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Chapter

Immune Checkpoints as a Novel 
Source for Diagnostic and 
Therapeutic Target in Celiac 
Disease
Isabel Torres, Miguel Ángel López Casado, 
Teresa Palomeque and Pedro Lorite

Abstract

Celiac disease, as an autoimmune disorder, is a disease which appears in sensing 
and immune reaction responses to gluten. It has been confirmed that both genetic 
and environmental factors are involved. CD is strongly associated with the HLA 
alleles DQB1*02 (serological DQ2) or DQB1*0302 (serological DQ8). These HLA 
alleles are necessary but not sufficient for the development of CD and non-HLA 
risk genes also contribute to disease susceptibility. Several studies have identified 
linkage or association of CD with the 2q33 locus, a region harboring the candidate 
genes CD28, CTLA4 and ICOS, important immune checkpoints regulators of T-cell 
activity. Immune checkpoints are crucial to maintain self-tolerance and protect 
self-tissue from damage during an ongoing immune response.

Keywords: immune checkpoints, celiac disease, PD1, PDL, HLA-G, CTLA4, IDO, 
tryptophan

1. Introduction

Celiac disease is a unique autoimmune disorder in that the key genetic components 
(HLA class II genes DQ2 and/or DQ8) are present in almost all patients, the autoan-
tigen is known (tTG), and, most importantly, the environmental trigger is known 
(gluten) [1–5]. The HLA-DQ molecules predispose to disease by preferential presenta-
tion of gluten antigens to CD4+ T cells [6–8]. These genotypes are necessary for the 
development of the disease, but they are not the only ones responsible, since these 
genes are present in the population, and only 1% develop CD [9]. Furthermore, in 
recent years, other areas of the genome outside the HLA region have also been identi-
fied that could influence susceptibility to CD, many are related to immunity, especially 
with T-cell and B-cell function [10, 11].

Gluten ingestion by patients with CD leads to a cascade of inflammatory reac-
tions and eventually to the hallmark small-intestinal lesion. The most important 
consequence is reduced nutrient uptake characterized by CD4+ T-cell activation, 
increasing numbers of intraepithelial lymphocytes with partial to total intestinal 
villus atrophy [12–15]. A common feature of gluten-derived epitopes is the presence 
of multiple proline and glutamine residues that are selectively deamidated by tTG. 



Celiac Disease

2

The passage of immunogenic peptides to the lamina propria stimulates specific 
CD4 + T lymphocytes when they occur together with HLA-DQ2/DQ8 molecules, 
after having a modification by tissue transglutaminase (TGt). Proinflammatory 
cytokine responses are activated and mechanisms causing mucosal alteration. 
Activation of these gluten-reactive CD4 + T cells lead to a pro-inflammatory 
response dominated by IFN-γ production [16–18].

The response of CD4 + T cells to post-translationally modified gluten and highly 
disease specific B cells to deamidated gluten and transglutaminase 2 (TG2) autopro-
tein are present in the pathogenesis in CD [12]. When immunogenic gluten peptides 
cross the intestinal lumen, they can trigger an innate and adaptive immune response, 
leading to the development of clinical and histological manifestations of CD [19].

The immune homeostasis has to be precisely maintained in a physiological state, 
through a balance of costimulatory (e.g. CD28) and coinhibitory (e.g. CTLA-4 or 
PD-1) immune signals known as “immune checkpoints”. Immune checkpoints are 
essential for maintaining self-tolerance, protecting tissues from damage caused 
by the immune system, and providing protective immunity [20]. An imbalance 
in immune homeostasis can lead to costimulation and the upregulation of T-cell 
activation in autoimmune diseases [21].

During the normal activation state, CD4+ and CD8+ T cells express multiple 
immune checkpoint molecules, and some of them also serve a costimulatory func-
tion of T cells activation. T cells obtained from individuals with autoimmune condi-
tions have enhanced expression of these molecules that represent an activated T 
cell state. T lymphocytes play a central role in the induction of an effective adaptive 
immune response and responsible for maintaining immune homeostasis. Signaling 
through two well-known negative regulators or checkpoints of T cells, CTLA4 and 
PD1 leads to direct inhibition of T cell responses [20].

The present chapter discuss the role of the immune checkpoints in intestinal 
tissue homeostasis and tolerance, and speculate how genetic and environmental 
factors can regulate them in celiac disease.

