved Performance Research Integration (IMPRINT) Tool,” 2010).  

This environment models human workload and performance as a function of time by 

tracking activities performed by one or more humans or machines. These activities are 

described in a task network, which captures the task sequencing and decision points.  The 

frequency of the tasks, as well as the time necessary to perform each task result from a 

stochastic process, permitting the modeler to represent the variability within the system.  
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Different task networks can be derived for different goals and a workload level is 

assigned to each task performed by the human operator.  Various system allocations can 

then be modeled by allocating specific tasks to the human operator or machine (hardware 

or software) component.  However, to employ this tool to accomplish this goal, the 

modeler must begin with activities to be performed by the system, allocate these activities 

to the human or machine and then derive the tasks or actions necessary to perform these 

functions.  Once these activities are allocated to a component, human or machine, other 

inherent tasks may become necessary to facilitate communication of system state as 

control is passed between the human and machine (Bindewald et al., 2014; Goodman et 

al., 2016). 

 Environment 

The environment used for this experiment was a route creation, tablet-based 

game, called Space Navigator. Space Navigator was constructed to provide a controlled 

representation of a highly-dynamic, event-driven environment.  In these environments, 

the operator has little, if any, control of the event rate and there is no guarantee that the 

human will be capable of responding should unexpectedly high event rates occur.  

Similar environments might include air defense systems and certain command and 

control environments.  The game, while not providing a high fidelity simulation of these 

environments, permits the control of the event rate and other potentially confounding 

variables, logging of human response, and the creation of automations that can be 

enabled to assist the operator during high event rate conditions.  Additionally, the 

environment includes a single, clearly defined, top level goal, (i.e., score the most points), 
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as opposed to most games which provide multiple, often conflicting goals (e.g., leveling 

up and score).  The use of the relatively intuitive game environment simplifies participant 

recruitment and training.  

Figure 13 displays a screen capture from the game and identifies several key 

objects within the game. Spaceships appear at set intervals from the screen edges. The 

player directs each spaceship to its destination planet, designated through color, by 

drawing a line on the game screen using his or her finger. The spaceship then follows the 

entire drawn trajectory unless the player draws a different route for the ship. Points 

accumulate when a ship encounters its destination planet or one of a number of small 

bonuses that randomly appear throughout the play area. Points decrement when 

spaceships collide, and each spaceship involved in the collision is lost. Points are also lost 

when a spaceship traverses one of several “no-fly zones” (NFZs) that move throughout 

the play area to random locations at a set time intervals. For every second a spaceship 

traverses a NFZ, the player loses points. The game ends after five minutes.  
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Figure 13: Screen capture from Space Navigator, highlighting spaceships, planets, 

trajectories, bonuses and no-fly zones. 

The automated agent presented in this experiment draws straight-line routes from 

ships to their corresponding planet, ignoring the presence of bonuses on no-fly zones. 

The trigger used for the agent considers the arrival of a new ship, human response to this 

event, and human inactivity. The automated agent only draws a route for a ship if the 

human operator had not given the ship an initial route after a specified period of time. 

This design was presumably aiding the user if the user was unable to respond to the 

environmentally generated event in a timely fashion. Thus, if the user was highly task 

saturated or unable to complete ship routes for other reasons, the agent would help the 

user by drawing routes for the ships left unattended. The agent used the time that a ship 

was on the display without being assigned a route by the human operator to trigger its 
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action.  The time before agent activity was the independent variable of interest in the 

current study, therefore, its value varied throughout the experiment. 

 IMPRINT Task Network 

The IMPRINT model is depicted in the SysML Activity Diagram (Delligatti, 

2013) shown in Figure 14.  This diagram divides the activities among three primary 

sections (i.e., “swim lanes”). Each section represents the activities of the environment, 

the human operator, or the agent. The environment nodes in Space Navigator are initially 

responsible for starting the model, generating ships, altering no-fly zone and bonus 

locations, operating the timer, and halting the model, as shown in the center swim lane of 

the activity diagram.  

The player’s attention and actions during game play are facilitated through a loop, 

continuously repeating two high level functions; determining which ship to select and 

drawing a trajectory for a ship. However, the loop is completed both for ships that have 

no drawn trajectories and for those that have non-desirable trajectories.  A possible player 

strategy would be for the person to work to their capacity as they try to earn the highest 

score, leveraging the agent to draw paths they do not have time to draw.  This behavior is 

depicted through the path in the Human swim lane of Figure 14, which includes 

identifying background items, identifying ships without routes without waiting for the 

agent, selecting a ship, and drawing a route.  However, the human could decide to permit 

the agent to draw some initial paths freeing capacity to attend to other tasks within the 

game.  Thus, a task load node, indicated by the first decision node in the human swim 

lane, is used to simulate a human’s decision to either initiate ship selection or monitor the 
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environment, allowing the human to observe the agent as it creates routes. The decision 

to monitor is based on a reliance algorithm derived from previously-collected 

experimental data (Goodman et al., 2016), as shown in Figure 15.  

 

Figure 14: Activity diagram representing the actors and actions in the IMPRINT 

model. Vertical swimlanes are used to designate actions performed by the specified 

actor. 
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If the operator decides to draw a route based upon the reliance algorithm, they 

will continue to identify ships on screen. Afterwards, they can draw a route for a ship that 

does not have a route, or they can “redraw” a route for a ship that has an existing route. 

Following the draw route node, the human attention loops back to determine the human’s 

task load (modeled as the number of ships on screen). As shown, when the human draws 

a route, the environment is updated, informing the agent not to draw a route for that ship 

and displaying the route for the human. 

Simultaneously, the agent is selecting ships and drawing trajectories, as indicated 

in the Agent swim lane of Figure 14. Unlike the human, the agent does not have the 

option to perform fewer tasks. The agent is constantly monitoring all ships on screen and 

drawing a route once the time trigger has occurred.   Unlike the human, the agent can 

only draw trajectories for ships that have not received a route.  As the agent draws a path, 

the environment is updated. 

After the human or agent has designated a route for a ship, a new entity is created 

in the model. The entity represents a ship with a route, with human and agent-generated 

routes differentiated by color. The model assumes a ship continues along its path for a 

length of time drawn from a time distribution representing time-on-screen and is be 

removed from the simulation after the time elapses (not depicted in Figure 14). There are 

three possible end results for a ship: collision, destination reached, and off-screen 

traversal. Ships arrive at these nodes according to probabilities associated with the 

number of ships on screen and the operator that drew the route.  Once again these 

distributions were collected from human-in-the-loop experimental data discussed earlier. 
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The reliance algorithm produced a probability that the human would permit the 

agent to draw a trajectory.  Analysis of data from an earlier experiment (Goodman et al., 

2016) indicated that the probability of the agent drawing an initial route as a function of 

the number of ships on screen produced a parabolic curve. The participants performed 

more route draws when the number of ships on screen was low as participants likely had 

ample time to interact with the system.  Participants also appear to have drawn more 

routes when larger numbers of ships were on screen to try to avoid collisions, given the 

agents’ inability to react to neighboring ships, no-fly zones, and bonuses. The regression 

curve in Figure 15 was used to account for the reliance of the operator on the automated 

agent with respect to the number of ships on screen. 

