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Abstract: Deep learning methods have been successfully applied to image processing, mainly using
2D vision sensors. Recently, the rise of depth cameras and other similar 3D sensors has opened
the field for new perception techniques. Nevertheless, 3D convolutional neural networks perform
slightly worse than other 3D deep learning methods, and even worse than their 2D version. In
this paper, we propose to improve 3D deep learning results by transferring the pretrained weights
learned in 2D networks to their corresponding 3D version. Using an industrial object recognition
context, we have analyzed different combinations of 3D convolutional networks (VGG16, ResNet,
Inception ResNet, and EfficientNet), comparing the recognition accuracy. The highest accuracy is
obtained with EfficientNetB0 using extrusion with an accuracy of 0.9217, which gives comparable
results to state-of-the art methods. We also observed that the transfer approach enabled to improve
the accuracy of the Inception ResNet 3D version up to 18% with respect to the score of the 3D
approach alone.

Keywords: computer vision; deep learning; transfer learning; object recognition

1. Introduction

Industrial processes are continuously changing and now digitalization and smart
automation are the main focuses to improve performance and productivity of the industrial
plants. Robotics, combined with computer science techniques, such as machine learning,
have boosted exponentially the production and security. This industrial revolution has
been named Industry 4.0. Many fields have been integrated to this paradigm. One of them
is computer vision.

Computer vision is a sub-field of machine learning consisting in acquiring, processing,
analyzing and understanding images of the real world in order to generate information that
a computer can deal with. As in all artificial intelligence fields, deep learning techniques
are extensively used nowadays in computer vision. Deep learning approaches usually
need a big dataset to obtain significant results. In order to meet this requirement, some
techniques use deep learning nets that have been trained with huge datasets and transfer
that learned knowledge to smaller or different datasets. Those techniques are called transfer
learning [1,2].

In industrial application, and particularly in SMEs, or when small production batches
are targeted, making huge datasets can be too expensive and arduous. In addition, objects
to be recognized can be small and uncommon. Reducing the number of images needed
for training is critical in this context. Using transfer learning methods can help to reduce
computing time and the minimum dataset size that is needed to obtain significant results.
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In parallel, in recent years, 3D cameras are gaining more and more popularity, specially
in robotic applications. Working with 3D data is a relatively new paradigm that 2D
convolutional networks cannot handle so easily. Therefore, new deep learning methods
have been designed to deal with this paradigm [3,4], like the 3D convolutional networks.

Our proposal is a transfer learning technique that relies on using 2D features learned
by 2D convolutional nets to train a 3D convolutional net.

The rest of this paper is organized as follows: Section 2 outlines the related works,
Section 3 details the proposed approach, Section 4 describes the training phase of the
network, Section 5 shows the experimental results obtained, and Section 6 summarizes the
conclusions.

2. Related Works

Recent improvements in computing power and the rapid development of more af-
fordable 3D sensors, have opened a new paradigm where 3D data, such as point clouds,
are providing better understanding of the environment. Even if some advances have been
done in deep learning on point clouds, this is still an underdeveloped field compared to
2D deep learning [3].

Dealing with 3D data in deep learning opens many new fronts. For example, 3D data
is difficult to label, so that a significant time is required to label training data. Therefore,
usually, the size of the training set for 3D approaches is notably smaller than the one used
with 2D techniques.

Many different Convolutional Neural Networks (CNN) have been possible and gained
a great success due to the large amount of public image repositories, such ImageNet [5,6]
and high-performance computing systems, like GPUs.

Two-dimensional CNN have been widely studied, and there are many successful
methods, but 3D CNN still need more research, as we will show in the next sections.

2.1. 2D CNN

The most important deep learning architectures are identified through the ImageNet
Large Scale Visual Recognition Competition (ILSVRC) [6]. One of the first ones winning
this competition is Alexnet [5]. ZFNet [7] and OverFeat [8] followed Alexnet, improving
the results they obtain for the ImageNet dataset.