2. Immune checkpoints

Immune checkpoints play an essential role in the function and regulation of 
effector T cells (Teff) and regulator T cells (Treg). Immune checkpoint molecules 
limits excessive T cell-mediated inflammatory responses and in their signaling 
processes include a series of ligands that are expressed on the membrane of antigen-
presenting cells (APCs) transmitting inhibitory signals (Figure 1). These molecules 
employ specific receptor partners expressed by T lymphocytes and drive their 
activation and differentiation or promote immunoregulatory effects. Dysregulation 
of these signaling processes has been associated with autoimmunity and chronic 
inflammation.

Autoimmune diseases are heterogeneous conditions involving breakdown of 
tolerance and consequent activation of autoreactive immune cells [22]. The failure 
of immune checkpoints has been described in inflammatory myopathies with the 
involvement of autoimmune features [23], as well as in diabetes, multiple sclerosis, 
systemic lupus erythematosus and celiac disease [24]. Inhibitory checkpoint mol-
ecules have been considered as new targets in personalized cancer immunotherapy 
for their potential in multiple cancer types [21, 25]. An active area of research is the 
analysis of the functions of these checkpoint molecules and its ligands in tolerance 
and autoimmunity.

The immune system has the difficult dual function of discerning and defending 
against a variety of pathogens and avoiding self-reactivity. To further control the 
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development of autoimmunity, multiple mechanisms of peripheral tolerance have 
evolved, including T-cell anergy, deletion and suppression by Tregs cells. Treg 
and Teff cells help maintain immune homeostasis through mutual regulation. 
Loss of homeostatic balance between Teff/Treg cells is often associated with 
autoimmunity [24, 26].

In this chapter, we will discuss the biology of immune checkpoints, highlight 
research strategies that may help reduce the incidence of immune related adverse 
events associated with celiac disease, and also suggest investigational approaches to 
manipulate immune checkpoints to treat its autoimmune disorder.

2.1 IDO/kynurenine pathway

An important inhibitory checkpoint is now considered to be the tolerogenic 
mechanism of the enzyme indoleamine-2, 3-dioxygenase (IDO), an intracellular 
protein involved in the oxidative catabolism of tryptophan (Trp). It catalyzes the con-
version of Trp to N-formyl kynurenine via the kynurenine pathway. Depletion of Trp 
reduces T cell proliferation, whereas the production of kynurenine induces apoptosis 
of type 1 T helper (Th1) cells and naïve T cell differentiation into Tregs cells [27, 28].

IDO is expressed intracellularly in a constitutive manner in the placenta, epi-
didymis, prostate, esophagus, intestine, colon, cecum, spleen, thymus, lung, brain, 
and skin [29, 30]. Notably, the morphological features of many IDO-expressing cells 
closely resemble those of antigen-presenting cells and epithelial cells [29].

IDO expression is inducible by inflammatory stimuli including cytokines and 
toll like receptor agonists. IDO is expressed in antigen presenting cells, macro-
phages and dendritic cells, and activation of IDO during the inflammatory response 
leads to a decrease in local trp levels [27]. These decreased levels have an inhibitory 
effect on the proliferation of T lymphocytes, directly or indirectly via activation of 
regulatory T cells [27, 31].

Figure 1. 
Schematic representation of immune checkpoint molecules including a series of ligands expressed on 
the membrane of antigen-presenting cells (APCs), that engage specific receptor partners expressed by T 
lymphocytes and either drive their activation and differentiation (positive immune checkpoint molecules) or 
promote immunoregulatory effects (negative immune checkpoint molecules).
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In most cell types, IDO is induced at the transcriptional level in response to specific 
inflammatory stimuli. IFN-γ is the principal IDO inducer in vitro and in vivo. Exposure 
to IFN-γ increases IDO transcription in monocyte/macrophages [32] and dendritic 
cells [33], fibroblasts [34], epithelial cells [35], smooth muscle cells [36]. Other inflam-
matory stimuli, such as IFN-α, IFN-β, LPS and cytotoxic T lymphocyte-associated 
antigen (CTLA)-4, also induce IDO to a lesser degree than that of IFN-γ [37, 38].