 

Figure 15: Graph displaying the probability of the agent drawing a route as a 

function of the number of ships on the screen. The third order regression line, with 

equation, was used in calculating the reliance algorithm in the IMPRINT model. 

The other factor necessary in the reliance algorithm was the trigger time of the 

agent. While no data exists to construct this function, it was assumed that the longer the 
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agent takes before assigning a route, the more likely the human will initiate tasks to avoid 

losing points.  At the lower limit, if the agent drew the line as soon as the ship appeared, 

the person would never have time to initiate a route.  However, in the case that the agent 

requires an infinite amount of time before drawing the route, the human cannot rely upon 

the agent to draw any route. To understand an agent delay time that would initiate routes 

for ships about the same time as a human, the operators’ average ship selection cycle 

times were calculated using data from fully manual gameplay in previous experiments. 

The cycle time was considered the time between initiating routes for separate ships, and 

was determined to be 2.6s with a standard deviation of 3s. Using three standard 

deviations above and one standard deviation below the mean of 2.6 s, it was assumed that 

a human would be unlikely to initiate a route for a ship at 0.1 s and the agent would be 

unlikely to initiate a route at 11.6 s.  This assumption was used to determine points on a 

linear equation relating delay time to probability of agent draws.  This linear model was 

used to shift the third order regression line shown in Figure 15 downwards as the agent’s 

time delay increased and shift the regression line upwards as the agent’s time delay 

decreased. For every second that the agent’s delay changed, the baseline probability value 

of agent draws was incremented or decremented by 0.1058, within the bounds that the 

probability must be between 0 and 1. This model was validated against previous 

gameplay data as described elsewhere (Goodman et al., 2016). 

 Simulation Procedure 

A series of simulations were conducted altering the trigger time of the automated 

agent in each simulation. Trigger times were selected based upon participant 
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performance.  As noted earlier, the participant required an average of 2.6 seconds 

between the time a ship appears on screen and the time the human selects the ship to 

draw a trajectory.  The associated standard deviation was 3.0 seconds. Six conditions 

were evaluated for the agent delay time: the mean time for a participant to select a ship 

(2.6 s), plus one-half, one, two and three standard deviations (ie., 0.1, 5.6, 8.6 and 11.6 s), 

as well as the 2 s delay from the earlier human-in-the-loop experiment (Goodman et al., 

2016). The six scenarios were each simulated 100 times, having the same random seed 

for each condition. At the end of each scenario, the average scores, workload, and 

trajectories drawn were calculated.  A one-way Analysis of Variance (ANOVA) was used 

to determine whether agent delay-time had a significant effect on model outputs and 

Tukey Pairwise Comparisons were used to test for differences between individual means. 

Simulation Results 

The results from the IMPRINT simulations displayed an inverse relationship 

between performance and workload (shown in Figure 16), as well as human draws and 

agent draws (shown in Figure 17). As the trigger time increased beyond the average time 

of 2.6 s, the operator’s workload increased and overall performance decreased.  Although 

overall score was recorded for each of 100 model runs, workload, calculated using 

VACP, is shown for a typical single model run. 

The ANOVA indicated that the effect of agent trigger time on overall score is 

statistically significant (F(5,594) = 43.28; p < 0.001).  Tukey pair-wise comparisons 

indicated that there were four significantly different groups of scores. These groups of 

agent time delays were (0.1, 2.0), (2.0, 2.6), (2.6, 5.6) and (8.6, 11.6). It was shown in 
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these pairings that as the time delay increased the average score significantly decreased. 

However, neighboring pairs of values were not statistically different from one another.  

As shown in Figure 17, the human and agent draws also showed an inverse 

relationship.  The agent’s trigger time had a significant effect on agent draws (F(5,594) = 

35784; p < 0.001), human draws (F(5,594) = 31975; p < 0.001), and redraws (F(5,594) = 

174; p < 0.001). The agent and human draws ANOVA produced similar results where all 

times were significantly different from one another. The effect of time on redraws 

generated three different groupings, with 0.1 s producing the most redraws, 2.0 and 2.6 s 

conditions producing fewer redraws and 5.6, 8.6, 11.6 s conditions producing the fewest 

redraws.  

Through these simulations it is observed that human behavior is expected to 

change as a function of the agent’s trigger times. When the agent created routes at 

approximately the same speed or faster than the human, the human initiated routes 

between 2% and 20% of the time. When the trigger time is one to three standard 

deviations slower, the number of human initiated routes increased from 50% to 95% of 

all routes drawn. Furthermore, the model anticipated that the largest shift in performance 

would occur when the trigger time was adjusted from 5.6 to 8.6 s, decreasing the score by 

10%. The greatest gains in workload were predicted to occur as the agent’s delay 

increased from 2.6 to 5.6 s and 5.6 to 8.6 s, with a 7% and 5% increase, respectively.  
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Figure 16: Graph displaying model predictions of mean score and workload as a 

function of agent delay time. 

 

 

Figure 17: Graph displaying model predictions of mean human draws, agent draws, 

and redraws as a function of agent delay time. 
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Experimental Method 

A human-subjects study was designed to investigate the model’s findings of 

significant changes in team performance, human workload, and human behavior as a 

function of agent delay times between 0.1 and 11.6s. 

 Participants 

 The experiment involved 4 female and 16 male volunteers with an average age of 

26.5 years, range of 21 to 38 years. The participants reported average use of tablets 

between 1-2 times a week and gaming consoles 1-3 times a month. Other computer based 

platforms, including smart phones and laptops were reported being used 3-7 times a 

week.  

 Experimental Design and Procedure 

 The experiment included a within subjects design in which each participant 

completed two phases of training and an experimental phase including 15 five-minute 

trials of Space Navigator. The first phase of training consisted of two or more fully 

manual (no automated agent) trials.  The first phase training was terminated when 

participants developed a consistent strategy and performance, which was assumed to be 

after two or more completed trials. Participants were given the opportunity to play the 

game fully manually as many times as they wished before starting the second phase of 

training. The second phase was used to familiarize the participant with the automated 

agent. This phase contained two five-minute trials where the agent delay time of the first 

trial was 2s and the delay time for the second trial was 6s. Following the second phase of 

training, participants completed five experimental blocks, each containing three, five-
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minute trials of one designated delay time throughout the entire block. The delay times 

per block were assigned to participants through a Graeco-Latin Square Design. The five 

delay times evaluated in the experiment were 0.1s, 2.6s, 5.6s, 8.6s, and 11.6s. Ships were 

spawned on screen at a fixed rate of one ship appearing every two seconds. Bonuses and 

no-fly zones repopulated every thirty seconds.  

Participants completed the experiment in the confines of a laboratory and were 

permitted breaks between blocks. Player data collection used a set of Microsoft Surface 

Pro 3 tablet computers running the Windows 8 operating system. Workload information 

was collected through NASA-TLX (Hart and Staveland, 1988) and Instantaneous Self-

Assessment (ISA) (Tattersall and Foord, 1996) questionnaires. Following each trial, 

participants indicated their ISA rating, and after each experimental block, participants 

indicated their NASA TLX workload values. 

