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Crosstalk Between Staphylococcus
aureus and Innate Immunity: Focus
on Immunometabolism

Christopher M. Horn and Tammy Kielian*

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States

Staphylococcus aureus is a leading cause of bacterial infections globally in both

healthcare and community settings. The success of this bacterium is the product of an

expansive repertoire of virulence factors in combination with acquired antibiotic

resistance and propensity for biofilm formation. S. aureus leverages these factors to

adapt to and subvert the host immune response. With the burgeoning field of

immunometabolism, it has become clear that the metabolic program of leukocytes

dictates their inflammatory status and overall effectiveness in clearing an infection. The

metabolic flexibility of S. aureus offers an inherent means by which the pathogen could

manipulate the infection milieu to promote its survival. The exact metabolic pathways that

S. aureus influences in leukocytes are not entirely understood, and more work is needed

to understand how S. aureus co-opts leukocyte metabolism to gain an advantage. In this

review, we discuss the current knowledge concerning how metabolic biases dictate the

pro- vs. anti-inflammatory attributes of various innate immune populations, how S.

aureus metabolism influences leukocyte activation, and compare this with other

bacterial pathogens. A better understanding of the metabolic crosstalk between S.

aureus and leukocytes may unveil novel therapeutic strategies to combat these

devastating infections.

Keywords: Staphylococcus aureus, biofilm, immunometabolism, macrophage, myeloid-derived suppressor

cell, lactate

INTRODUCTION

Staphylococcus aureus (S. aureus) is an opportunistic pathogen that colonizes approximately one-

third of the human population and can cause invasive disease at an array of different sites

throughout the body, including endocarditis, skin and soft tissue infection, bacteremia,

pneumonia, osteomyelitis, and medical implant-associated infection (1, 2). The ability to

successfully infect and persist in such a wide range of tissue niches is due to a number of

characteristics that allow the bacterium to evade immune-mediated clearance. Such attributes
include the production of various toxins, the acquisition of antibiotic resistance or tolerance, and the

ability to form biofilm (3–6). Each of these factors, often in combination with one another,

contribute to the ability of S. aureus to counteract immune effector mechanisms.
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Throughout the course of an infection, both host and

pathogen undergo substantial changes in their metabolic

programs to facilitate the production of different effector

molecules that aid in their respective goals (7, 8). In the case of

leukocytes, this takes the form of regulating the production of

cytokines, such as IL-1b . For S. aureus , metabolic
reprogramming allows for the production of various

leukocidins and lactate, among other virulence factors, that

combat the immune system (9). As an infection progresses,

nutrient concentrations within the tissue milieu can rapidly

fluctuate as host and pathogen compete for the same

extracellular energy sources (10, 11). The intrinsic metabolic
flexibility of S. aureus allows it to quickly adapt to these evolving

conditions to promote its survival (12, 13). While S. aureus may

be able to overcome the depletion of specific nutrient sources, the

leukocyte population may not be as flexible. As metabolism is

inextricably linked to immune cell function, the intentional

depletion and/or release of specific metabolites that can impair
leukocyte microbicidal activity could represent a system by

which the bacteria influences host cell metabolism to its

benefit. Here we provide an overview of how S. aureus

interacts with leukocytes at the metabolic level. We will focus

on immunomodulatory metabolites and how they contribute to

the crosstalk between host and pathogen during an infection,

with a particular emphasis on S. aureus biofilm formation. We
also provide examples of metabolic crosstalk between leukocytes

and other bacterial species as further mechanisms to consider in

the context of S. aureus infection.

IMMUNOMETABOLISM

The study of immunometabolism is focused on linking changes

in metabolic programs to effector functions. Over the years, it has

become apparent that activated leukocytes experience a shift in

metabolism that regulates inflammatory mediator production

(14–16). Activation usually coincides with a metabolic shift from

the energy (ATP)-rich resting state to an increase in the
production of effector metabolites necessary for biosynthetic

processes for inflammatory effector function, such as fatty acid

biosynthesis for prostaglandin production (Figure 1) (17–20).

Since this observation was made, there has been considerable

interest in defining metabolic programs that are characteristic of

either the pro- or anti-inflammatory status of various leukocyte
populations. Much of this fervor originated from the idea that

immune cell function could potentially be orchestrated via the

manipulation of the nutrient milieu or by therapeutically

targeting specific metabolic pathways.