A dysfunctional IDO has recently been associated with a specific single nucleo-
tide polymorphism (SNP) and with the occurrence of autoimmune diabetes and 
multiple sclerosis. The elevated levels of kynurenines that are present contain the 
proliferation of Teff cells and favor the differentiation of Treg cells [39]. Several 
genetic variations of the IDO gene have been associated with the occurrence and 
severity of autoimmune/chronic inflammatory diseases; however, the functional 
relevance of these variations, which mainly affect the intron regions and the 
promoter portion of IDO, has not been well characterized yet [40, 41].

In celiac disease, mechanisms dependent on tryptophan catabolism may be 
involved in the regulation of the immune response. Thus, in intestinal biopsies from 
celiac patients, a high expression of the anti-inflammatory enzyme IDO appears 
[42]. This increase in IDO levels results in an increase in serum levels of kynurenine 
in patients with celiac disease, which potentially contributes to intensify inflamma-
tion. Likewise, higher levels of kynurenine were found in celiac patients with other 
associated diseases, such as Down syndrome or autoimmune thyroiditis, contribut-
ing to the pathology [43].

Once an autoimmune disorder is established, the presence of chronic inflam-
mation might provoke sustained IDO production and IDO fails to limit immune 
deregulation under these pathological conditions. Several inflammatory mediators 
including the most potent, IFN-γ, induce IDO production. Wolf et al. [44], have 
described overexpression of IDO in other Th1-associated chronic inflammatory 
disease of the gastrointestinal tract, such as Crohn’s disease, with increased kyn-
urenine levels and a higher kynurenine/tryptophan ratio. In this pathology has been 
demonstrated that T helper 1 (Th1)-like cytokines such as IFN-γ and TNF-α are 
potent inducers of IDO expression.

2.2 HLA-G/ILT interaction is an immune checkpoint

The HLA-G gene is a non-classical class I HLA composed of eight exons and 
seven introns located on chromosome 6 at region 6p21.3, [45]. As a result of alter-
native RNA splicing, seven isoforms can be formed, comprising four membrane-
bound isoforms (HLA-G1, G2, G3, and G4), and three secreted soluble isoforms 
(HLA-G5, G6, and G7) [46, 47]. Most studies focus on the full-length molecule 
(HLA-G1) and its soluble isoform (HLA-G5). These isoforms are identical, except 
HLA-G5 is missing the transmembrane domain.

HLA-G is considered to be an immune checkpoint molecule, a function that is 
closely linked to the structure and dynamics of the different HLA-G isoforms. The 
expression of HLA-G can be induced in several conditions, including cancer, trans-
plantation, viral infections, and autoimmune and inflammatory diseases [48–51].

HLA-G mediates its function by binding to receptors on immune cells. The 
known receptors are leukocyte Ig-like receptor subfamily B member 1 (LILRB1) and 
member 2 (LILRB2), also known as ILT2 and ILT4, and the killer immunoglobulin-
like receptor 2DL4 (KIR2DL4) [52]. ILT2 is expressed by B cells, some subtypes of 
T cells and NK cells, and all monocytes/dendritic cells. On the other hand, ILT4 is 
myeloid-specific and only expressed by monocytes/dendritic cells [53].

HLA-G expression and gene polymorphisms have been associated with several 
disorders [54–56]. HLA-G has an important role in regulating the immune system; 
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indeed, the molecule is able to inhibit the cytotoxic activity of Natural Killer cells 
(NK) and T cell-mediated cytolysis (CTL) [57]. HLAG can inhibit the response of 
alloproliferative CD4+ T cells, proliferation of T and NK cells, and the maturation 
and function of antigen presenting cells (APC) [58, 59]. In addition, HLA-G has a 
tolerogenic effect due to its capacity of generating suppressor cells by binding to 
specific receptors and it can induce apoptosis in endothelial cells [60].

The soluble form of HLA-G is of special interest in celiac disease because its 
molecule plays an important role in the induction of immune tolerance [61]. In this 
sense, soluble HLA-G has the function to inhibit the proliferation of activated T 
cells, and to induce apoptosis of T cells dose dependently, reinforcing the immune 
inhibitory role of soluble HLA-G capable to be secreted during CD as part of a 
mechanism to restore the tolerance process towards oral antigens [61, 62]. A potent 
anti-inflammatory response to gliadin may occur during disease development as 
a result of the adaptive response in CD. In celiac patients, gluten intake appears to 
cause an overreaction in intraepithelial T lymphocytes, with uncontrolled produc-
tion of the HLA-G molecule [61]. This can cause the recruitment of intraepithelial 
lymphocytes, leading to amplified immune activity and maintenance of intestinal 
lesions. The increased expression of the soluble form of HLA-G in patients with CD 
could be part of a mechanism to restore gluten tolerance [61, 62].