Experiment Results 

The results from the experiment produced an inverse relationship between score 

and NASA-TLX, as displayed in Figure 18 NASA-TLX values were calculated by 

averaging participant scores across the individual subscales and standardizing the 

resulting values according to z score. The average scores over the delay times 0.1s to 8.6s 

have a negative linear relationship with a slope of -247 points per second and R2 value of 

0.99. After the 8.6s delay time, the average score plateaus. The NASA-TLX value also 

has a positive linear relationship over delay times 0.1s to 5.6s.  
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Figure 18: Graph displaying experimentally derived mean standardized NASA TLX 

workload values, as well as and score as a function of agent delay time. 

The ANOVA indicated that the effect of agent trigger time on overall score is 

statistically significant (F(4,193) = 19.36; p < 0.001).  Tukey pair-wise comparisons 

indicated that there were two groups of scores that were significantly different from one 

another. These groups in terms of agent time delay were (0.1, 2.6) and (5.6, 8.6, 11.6). It 

was shown in these groupings that there is a significant decrease in score when the delay 

time is greater than 2.6 s.  

As seen in Figure 19 as the delay time increases, there is a shift in human 

behavior as indicated by the increasing number of trajectories initiated by the operator 

and decreasing redraws of agent trajectories. Redraws performed by the human were 

categorized into two types of redraws: human redraws, where the participant drew a route 

for a ship they had already drew a route, and agent redraws, where the participant drew a 

new route for a ship with a route drawn by the agent. The data shows a relatively steady 
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decrease in agent redraws, whereas the human redraws stay relatively the same as the 

delay time increases.  

Although the human never drew initial routes for ships at the 0.1s delay time, , a 

sequence could occur where the agent drew the first route for a ship followed by the 

human drawing a second and third route for the same ship. This sequence would be 

counted as 1 Agent Draw, 1 Agent Redraw, and 1 Human redraw since the agent drew 

the initial route, the human redrew over an agent’s route, and the human redrew over 

their own route. 

 

Figure 19: Graph displaying experimentally derived mean human draws, agent 

draws, human redraws, and agent redraws as a function of agent delay time. 

 

The ANOVA indicated that the trigger time had a statistically significant effect on 

agent draws (F(4,193) = 254.66; p < 0.001), human draws (F(4,193) = 209.54 ; p < 

0.001), human redraws (F(4,193) = 10.20; p < 0.001), and agent redraws (F(4,193) = 
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30.77 ; p < 0.001).  Tukey pair-wise comparisons conducted for human draws, agent 

draws, and agent redraws led to five groupings per response according to the delay time. 

Human redraws were grouped as (0.1, 2.6) and (5.6, 8.6, 11.6). Another notable factor 

revealed in the ANOVA was the block number. Each participant completed five blocks, 

each block consisting of three five-minute trials.  

Altogether, there were twenty participants; therefore, there were a total of sixty 

trials per block, with each delay time representing twelve of those trials. The ANOVA 

did not indicate statistical significance for agent draws and human draws, but there was a 

consistent trend. The blocks completed early in the experiment, blocks one and two, had 

ten to fifteen more human draws than blocks three through five. This indicated that as the 

experiment progressed, the participants let the agent engage more routes.  

Discussion 

The IMPRINT simulation predicted a significant impact of agent delay time upon 

team performance, as well as human behavior and workload. The human experiment 

displays similar results and trends over the spectrum of agent delay times. The standard 

deviations of values from the IMPRINT simulation are small compared to standard 

deviations from the human subjects study. A Regression Analysis was applied to assess 

the ability of the simulation to produce mean values that were predictive of the 

experimental means across all delay times, with the assumption that model results which 

perfectly predict the results of the human subjects data would provide regressions having 

a slope and a coefficient of determination (R2) equal to 1. The regressions indicated a 

very strong relationship between predictions and measurements of human and agent 
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draws with R2 values of 0.99 and 0.985 and slopes of 1.049 and 0.917, respectively. 

Redraws and scores had slightly weaker correspondence with R2 values of 0.747 and 

0.777 and slopes of 0.89 and 0.86, respectively.  

The expectation of human-performance simulations, such as IMPRINT, is to 

provide outputs that are general estimates within the context of application. For this 

research, IMPRINT represented the general effect of changing the delay time factor on 

performance, behavior, and workload. The regression values for agent draws and human 

draws indicate that the simulation is able to predict this behavior according to the agent 

delay time with good accuracy within the range of agent delay times explored. The 

redraws and score were not as accurate as human and agent draws, as the simulation 

consistently projected higher values for each. Nonetheless, the simulation conveyed 

similar results and trends as the experiment.  The simulation redraws were very accurate 

for the 0.1s, 2.6s, and 5.6s delay times, but plateaued after that point and didn’t incur a 

sharp decrease as observed in the experiment. The experiment redraws observed a plateau 

in redraws from delay times 8.6s to 11.6s. Thus, the simulation captured a similar redraw 

pattern over delay time, but projected this transition to occur sooner. The simulation 

scores were higher than the experimental means at every delay time, but the simulation 

anticipated a similar trend. The simulation and experiment mean scores display a steady, 

linear decrease  as delay time increases from 0.1s to 8.6s and plateaus at 11.6s. 

Considering the values used to influence scores in the model were from a previous 

experiment, it is plausible that the participants from that experiment were higher 
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performing players and this difference in performance may have produced the differences 

in score.  

The model predicted similar results to the experiment based on the primary 

assumption that a human, when afforded the opportunity to shed tasks, will take 

advantage of this opportunity as long as it is not detrimental to their performance. This 

assumption was expressed through the agent draw probability function, displayed in 

Figure 15. This function has a relationship between agent delay time and human 

engagement in initial routes, where the quicker delay times resulted in the human being 

more likely to wait for the agent to draw an initial route for a ship. In turn, as the delay 

time was longer, the human would initialize more routes to avoid a decline in 

performance. At the 0.1s delay time, the human was unable to draw initial routes for any 

ships, but at the 2.6s delay time it was still projected that over 80% of ships would have 

initial routes provided by the agent. At the longer delay times, the human filled the gap 

and didn’t rely upon the agent to the same extent because the human operator desired to 

maintain adequate performance. As a whole, the human test subjects followed this 

principle with the 2.6s delay time recording an average of 128 agent draws, or 86% of 

possible initial routes.  

However, this assumption wasn’t uniformly observed as some participants 

disregarded the agent. The 2.6s delay time is a significant value because this was the 

average human cycle time (time between drawing a route on one ship and initializing a 

route for another) calculated from the prior Space Navigator experiment. If participants 

had approached the environment by drawing routes as quickly as possible and allowing 
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the agent to draw routes that the human couldn’t address, then it is very possible that 

agent draws would be almost equal to human draws at the 2.6s delay time. In the 

experiment, there were a minority of participants who did not prefer to have the agent 

active. For these participants, the average agent and human draws at the 2.6s delay time 

were 74 and 75 draws, respectively. If these participants are excluded from the total 

average agent draws at the 2.6s delay time, this value increases from 128 to 139 agent 

draws, or 86% to 93% of possible initial routes. Although the minority of participants 

collaborated with the agent in contrast to the other participants and the general 

assumption of human behavior, they still achieved their two highest scores when the 

agent was most active at the 0.1s and 2.6s delay times. Therefore, it appears that the agent 

maintains utility regardless of the human’s perception of the agent. 