In the context of an infection, immunometabolism is only half

of the story, since pathogens must also acquire essential nutrient

sources for their survival (21). This leads to direct competition
between the host and pathogen on a metabolic scale. Much like

responding leukocytes, S. aureusmust also undergo some degree

of metabolic adaptation to counteract the effects of the immune

response. Switching between alternative forms of metabolism is

common in S. aureus due to its significant degree of metabolic

plasticity (22–24). This flexibility greatly increases the chances
that the bacteria will win the battle of attrition between host and

FIGURE 1 | Metabolic shifts in leukocytes define resting from inflammatory states. Immune cells normally respire under resting conditions to provide sufficient energy

(ATP) for survival. Upon activation, although energy production is somewhat increased, a significant portion of the metabolic flow is dedicated to producing metabolic

intermediates (Effector Metabolites) that are used to generate inflammatory mediators (i.e. cytokines, inflammatory lipids, etc.) to promote leukocyte effector functions

(Immune Response). S. aureus, either through competition for metabolic resources or by releasing immunomodulatory metabolites, can interfere with this process to

disrupt a productive immune response. Monocyte (MO), macrophage (Mj), neutrophil (PMN), and granulocytic myeloid-derived suppressor cell (G-MDSC). Figure

created with BioRender.
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pathogen for specific nutrient sources. If this ability to shift

between different metabolic modes is compromised, it could

drastically alter the landscape of an infection. For instance, work

from our laboratory has established that S. aureus biofilm skews

leukocytes towards an anti-inflammatory phenotype in a murine

model of prosthetic joint infection (PJI) that is mediated, in part,
by IL-10 production (25–28). Recent work demonstrated that the

loss of an essential metabolic process in S. aureus, such as ATP

synthesis (DatpA), significantly decreased the chronicity of

biofilm infection by eliciting a heightened pro-inflammatory

response (29). This is likely attributable to the respiratory

defect in S. aureus DatpA that limits the energy required for
virulence factor production (30), which subsequently led to

increased leukocyte viability and pro-inflammatory activity

(29). Another group has shown that metabolic adaptation of

Pseudomonas aeruginosa is essential for establishing chronic

biofilm infection in patients with debilitating diseases such as

cystic fibrosis (CF). Host-adapted P. aeruginosa strains
preferentially utilized the tricarboxylic acid (TCA) cycle to

limit stress from reactive oxygen species (ROS) produced by

leukocytes in the airway. This TCA metabolic bias in P.

aeruginosa enhanced biofilm formation, which served to

increase the chronicity of infection (31). How metabolic

changes can influence the function of various leukocyte

populations and an overview of critical S. aureus metabolic
pathways in the host will be discussed in the following sections.

MACROPHAGE METABOLISM

The macrophage is currently the prototypical cell studied in the

immunometabolism field. Much progress has been made in
characterizing how macrophages shift their metabolism after

exposure to various stimuli in vitro and how this influences

their effector functions. These experiments led to the discovery

that pro- and anti-inflammatory polarized macrophages have

distinct metabolic programs (32–34). For example, exposure to

Toll-like receptor (TLR) agonists such as bacterial lipoproteins,

peptidoglycan, DNA, or lipopolysaccharide (LPS) biases
macrophages towards glycolysis. In contrast, anti-inflammatory

cytokines (i.e. IL-4 or IL-10) or growth factors promote oxidative

phosphorylation (35, 36). In pro-inflammatory macrophages, the

increase in glycolytic metabolism following TLR activation is due,

in part, to two TCA cycle blocks (Figure 2) (15, 35). These break

points create an anaplerotic cycle that leads to the progressive
accumulation of metabolites such as succinate and aconitate,

which are immunomodulatory in nature. Initial experiments

showed that the intracellular concentration of succinate

dramatically increases following TLR stimulation (37–39). Early

work into understanding metabolic reprogramming found that

this succinate pool was diverted from normal TCA cycle
metabolism and oxidized by succinate dehydrogenase (SDH) to

produce high amounts of ROS, which stabilized the transcription

factor hypoxia-inducible factor-1a (HIF-1a) by preventing its

FIGURE 2 | Macrophage metabolic remodeling during an immune response. Following Toll-like receptor (TLR) activation, macrophages undergo metabolic rewiring

