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Abstract

Alternaria blight is one of the most deadly diseases of oilseed Brassica. This 
recalcitrant disease causes up to 50% yield loss across the globe. The disease is 
mainly caused by Alternaria brassicae and Alternaria brassicicola. These pathogens 
lack sexual stages and survive as conidia or condiospores on the debris of previous 
crops and susceptible weeds. Developing resistant oilseed Brassica cultivars to this 
disease has become a prime concern for researchers over the years. In absence of 
resistant oilseed Brassica cultivar, identification and introgression of resistance 
related genes can be a potential source for Alternaria blight resistance. As resistance 
toward Alternaria blight is governed by polygenes, intercrossing between the toler-
ant genotypes and subsequent selection will be the most appropriate way to transfer 
the quantitative resistance. For that reason, future breeding goal should focus on 
screening of germplasms for selecting genotypes containing resistance genes and 
structural features that favors resistance, like thick epicuticular wax, biochemical 
components such as phenols, phytoalexins and lower soluble sugars, reducing sug-
ars and soluble nitrogen. Selected genotypes should be brought under  appropriate 
breeding programs for attaining Alternaria blight resistance.

Keywords: Alternaria blight, oilseed Brassica, disease resistance, resistance 
mechanism

1. Introduction

Oilseed crops are one of the crucial pillars of world agriculture, occupying 
22% of the world’s arable land [1]. Rapeseed-mustard dominates the total oilseed 
production after soybean globally [1]. Alternaria blight is one of the major biotic 
threats that drastically reduces oilseed production all over the world including 
Australia, Europe, China and Canada [2]. Alternaria blight is a recalcitrant dis-
ease caused by the Alternaria species primarily A. brassicae and A. brassicicola, of 
which A. brassicae is the most deadly [3–4]. This disease decreases photosynthetic 
potential, leads to abnormal growth of the seeds and reduces seed oil content and 
quality [5]. Disease intensity varies across seasons and regions, and also between 
crops within an area [6]. Controlling the disease is one of the foremost concerns 
for researchers for reviving the yield potential of the rapeseed-mustard varieties. 
Chemical management of this disease is not proposed because maximum foliage 
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coverage by aerial application of fungicides is hard to achieve. Beside this, applica-
tion of large amounts of chemicals raises environmental concerns. It is crucial to 
genetically monitor the disease by breeding for resistance [7]. Despite the immense 
efforts of breeders throughout the world, no resistant genotypes have been found 
till date. Combining various breeding tools may be fruitful in defining resistant 
genotypes in these scenarios. The genetic base of the cultivated oilseed Brassica is 
narrow and resistance governing genes are hard to find. Alternaria blight resistance 
is controlled by additives or polygenes and has been identified in some wild species 
of oilseed Brassica [8]. Easy availability of microarray data led researchers to the 
identification and understanding of the expression patterns of key genes involved 
in the Alternaria resistance. Another reliable form of plant immunity is Nonhost 
Resistance (NHR) that is successful against all genetic variants of a pathogen 
[8–11]. The infected plants also show hypersensitive response by producing reactive 
oxygen species [12]. Improvement of modern genetic transformation methods is 
helping scientists to incorporate resistant genes from non-host wild cultivars. Tissue 
culture method is one of the biotechnological tools that are being used to transfer 
resistance genes from resistant genotypes to the susceptible ones. Resistant geno-
types showed higher phenolic content than the susceptible one, whereas the total 
soluble sugars, lower sugars and soluble nitrogen levels were lower [13–15]. Apart 
from all of these conventional methods, exploration and utilization of systemati-
cally acquired resistance and de novo resistance can be an efficient way to induce 
resistance in oilseed Brassica cultivar. Besides, molecular markers associated with 
resistance genes may contribute to the successful improvement of the resistance 
breeding process. This chapter discusses Alternaria blight disease with respect to its 
epidemiology, genetics and possible resistance mechanisms involved in Alternaria 
resistance and revisits earlier work done by oilseed Brassica breeders to elucidate 
future strategies for Alternaria resistance breeding.