It is evident from the simulation and experiment that task initiation is a function 

of agent delay time, but it may also be suggested that team member “roles” are assumed 

according to delay time as well. At the 0.1s and 2.6s delay times, the number of agent 

draws and agent redraws are significantly greater than the number of human draws and 

human redraws, respectively. It is observed at the 5.6s delay time the human draws 

slightly more initial routes, while the human redraws their routes and the agent’s routes 

roughly the same. At the 8.6s and 11.6s delay times, the human initiated routes for almost 

every ship, causing agent involvement to be minimal.. The change in behavior over the 

course of the varying delay times suggests that the agent’s timing significantly affects the 

assumption of team member roles. At the early delay times, 0.1s and 2.6s, the human 

adopted a “supervisory” role, allowing the agent to draw a substantial number of routes 



90 

 

while intervening to attain higher net points. The human operator would oftentimes 

redraw the agent routes to gain higher point values by avoiding collisions, no-fly zones, 

and collecting bonuses. As the delay time exceeds the 5.6s delay, the human does not 

continue to operate with the same strategy, recognizing that waiting for the agent to 

respond would likely lead to lower system performance. At the 5.6s delay time, the 

human operator behaves almost as a peer to the agent with regard to assigning initial 

routes where they drew approximately the same number of initial routes as the agent and 

performed redraws on their own routes as frequently as they redrew the agent’s routes.   

At the longer delay times, the human continues the trend of initiating routes for more 

ships.  At 8.6s and 11.6s, the agent is almost non-existent, in terms of its participation, as 

the human initiates most of the routes. At these delay times it could be assumed that the 

human discounts the agent as the agent is unable to provide a timely response to a new 

ship requiring the human to respond to the ship to maintain acceptable performance.  

Conclusion

Given these findings, as human-agent teaming conceptually matures, timing needs 

to be thoroughly evaluated; for, it is a significant factor to the human-agent team. 

Although specific timing constructs between a human and agent may be task dependent, 

there are general principles that can be applied in the development of a human-machine 

team. Within the context of the team, timing affects the relationship between the human 

and machine, thereby influencing the behavior of each. In the experiment, there were two 

primary relationships, supervisor-subordinate and peer-peer, that were assumed according 

to the timing of the agent. The supervisor-subordinate relationship was generally 
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observed during the quickest and slowest agent delay times. As the agent drew routes 

quicker, the human generally assumed a supervisory role, intervening primarily to alter 

preexisting routes determined by the agent. At the slower delay times, the human took the 

initiative to draw most of the routes while the agent picked up ships when the human was 

unable to address them. The peer-peer relationship occurred when the human and agent 

drew routes at the same pace.  

The aspect of teaming that makes it different from adaptive automation is that 

teams have a shared goal. In the attempt to reach this goal, it is realized that each team 

member possesses unique qualities, which leads to interdependence and the dynamic 

facilitation of roles according to team members’ capabilities. Further pursuing an 

understanding of the role of timing within dynamic environments may prove 

advantageous for human-agent teams. 
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V.  Conclusions and Recommendations 

Chapter Overview 

 This chapter addresses the need for research in the field of human-agent 

interaction and teaming. The research objective is restated and the research summarized. 

The investigative questions are individually answered, followed by recommendations for 

future work and final conclusions.  

Research Motivation 

 The Department of Defense (The role of autonomy in DoD Systems, 2012) and the 

Air Force (M.R. Endsley, 2015) understand the potential benefit of autonomous software 

working synergistically with military members in a vast range of operations. Autonomous 

systems provide an opportunity to enhance future Air Force operations by “potentially 

reducing unnecessary manning costs, increasing the range of operations, enhancing 

capabilities, providing new approaches to air power, reducing the time required for 

critical operations, and providing increased levels of operational reliability, persistence 

and resilience” (M.R. Endsley, 2015). Further, it is recognized that these systems have 

application across a larger number of Air Force Domains as the Autonomous Horizons 

document states:  “Increased levels of autonomy can be brought to bear to enhance 

operations in both manned and unmanned aircraft, and in operations in space, cyber, 

command and control, intelligence, surveillance and reconnaissance, readiness, and 

sustainment across the Air Force” (M.R. Endsley, 2015). 
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 However, these potential advances in military operations will only be successful if 

there is sufficient research and understanding in the realm of human-agent teaming. It 

was noted that past developments and the structure of automation created fragile systems 

that contained limited capabilities and consideration of the human operator  (M.R. 

Endsley, 2015). Two issues within human autonomy teaming motivated this research: 

uncertainty in the effects of autonomy task timing on team dynamics and the need for 

effective modeling and simulation methods for autonomous system test, evaluation, 

verification, and validation. .  

The fundamental aspect of teaming is that humans and autonomy will 

“interchange initiative and roles across mission phases to adapt to new events, disruptions 

and opportunities as situations evolve” (The role of autonomy in DoD Systems, 2012). 

This dynamic relationship between humans and automated systems has not been fully 

realized in current systems due to numerous challenges associated with autonomous 

system development. One aspect of autonomous system design that may have 

considerable impact on team member roles and initiative, as well as human situation 

awareness and workload, is the autonomy’s task timing. The timing of task execution in 

highly dynamic, event-driven domains is assumed to influence the performance and 

behavior of the team. Considering that automated systems have the potential to respond 

much faster than their human counterparts, it was posited that their response time can 

affect task responsibility.  

In addition to issues in human autonomy teaming, another problem is the proper 

testing, evaluation, verification, and validation of the system. This issue arises as the 
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range of actions that could potentially be performed by autonomy may be exponentially 

greater than previous automation systems, which do not significantly adapt their response 

to environmental stimulus. As autonomy’s software is adaptive and learns to respond to a 

large range of environmental conditions, Autonomy has several potential outputs per 

input it receives. Traditional methods of test and evaluation involved placing the 

automation into a scripted scenario and observing how it responds. Through iterative, 

continuous and evolutionary modeling and simulation, it may be possible to evaluate a 

greater range of autonomy responses and actions. In autonomous systems that adapt the 

human’s task environment, it was posited that developers may be able to understand 

human autonomy interactions and the effects of system design on human behavior, 

workload, situation awareness and performance through the use of models which include 

human and automation behavior.  

Research Objectives 

Two research objectives were posed. The primary objective was to assess the 

human-agent team, particularly, how agent timing affects human behavior, team 

performance, and relationship dynamics within the context of the team. The effects of an 

automated system that executes actions exceedingly fast or slow are well understood, 

where a human will almost never initiate tasks when automation acts too quickly, or a 

human will always initiate tasks when the automation responds too late. As autonomous 

systems’ behaviors and roles begin to evolve from simple assistance tools to fully capable 

team members, there are many unknowns as to what effects autonomy task timing has on 

the human operator and team environment. 
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The secondary objective was to understand the considerations and requirements 

needed to properly model the interaction between the human and autonomy.  This 

objective was fulfilled through the use of models and simulations.  In this thesis, MBSE 

was applied through the use of SysML activity diagrams to discover significant 

considerations and assumptions that are needed when modeling a new human-agent team.  

This capability was applied in conjunction with discrete event simulation to create 

projections of human behavior and team performance in response to changes in the 

environment.    

Investigative Questions 

 Responding to the research objectives, the following investigative questions were 

addressed. 