to promote inflammatory mediator production. The TCA cycle breaks at two points, isocitrate dehydrogenase (IDH) that causes the accumulation of aconitate, which

is converted by immune responsive gene 1 (IRG1) to form itaconate, and succinate dehydrogenase (SDH) that leads to succinate accumulation. While this process

normally augments proinflammatory activity, excess itaconate production eventually causes a shift to promote the expression of anti-inflammatory genes. Figure

created with BioRender.
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ubiquitination and degradation (40–44). HIF-1a stabilization

leads to the production of pro-IL-1b, which is cleaved into its

mature form by the NOD-like receptor pyrin domain containing 3

(NLRP3) inflammasome (45–47). A secondary effect of this

process is the HIF-1a-dependent induction of glycolytic

enzymes by that feed back to promote biosynthetic pathways to
augment pro-inflammatory activity (40, 48, 49). Increased

glycolysis serves to produce ATP and sustain the mitochondrial

membrane potential that is necessary for succinate oxidation.

In macrophages, NLRP3 inflammasome activation generally

occurs via a two signal model (45). Signal 1 is mediated by TLR,

IL-1R, or TNFR activation that elicits maximal expression of
pro-IL-1b and inflammasome components. Numerous stimuli

have been shown to provide signal 2 and the diverse structure of

these molecules has led to the concept that cellular stress is a

unifying factor responsible for NLRP3 inflammasome activation

(45). With regard to S. aureus, a-toxin acts as signal 2 to activate

a primed NLRP3 inflammasome (50). This has been attributed to
K+ efflux from cells as a consequence of toxin-mediated

membrane disruption, which can be potentiated by gasdermin

D cleavage by the NLRP3 inflammasome that forms another

transmembrane pore leading to pyroptosis (51). However, in vivo

studies have shown that a-toxin alone is not sufficient for NLRP3
activation. Another requisite is S. aureus lipoproteins that

provide signal 1 via TLR2 activation to elicit maximal
expression of pro-IL-1b and inflammasome components (52).

Recently, it was shown that S. aureus packages its pore-forming

toxins into extracellular vesicles that are then internalized by

immune cells. Upon uptake, S. aureus-derived vesicles contain all

of the requisite factors to induce inflammasome activation, thus

providing the bacteria with another mechanism to modulate the
immune response (53). A paradox is why S. aureus augments

NLRP3 inflammasome activation given its ability to produce the

pro-inflammatory cytokines IL-1b and IL-18. However, a recent

study has demonstrated that S. aureus a-toxin exploits NLRP3

inflammasome activation in macrophages by recruiting

mitochondria away from the phagosome, which inhibits

mitochondrial ROS production via complex II (SDH) of the
electron transport chain (ETC), phagosomal acidification, and

bacterial killing (54). This effect was independent of NLRP3-

mediated IL-1b and IL-18 production. Intriguingly, this

represents another mechanism that S. aureus exploits to

prevent immune-mediated clearance.

Subsequent in vitro studies examining the mechanisms of
macrophage metabolic remodeling revealed that the increase in

succinate following TLR activation was due to the action of

itaconate, a derivative of the TCA intermediate aconitate.

Itaconate is produced by immune-responsive gene 1 (IRG1)

and as the concentration of itaconate increases, SDH is

progressively inhibited. This leads to succinate accumulation

and decreased oxygen consumption via the inhibition of SDH,
which is also complex II of the mitochondrial ETC (Figure 2)

(55–59). Although the initial production of itaconate augments

macrophage pro-inflammatory activity, its accumulation begins

to exert anti-inflammatory effects (60). As itaconate accumulates,

it is transported out of mitochondria where it can interact with

cytoplasmic protein targets, namely Kelch-like ECH-associated

protein 1 (KEAP1) (61–63). Under homeostatic conditions,

KEAP1 is bound to nuclear factor erythroid 2-related factor 2

(Nrf2), which targets the complex for proteasomal degradation.

Under stress conditions, such as S. aureus-induced toxin action,

the complex dissociates and Nrf2 translocates to the nucleus
where it acts as a transcription factor for numerous anti-

inflammatory genes (64). Itaconate is capable of disrupting the

KEAP1-Nrf2 association via alkylation of cysteine residues in

KEAP1 to promote Nrf2 nuclear translocation and the

transcriptional activation of anti-inflammatory genes. Via this

mechanism, itaconate represents a way to counterbalance the
proinflammatory activity of succinate accumulation (65, 66).