Understanding of convolutional layers is improved by Reference [7], thanks to their
visualization. The following architectures focused on extracting features on low spatial
resolutions. One of them is VGG [9], which is still being used as a base to many other
architectures because of its simple and homogeneous topology. VGG scored the second
place in the ILSVRC 2014. The first place was achieved by GoogLeNet [10], also known
as Inception Network. This network was an improvement of the AlexNet, reducing the
number of parameters while being much deeper. They introduced the Inception module,
which enabled to recognize patterns of different sizes within the same layer, concurrently
performing several convolutions of different receptive fields and combining the results.

Another influential architecture was introduced by Reference [11] named the Residual
blocks. The architecture called ResNet introduced those Residual blocks which include a
skip connection on a convolution block that is merged by summation with the output of
that block. This network won the ILSVRC 2015 localization and classification contests and
also the COCO detection and segmentation challenges [12].

A modification of the GoogLeNet called Inception-v4 [13] included an improvement on
the inception module and three different kinds of inception modules. In addition, this paper
also presents a combination of the inception module with the residual connection, named
Inception-ResNet, resulting in a more efficient network. Another network similar to the
previous one, the ResNeXts [14], achieved the second place in the 2016 ILSVRC classification
challenge. The first place in classification, localization, and detection challenges was
achieved by ResNet101, Inception-v4, and Inception-ResNet-v1, respectively.
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Due to the success of the Inception and Residual modules, many subsequent networks
have been derived from them. For example, DenseNets [15] combine the output of the
residual connection and the output of the residual block by depth wise filter concatenation.
The 2017 ILSVRC localization challenge’s first place and the top 3 in classification and
detection categories were won by Dual Path Network (DPN) [16], a network that combines
the architectures of DenseNets and ResNet.

Since previous networks focus on achieving the highest possible accuracy, they are
not prepared for real-time applications with restricted hardware, like mobile platforms.
MobileNets [17] tackles this problem by replacing standard convolutions with Depthwise
Separable Convolutions.

Recently, Reference [18] proposed a novel scaling method that uniformly scales net-
work’s depth, width, and resolution, obtaining a new family of models called EfficientNet.
This family achieves much better accuracy with a 6.1× gain factor in computation time and
a 8.4× factor in size reduction compared to previous ConvNets.

2.2. 3D CNN

Some researchers have taken advantage of the fact that 2D deep learning is more
mature than 3D deep learning, trying to obtain a solution to 3D based on 2D deep learning.

Recently, the arrival of RGB-D sensors, such as the Microsoft’s Kinect or the Intel’s
Realsense, has enabled to acquire at a low cost 3D information. These sensors provide a
2D color image (RGB), along with a depth map (D), which provides the 3-dimensional
information. Since both RGB and D are 2D images, 2D deep learning methods can be
adapted to receive as input two images instead of one. Even if this representation is quite
simple, they are effective for different tasks, such as human pose regression [19], 6D pose
estimation [20], or object detection [21].

Despite representing 3D data, RGB-D images are composed by 2D data and no trans-
formation is needed. One possible transformation as proposed in Reference [22,23], consists
of projecting the 3D data into another 2D space while keeping some of the original 3D
shape key properties.

To keep 3D data without transforming it to 2D, some works, like Reference [24,25],
propose a Voxel-based method. Voxels are used to describe how the 3D object is distributed
in the three dimensions of the space. This representation is not always the best option since
it stores both the occupied and non-occupied parts of the scene. Voxel-based methods are
not recommended for high-resolution data since they store a huge unnecessary amount of
data. To deal with this problem, octree-based methods with varying sized voxels [26,27]
are proposed.

In order to reduce the number of parameters, which is too high in voxel-based methods,
some methods propose point-based methods that include point cloud as an unordered set
of points as input [28,29].