2. Epidemiology

Disease epidemiology provides better understanding of the disease, host and 
favorable factors that facilitates disease progression. It also creates a better oppor-
tunity to control the disease by manipulating different epidemiological factors 
[16]. Majority of the Alternaria species produce asexual spores, as it lacks sexual 
stage (Figure 1; [17]). It survives as conidiospores or conidia under unfavorable 
conditions [18–19]. It also survives in the susceptible weed and in the infected 
seeds in temperate regions [20–23]. Although in tropical and subtropical India, 
the survival of Alternaria inoculum in seeds is discarded [24]. At first, symptoms 
start with black dots. Later, these spots extend and grow into prominent round 
spots with concentric circles displaying the spot’s target board features (Figure 2). 
Many spots coalesce to form large patches which cause the leaves to blight and 
defoliate [4]. Initially the infection starts from the cotyledonary leaves and forms 
a basis for the secondary infection. Four hours of leaf wetness is necessary for leaf 
infection. An increases in leaf wetness duration at 25 °C increases infection and 
spread of the disease rapidly. Spores attack other parts of the plant upon getting 
favorable conditions. New lesions arise within four-five days. The pathogen infects 
the seed by penetrating the pod [25]. The critical factors for spore germination have 
been reported as darkness or low light intensity (<1000 lux), 25 °C temperature 
and more than 90% RH in some previous studies [26]. Some studies reported the 
increase of disease severity with the increase of inoculum concentration [27–29]. 
The optimal assay temperature of 25 °C and > 90% relative humidity resulted in 
the highest severity of the disease, regardless of the apparent susceptibility of the 
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cultigen [27, 30–36]. Previous studies reported that older leaves are more affected 
by Alternaria than the younger ones [27, 30, 37–40]. Weather characteristics such 
as maximum temperature 18–27 °C and minimum temperature 8–12 °C facilitates 
Alternaria infection on leaves with an average relative humidity more than 92% 
while on pods, the infection occurs at temperatures ranging from 20–30 °C [41]. 
Closer spacing (30 × 15 cm), high nitrogen doses (80 Kg Nha−1) and frequent irri-
gation rapidly increase severity of disease in rapeseed–mustard [12]. Frequent rains 
are favorable for the initiation and spread of the disease on the leaves of oilseed 
Brassica. In addition, the rate of infection during the flowering and pod phases is 
the highest [42].

3. Genetics and genomics of Alternaria blight resistance

Identifying resistance mechanisms at the genetic and genomic level has been 
a prime concern for the researchers over the recent years. Various sources suggest 
that the resistance against Alternaria is polygenic [3, 43–45]. On the contrary, 
other studies reported that resistance to this disease is mainly controlled by only 
additive genes or dominant nuclear genes [3, 43–46]. However, Kumar et al. [47] 
proved that inheritance of Alternaria blight resistance is governed by more than 
one gene and fixable and non-fixable gene effects are vital in the genetic control 
of Alternaria blight resistance. In Arabidopsis, six QTLs governing Alternaria 
blight resistance were identified. Among these QTLs, five QTLs were popula-
tion specific and one was common among all mapping populations. Presence 
of both common and population specific QTLs indicates that resistance against 
Alternaria blight is quantitative and more than one gene potentially governs the 
resistance [48].

Figure 1. 
Cultured spores (a) and conidia of Alternaria brassicae from the infected field samples (b).