Amino acid metabolism is also important for influencing

macrophage polarization, where arginine is differentially utilized

by macrophages to exert distinct effector functions (67). For

example, in response to planktonic S. aureus and other pro-

inflammatory stimuli, macrophages utilize arginine to drive
inducible nitric oxide synthase (iNOS) activity and nitric oxide

(NO) production (68). Nitric oxide is a highly reactive free

radical that exerts potential bactericidal activity by inducing

DNA and membrane damage as well as targeting oxidative

metabolism (69–71). However, S. aureus is capable of evading

host NO production, which differentiates it from other

Staphylococcal species. One example is flavohemoprotein
(hmp) expression that allows S. aureus to detoxify its

environment by converting NO into nitrate, making it an

iNOS-dependent virulence determinant (72). Another

component of the nitrosative stress response in S. aureus is L-

lactate dehydrogenase (ldh1), which is a NO-inducible gene.

While hmp serves to detoxify the environment, Ldh allows S.
aureus to maintain redox homeostasis by promoting the

conversion of pyruvate to lactate (73). Although this metabolic

program generates less ATP compared to oxidative metabolism,

it provides a mechanism by which S. aureus can maintain its

reducing equivalents until Hmp can decrease NO levels. In

contrast to iNOS, arginine is used by arginase-1 (Arg-1) in

anti-inflammatory polarized macrophages to produce
ornithine. Ornithine is further metabolized into polyamines

and proline for wound repair and cell growth processes (74,

75). Increased Arg1 expression has been linked to macrophage

anti-inflammatory activity during S. aureus biofilm infection

(76–78). To determine if Arg1 expression was required for the

immune suppression associated with S. aureus biofilm infection,
our laboratory utilized Arg-1fl/fl; Tie-2Cre conditional knockout

mice where myeloid cells lacked Arg-1. Arg1 was dispensable for

myeloid immunosuppression during biofilm formation but was

critical for S. aureus containment during abscess formation (79).

This was in agreement with a prior study showing that host

polyamine production was important for controlling S. aureus

growth in a mouse SSTI model (80). Taken together, these results
indicate that the effects of Arg1 expression are context-dependent

in terms of myeloid cell function during S. aureus biofilm vs.

planktonic infection.

Monocyte/macrophage metabolism was recently shown by

our laboratory to be important for influencing the outcome of S.
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aureus biofilm infection in a mouse model of PJI (81). S. aureus

biofilm biased monocytes towards oxidative metabolism which,

much like macrophages exposed to biofilm in vitro, were largely

anti-inflammatory in nature (82). Therefore, a nanoparticle

approach was used to deliver oligomycin, an inhibitor of

complex V of the ETC, to redirect monocyte metabolism
towards glycolysis. Oligomycin nanoparticles augmented

monocyte pro-inflammatory activity, which coincided with

reduced biofilm burden in vivo, indicating that metabolic

remodeling could prove to be an effective therapeutic approach

for chronic biofilm infection (81). Importantly, monocyte

metabolic reprogramming was capable of attenuating an
established biofilm infection, whose efficacy was heightened by

concominant antibiotic treatment.

GRANULOCYTE METABOLISM

Although much progress has been made in understanding the

role of metabolism in macrophages, comparatively less is known

about how metabolic changes affect granulocyte function.
Neutrophils have been shown to rely almost entirely on

glycolytic modes of metabolism to fuel their effector functions,

which agrees with a reduced mitochondrial abundance (83, 84).

Similar to pro-inflammatory macrophages, activated neutrophils

adopt a metabolic program that is similar to the aerobic

glycolysis that was first described by Otto Warburg in the

1920’s (85), which has since become known as “Warburg
metabolism” (86, 87). This heavy reliance on glycolysis, even in

oxygen replete conditions, is necessary to increase carbon

flux through the pentose phosphate pathway (PPP) to increase

the NADPH pool that is required for NADPH oxidase activity

and ROS production (16, 88). Like pro-inflammatory

macrophages, metabolic intermediates from the TCA cycle
that is fueled by glycolysis, are used for anabolic processes to

promote granulocyte functional activity. For example, citrate

from the TCA cycle can be diverted for fatty acid synthesis to

drive the production of pro-inflammatory mediators such as

prostaglandins and leukotrienes (89–92). Although granulocytes

are typically considered as purely glycolytic, some studies have
also identified granulocytes that instead utilize mitochondrial