1) What are the considerations needed when modeling a process that involves 
human-agent interaction? 

The main considerations in modeling the incorporation of an agent are the 

changes in human behavior and communication between the human and agent. It should 

not be assumed that the human will continue to exhibit the same behaviors when the 

agent is introduced. It may seem logical that the human will continue the same course of 

action (COA) regardless of agent involvement or will simply relinquish a portion of their 

task to the agent, but actually the agent causes the human to consider several different 

COAs depending upon the context of the situation. It is important to model the entire 

spectrum of COAs and not be complacent with assumptions of how the human and agent 

will interact. 
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Within the model developed in this research, initial allocation of actions appeared 

simple and intuitive, only requiring designating responsibility for existing actions to 

either the human or the agent. The early model was adapted to include task re-allocation, 

which requires careful consideration in the areas of human-agent communication and 

adjustments in behavior. It is significant for the developer to understand that task flow 

between a human and agent involves some type of input or output from both. Any 

adjustments in human behavior, arising as a result of automation, needs to be addressed 

and input into an adapted model. Revision of human behavior nodes and the inclusion of 

human-computer communication leads to a model that more accurately represents the 

system.  As a specific example, each of the models discussed in this thesis applied the 

concept of reliance, modeling this concept as a decision to be made by the human to 

either rely upon the automated aid or not.  This reliance decision is influenced by a 

number of factors, including agent delay time, number of ships on screen, and number of 

ships without routes. Within the models shown throughout this thesis, many of these 

factors are shown to influence the behavior of the human within the human-machine 

team. 

 In the development of a new system, the accuracy of a model, or set of models, is 

critical to the further development of the system. Models and simulations are often made 

in the conceptual phase of system development, capturing the fundamental elements of 

projected system attributes and behavior in a cost-efficient manner to project the impact 

of design decisions upon later system performance. Conceptual modeling is the 

cornerstone for Model Based Systems Engineering (MBSE), affecting nearly every 
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aspect of the development and implementation of the system. If the model neglects 

certain aspects of the system, this could have a negative impact on the project’s budget, 

schedule, requirements, functionality, and feasibility. Therefore, in the context of 

modeling human-computer interaction, one needs to apply careful consideration 

regarding communication, situation awareness, and behavior to properly capture system 

behavior and avoid undesired costs.  

2) How can modeling and simulation tools be used to infer optimal agent timing 
that simultaneously improves operator performance and reduces workload? 

The IMPRINT simulation was designed to assess the effects of agent timing on 

human behavior, workload, and team performance. Experiments were conducted prior to 

the development of the simulation, which was beneficial as they provided data for the 

IMPRINT simulation and the data from this experiment was useful to validate or reject 

the SysML model, at least under the range of conditions included in the experiment.  

In the conceptual phase of model development, it was expected that the 

participants would continue drawing routes, relying on the agent to draw routes only 

when they were overloaded to the point that they could not draw routes quickly enough to 

be successful. Prior to conducting the baseline experiments, the rationale behind this 

assumption was that the agent would be able to work alongside the user, but work less 

effectively and therefore not be trusted to draw routes unless the individual was task 

saturated to the point that they could not draw routes quickly enough. Based on this 

assumption, it was expected that the majority of trajectories would be drawn by the 

participant. It was assumed that the agent would work less effectively because it was 
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expected that the agent’s route drawing behavior would conflict with the user’s strategy, 

causing the human to lose trust. However, most participants’ behavior differed from this 

reasoning. Participants oftentimes assumed supervisory roles, allowing the agent to draw 

more initial routes while the human implemented strategies involving collision 

avoidance, no-fly zone avoidance, and bonus pickup.  

The human test subjects’ data was incorporated into the simulation for realistic 

probabilities, time distributions, behaviors, and performance. Data, in conjunction with 

updated assumptions of human behavior, resulted in an IMPRINT simulation that 

projected the significant impact of agent delay time upon team performance, as well as 

human behavior and workload. Follow-on human experiments displayed similar results 

and trends over the spectrum of agent delay times. 

Therefore, the IMPRINT simulation was very effective at realistically capturing 

human-agent interaction and the effects of agent delay time. Simulations can be used as 

cost-effective means to predict and report projected metrics. When using a simulation to 

predict human-agent behavior, using a conceptual model as a guideline is necessary. In 

this case, adaptation of the SysML activity diagram revealed new human behaviors and 

choices, as well as the need for human-agent communication. The SysML diagram 

permitted the creation of the simulation to remain focused on capturing all of the tasks, 

behaviors and subtleties of the system that were described in the previous model.  

However, assumptions made within the original model were incorrect. Baseline 

experimentation helped reveal actual implications of system behavior and performance, 

resulting in a more robust simulation. As a result, the model can be used to predict how 
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changes in the system affect human behavior, workload, and performance with relative 

accuracy. 

 Note that this process is an embodiment of the general user centered design 

process.  Although the general user centered design process does not necessarily include 

the use of models during the definition process, this research illustrates that this step has 

significant value. Understanding the spectrum of human-agent interactions, in response to 

a dynamic environment, occurs in the modeling process. Modeling accurate and detailed 

depictions of human-agent interactions are useful in developing a robust simulation 

because they provide an established framework. This framework leads to simulation 

development that is focused on capturing events and behaviors that reflect the human-

agent team as closely as possible.   

 

3) How does the timing of an agent affect operator behavior and workload, as 
well as team performance and dynamics? 

It is evident from the simulation and experiment that task initiation is a function 

of agent delay time, but it may also be suggested that team member “roles” are assumed 

according to delay time as well. At the 0.1s and 2.6s delay times, the number of agent 

draws and agent redraws are significantly greater than the number of human draws and 

human redraws, respectively. It is observed that at the 5.6s delay time, the human draws 

slightly more initial routes, while the human redraws their routes and the agent’s routes 

roughly the same. At the 8.6s and 11.6s delay times, the human initiated routes for almost 

every ship, causing agent involvement to be minimal. The change in behavior over the 

course of the varying delay times suggests that the agent’s timing significantly affects 
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team member roles. At the short delay times, 0.1s and 2.6s, the human adopted a 

“supervisory” role, allowing the agent to draw a substantial number of routes while 

intervening to attain higher net points. The human operator would oftentimes redraw the 

agent routes to gain higher point values by avoiding collisions, no-fly zones, and 

collecting bonuses. As the delay time exceeds the 5.6s delay, the human does not 

continue to operate with the same strategy, recognizing that waiting for the agent to 

respond would likely lead to lower system performance. The human operator behaved 

almost at a “peer” state where they almost drew the same number of initial routes and 

performed redraws on their own routes as much as the agent’s routes.   At the longer 

delay times, the human continues the trend of initiating routes for more ships. At 8.6s and 

11.6s, the agent is almost non-existent, in terms of its participation, as the human initiates 

most of the routes. At these delay times it could be assumed that the human is adopting a 

more “subordinate” role where they are initiating for most ships and the agent is drawing 

routes when necessary.  