Figure 2. 
Symptoms and different level of severity of Alternaria blight. Symptoms from ‘a’ to ‘e’ show gradually higher 
severity of infection.
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With the modern development of biotechnology, the discovery of resistance (R) 
and defense-related genes has opened up new scopes for inducing genetic resistance 
against different biotic and abiotic stresses [49]. Advances in microarray data 
processing also ease the process of identifying candidate genes in certain physi-
ological processes. In previous studies, A. brasscicola infection contributed to the 
upregulation of different genes such as WRKY, peroxidase, p450 oxidases, Chitinase 
that modulates defense response in oilseed Brassica and Arabidopsis. A recent com-
putational study identified vital genes involved in Alternaria resistance in Brassica 
by analyzing microarray data of model plant Arabidopsis thaliana challenged with 
Alternaria infection [50]. NHL10, HCHIB and XLG2 were identified as major genes 
and CZF1, ARF6, WRKY, MP, IAA1, IAA19, AXR3 as candidate genes associated in 
defense response against Alternaria [50]. PR (pathogenesis-related) proteins are 
a distinct group of molecules which are induced by phytopathogens and signaling 
molecules linked to defense. They are the vital components of the plant’s inherent 
immune system, particularly systemic acquired resistance (SAR) [51]. Two genes 
under these proteins namely Chitinase and NPR1 have been characterized in oilseed 
Brassica species. Their high expression level in resistant genotypes compared to the 
susceptible genotypes suggested that these genes are related to resistance against 
Alternaria blight [52–53]. Another study reported the expression of PR-3 and PR-12 
only in Camelina sativa and Sinapsis alba compared with B. juncea [54]. This clarifies 
the involvement of PR proteins in the resistance mechanism of Alternaria resistant 
varieties.

4. Biochemical resistance against Alternaria

Biochemical defense is triggered by any stress condition in a plant and is the 
most important tool of plant defense mechanism. The hypersensitive response is 
one of the plant’s most effective defensive responses against the pathogen [55]. 
Resistance to Alternaria blight in mustard was reported to be linked with the 
synthesis of phenolic pathway-associated leaf enzymes and higher leaf sugar 
content [56]. The concentration of phenolic compounds at all stages of plant growth 
was reported to be high in resistant genotypes compared to susceptible genotypes. 
Nevertheless, soluble sugars, sugar reduction and soluble nitrogen levels in resis-
tant genotypes were lower [14–15]. Another study reported that, total phenol, 
total sugar, reducing sugar, o-dihydroxy phenol, chlorophyll content and flavonol 
contents were higher in resistant genotypes [57]. By activating several defense 
responses that dissuade the infection process, plants can respond to a pathogen. 
These include the production of reactive oxygen species (ROS), the accumula-
tion of proteins related to pathogenesis (PR) and phytoalexins and the synthesis 
of compounds that strengthen the plant cell wall [58]. Moreover the contents 
of ascorbic acid, total phenol, enzymatic activities of superoxide dismutase and 
peroxidase, that of cell protecting enzymes such as phenylalanine ammonia lyase 
and polyphenol oxidases were increased in the resistant genotypes of mustard 
[59]. β-Aminobutyric acid (BABA), a non-protein amino acid has been known to 
stimulate resistance to a variety of pathogens in a number of plant species [60–61]. 
Pretreatment of oilseed Brassica plants with BABA-mediated resistance to the necro-
trophic pathogen A. brassicae through enhanced expression of protein genes linked 
to pathogenesis [62]. The colonization of A. brassicae on Brassica carinata leaves was 
substantially inhibited by the foliar application of BABA [63]. A higher and early 
accumulation of H2O2 was observed in resistant C. sativa and S. alba compared 
to B. juncea. Catalase activity was enhanced in both C. sativa and S. alba, but the 
opposite phenomenon was observed in case of B. juncea [54].
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5. Utilization of non-host resistance