oxidative metabolism (93). In the context of cancer, glucose

within the tumor microenvironment can quickly become a

limiting factor. Under these conditions, a population of

immature, c-Kit+ neutrophils has been shown to utilize

fatty acid oxidation to maintain ROS production by NADPH

oxidase (93). These immature neutrophils in tumor-bearing mice
were regulated through aberrant SCF/c-Kit signaling and

metabolically adapted for the lack of glucose within the tumor

microenvironment. Functionally, this meant the adapted

neutrophils retained the ability to produce ROS, which can

interfere with CD4+ T cell anti-tumor activities (94–96).

Although not definitively established, these c-Kit+ neutrophils
possess many characteristics of granulocytic MDSCs (G-MDSCs,

see below). A similar reduction in glucose availability occurs

during S. aureus biofilm formation, as reflected by a shift towards

fermentative metabolism and lactate production (23), which

shapes the metabolic attributes of infiltrating leukocytes, which

is discussed below.

MDSCs are a heterogenous population of immature myeloid

cells that are grouped into two categories based on their shared

characteristics with mature monocytes or neutrophils, namely
M-MDSCs and G-/PMN-MDSCs (97–99). Both subsets are

thought to exert their suppressive activity through increased

ROS production, although M-MDSCs can also utilize Arg-1 to

deplete arginine that is required for TCR expression to

inhibit T cell activation (94, 100, 101). Although MDSCs

have been best characterized in cancer, they have also been
implicated in promoting chronic infection, including S. aureus

biofilm (25–28), bone, and skin infection (102, 103). Due to

the extensive heterogeneity of MDSCs and context-dependent

modes of action, describing a singular metabolic program that is

characteristic of these cells has proved challenging. Nevertheless,

a few reports have examined MDSC metabolism and how
this affects their suppressive activity (104–106). One study

found that M-MDSCs suppress T cell activation by inhibiting

glycolysis through direct physical contact. Interestingly,

M-MDSCs were metabolically dormant, characterized by

an accumulation of the a-dicarbonyl methylglyoxal.

Methylglyoxal was found in T cells following co-culture with

M-MDSCs and treatment with dimethylbiguanide (DMBG),
which neutralizes dicarbonyls, restored T cell activation,

supporting the importance of methylglyoxal in MDSC-

mediated T cell suppression (107, 108). Another study

has pointed to fatty acid accumulation and subsequent

prostaglandin production as a metabolic mechanism for

MDSC suppression. Specifically, PMN-MDSCs overexpress a
fatty acid transporter (FATP2), which led to fatty acid

accumulation and prostaglandin E2 (PGE2) production that

promoted their immunosuppressive effects (109). These studies

highlight the metabolic diversity that MDSCs can adopt to

influence their inhibitory activity. S. aureus biofilm elicits G-

MDSCs that may utilize a distinct metabolic program to exert

their suppressive effects than those described here, which
remains to be determined. Further investigation into how

MDSC metabolism evolves throughout the course of infection

is required to appreciate the role that these cells play in shaping

the host immune response.

HOST–PATHOGEN METABOLIC

CROSSTALK

In an infectious milieu, not only will leukocytes and the pathogen
have to compete for the same nutrient sources, but this also

creates a new environment in which the two could interact. For

instance, a recent study demonstrated how host adapted strains

of P. aeruginosa responded to the secretion of itaconate by

selecting for variants that were able to utilize the host-derived

metabolite as a nutrient source (110). This selection process

coincided with modifications of membrane structural
components in P. aeruginosa to augment host-derived
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itaconate release, thereby establishing a positive feedback loop to

promote chronic infection. This illustrates the importance of not

only considering the metabolism of either the host or pathogen

in isolation, but also the byproducts that they excrete and

exchange. Such molecules constitute a new avenue for cellular

signaling that the host and/or pathogen could leverage to their
benefit during infection. These systems become even more

complex in the context of polymicrobial infections, a common

occurrence with P. aeruginosa and S. aureus in the lungs of CF

patients (111–113). With the additional layering of another

organism, the potential number of molecules and interactions

increases exponentially.