It is important to note that the experiment cannot fully replicate supervisor-

subordinate and peer-peer relationships because roles are not assigned solely upon who is 

completing certain tasks. Other factors, such as decision authority, influence team roles 

and relationships. Throughout these experiments, the human was able to override or 

redraw agent routes, whereas the agent could not redraw any routes. Final decision 

authority was given to the human; therefore the roles attributed in this discussion are not 

pure representations. Nonetheless, the change in behavior and strategy performed by the 
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human at different delay times appear to indicate an adoption of different roles according 

to agent delay time.     

This experiment was conducted at a single event rate with a ship appearing on 

screen once every two seconds. At this event rate, agent delay time has a significant 

effect upon score and human workload. As the agent delay time increases, the score 

decreases and human workload increases significantly. Based on these experimental 

results alone, it appears that it is best for the agent to have the shortest delay time possible 

as score is highest and workload is lowest under this condition. It is suggested, however, 

that low workload in conjunction with supervisory tasks is not well suited for humans as 

their vigilance may decline and potentially lose the ability to maintain situation 

awareness. Thus, one might suppose that the agent delay time should be increased to keep 

the human operator “in the loop”. The purpose of keeping an operator “in the loop” is to 

ensure they are capable of making appropriate decisions when tasked accordingly. 

However, it should be noted, that while the human may assume the role of supervisor, 

redrawing non-optimal paths for short delay times, the resulting task does not resemble a 

vigilance task for the current event rate.  Instead, the human is highly engaged with 

redrawing paths, redrawing as many as 10 paths per minute with an agent delay time of 

0.1 s.  

Study Limitations 

The biggest limitation to the research is that the human test subjects do not truly 

represent the population of military operators. Also, the game used in these experiments 

does not replicate the use of a militarized autonomous system. Space Navigator presents 
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the user a very simple process with a small learning curve. Thus, the main assumption of 

this research is that although the subjects and environment do not directly represent the 

types of autonomous systems that would be used by the DoD, the results will apply to the 

general field of human-agent interaction.  

Recommendations for Action  

In the context of employing human-agent teams in dynamic environments, there is 

a wide range of possibilities and scenarios these teams may encounter. The roles and 

responsibilities assumed by each team member may have significant consequences due to 

the unique capabilities of each team member. This research proposed that the task timing 

of the autonomous agent impacts the allocation of roles between the human and 

autonomy and ultimately affects the team’s performance. It is recommended that military 

installations designing autonomous systems investigate the effects of autonomy task 

timing on their human-agent teams. Understanding how variations in timing affect the 

human operator and the team may prove to be beneficial in accomplishing objectives 

more effectively.  

Recommendations for Future Research 

Future Agent Timing Research 

While this experiment provides insight into the significance of agent response 

time and its effect on teaming, it only captures one state of event rates. Future research 

should examine the effects of the external event rate on team behavior to mirror the 

dynamic pace of real-world environmental events. Admittedly, the event rate, or  time 
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between ship arrival,  of one ship every 2s requires the human to designate trajectories at 

a rushed pace, actually faster than could be reliably performed by the majority of the 

participants, as indicated by the decrease in score as the agent’s assistance was delayed. 

When the agent’s delay time was set to 0.1s, participants, on average, were touching the 

tablet screen roughly every 6s. At the 11.6s delay time, that time interval was 1.5s. 

Performing an action once every 1.5s to 6s with a constant event rate is not very 

applicable to common circumstances in a real work environment. Most environments 

have unknown and variable event rates observed over an extended period of time, unlike 

the experiment which provided a constant, fast-paced rate for five minutes per trial.  

To better understand what may happen when the event rate is slower, IMPRINT 

was used to predict these effects. Event rates were chosen to be 3s, 4s, 6s and the agent 

was given delay times of 2.6s, 5.6s, 8.6s per event rate, resulting in 9 scenarios. The 

length of each game remained 5 minutes, therefore, as the event rate extended, the 

number of ships and possible maximum score decreased. The simulation ran 10 times per 

instance and recorded average human draws, agent draws, redraws, and score. Figure 20 

captures human initial draws per delay time across three event rates. The y-values, human 

draws and score, were input as percentages, rather than total values, due to the varying 

number of spawned ships. The total number of spawned ships was different per event rate 

because the total length of the game remained at 5 minutes. As seen in the graph, human 

draws increased almost linearly across all arrival rates for delay times of 2.6s and 5.6s, 

whereas the 8.6s delay time plateaued. As the event rate increased and the human 

initiated more draws, the agent became less involved at an inverse rate. 
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Performance was affected similarly to behavior, shown in Figure 21. As the event 

rate became slower, performance increased per delay time. The shortest agent delay time 

of 2.6s was not consistently the highest scoring, as optimal agent delay time performance 

seems to be dependent upon event rate. At the fastest event rate of 2s, the greater the 

agent involvement, the higher the score. As the event rate increases, it can be assumed 

that shorter agent delay times would perform better. However, as the event rate is 

extended, overlap is observed at the 3s delay time and all delay times produce similar 

results. As the event rate slowed down to 4s, the 8.6s delay time is the highest scoring.  

At the 6s event rate, scoring amongst all delay times are relatively the same, but this may 

be due to the simulation’s internal probabilities being based upon human performance as 

the 2s event rate where most human operators found it difficult to avoid collisions and 

prioritized collision avoidance over attaining additional points through bonus collection 

or avoiding no-fly zones. During the slower event rates, there are generally fewer ships 

on the screen at a given moment which provides the human operator with more time to 

implement these strategies while avoiding collisions. Therefore, the model likely 

underpredicts human performance at these slower event rates.   
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Figure 20: Graph displaying percent of human draws as a function of ship arrival 

rate and delay time as predicted from the IMPRINT model. 

 

Figure 21: Graph displaying percentage of possible score as a function of ship 

arrival rate and delay time as predicted from the IMPRINT model. 
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It is interesting to note that varying event rates may lead to increased or decreased 

agent involvement to achieve greater team performance.  In this circumstance, as ships 

appear more rapidly and the team incurs a larger task load, heavy agent involvement 

leads to higher performance. At slower ship arrival rates, there may be a longer agent 

trigger time to maximize team performance. According to the IMPRINT simulation, this 

factor of event rate noticeably influences team dynamics and behavior. Therefore, agent 

timing may need to be a function of event rate. The role of an agent within a team may 

dynamically change according to the rate at which tasks need to be accomplished. For 

example, at slower event rates the agent could assume the role of supervisor while the 

human is performing a majority of the tasks, whereas when the event rate surpasses 

human capability, the human adopts the role of supervisor while the agent completes 

most of the tasks. At a moderate event rate, both could work together as peers. However, 

future research should be pursued through test subjects experiments to more accurately 

understand the effects of event rates and its implications on human-agent team 

performance.  

 Future Modeling Research 

The range of actions that could potentially be performed by autonomy is 

extremely vast, especially when placed in an unpredictable environment. It is not feasible 

to perform traditional testing considering that the space of autonomous actions cannot be 

“exhaustively searched, examined or tested” (Clark et al., 2014). The future of 

autonomous system design relies upon progressive modeling and simulations to feasibly 

understand the potential actions by the autonomy and the consequences of those actions. 



107 

 

Through iterative, continuous and evolutionary modeling and simulation, it may be 

possible to evaluate a greater range of autonomy responses and actions. In autonomous 

systems that adapt the human’s task environment, developers may be able to understand 

human autonomy interactions and the effects of system design on human behavior, 

workload, situation awareness and performance through the use of models which include 

human and automation behavior.  

