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Chapter

Ecology of the Seed Bank in the 
Amazon Rainforest
Natali Gomes Bordon, Niwton Leal Filho  

and Tony Vizcarra Bentos

Abstract

The seed bank is directly related to forest resilience because it contributes to the 
greatest number of regenerants after the occurrence of disturbances. Changes in seed 
density, floristic composition, and life forms completely alter the successional trajectory 
of forest environments. These changes are directly related to land use. For example, 
suppression of the seed bank can occur in pastures, that experience frequent fires with 
increase of density of seeds and predominance of herbs are typical of highly degraded 
areas, such as Poaceae, Rubiaceae, Asteraceae, and Cyperaceae. Melastomataceae 
seedlings are an important component of the seed bank in the Amazon rainforest. On 
the other hand, Urticaceae has greater representation in forests that exhibit low-impact 
land use. Any change in seed bank functionality is bound to compromise the diversity, 
regeneration potential and overall maintenance of tropical forests. Therefore, it is 
necessary to expand studies that investigate seed banks in the Amazon rainforest. It is as 
important to prioritize sampling methods and pursue standardization of data presenta-
tion, as well as improve the  identification of species that occur in the seed bank.

Keywords: floristic composition, forest disturbance, anthropic changes,  
forest regeneration, land use

1. Introduction

The seed bank, or stock of viable seeds in the soil, can be defined as a set of latent, 
or dormant, seeds capable of originating adult plants [1, 2]. Studying the composition 
of the seed bank and understanding its role in regeneration are important to the con-
servation and management of tropical forests, as well as the control and eradication 
of invasive species in agrosilvopastoral systems [3–8]. The seed bank is influenced by 
the local plant community, history of land use, and forest matrix in general, it also has 
spatial and temporal variations [5, 9–12]. Spatial variations occur both horizontally 
and vertically; however, the greatest amounts of seed are observed in the upper layers 
[13–16]. Temporal variation occurs as a result of both loss and incorporation of seeds 
in the soil [13, 17]. The incorporation of seeds is the result of seed rain, which also 
presents seasonality owing to the different fruiting patterns of the species [9, 18, 
19]. The rate of seed loss in the soil depends intrinsic loss of viability resulting from 
dispersal, environmental conditions, predation, and attack of pathogens [17, 20, 21].

Seeds of pioneer species are found in high density in the soils of tropical forests 
and constitute the main reserve of propagules for the regeneration of areas subject 
to disturbances [10, 22–24]. Most pioneer species have quiescent diaspores, owing to 
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canopy light conditions or temperature variations [25–27], and compound the per-
sistent seed bank [10, 22–24]. Species that compound the transitional seed bank have 
a lower density and are composed of late species of the forest succession [10, 14, 22], 
commonly forming a seedling bank [28, 29]. Consequently, floristic composition of the 
tropical rainforest seed bank does not reflect the composition of species in the arboreal, 
or regenerating, strata of old-growth forests [8, 14, 29]. Thus, seed bank serve to allow 
the establishment of a set of species that do not occur in vegetation or that present in 
low density in old-growth forests, but persist in the seed bank [18, 30–32].

After formation of a clearing by natural or anthropic disturbance, the quantity of 
seeds in the soil decreases as a consequence of recruitment rates or loss of seed viability 
[14, 29, 33]. After the establishment of pioneer species and subsequent fruiting, seed 
density in the soil increases in the initial stages [9, 21, 24, 29, 33, 34]. The, with the 
advance of forest succession, the number of seeds in the seed bank tends to decrease 
and return to pre-disturbance equilibrium [9, 21, 24, 29, 33, 34]. The seed bank plays 
a major role in the re-establishment of plant communities subjected to medium and 
high-intensity disturbances and can have a wide impact on the dynamics of plant 
communities during the process of ecological succession [35–38]. For example, in forest 
areas of the Amazon burned and converted to pasture, almost no vestiges of the seed 
bank, remain [39]. Nonetheless, pioneer species of Vismia were reported to dominate 
regeneration [40, 41]. In contrast, areas with some seed bank left intact were initially 
reported to already be occupied by pioneer species of Cecropia, allowing a larger set of 
plant species to regenerate under its canopy [36, 39, 42–44]. In terms of forest manage-
ment, the role of the seed bank in the regeneration of forests increases in importance, 
when compared to the seed rain, both in clearings and trails generated by skidders [45].