Moreover, an association between HLA-G polymorphism and CD has already been 
described by Fabris et al. [63]. The 14 bp inserted (I) allele and the homozygous I/I 
genotype were significantly more frequent in CD patients than in healthy controls. 
The effect of the HLA-G D/I polymorphism is restricted for HLA-DQ2, and not simply 
due to the presence of linkage disequilibrium with the major known risk factor. In this 
sense, the risk conferred by HLA-DQ2 alone and that subjects that carry both DQ2 and 
HLA-G I alleles have an increased risk of CD than subjects that carry DQ2 but not the 
14 bp inserted (I) allele [63]. The modulation of the HLA-G transcript stability is espe-
cially known for the 14 bp D/I polymorphism, which has been associated with autoim-
munity [64–67]. Based on the findings of Torres et al. [61] and considering that the 
presence of HLA-G SNPs affect the mRNA stability in CD patients, lower basal levels 
of HLA-G molecule, possibly due to the presence of genetic variations, can increase 
the risk of celiac disease development. Once that the disease has occurred the organ-
ism produces higher levels of soluble HLA-G trying to restore the immune tolerance 
[61, 62]. Similarly to 5’URR, also 3’UTR presents numerous polymorphic sites that 
could affect HLA-G transcription and/or translation [68]. By sequencing this region, 
there are 4 polymorphisms showing some significant associations with CD [64].

In summary, it has been shown that both HLA-G and IDO suppressor molecules 
are expressed in CD. The expression of these molecules, IDO and HLA-G, would 
be an essential mechanism to try to restore tolerance towards antigens in the diet 
[61, 62]. Therefore, the increase in IDO activity reflects an attempt to control 
chronic antigenic stimulation by downregulating the T cell-mediated autoimmune 
reaction. IDO and HLA-G could cooperate to suppress the immune response in CD 
in their active form [61].

López et al. [69] showed that suppressive molecules IDO and HLA-G are both 
expressed in dendritic cells, and these molecules can produce immunosuppression. 
Besides, IDO was shown to induce HLA-G expression during monocyte differentia-
tion into DCs [69]. IDO and HLA-G share some properties: both have tolerogenic 
capacity, are highly expressed in human placenta and tumors [70, 71] and their 
expression can be regulated by the same cytokines (IFN-γ, IL-10) [72, 73]. The 
effect of IDO on HLA-G cell-surface expression seemed to be dependent on the type 
of cell studied and is likely to involve posttranslational mechanisms [74]. The 
inhibition of IDO function with 1-methyl tryptophan in antigen-presenting cells 
(APCs), which are originally HLA-G cell-surface negatives, increases the levels of 
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HLA-G1 cell-surface expression, whereas high concentrations of tryptophan caused 
a loss of HLA-G1 expression in HLA-G1-positive cells [75].

2.3 CD28/CTLA4-B7 pathway

The immune regulatory proteins cytotoxic T lymphocyte antigen (CTLA-4) is 
important immune regulatory protein collectively referred to as immune check-
point receptor. CTLA-4 is known to be crucial for tolerance induction in the early 
stages of the immune response being an important negative regulator of T-cell 
activation and proliferation, interacting with B7 molecules on antigen-presenting 
cells [76, 77]. The CTLA4 gene encodes a receptor involved in the control of T-cell 
proliferation and mediates T-cell apoptosis. CTLA-4 is therefore a plausible candi-
date for a susceptibility gene in diseases with T-cell mediated pathogenesis [77].

The chromosomal region 2q33 contains immunologically important genes, 
CD28 and ICOS, that has been associated with autoimmune disease, but the exact 
causal genetic sequence variation has yet to be established in CD [78]. There is good 
evidence that the CTLA-4 region on chromosome 2q33 contains a non-HLA suscep-
tibility locus for celiac disease, although its participation may vary according to the 
geographic origin of the patients [79]. The association of several SNPs in the CTLA4 
gene with CD, among them, the functional SNP, CT60, suggested that the CT60 
polymorphism influences alternate RNA splicing of CTLA4, resulting in differing 
ratios of a full-length form, flCTLA4, and a soluble form, sCTLA4 of the protein [78].