An approach to modeling and simulation has been proposed for future research 

regarding its potential to be an effective when addressing with the problems stated above. 

The modeling approach has four primary phases to be completed in sequential order and 

requires feedback to flow from the experiments to the models and simulation. Figure 22 

displays four ovals as the six phases – Modeling Process, Baseline Experimentation, 

Simulation Development, Simulation Execution, Validation Experimentation, and System 

Design. The straight lines between the phases represent the order in which the phases 

must be completed. The curved lines represent feedback from one phase being provided 

to another.  
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a. Modeling Process

The modeling process is the initial phase in the design 

methodology. The purpose is to create an understanding of the 

environment, human, and agent through modeling behaviors, states, 

capabilities, assumptions, and other significant information. This produces 

a base network of information that is necessary to investigate how the 

human and agent dynamically allocate tasks, responsibilities, and roles 

through the methods in which they communicate and interact. Modeling is 

also used to identify the environmental factors that are subject to change 
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and affect human-agent interactions. This phase should establish the 

factors to include in the baseline experiment and to the factors to use as 

the independent variable(s) in the validation experiment.  

In this thesis, the approach to the modeling phase was the 

development of an activity diagram to represent human decision making in 

response to agent delay time, events, and on-screen information. The 

activity diagram created a logical approach the human would take when 

interacting with the agent. This model helped guide the simulation 

development process, as well as identify assumptions to be validated in the 

following experiments and simulations. 

b.  Baseline Experimentation

The baseline experiment is a human test subjects experiment with 

the purpose of validating the model and providing data to the simulation. 

The baseline experiment provides context specific information about how 

the human and agent interact with one another. Interactions observed in 

the experiment can be used to examine how they compare with the model 

and recognize behaviors and assumptions that were validated and others 

that may need to be reassessed. The baseline experiment also provides real 

human performance data that can be incorporated into the simulation for 

probabilities, time distributions, tendencies, and other necessary 

information. It is important to acknowledge that this experiment is not 
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designed to test the effects of an independent variable, but to examine 

human-agent interaction and gain baseline data for the simulation.  

The baseline Space Navigator experiment applied in this thesis had 

a static event rate and agent delay time, both equaling 2s. It provided 

desired data for the simulation and feedback for the model. Without the 

baseline experiment, the simulation would not have appropriately captured 

all the essential information relevant to human and agent behaviors.  

Notable feedback obtained was the human reliance upon the agent as a 

function of the number of ships on screen. Identifying this key component 

of human behavior was critical to the process as it provided data for the 

human’s decision making process of either attempting to draw a route 

before the automation or letting the automation draw a route. It also 

validated an assumption in the modeling process that one of the factors 

that influence human reliance on an agent or automation is the taskload, 

which in this case was represented by the number of ships on screen. 

Reliance data provided a function that was used to simulate how a person 

would respond to the change in agent delay time, which was critical to the 

official simulation runs and the validation experiment.  

c. Simulation Development

Simulation development consists of two steps: creation and 

validation. The creation step is simply the process of using the validated 

models to generate the desired network of task nodes. As mentioned 
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earlier, the models provide a crucial foundation and framework for the 

simulation. Data collected from the baseline experiment is input into the 

task nodes such as task time distributions, outcome probabilities, reliance 

functions, and behavior functions.  

Following the completion of the model, it requires further 

validation by comparing the results of the simulation to the baseline 

experiment.  Validation can be accomplished through comparing results of 

the model for the conditions included in the experiment through the use of 

comparison or statistical tests, including equivalence tests, t-tests, or other 

appropriate means. The values to validate should be significant to the 

human agent team, such as, team performance and human and agent 

behaviors. It is also extremely important to evaluate secondary measures 

in the simulation to ensure that the outcomes being validated are supported 

by similar underlying behaviors. For example, in the Space Navigator 

simulation validation, values that were used for validation were score, 

agent draws, human draws, and redraws. However, it was also ensured 

that secondary values, such as ships on screen, number of bonuses 

collected, time spent in no-fly zones, and destinations reached, were 

similar to the experiments. If the primary values are validated, but the 

secondary values are not representative of the experiments, then the 

simulation does not adequately reflect the system and is subject to report 

poor results during further testing.   
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d. Simulation Execution

Following Simulation Development, the next phase is to run 

official simulations to examine the effects of one or more independent 

variables beyond those explored in the validation experiment. The 

variables, number of runs, and other metrics should have been established 

prior to the creation step so that the independent variable(s) can be easily 

adjusted. Once the results are collected, they are evaluated as desired, but 

they do not provide feedback for the models. At this point, the simulation 

does not necessarily represent human behavior and interesting results need 

to be validated.  

e. Validation Experimentation

The Validation Experimentation phase is another human test 

subjects experiment with the purpose of validating the simulation runs 

previously conducted, as well as providing further feedback to the 

conceptual models of the human-agent team. The same independent 

variable that was used in the simulation needs to be used in the validation 

experiments. The validation experiment will reveal how accurate the 

simulation projects adaptations in human-agent interactions and team 

performance in response to changes in the environment.  Again, statistical 

significance testing is appropriate in this phase to validate the simulation 

and experiment. 
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Following validation testing, data and observations from the 

experiment should be used to assess any changes or additions to the 

conceptual models and further enhance the simulation’s performance and 

stability. If the simulation is rejected by the statistical significance tests, 

then an iterative approach of simulation evaluation, adjustment, and runs 

should take place until the simulation is validated and accurately 

represents the system in a dynamic environment.  It should be noted what 

values were not aligned with the experiment’s results and what the 

underlying causes were within the construction of the simulation. It is 

possible that assumptions made in the development of the simulation were 

not valid and need to be changed in the simulation and conceptual models.  

In the Space Navigator validation experiments, the simulation was 

validated in human draws and agent draws, however, redraws and score 

were not. The simulation was able to capture similar tendencies in redraws 

and score as a result of changing the independent variable, but it didn’t 

predict the same magnitude of effects. As a result, it was necessary to 

investigate why these values were not as accurate. It was discovered that 

score was rejected because the participants in the baseline experiment 

were simply higher performers than the validation experiment’s 

participants, causing disparity in the score results. The number of redraws 

in the simulation is a function of number of ships on screen and did not 

account for agent delay time. This function was adjusted to model how 
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human behavior changes with respect to agent delay time. Also, the 

validation experiment affirmed an assumption made in the conceptual 

model that a human, when afforded the opportunity to shed tasks, will take 

advantage of this opportunity as long as it is not detrimental to their 

performance. This feedback, as well as other observations, were applied to 

the simulation and models to enhance the simulation network and 

conceptual understandings of the human agent team in this context.  

f. Iteration Influencing System Design

The purpose of the design tool is to develop a simulation that 

would adequately predict human-agent interactions, behaviors, and 

performance when testing other variables. After the first completed cycle 

of this design tool, it is possible to continue iterating through the modeling 

process, simulation development, simulation execution and validation 

experiments. However, the goal of this design tool is to create a simulation 

product that can reliably represent the human-agent team in a wide variety 

of environmental changes to save the extensive time, money and effort 

that is needed to conduct numerous human test subjects’ experiments. It is 

suggested that one cycle through this design process can provide a reliable 

simulation, but it is also flexible enough to continue iterating if it is 

desired to ensure the model is producing accurate results with respect to 

other variables.  
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The emphasis of this tool is to apply modeling and simulation to 

inform system design. Constantly updating the representations and 

understanding of the system through progressive modeling influences the 

way the agent is constructed. As the models and simulations become more 

robust through iterative processes, it may be assumed that fewer human 

test subjects’ experiments may be performed to understand human 

autonomy interactions and system behavior. However, this approach, as 

currently constructed, is only a proposal for one method to address a 

problem that is a challenging problem for the Air Force. Further research 

should be conducted to develop an approach that contributes to the 

problem of obtaining “effective methods to record, aggregate and reuse 

test and evaluation results” (Clark et al., 2014) for autonomy development.  