Non-host resistance is one of the most useful approaches for attaining resistance 
against different plant pathogens. Till date, no resistant cultivar is available in oil-
seed Brassica species. Therefore, utilizing the non-host resistance from wild species 
can be an efficient breeding tool. Plant pathogens manage to affect different species, 
but they fail to overcome the non-host resistance [64]. Examples of some non-host 
plants of A. brassicae are chickpea, lentil, wheat, sugarcane, barley, tomato, potato 
[64]. NHR is multilayered and can be splitted into two main forms: the layer of pre-
invasion and the phase of post-invasion [65–67]. Preformed defenses may include 
structural features like abundance of trichomes and spore germination inhibitory 
chemical compounds [68–70]. Previous studies reported that spore germination 
occurs at an equal rate in both host and non-host plants [71]. Despite an accurate 
germination, pathogens might fail to reach the stomata. Stomata in non-host plants 
may not be correctly recognized by the pathogen because the topography of the 
surface may vary significantly from that of the host leaf [64]. Another structural 
feature that can prevent the entry of Alternaria is the epicuticular wax [72–74]. 
Non-host plants may have higher epicuticular wax than the susceptible host 
plants [64]. The non-host plant is capable of inducing stomatal closure, prevent-
ing pathogens from entering and constructing an inducible chemical barrier 
that suppresses hyphal production and differentiation by the rapid formation of 
phytoalexins, antimicrobial compounds [75–77]. In a non-host plant, the dietary 
deficiency and the presence of antimicrobial compounds in the apoplast can also 
prevent the production of hyphae into mycelium [71]. The pathogen also generates 
non-host specific or general toxins that might damage plant cells, leading ultimately 
to necrosis [78–80]. To avoid this, a non-host plant may recognize these toxins and 
employ defense mechanisms to detoxify these toxins [81]. In Arabidopsis and S. alba 
pathogenesis-related genes PR-1, PR-2, PR-3 were highly expressed compared to 
B. juncea after Alternaria infection [82–86]. Furthermore, these two species showed 
non-host resistance toward A. brassicicola [81, 87]. Chitinase enzymes that hydro-
lyze the fungal cell wall and release fragments of chitin are actively secreted by 
these two species [82, 88]. The NHR action includes the stimulation by the plant cell 
of a signal transduction cascade following the detection of a pathogen, which trig-
gers the activation of protein kinases and mitogen-activated protein kinase (MAPK) 
members and consequently lead to the activation of defensive genes in non-host 
plants [89]. The expression of MAPK was higher in S. alba and downregulated in 
B. juncea suggesting its possible role in Alternaria blight resistance.

6. Genetic transformation for Alternaria resistance

As the resistance of Alternaria has not yet been found, identification of 
 resistance genes in non-host plants and transferring them into oilseed Brassica 
species could be a handy tool for resistance breeding. Introgression of genes under 
PR-proteins have been found effective in many cases. For instance, transgenic 
Indian mustard was developed with the chitinase gene in which the occurrence of 
disease symptoms was delayed by a duration of 10–15 days compared to control 
plants [90]. For enhancing resistance against A. brassicae, a PR protein-encoding 
glucanase was introduced from tomato into Indian mustard plants [91]. Glucanase 
hydrolyzes a main component of a fungal cell wall called glucan and destroys the 
invading fungal pathogens. In combating Alternaria blight disease, a barley anti-
fungal class II chitinase gene and type I ribosome inactivating protein (RIP) gene 
were co-expressed in Indian mustard [92]. Transgenic mustard plants demonstrated 
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a 44% reduction in A. brassicae hyphal production relative to the control plants. 
When transgenic events were sprinkled with fungal spores through greenhouse 
screening, the late onset of the disease and a lower number of lesions with reduced 
size distribution were recorded. In addition, Chitinase gene was transferred from 
Streptomyces griseus HUT6037 to Indian mustard [93]. A previous study transformed 
B. juncea with the osmotin gene and documented resistance to the purified A. bras-
sicae toxin in the transformed calli [94]. B. juncea was modified to add resistance 
to Alternaria blight and stem rot diseases with the MSRA1 gene [95]. Bioassays 
after Alternaria infection in vitro showed that transgenic B. juncea lines inhibited 
the growth of Alternaria hyphae by 44–62% and reduced infection ranging from 
69–85%. The lectin gene of chickpea was transferred to Indian mustard cv. Varuna to 
induce resistance against A. brassicae in transgenic lines [96]. Another study incor-
porated B. juncea with the gene MPK3 and examined its role in providing tolerance 
against A. brassicae [97]. In transgenic plants, both ascorbate peroxidase (APX) 
and guaiacol peroxidase (GP) activity and proline content were higher, leading to 
the scavenging of ROS in transgenic plants developed as a result of infection with 
Alternaria.