Our proposal changes this perspective. We adapt the 2D deep learning architecture to
3D and transform the weights from 2D to 3D as initial weights for the newly generated 3D
Convolutional model. This approach makes it possible to leverage on existing nets trained
on 2D data and apply them on 3D data while maintaining the original data structure.

3. Proposed Approach

Due to the great success of 2D CNN in computer vision, our proposal uses those
nets as the base to train a 3D CNN for classification. Figure 1 shows the overview of the
proposed architecture. First, the weights of a pre-trained 2D CNN are transformed to 3D to
be, therefore, used as the weights of the 3D CNN. The input point cloud is discretized by
computing a voxel grid. That grid is the input tensor to the 3D CNN, which is an adapted
form of the 2D CNN using 3D layers instead of 2D layers. That 3D CNN computes the 3D
features that are then passed on to the classifier.
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Figure 1. Overall architecture of the proposed method.

The following subsections explains the different modules of the architecture.

3.1. 2D to 3D Transformations

CNN weights can be represented as 2D matrices. Thus, we need to transform a 2D ma-
trix into a 3D tensor, i.e., map the function M(x, y) = (r, g, b) to T(x, y, z) = (r, g, b), where
x, y ∈ N, and r, g, b ∈ R. For each value of x and y of the 2D matrix and each of the new
possible z values the transformation function is: h(x, y, z, M(x, y)) = T(x′, y′, z′) = (r, g, b).
We have proposed 2 different transformation functions, the extrusion and the rotation.

3.1.1. Extrusion

Extrusion of the plane consists of filling the tensor copying the RGB values along one
axis. Given a matrix M of size (W × H) and the resulting tensor T of size (W × H × D)
and the fact that we use inputs that have all the dimensions of the same length, this is,
W = H = D, the Extrusion mapping is defined as:

∀x, y, z ≤W : T(x, y, z) = M(x, y).

The extrusion can be done along the three main axes:

• Z axis: T(x, y, z) = M(x, y),
• Y Axis: T(x, z, y) = M(x, y),
• X Axis: T(z, x, y) = M(x, y) .

Figure 2 shows how the extrusion along the Z axis is done for a matrix.

Figure 2. Extrusion along Z axis of a 2D matrix to generate a 3D tensor.
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3.1.2. Rotation

To add curvature to the 2D weights, a rotation from 0 to 90 degrees with respect to the
Z axis is applied to the 2D weights. The mapping from 2D to 3D is defined as:

T(x, y, z) = M(x, min(
⌊√

y2 + z2
⌋

, W)).

Figure 3 shows an example of the 2D to 3D rotation transformation.

Figure 3. Rotation on Z axis of a 2D matrix to generate a 3D tensor.

3.2. Discretization of the Point Cloud

The input of the architecture is a point cloud. In order to use a CNN, we have to
discretize/sample the point cloud to a gridded structure (tensor). The representation used
is the voxel grid, in which a voxel is the three-dimensional equivalent of a pixel. This
method generates a three-dimensional grid of shape (nx, ny, nz), where each point of the
point cloud is assigned to a voxel. If more than one point is assigned to the same cell, an
interpolation is used to calculate the RGB value of that voxel. As an illustration, Figure 4a
shows a point cloud and Figure 4b presents its voxelization. The number of voxels on
each dimension (nx, ny, nz) depends on the architecture used, and it is explained in the
subsection of each architecture.

(a) Point cloud example
(b) Voxelization of the point cloud

Figure 4. Transformation from a point cloud to a voxel grid.
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3.3. Feature Extractor CNN

The most used CNN feature extractors in the literature are ResNet, Inception, VGG16,
Xception, and Inception-ResNet v2. All of them can be transformed to 3D CNN by replacing
the 2D convolutional layers with 3D convolutional layers and 2D MaxPooling layers with
3D MaxPooling layers. The weights of those nets trained with ImageNet are transformed
to 3D to train the 3D version of those nets. The structure of each of the nets are described
in the following subsections.