Significance of Research 

This research demonstrated a method to human-machine teaming that involved 

MBSE, simulation software development, and human test subjects experiments. The 

method was applied to the design of a human-machine teaming environment and revealed 

how timing is a significant factor to the human-machine team. Although specific timing 

constructs between a human and agent may be task dependent, there are general 

principles that can be applied in the development of a human-machine team. Within the 

context of the team, timing affects the relationship between the human and machine, 

thereby influencing the behavior of each. In the experiment, two primary relationships 
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were observed: supervisor-subordinate and peer-peer. These relationships were assumed 

according to the timing of the agent, as well as the human.  

This observation of timing and its effects on team dynamics is significant because 

the aspect of teaming that makes it different from adaptive automation, or previous 

automation frameworks, is that teams have a shared goal. As a team attempts to 

accomplish their goal, it is realized that each team member possesses unique qualities, 

which leads to interdependence and the dynamic facilitation of roles according to team 

members’ capabilities. Therefore, agent timing directly influences the relationship with 

the human operator and is an extremely important aspect to human machine teaming. 

This research begins to uncover how human-agent relationships respond to changes in the 

agent’s timing and how agent timing should be dependent upon environmental event 

rates. As human agent teaming appears to be the future direction of the Air Force, this 

thesis contributes to foundational research of teaming to help develop successful new 

frameworks for autonomous systems.  
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Appendix A: IMPRINT Simulation Description 

Environment Task Nodes

The Generate Ship task contains the ship interarrival rate in the task duration tab. 

In the effects tab, another ship is added through a tuple variable, ShipArray. ShipArray 

contains attributes for new ships, with each ship having a ship number, time in which it 

arrived on screen, and a Boolean variable for a route, where false is no route. This array 

is used to attribute routes to ships and trigger the automation. Counter variables are also 

used to calculate total number of ships to enter the game, number of ships on screen, and 

ships without routes.  

The Change No-Fly Zone Locations and Change Bonus Locations task nodes 

perform similar tasks. Each performs their tasks iteratively during fixed time duration. 

The Change Bonus task node sets the number of bonuses to 3, as other task nodes have 

the ability to decrement that number if a ship collects a bonus. The Operate Game 

Timer node runs for the length of the game and executes the Model END node after the 

given length of time.  

Human Loop Task Nodes 

 The human loop task nodes are different from the other nodes because they have 

an interface assigned to them labeled “Space Navigator Tablet”, in which the human 

operator interacts with. Workload demand is attributed to the operator each of the human 

loop tasks using VACP workload values.  This interface The Human Loop begins with 

the Identify All Planets and Identify Background tasks. Both tasks only occur once and 
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are used to simulate the initial awareness process of the human operator. The iterative 

section of the human loop begins with the Determine Taskload node. This node 

represents a decision for the human operator to either proceed to identify a ship and draw 

a route, or to monitor the environment. There is no time duration for this task. Within the 

paths tab, the decision type is set to tactical meaning that it the human will proceed to do 

one or the other, not both at the same time. The decision to monitor is determined using a 

reliance algorithm calculated using the “Calculate Reliance Macro”. The algorithm was 

determined from the baseline experiments. If the monitor conditions are not met, then the 

human will proceed to identify a ship to draw. 

 In the Monitor task node, the time of the task duration is only 0.1s and its path is 

a “Multiple” decision which routes to the determine taskload and redraw nodes. By 

having the time so quick, the overall time between identifying ships is flexible. There 

could be instances where the human is monitoring for several seconds or only half of a 

second. The other path directs to the Redraws node. The redraws node simply 

increments the number of redraws and doesn’t have a path extending from it.  

 If the human operator does not monitor the environment, then they will begin the 

Identify Ships task node. The task time is based on the number of ships on screen. There 

are three different distributions set according to a low, medium, and high number of ships 

on screen. There are no other effects from this task. After identifying ships, the human 

operator proceeds to the Select Ship and Draw Route node. The time distributions for 

this task are also based on low, medium, and high number of ships on screen. In the 

beginning effect, the code searches the ShipArray and finds the ship that has been on the 
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screen the longest and also does not have a route. After it finds a ship, this ship is given a 

route. The ending effects increments the number of human draws and determines the 

probability of redrawing a ship. There are three paths leaving this node, set at a 

“multiple” decision type. The first path traces back to the Determine Taskload node, 

which permits the human loop nodes to execute iteratively. The second path connects to 

the Ship Path node, which simulates a ship following the route given by the human. The 

third path connects to the Redraw node.  

Agent Loop 

 The Automation Selection task node simulates the agent identifying ships and 

drawing routes for ships that meet the given criteria. The agent loop is only one task node 

that iterates on itself. The time duration of the task is set to 0.01s to mimic the constant 

awareness of the real agent used in Space Navigator. In the effects tab, the main part of 

the code is found within the release condition. In the release condition, the code is 

looking for a ship that has been on screen without a route greater than or equal to the 

delay time. If it draws a route for a ship, then the task will release an entity to the Ship 

Path node and continue to reiterate. If it does not draw a route for a ship, the task will not 

release an entity and will continue to run the code within the release condition.  

Ship Paths and Destinations 

 There are two task nodes that contain ship path time distributions. One task is for 

the human draws, Ship Path, and the other is for the agent, Ship Path Auto. Both tasks 

are responsible for keeping a ship entity on its designated route for a given length of time. 



120 

 

After the time has elapsed, then the ship is directed to the destination nodes. In the Ship 

Path node (the one designated for human draws), there are three different time 

distributions in the ship path nodes representing low, medium, and high number of ships 

on screen. This is used to represent how people may adjust their route drawing strategy 

according to the taskload they’re experiencing. In the agent’s ship path, there is only one 

time distribution because it only draws straight lines. At the end of this task, the decision 

of the ship’s final destination is determined probabilistically according to results from the 

baseline experiment. There is an option to use tactical decision making, which 

incorporates the CalculateResult macro. This macro uses several equations to determine 

the result with the primary factor being the number of ships on screen. This macro wasn’t 

used in the experiment because it didn’t align with results from the baseline experiment. 

However, it could be refined and prove to be a valuable aspect of the simulation, 

especially when testing several different types of variables. The destination nodes, 

Drawn Collision, Drawn Destination, or Drawn Off Screen, indicate the final results 

of the ship entities. These nodes serve as counters which increment that type of 

destination variable, decrement the number of ships on screen, and change score 

accordingly. 
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