High levels of serum soluble CTLA-4 in active celiac patients were found and 
are related to gluten intake. A positive correlation exists between autoantibodies 
to tissue transglutaminase, the grade of gut mucosa damage and soluble CTLA-4 
concentration [80]. This correlation between the amount of serum sCTLA-4 and 
the grade of gut mucosa damage strongly suggests a possible immunomodulatory 
effect of this soluble molecule on cytotoxic T lymphocyte functions. Thus, soluble 
CTLA4 appears to be related to autoantibody production per se, independently 
from dietary gluten [80]. Soluble CTLA-4 could play a critical role in modulating 
the immune response, especially in the early stage. The immunomodulatory effect 
of soluble CTLA-4 could be involved in the regulation of B cell activation directly or 
via T helper function modulation [80].

The detection of the spliced/soluble variant from CD patients suggests that the 
soluble CTLA-4 does not result from a cleavage of the full-length form [80]. The 
potential genetic associations of several CTLA-4 polymorphisms to susceptibility 
to autoimmune diseases have been described, although the relationship between 
CTLA-4 polymorphisms and the ability to produce the soluble form is not fully 
clarified. CTLA-4 is a strong actor in the adaptive response.

2.4 PD1/PDL pathway

Programmed cell death-1 (PD-1) is a well-established immune checkpoint and 
co-inhibitory regulator critical to the maintenance of immune tolerance. PD-1 
through binding to its PD-L1 and PD-L2 ligands, generate inhibitory signals that 
regulate the balance between immune system activation, tolerance and immunopa-
thology [81]. The PD1 expression has been noted in activated CD4+/CD8+ T cells, a 
subset of Tregs, B-cells, myeloid DCs, monocytes, exhausted T cells and basal mes-
enchymal stem cells [82]. Basal levels of expression of ligand PDL1 was observed in 
mesenchymal stem cells and vascular endothelium. In addition, activated B-cells, 
DCs and monocytes also express both PD-L1 and PD-L2 [82]. Lower levels of PDL1 
expression was reported in unstimulated CD4+/CD8+ T-cells which was increased 
upon activation.



7

Immune Checkpoints as a Novel Source for Diagnostic and Therapeutic Target in Celiac Disease
DOI: http://dx.doi.org/10.5772/intechopen.96022

Cytokines are potent stimuli for PD-L1 and PD-L2 expression. Type 1 and type 2 
interferons and TNF-α induce PD-L1 expression in T cells, B cells, endothelial cells, 
and epithelial cells [83]. IL-2, IL-7, and IL-15 cytokines increase PD-L1 on human 
T cells. IL-21 can stimulate PD-L1 expression on B cells and IL-10 induces PD-L1 on 
monocytes. Expression of PD-L2 is stimulated by interferons, IL-4, and GMCSF on 
dendritic cells in vitro, and the common γ chain cytokines can induce PD-L1 and to 
a lesser extent PD-L2 on human monocytes/macrophages [83].

PD-1 plays a role in differentiating naive T cells into Treg cells and can inhibit 
T-cell responses by developing Treg cells [84]. The PD-1 upregulation is a con-
sequence of the activation of T cells, which is essential to the immune responses. 
PD-1 expression in Tregs is indispensable for their suppressive functions, and loss 
of PD1 expression accelerates the generation of Tregs which lose Foxp3 expression 
and produce pro-inflammatory cytokines and thereby flare autoimmunity [84]. 
Tregs and the PD-1/ PD-L axis are both critical to immune responses, elimination of 
either can result in the breakdown of tolerance and the development of autoimmu-
nity. The PD-1/PD-L pathway can prevent autoreactive T cells and protect against 
autoimmunity. Treg cells induced by the PD-1 pathway can also help maintain 
immune homeostasis, maintaining the activation threshold for T cells to protect 
against autoimmunity [81, 82].

Although the PD1 pathway has received considerable attention for its roles in 
T cell exhaustion and tumor immunosuppression, PD1 cannot be considered a 
specific molecule for cell exhaustion [85]. In fact, T cells express PD1 during activa-
tion, thus being a marker for effector T cells. PD1 is expressed by subsets of tolerant 
T cells, regulatory T cells, follicular helper T cells, follicular regulatory T cells, and 
memory T cells. In addition, it is expressed on B cells, NK cells, and some myeloid 
cells. Expression of PD1 can be found in CD8 + T cells of healthy humans, and these 
cells do not resemble exhausted T cell populations [85, 86].