3.3.1. VGG16

The 2D version of the VGG16 requires as input a 224× 224 RGB image. In the 3D
case, the input is a 96× 96× 96× 3 (RGB) tensor. Figure 5 shows the architecture of the
3D version of the VGG16 feature extractor. This is composed of 2 Convolutional layers
of 64 filters, MaxPooling layer, 2 Convolutional layers of 128 filters, MaxPooling layer,
3 Convolutional layers of 512 filters, MaxPooling layer, 3 Convolutional layers of 512 filters,
and a MaxPooling layer. The convolution receptive field is 3×3, the stride is fixed to
1, padding to 1, and MaxPooling is performed over a 2×2×2 window with a stride of
2. The 2D Convolutional layers have been replaced by 3D Convolutional layers and 2D
MaxPooling by 3D MaxPooling.

Figure 5. VGG16 architecture.

3.3.2. ResNet

The Residual Neural Network’s (or ResNet) main contribution is what is called skip
connections, which allows output from previous layers to bypass the next layers in order to
propagate residual information (Residual Blocks). The ResNet can be tuned by changing
the number of blocks that each group has. Table 1 presents different configurations of the
3D ResNet that we have used in the experiments.

Figure 6 shows the architecture of the ResNet50. Figure 7a–d are the building blocks
that form the ResNet50. In order to transform this network to 3D, Convolutional and
MaxPooling layers have been changed by their respective 3D version. AveragePooling
also has its 3D version. The input 2D image size is 224× 224, while the 3D input tensor is
96× 96× 96.

Figure 6. ResNet architecture. Building blocks are shown in brackets.
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(a) ResNet-Conv-1

(b) ResNet-Conv-2

(c) ResNet-Conv-3

(d) ResNet-Conv-4

Figure 7. Building blocks of the Resnet50.

Table 1. Architectures of ResNet.

Layer Group Output Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

conv1 48× 48× 48 7× 7× 7, 64, stride 2

conv2 24× 24× 24

3× 3× 3 max pool, stride 2[
3× 3× 3, 64
3× 3× 3, 64

]
× 2

[
3× 3× 3, 64
3× 3× 3, 64

]
× 3

 1× 1× 1, 64
3× 3× 3, 64
1× 1× 1, 256

× 3

 1× 1× 1, 64
3× 3× 3, 64
1× 1× 1, 256

× 3

 1× 1× 1, 64
3× 3× 3, 64
1× 1× 1, 256

× 3

conv3 12× 12× 12
[

3× 3× 3, 128
3× 3× 3, 128

]
× 2

[
3× 3× 3, 128
3× 3× 3, 128

]
× 4

 1× 1× 1, 128
3× 3× 3, 128
1× 1× 1, 512

× 4

 1× 1× 1, 128
3× 3× 3, 128
1× 1× 1, 512

× 4

 1× 1× 1, 128
3× 3× 3, 128
1× 1× 1, 512

× 8

conv4 6× 6× 6
[

3× 3× 3, 256
3× 3× 3, 256

]
× 2

[
3× 3× 3, 256
3× 3× 3, 256

]
× 6

 1× 1× 1, 256
3× 3× 3, 256
1× 1× 1, 1024

× 6

 1× 1× 1, 256
3× 3× 3, 256
1× 1× 1, 1024

× 23

 1× 1× 1, 256
3× 3× 3, 256
1× 1× 1, 1024

× 36

conv5 3× 3× 3
[

3× 3× 3, 512
3× 3× 3, 512

]
× 2

[
3× 3× 3, 512
3× 3× 3, 512

]
× 3

 1× 1× 1, 512
3× 3× 3, 512
1× 1× 1, 2048

× 3

 1× 1× 1, 512
3× 3× 3, 512
1× 1× 1, 2048

× 3

 1× 1× 1, 512
3× 3× 3, 512
1× 1× 1, 2048

× 3

1× 1× 1 average pool
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3.3.3. Inception-ResNet v2

This network combines the idea of the two previous networks: Inception blocks
and Residual blocks. Authors of this architecture [13] propose two different versions:
v1 and v2. Inception-ResNet-v2 is a wider version which is similar to Inception-v4 but
adding Residual blocks. Figure 8 shows the 3D architecture of this second version of the
network. The Inception-ResNet blocks, the Reduction blocks, and Stem block are described
in Reference [13].