When an endochitinase gene ‘echh42’ from the Trichoderma virens, a fungal spe-
cies used as a bio-control agent, was introduced to B. juncea– the transformed plants 
showed 7-fold higher endochitinase activity compared to the non-transformed 
plants based on fluorimetric analysis [98]. These results indicated that the endo-
chitinase gene ‘ech42’ could be a major gene that may provide resistance to oilseed 
Brassica plants against the Alternaria blight. In previous studies, the transgenic 
broccoli plants also showed expression of chitinase gene of Trichoderma harzianum 
[99–101]. Moreover, the synthetic chitinase gene (NIC) showed broad-spectrum 
resistance to the transgenic lines of B. juncea including A. brassicicola [102]. Further 
research utilizing RT-PCR validated that these chitinase genes were induced after 
wounding and exogenous treatments of jasmonic acid and salicylic acid similar 
to Alternaria infection [103]. A recent review summarized that the chitinases, 
glucanases or cry proteins provide broad-spectrum resistance against some major 
diseases including Alternaria blight and blackleg [104].

7. De novo resistance

It is assumed that the disease can be successfully managed by inducing protec-
tion inducers in plants. Some novel fungicides may mimic the action of different 
plant hormones that activate the plant’s internal immune response. Jasmonic acid 
(JA) mediated defense response to A. brassicae fungus can prevent necrotrophic 
colonization mode. The JA receptor, coronatine insensitive 1 (COI1), is one of the 
possible targets to activate JA-mediated immunity via JA signal interaction [105]. 
It is understood that Jasmonates and its functional analogs play a crucial role in 
systemic defense, likely serving as the initiating signal of acquired systemic resis-
tance [106]. It has been shown that necrotrophic fungal pathogens are the primary 
activators of JA-dependent defenses via COI1 receptor activation [107]. A previous 
study identified some JA mimicking molecules that might be helpful in de novo 
resistance induction [108].

8. Tissue culture techniques in Alternaria resistance

Tissue culture is one of the most effective tools of modern biotechnology. 
Somaclonal variation provides an opportunity to extend the genetic variation of 
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crops, i.e. the variation caused by cell and tissue culture. By applying in vitro selec-
tion process, the efficiency of selection can be increased [109]. Somatic hybrids 
were produced through PEG-mediated symmetric and asymmetric protoplast 
fusion, in which S. alba, B. nigra and B. juncea were found to be the most effective 
resistance donor to Alternaria pathogen [110]. Through protoplast fusion, a previ-
ous study developed three hybrids between B. juncea and S. alba [111]. Among the 
hybrids, two of the hybrids were symmetric, while the third was asymmetric and 
had greater similarity to B. juncea. Alternaria resistant lines were developed through 
interspecific hybridization between S. alba and B. juncea [112]. Alternaria blight 
resistance was transferred from B. tourneforti to B. juncea cv. RH 30 through in vitro 
ovule culture [113]. Intergeneric hybrids of B. campestris and B. spinenscens were 
generated through sequential ovary, ovule and embryo culture [114]. The resistance 
trait was transferred to B. napus cv. Brutor from S. alba cv. Carine following in vitro 
fertilized ovary culture protocol [115]. Erucastrum cardaminoides and B. oleracea 
var. alboglabra were used to develop intergeneric hybrids with Alternaria blight 
resistance following sequential ovary and ovule culture procedures [116]. Previous 
studies reported transfer of Alternaria resistance through somatic hybridization 
such as, from S. alba to B. napus [117] and Moricandida arvensis to B. oleracea [118]. 
A research group in India transferred Alternaria resistance trait to B. juncea from 
B. carinata [119]. Disease resistant hybrid plants were produced from the hybrid-
ized leaf mesophyll protoplasts of M. arvensis and B. napus [120]. B. carinata was 
resynthesized by protoplast fusion between B. nigra and B. oleracea [121]. The 
hybrids thus obtained were fertile and grew into robust plants. Previous studies 
conducted hybridization between S. alba and B. oleracea and between Camelina 
sativa and B. oleracea for producing resistant hybrids [122–123]. Another study 
developed somatic hybrids between S. alba and B. oleracea by protoplast fusion 
followed by embryo rescue and managed to recover four highly resistant hybrid 
progenies after repeated backcrosses [124]. By inducing variations through gamma-
irradiated mutagenesis the resistant varieties were obtained in B. juncea [125] while 
another study achieved the similar results by treating the embryos with chemical 
mutagens [126]. It is plausible to say that proper utilization of tissue culture tech-
niques can be a successful means of incorporating Alternaria resistance into oilseed 
Brassica cultivars.