S. AUREUS METABOLISM AND

COMPETITION FOR NUTRIENTS

Competition for the various nutrient sources in an infectious

milieu is probably the most intuitive level by which metabolic

crosstalk occurs. In an infection, there are at least two entities (i.e.

host and pathogen) racing to consume the same resources, which

becomes more complicated in the context of polymicrobial
infections. Glucose and oxygen are among the first resources

that become restricted in these settings and their deprivation can

be enough to bias the actions of responding immune cells or

pathogens alike. These events can also dictate the nature of

immune cell death, which has been reported to occur via two

types of programmed necrosis, namely necroptosis or pyroptosis.
Necroptosis is induced by the interaction of TNF with receptor-

interacting protein kinase 1 (RIPK1), eliciting a cascade that

culminates in the phosphorylation of mixed lineage kinase

domain-like protein (MLKL) that damages the plasma

membrane leading to cell death. Pyroptosis occurs in response

to inflammasome activation that cleaves gasdermin D, which

oligomerizes to form pores in the cell membrane. While both
forms of cell death induce inflammation, the heightened

production of inflammatory mediators associated with

inflammasome activation makes pyroptosis more inflammatory

in nature than necroptosis (114). The roles of S. aureus

metabolism in dictating different modes of immune cell death

will be discussed below.

CARBOHYDRATE AVAILABILITY AND S.

AUREUS METABOLISM

Much work has been done to elucidate S. aureus metabolic

adaptations under a variety of in vitro and in vivo conditions

and the reader is directed to several excellent and comprehensive

reviews on the topic (9, 23, 24), since only a brief overview is

provided here. S. aureus utilizes a number of two-component

regulatory systems to sense changes in its environment (115,
116). These systems interface with complex transcriptional

networks to tightly control nutrient use throughout different

phases of growth and infection. This is referred to as carbon

catabolite repression and ensures that bacteria optimally utilize

available nutrient resources in a hierarchical manner (117–119).

S. aureus uses two catabolite control proteins (CcpA & CcpE) to

modulate glucose utilization through central carbon metabolism.

In glucose replete conditions, oxidative metabolism is repressed

by CcpA, which inhibits the expression of critical TCA cycle

enzymes (120–122). As glucose becomes depleted, CcpA activity
is reduced which induces the TCA cycle and citrate production.

Citrate is sensed by CcpE, which bolsters TCA cycle activity and

increases the expression of S. aureus virulence factors (123, 124).

It has been shown that S. aureus can quickly outcompete host

keratinocytes for available glucose, which leads to keratinocyte

death by pyroptosis (125, 126). Pyroptosis fails to clear S. aureus
infection because NLPR3 inflammasome activation by a-
hemolysin redirects mitochondria away from bacteria-

containing phagosomes, thereby preventing acidification and

killing (54). Thus, pyroptosis is beneficial for the bacteria

because it promotes its intracellular escape and dissemination,

while simultaneously introducing any host-derived metabolic
intermediates into the infection milieu to be utilized for pathogen

survival and replication.

The importance of this battle for glucose is particularly

relevant in the setting of diabetes. Diabetic patients are

characterized by hyperglycemia and often present with

persistent and invasive S. aureus infections (127, 128). A recent

study examining S. aureus SSTI in a diabetic mouse model has
shown that although there is more bioavailable glucose in

diabetic tissues, phagocytes failed to take up the carbohydrate

with either GLUT-1 or GLUT-3 transporters. This resulted in

impaired oxidative burst activity and increased bacterial burden

(129). S. aureus infection in diabetic patients has been linked to

an increase in the recruitment of low-density neutrophils (LDNs)
(130). LDNs are associated with increased rates of NETosis, or

the production of neutrophil extracellular traps (NETs).

Although, NETs are typically considered to exert anti-

microbial effects, elevated levels of NETosis have been linked

to impaired wound healing in patients with diabetes, whose

neutrophils are more prone to NET formation (131). Increased

NETosis in diabetic patients could result from the elevated levels
of glucose within diabetic tissues, as glucose is a metabolic

requirement for the process. Of note, MDSCs that are

expanded in the blood of tumor patients have been

characterized as LDNs (132, 133). By extension, it is intruging

to speculate that the LDNs described in diabetic patients are

actually MDSCs, which might explain why these individuals are
more prone to chronic and recurrent S. aureus infections,

although this remains to be determined.