Figure 8. Inception-ResNet-v2 architecture.

To adapt this 2D Convolutional Network to 3D, we have changed the 2D Convolu-
tional layers to 3D Convolutional layers,the 2D Average Pooling layers to 3D Average
Pooling layers, the 2D MaxPooling layers to 3D MaxPooling layers, and we use 3D vector
as stride instead of 2D vector and 3D kernel size instead of 2D kernel size. The input
size of this architecture is 139× 139× 139× 3 (RGB) instead of 299× 299× 3 so that the
resulting outputs of the blocks are 15× 15× 15× 384, 7× 7× 7× 1154, and 3× 3× 3× 2048,
respectively, for the Stem block, the Reduction A block, and the Reduction B block.

3.3.4. EfficientNet

Given a base network, it is typical to scale its depth, width and resolution in order to
improve accuracy. In Reference [18], researchers stated that “Scaling up any dimension of
network width, depth or resolution improves accuracy, but the accuracy gain diminishes for bigger
models” and that “In order to pursue better accuracy and efficiency, it is critical to balance all
dimensions of network width, depth and resolution during ConvNet scaling”. Consequently, they
proposed a compound scaling method that uses a compound coefficient to uniformly scale
the 3 components.

The base network from which they start scaling is called EfficientNet-B0 (see Figure 9).
This architecture is similar to the MnasNet [30]. The main building block is a mobile
inverted bottleneck MBConv [30,31], to which is added a squeeze-and-excitation optimiza-
tion [32]. This base network is scaled up applying the compound scaling method to obtain
EfficientNet-B1 to B7.

The 3D transformation of this architecture is done by changing the 2D Convolutional
layers to 3D convolutional layers, the 2D Depthwise Convolutional layers to 3D Depthwise
Convolutional layers, the 2D Global Average Pooling layers to 3D Global Average Pooling
layers, and by adjusting the 2 dimensional paddings to 3 dimensional paddings.

Table 2 presents the different architectures that we have been experimenting, by using
different configurations for the width and depth factors, with the information of the initial
and transformed input size. The 3D resolution adjustment follows the Equation (1)

w3D × h3D × d3D = w2D × h2D, (1)

where w3D = h3D = d3D are, respectively, the width, height, and depth of the 3D input.
All the three values are equal, since we want regular grids. w2D = h2D are the width and
height of the 2D resolution that Reference [18] proposes for EfficientNet, and which are
are also equal. We name the 3D resolution r3D (Equation (2)) and the 2D resolution r2D
(Equation (3)).

r3D = w3D = h3D = d3D, (2)
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r2D = w2D = h2D. (3)

The transformation from 2D to 3D resolution expressed with Equation (1) can, there-
fore, be simplified as:

r3D =

⌊
3
√

r2
2D

⌋
. (4)

Figure 9. EfficientNet base architecture (EfficientNetB0).
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Table 2. Parameters of each of the EfficientNet architectures (width factor, depth factor, 2D resolution,
and 3D resolution).

EfficientNet
Architecture w d r2D r3D

B0 1.0 1.0 224 36
B1 1.0 1.1 240 38
B2 1.1 1.2 260 40
B3 1.2 1.4 300 44
B4 1.4 1.8 380 52
B5 1.6 2.2 456 60
B6 1.8 2.6 528 66
B7 2.0 3.1 600 72

3.4. Classifier

The final layers of the Deep Neural Networks, or top of the network, depend on
the purpose of the network. In our case, the network is aimed for classification. If the
architecture has not its own top layers defined, the top is composed by a Fully Connected
(FC) layer with a number of filters equal to the number of classes that we want to classify
and a softmax activation layer. This softmax layer squashes a vector in the range [0, 1], and
the resulting elements add up to 1. During training a dropout layer is introduced before
the FC layer.