9. Molecular markers and Alternaria blight resistance

In any disease resistance breeding program, the primary approach is to quickly 
screen all the available germplasm including local races, improved variety and 
exotic genetic stocks. The traditional approach of screening of genotypes can be 
costly, time and space consuming, laborious, and involves large sample sizes [127]. 
The limitations of conventional approach can be solved through molecular markers. 
By utilizing molecular markers, economically important major genes and quantita-
tive trait loci (QTLs) can be identified [128]. Pre-selection using molecular markers 
can minimize the size of a population and facilitate early detection of desirable 
genotypes [127]. Various molecular markers are being used nowadays for assess-
ing genetic variability against Alternaria blight. For example, internal transcribed 
spacer regions (ITS), restriction fragment length polymorphism (RFLP), randomly 
amplified polymorphic DNA (RAPD), amplified fragment length polymorphism 
(AFLP), inter-simple sequence repeats (ISSRs), microsatellites (SSR), sequence 
tagged sites (STS), single nucleotide polymorphism (SNPs) etc. The ITS regions are 
the preserved areas in the fungal genome that are considered as the most common 
loci to study DNA based mycology at the species level. Berbee and co-workers 
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studied the ITS regions of rDNA to determine the pathogen’s phylogeny [129]. 
RAPD technique was used successfully to examine the genetic differences in 
Alternaria infected species [130–132]. Later on, the assessment of genetic vari-
ability in Alternaria species has moved to more sensitive techniques such as AFLP 
[133] and microsatellite markers [134] due to the constraints of reproducibility of 
RAPD. Simple sequence repeats have been isolated and characterized from B. napus, 
B. nigra, and B. rapa [135, 136]. Moreover, SSR marker libraries have been devel-
oped for B. rapa those are being used to produce a genome map for B. rapa [137]. 
Recently, SNP markers have taken the supremacy over SSR as they are unique and 
plentiful in high and ultra-high-throughput and are able to find polymorphism 
within a single base pair [138].

10. Conclusions

Alternaria blight is one of the major diseases of oilseed Brassica causing enor-
mous yield loss every year. In order to reduce the use of chemical fertilizers and to 
save the environment, breeding is important to attain resistance against Alternaria 
pathogens. Since the resistance against Alternaria blight is governed by additive 
or polygenes, molecular breeding for resistance could be more effective. All pos-
sible sources including wild relatives and non-host plants should be brought under 
the selection process for identifying ideal resistance donors. QTL mapping and 
continuous hybridization between resistant genotypes should be performed for 
better results. Emphasis should be given on functional analysis of PR proteins for 
engineering Alternaria resistance more effectively. In addition, accurate modeling 
of plant’s internal defense responsive pathways can provide new insights on de novo 
and systematically acquired resistance.
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