Polymorphisms have been described in the gene Pdcd1 that confer susceptibility 
to development of autoimmune diseases in humans. Many single nucleotide poly-
morphisms have been reported and approximately most of them are located in the 
intron regions of the structural gene [87].

Some of the most studied are the PD-1.1 located in the promoter region, PD-1.2 
located in intron 2, PD-1.3 and PD-1.4 located at intron 4, PD-1.9 and PD-1.5 in 
exon 5 and PD-1.6 at position 32 of the untranslated region. Exist different haplo-
types of these SNPs in families Caucasian and it is known that PD-1.1, PD-1.2 and 
PD-1.9 are in linkage imbalance, while the PD-1.4 and PD-1.5 positions they form a 
different block [88, 89].

PD1 polymorphisms are associated with susceptibility to a variety of autoimmune 
conditions including systemic lupus erythematosus, rheumatoid arthritis, and pro-
gression in multiple sclerosis [89], but it is not yet clear if these SNPs are causative 
or simply correlative. Furthermore, autoantibodies against PDL1 have been found in 
patients with rheumatoid arthritis and correlate with disease  activity [89].

Ponce de León et al. [90] have focused the alteration of PD-1/PD-L1 pathway 
in celiac disease. Levels of sPD-1 was considerably higher in the serum of patients 
with celiac disease compared with health controls. A negative expression of PD1 
in intestinal epithelial cells and lamina propria cells of active CD patients. PD-1 pro-
tein expression in CD4 + and CD8 + T cells decreases significantly in patients with 
CD. In this way, PD-1 function would be compromised in CD4 + and CD8 + T cells, 
indicating an inappropriate activation state [90]. In CD, a deregulation of immune 
suppression mechanisms appears, which can lead to abnormal and persistent acti-
vation of T cells and the production of cytokines. Without PD1, excessive immune-
mediated tissue damage can lead to devastating consequences, because PD1 plays 
crucial roles in central and peripheral T cell tolerance, aiding in the protection of 
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self-tissues from autoimmune responses. The co-delivery of soluble PD-1 could 
increase the maturation of DCs, which could accompanied by upregulation of DC 
maturation markers such as major histocompatibility complex II (MHC II) [90].  
DC maturation is mediated by activated T lymphocytes, therefore sPD-1-regulated 
DC maturation may be influenced by increased T cell responses [90].

The soluble isoform is likely to have antagonistic effects on PD-1 by interfer-
ing with its signaling pathway, particularly considering that PD-1Δ3 still retains 
the ability to bind to PD-L1/PD-L2 receptors [90]. In patients with CD, excessive 
soluble PD-1 could serve as an “antibody” to block the PD-1/PD-Ls pathway and 
lead to aberrant T-cell proliferation. If, for example, CD8 + T-cell responses are not 
adequately controlled, severe immunopathology can result from the production of 
pro-inflammatory cytokines, such as IFN-γ and TNF-α [91].

Soluble PD-1 can promote T-cell responses through blocking the PD-1/PD-Ls 
pathway. IFN-γ is crucial for this process but also contributes to the upregulation 
of PD-L1 which indicates that sPD-1 plays a crucial role not only during the phase 
of T-cell exhaustion but also during primary T-cell activation and that sPD-1 can 
be used as an adjuvant to increase T-cell immunity [91, 92]. These findings suggest 
that at the time of clinical diagnosis of CD, T cells can exhibit features of immune 
exhaustion. It is not yet known what factor(s) contribute to the dysregulated PD-1 
expression and may have increased susceptibility to the autoimmune complica-
tions of CD. The PD-1 and PD-L1 levels in the serum and intestinal biopsies of CD 
patients may be relevant to the determination of a possible correlation between 
markers of the autoimmune response, inflammation, and disease activity.

3. Future directions

The immune cell activation in the setting of immune checkpoint inhibitors 
results in unmasking of gluten sensitivity in genetically susceptible people, leading 
to expansion of previously self-reactive CD4+ T cells and subsequent CD8+ T cell-
induced tissue destruction. Soluble immune checkpoint molecules constitute the 
emerging novel mediators in immune regulation. The relationship between celiac 
disease and the level of soluble immune checkpoints as sCTLA4, sHLA-G, sPD-1, 
and sPD-L1 has been shown.