4. Networks Training

All networks have been trained using a custom dataset composed of 7 industrial
parts and 500 RGB-D images per object. The dataset is artificially generated using the
Unreal Engine 4 (UE4) plugin NVIDIA Deep learning Dataset Synthesizer (NDDS) [33].
The creation of the dataset is described in Section 4.1.

We have trained all networks with stochastic gradient using Tensorflow [34]. We
used Adam with a learning rate of 0.0001 in the first 20 epochs and 0.00001 in the last
10 epochs. We have only trained networks for 30 epochs to prevent network to saturate as
the dataset is small. Since the aimed task is multi-class classification, in which there is only
one element in the target vector which is not zero (the positive class), we use Categorical
Cross-Entropy loss (Equation (5)). This loss is used because it is a very good measure of
how distinguishable two discrete probability distributions are from each other.

CE = −log

(
esp

∑C
j esj

)
, (5)

where sp is the score obtained from the net for the positive class.

4.1. Dataset generation

As stated before, the dataset has been artificially generated using UE4 and NDDS
plugin. All industrial parts are first reconstructed from point clouds obtained with high
accuracy structured light sensor. Figure 10 shows captures of the reconstructed models
of the 7 industrial parts. The obtained meshes are imported to UE4 and are randomly
rotated and scaled, and they are rendered with a virtual RGB-D camera. For each image,
we obtain the color image and the depth image, as well as a json file containing a set of
relevant information, such as the 3D bounding box enclosing the object and its 3D location.
For each object, 500 images are rendered, which produce a dataset of 3500 RGB-D images.
This dataset is relatively small compared to other deep learning datasets. This is because
the focus of this paper is to work with learning datasets of limited size as opposed to other
methods in literature. Finally, the validation split is set to 10% of the instances of each class.
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Figure 10. Reconstructed models of the 7 industrial parts.

4.2. Data Preprocessing

The RGB-D image is first projected into a point cloud using the parameters of the
camera used for capturing the RGB-D images in UE4. That point cloud is then segmented
using the bounding box information and then discretized using a voxel grid. The size of
the grid is different for each of the architectures. Table 3 shows the number of grids of each
of the architectures used in this paper.

Table 3. Number of grids of each architecture used by the Voxel grid.

Architecture Number of Grids

VGG16 96 × 96 × 96
ResNet 96 × 96 × 96

Inception-ResNet v2 139 × 139 × 139
EfficientNet B0 36 × 36 × 36
EfficientNet B1 38 × 38 × 38
EfficientNet B2 40 × 40 × 40
EfficientNet B3 44 × 44 × 44
EfficientNet B4 52 × 52 × 52
EfficientNet B5 60 × 60 × 60
EfficientNet B6 66 × 66 × 66
EfficientNet B7 72 × 72 × 72

In order to avoid overfitting, different transformations are applied to the dataset. Each
training sample is used unchanged, applied a flipping operation or rotated in any of its
axis. This data augmentation introduces variability in the dataset in order to reduce the
risk of bias.

4.3. Evaluation Metric

The aim of our proposal is multiclass classification, this is, each sample can only
belong to one class. Therefore, the metric used for evaluating our model is categorical
accuracy. This metric checks how many samples have been correctly labeled. To extend this
evaluation, the precision (Equation (6)), the recall (Equation (7)), the F1 score (Equation (8)),
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and the macro-F1 (Equation (9)) of the highest accuracy model are going to be evaluated to
analyze the behavior of the model for each class.

precisioni =
TPi

TPi + FPi
, (6)

recalli =
TPi

TPi + FNi
, (7)

F1i = 2× precisioni × recalli
precisioni + recalli

, (8)

macro-F1 =
∑C

i F1i

|C| , (9)

where TPi is the count of true positive instances of the class i (correctly classified instances),
FPi is the count of false positive instances of the class i (the count of instances that are
uncorrectly classified as class i), and FNi is the count of false negative instances of the
class i (count of instances that should be classified as class i and they are classified as
another class).