HYPOXIA AND S. AUREUS METABOLISM

Hypoxia is particularly relevant in the context of biofilm

infections, since bacteria in the innermost regions of the biofilm

experience low oxygen bioavailability. Anaerobic conditions have

been shown to induce the expression of biofilm-associated genes
such as icaADBC that encode polysaccharide intercellular

adhesins that promote bacterial aggregation and adherence to

host surfaces (134–136). Bone, a niche that is often targeted by
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S. aureus biofilm, has a low oxygen tension since it is less

vascularized compared to other tissues (137, 138). The immune

response elicited during S. aureus bone infection exacerbates this
hypoxic environment as infiltrating immune cells quickly increase

their oxygen demand upon activation (139, 140). The biofilm

responds to this progressive decline in oxygen tension by

switching from respiration to fermentation concomitant with an

increase in virulence factor production to attack immune cells to

promote infection persistence (141). The transition from

respiration to fermentation in S. aureus is regulated by several
factors including SrrAB and Rex. The SrrAB two-component

system was initially identified through homology comparisons

with the ResDE two-component system of Bacillus subtilis, which

controls the switch between aerobic and anaerobic respiration

(142). While its ligand remains unknown, SrrAB increases the

expression of fermentative genes such as pflAB, adhE, and nrdDG
that allow it to thrive in an anaerobic environment (141, 143, 144).

S. aureus can also respond to changes in oxygen availability

indirectly through the transcriptional repressor Rex, which

inhibits genes that are important for anaerobic respiration when

oxygen is present. Rex senses redox conditions within the cell

through changes in the NADH/NAD+ pools. As NADH levels

rise, Rex becomes derepressed and is released from the DNA,
thereby allowing for the transcription of fermentative genes in an

effort to maintain reducing equivalents within the cell (9, 145).

Therefore, oxygen depletion could either be a consequence of

bacterial growth, or a strategy enacted by the biofilm to ensure

persistent infection.

EPIGENETIC CHANGES INDUCED BY

IMMUNOMODULATORY METABOLITES

Bacterial-derived metabolites are also capable of affecting
leukocyte activation and function. Recent work has shown that

lactate production by S. aureus biofilm induces epigenetic

changes in leukocytes at the level of histone acetylation (146).

Utilizing a number of S. aureus lactate dehydrogenase (ldh)

mutants, our group demonstrated that biofilm-derived lactate

was imported into MDSCs and macrophages where it inhibited

histone deacetylase 11 (HDAC11; Figure 3). HDAC11 inhibition
prevented its normal function of counterbalancing HDAC6

activity that is a positive regulator of IL-10 transcription,

resulting in enhanced IL-10 production and biofilm

persistence. Synovial fluid from patients with PJI contained

elevated amounts of both D-lactate and IL-10 compared with

control subjects and IL-10 production by human monocyte-
derived macrophages was induced by biofilm-derived lactate,

supporting the translational relevance of these findings (146).

This demonstrates how a bacterial-derived metabolite can

significantly rewire the host-pathogen dynamic to favor

persistent infection. Recently, lactate has also been shown to

directly modify histones with functional genomic implications

(147–149). This lactate modification of histone lysine residues
(termed lactylation) was shown to operate as a sort of “clock”. As

inflammation progressed, the lactate produced by increased

glycolysis lactylated histones. As these lactate marks

accumulated, homeostatic genes were induced that led to a

FIGURE 3 | S. aureus biofilm regulates leukocyte inflammatory activity. S. aureus biofilms employ a number of strategies to create an infection milieu to ensure

persistence. Two of these approaches involve the action of either bacterial-derived metabolites or intrinsic reprogramming of monocyte/macrophage metabolism that

culminate in the expression of anti-inflammatory genes. (Top) Biofilm augments oxidative metabolism in infiltrating monocytes and macrophages that biases them

towards an anti-inflammatory phenotype. (Bottom) In MDSCs and macrophages, biofilm-derived lactate causes epigenomic remodeling that leads to an increase in

IL-10 expression. Figure created with BioRender.
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resolution of inflammation. Thus, histone lactylation functions

as an endogenous timer for inflammatory events.