3.1 Immune checkpoints cooperation

The immune checkpoint molecules may be implicated in biological mechanisms 
underlying celiac disease. Some immune checkpoint molecules serve as inhibi-
tory signaling mediators to maintain immune tolerance, especially in the adaptive 
immune compartment. There are two forms of these molecules: the surface recep-
tor or membrane-bound and cell-free soluble molecules. The membrane-bound 
CTLA4, HLA-G, PD-1, PD-L1 regulate T cell homeostasis, inhibit autoreactive T 
cells, and drive peripheral tolerance in cancer, pregnancy, and sepsis. 12,13 They 
also promote T regulatory cell development and inhibit the effector T cell differen-
tiation and cytokine production leading to immunosuppression [93]. On the other 
hand, the soluble forms of these immune checkpoint molecules were discovered 
later, and their biological functions have gradually been elucidated. The immune 
regulatory effect of soluble PD-L1, sCTLA-4, and sHLA-G can trigger Treg differ-
entiation and T cells apoptosis due to retention of their receptor [94].

Circulating soluble PD-1, CTLA4 and HLA-G could take part in modulating 
immune tolerance causing disturbances in the molecular mechanisms responsible 
for maintenance of balance between effector and regulatory components of the 
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immune system in celiac disease. HLA-G and IDO acting independently, both 
molecules would be complementary in inducing efficient tolerance status. HLA-G1/
HLA-G5 and IDO molecules act on alloreactive T-cell proliferation through two 
distinct inhibitory pathways. However, as IDO expression is tightly regulated and 
responsive to inflammatory mediators, HLA-G may indirectly modulate IDO by 
up-regulating the production of such mediators. For instance, by up-regulating the 
expression of IL-10, HLA-G may boost the IDO pathway.

The HLA-G/ILT2/ILT4 interactions actually target a broader array of immune 
effectors than the B7/CTLA4 and PD-1/PD-L1 pathways, since CTLA4 and PD-1 
are expressed only on T cells, whereas ILT2 and ILT4 are differentially expressed on 
NK, T, and B cells as well as monocytes, dendritic cells (DCs), and neutrophils and 
thus may inhibit the early phases of an immune response (PD-1/PD-L1), or the later 
phases (B7/CTLA4) [93].

3.2 Gene dysregulation in celiac disease

The detection of the spliced/soluble variant of these immune checkpoints from 
CD patients suggests that the soluble form of HLA-G, CTLA-4 and PD1 molecules 
does not result from a cleavage of the full-length form. The potential genetic asso-
ciations of several polymorphisms to susceptibility to autoimmune diseases have 
been described, Splicing machinery would act as a biosensor to adapt gene expres-
sion to pathophysiological conditions.

Gene dysregulation of these genes could lead to an imbalance in the splice 
variants present in the cells at any given time. The existence of specific factors in 
the serum of celiac patients, such as peptides derived from gliadin, would be able to 
modulate the expression of relevant components of the splice and the function of 
the splicing machinery. Dietary intervention of gluten peptides can clearly alter the 
expression pattern of the splicing machinery in humans at risk for CD.

The alternative splicing process may represent a physiological mechanism for 
maintaining cellular homeostasis, as suggested by different studies that dem-
onstrate that the nutrients can modulate gene expression and, in particular, the 
splicing of pre-mRNAs that encode regulatory proteins. Minimal disturbances in 
the alternative splicing process can lead to the generation of deficient proteins that 
contribute to several human diseases. So, the splicing process may represent an 
adaptive mechanism in response to different nutritional conditions, and that this 
mechanism could be in place not only in circulating PBMCs but may also operate 
in cell types from other tissues and organs tightly coupled to nutrient-dependent 
metabolic homeostasis, e.g., intestine. So, specifically gluten can modulate pro-
cesses required for cell homeostasis through the alteration of gene expression and, 
particularly, the splicing of pre-mRNAs encoding key regulatory proteins.

4. Conclusions

Further investigation on the determination of immunological interactions and 
biological functions by immune checkpoints in celiac disease is needed to deepen 
our understanding of the underlying disease mechanism in ourquest for diagnostic 
and therapeutic target in celiac disease.
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