5. Experimental Results

The experiment was conducted using VGG16, ResNet, Inception ResNet v2 (from now
on just Inception ResNet), and EfficientNet architectures. For each of the architectures, we
have compared the results (i) without initializing the weights and (ii) using the pretrained
weights from 2D architectures trained on Imagenet and transformed to 3D using extrusion
and rotation.

For VGG16, results are not as good as expected. Therefore, no Figures are going to be
included. The net classifies all instances the same class; therefore, the net is saturated. This
happens for all the experiments (without weights, extrusion, and rotation).

For ResNet, the obtained results are more like expected. Figure 11a,b show the
evolution of the losses using the 3 different weight initializations on training and on
validation, respectively. The aformentioned figures show that initializing from 2D weights
makes initial loss lower and converges earlier on both stages, training and validation.
Regarding the accuracy, a similar behavior is observed: the initial and final accuracy are
higher with the initialized weights. Figure 12a,b show the evolution of the accuracy on
training and on validation, respectively.

(a) ResNet 3D Loss on training (b) ResNet 3D Loss on validation.

Figure 11. ResNet 3D Loss (Categorical Cross-Entropy).
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(a) ResNet 3D accuracy on training. (b) ResNet 3D accuracy on validation.

Figure 12. ResNet 3D accuracy.

The results of Inception ResNet architecture are similar to the ones obtained with
ResNet architecture, but the differences between the results obtained with the initialization
and without initialization are even higher. Figures 13a,b and 14a,b show, respectively,
the evolution of the loss on training and validation, and the accuracy on training and
validation.

Among the architectures tested, the Inception ResNet is the one that takes more profit
from using the 2D weights, increasing its validation accuracy from 0.7558 to 0.8887 on
extrusion and 0.8939 on rotation (increase of around 17 to 18%).

(a) Inception ResNet 3D Loss on training. (b) Inception ResNet 3D Loss on validation

Figure 13. Inception ResNet 3D Loss (Categorical Cross-Entropy).

(a) Inception ResNet 3D accuracy on training (b) Inception ResNet 3D accuracy on validation.

Figure 14. Inception ResNet 3D accuracy.
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EfficientNet is tested only from B0 up to B4 since our computing capabilities are
limited to those set-ups. We observed that the performance of the network decreases from
B0 to B4. This could be because the more complex the net is, the more epochs it needs
to obtain similar results. This is even more evident in small datasets as the one we used.
Figures 15a,b and 16a,b show the evolution of the loss and accuracy only for B0 version,
which performs better for our experimental set-up.

(a) EfficientNetB0 3D Loss on training (b) EfficientNetB0 3D Loss on validation

Figure 15. EfficientNetB0 3D Loss (Categorical Cross-Entropy).

(a) EfficientNetB0 3D accuracy on training (b) EfficientNetB0 3D accuracy on validation

Figure 16. EfficientNetB0 3D accuracy.

As shown in Figures 11–16, almost in every epoch of the training of each model, the
accuracy is higher using the initialized weights. For some of them, like the Inception
ResNet, the difference of accuracy is notable.

We compared all the extrusion architectures we propose with the PointNet [28], a 3D
point-based deep learning method, by looking at the obtained accuracy during training
(see Figure 17).

Table 4 shows the obtained results for all the architectures with all the weights initial-
ized for the last epoch.
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Figure 17. Accuracy on training: PointNet compared to all the architectures initialized with extrusion.

Table 4. Accuracy and loss comparative between all the used architectures and PointNet. Last column is the number of
parameters each network has to train.