While innate immune cells do not possess the characteristic

long-lasting immunity of lymphocytes, they are capable of trained

immune memory (150, 151). Trained immunity arises from

epigenetic modifications that prime leukocytes for a subsequent
encounter with another stimulus (152–154). Interestingly, trained

immunity is not stimulus-specific and can induce widespread

changes in how a leukocyte responds to a second insult. Several

studies have shown that prior infection with S. aureus establishes

trained immunity in macrophages that provides temporary

protection from a second bacterial challenge (155–157). Trained
immunity in response to S. aureus has been shown to occur via

epigenetic changes induced by the metabolite fumarate. Fumarate,

like lactate, interferes with the epigenomic remodeling of histone

marks by acting as an antagonist for lysine demethylases (KDMs)

(158–162). A recent study demonstrated the importance of fumarate

during S. aureus infection by contrasting wild type infection with
DhemB small colony variants (SCVs) that were able to deplete local

fumarate stores via enhanced fumarate hydratase (fumC) expression

(163, 164). Trained immunity was assessed by comparing bacterial

burden after a secondary challenge with S. aureus 28 days following

the primary infection. The reduction in fumarate by SCVs increased

host cell glycolysis, which inhibited trained immunity by

necroptosis (Figure 4) rather than inflammasome-dependent

pyroptosis (165). This is beneficial for bacterial persistence since

necroptosis elicits less inflammation compared to pyroptosis (166).

These effects were not observed with wild type S. aureus, which was
less effective at utilizing fumarate. This difference may represent one

explanation for why S. aureus SCVs are typically associated with

chronic infections.

MODULATING METABOLISM AS A

THERAPEUTIC TARGET

The selective targeting of either host or pathogen metabolism
represents an exciting therapeutic prospect that would bolster

traditional antibiotic therapies that are commonly used for

infections. Metabolic interventions have the potential to be

highly efficacious as was shown in our work where metabolically

reprogramming monocytes synergized with antibiotics to reduce

established S. aureus biofilm infection to below the limit of

detection (81). Of particular interest are therapies targeting

FIGURE 4 | S. aureus small colony variants (SCVs) interfere with the establishment of trained immunity. The generation of SCVs with mutations in metabolic

pathways exert influence over the formation of trained immunity. S. aureus SCVs with hyperactive fumarate hydratase (fumC) quickly degrade mitochondrial pools of

fumarate, which leads to an upregulation of glycolysis and impaired formation of trained immunity. The absence of fumuarate causes KDM5 to become active, which

removes the methylation marks around the promoters of pro-inflammatory genes, thereby decreasing the accessilibity of the chromatin in these regions. Figure

created with BioRender.
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immunometabolism rather than bacterial metabolism, since

pathogen resistance would be less prevalent with a host-targeted

approach. If we can gain a better understanding of the underlying

metabolic modules that dictate beneficial vs. detrimental immune

responses, then it should be feasible to tailor leukocyte metabolism

to enhance pathogen neutralization. The main caveat of this
approach is that the metabolic pathways utilized by the host and

pathogens share many attributes. Therefore, potential metabolic

therapies would need to be targeted to avoid non-specific effects.

CONCLUSION AND FUTURE DIRECTIONS

In a time of increasing interest in leukocyte metabolism, it is

important to think globally in terms of the interplay between
host and pathogen metabolic states. Bacterial pathogens, such as

S. aureus, undergo their own metabolic programming (10, 11),

often in direct competition with responding immune cells. In

addition, the metabolic attributes of tissue resident parenchymal

cells have the potential to shape the metabolic responses of both

infiltrating leukocytes and bacteria, revealing another level of
complexity. Considerable care must be taken when designing

experiments to deconstruct these complex systems in vitro, since

the composition of mammalian cell culture media can have

drastic deviations from metabolite concentrations found in

human plasma (167). Therefore, findings must be validated

in leukocytes and bacteria immediately ex vivo, as the selection

of in vitro culture conditions could result in metabolic changes
that are not reflective of in vivo infection (167).

As discussed in this review, S. aureus as well as other bacterial

pathogens possess the ability to not only modify their

metabolism, but also that of the host. Further work is needed

to understand the numerous intricacies that underpin

metabolism, especially in the context of an infection where

multiple players are involved. Fortunately, the field is

advancing rapidly with the development of novel tools and

methods to dissect metabolism with single cell resolution (168,
169). The continued development of these technologies will be

integral for future studies. Should these efforts be successful,

metabolic modulation could advance therapeutic approaches for

S. aureus infection in combination with conventional antibiotic

treatment regimens.
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