Method Train Val Params
Loss acc Loss acc

ResNet 3D 0.4284 0.8279 0.4279 0.8272

47MResNet 3D Extrusion 0.3245 0.8599 0.3312 0.8612

ResNet 3D Rotation 0.3892 0.8372 0.3484 0.8512

Inception ResNet 3D 0.5653 0.7777 0.592 0.7558

67MInception ResNet 3D Extrusion 0.3127 0.8901 0.3157 0.8887

Inception ResNet 3D Rotation 0.2880 0.8900 0.3133 0.8939

EfficientNetB0 3D 0.3664 0.8534 0.3137 0.8605

4.7MEfficientNetB0 3D Extrusion 0.2663 0.9276 0.2213 0.9217

EfficientNetB0 3D Rotation 0.0312 0.9039 0.3004 0.9052

EfficientNetB1 3D 0.3987 0.847 0.367 0.8372

7.5MEfficientNetB1 3D Extrusion 0.3758 0.8771 0.3610 0.8420

EfficientNetB1 3D Rotation 0.2325 0.8485 0.3526 0.8422

EfficientNetB2 3D 0.4393 0.8324 0.3408 0.8547

8.8MEfficientNetB2 3D Extrusion 0.3880 0.8592 0.3384 0.8595

EfficientNetB2 3D Rotation 0.3273 0.8362 0.3271 0.8549

EfficientNetB3 3D 0.459 0.8289 0.3906 0.8285

12.1MEfficientNetB3 3D Extrusion 0.3887 0.8422 0.3809 0.8305

EfficientNetB3 3D Rotation 0.4111 0.8583 0.3856 0.8318

EfficientNetB4 3D 0.4785 0.8176 0.4106 0.8097

19.7MEfficientNetB4 3D Extrusion 0.3960 0.8544 0.3949 0.8123

EfficientNetB4 3D Rotation 0.4335 0.8207 0.4039 0.8153

PointNet 1.1802 0.9132 1.2587 0.9048 1M
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The highest accuracy is obtained with EfficientNetB0 initialized using extrusion
(0.9276 in training and 0.9217 in validation). The largest improvement is achieved with
Inception ResNet, increasing its accuracy from 0.7777 to 0.8901 and 0.8900 using extrusion
and rotation, respectively, on training and from 0.7558 to 0.8887 and 0.8939 using extrusion
and rotation, respectively, on validation.

To extend our analysis, we have calculated the confusion matrix of the EfficientNetB0
initialized using extrusion on validation since this is the architecture that obtains the highest
accuracy. The confusion matrix is shown in Table 5. The network works similarly for every
part, and the obtained Macro-F1 is really close to the accuracy. This is because the per-class
precision and recall are very similar.

Table 5. Confusion matrix and metrics of EfficientNetB0 initialized using extrusion.

Real Class Total
1 2 3 4 5 6 7

Predicted class

1 486 1 0 20 1 10 3
2 7 492 0 11 5 5 2
3 2 7 443 1 45 3 20
4 5 0 1 455 2 0 2
5 0 0 55 3 447 0 0
6 0 0 1 3 0 472 42
7 0 0 0 7 0 10 431

Precision 0.972 0.984 0.886 0.91 0.894 0.944 0.862
Recall 0.933 0.943 0.85 0.978 0.885 0.911 0.962

F1 0.952 0963 0.868 0.943 0.89 0.927 0.909
Macro-F1 0.922
Accuracy 0.9217

6. Conclusions

In this paper, we introduced a novel approach to transfer learned 2D convolutional
networks to 3D convolutional networks in a reduced size dataset. We have studied several
2D architectures: VGG16, ResNet, Inception ResNet v2, and EfficientNet. The weights from
pretrained 2D networks have been transformed to 3D using two approaches, the extrusion
and the rotation.These transformed weights are then used to initialize the 3D version of
those architectures.

On almost every architecture, the obtained accuracy is better with the 2D weights
than without initialization, reaching a performance similar to state of art 3D deep learning
methods.

In future works, other 2D to 3D transformations will be tested, looking for a better
performance. Combinations of transformations may produce also improved results.
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