The seed bank is known for its low contribution to the establishment of late 
species in the forest succession in which these groups derived from dispersion and 
stock seedlings [1, 14]. However, the seed bank can be considered highly diverse 
in life forms thus contributing to the restructuring of forest strata [33, 46]. The 
abundance of herbs and shrubs in the seed bank of forest environments can be a 
consequence of the surrounding matrix, as well as the history of land use [5, 14, 22]. 
It is a reflection of vegetation that has already undergone some type of anthropic 
or natural change [5, 29, 33, 47]. In general, herbaceous and shrub species are 
more commonly found in altered areas and secondary vegetation [14]. However, 
disturbances that occur around the forest also contribute to the entry of ruderal, or 
invasive, species in the seed bank [5]. Notwithstanding this phenomenon, forest 
areas surrounding pastures or agricultural areas change the density and floristic 
composition of the seed bank in these areas [5]. This gives rise to the entry of 
common trees and shrubs into the seed bank of forest areas [5]. The seed bank in 
tropical forests is, therefore, highly variable. At the same time, studies reporting on 
this natural component of the Brazilian rainforest are scarce. Therefore, this chapter 
aims to analyze variations in density, family abundance, and life forms of the seed 
bank in terra firme forest of the Amazon rainforest, as well as assess the impact of 
the main changes in land use in this region on seed bank characteristics.

2. Materials and methods

Data were obtained from published and unpublished scientific reports and 
monographs written by undergraduate students under the supervision of Dr. 
Niwton Leal Filho of the National Institute for Amazon Research (INPA). One data-
set contains complete data on density and floristic composition. We used 17 datasets 
from a seed bank in terra firme forest of the Amazon rainforest, which dataset 
[48–50] was not included in the floristic composition. Table 1 list all datasets 
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Study area location Latitude and longitude Type of disturbance EA N A D DS Reference

(1) Old-growth forest (with no evidence of anthropogenic changes in the last 60 years or more)

Biological Dynamics of Forest Fragments Project 
(BDFFP), Amazonas, Brazil

2°25’ S; 59°50’ W — — 90 0.70 2 913 ± 1112 unpublished 
data

Experimental Station of Tropical Forestry (EEST), 
Amazonas, Brazil

2°37′38” S; 60°09′11” W — — 30 0.71 3 722 unpublished 
data

Biological Dynamics of Forest Fragments Project 
(BDFFP), Manaus, Amazonas, Brazil

2°25’ S; 59°50’ W — — 45 1.01 3 662 ± 741 [7]

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°36′50” S; 60°12′13” W — — 160 5.03 5 498 ± 437 [46]

Adolfo Ducke Forest Reserve, Amazonas, Brazil 02°53’ S; 59°58’ W — — 1440 11.31 2 460 [19]

River Capim Farm, Paragominas, Pará, Brazil 03°37′59.9” S; 48°32′46.8” W — — 60 3.75 5 423 [57]

Adolfo Ducke Forest Reserve (riparian or 
bottomlands forest, with periodic flooding), 
Amazonas, Brazil

02o53’ S; 59o58’ W — — 72 4.32 10 367 [58]

Adolfo Ducke Forest Reserve, Amazonas, Brazil 02°53’ S; 59°58’ W — — 30 0.24 5 299 unpublished 
data

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°37’ S; 60°09’ W — — 30 0.24 5 246 unpublished 
data

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°37’ S; 60°09’ W — — 40 0.31 3 194 ± 263 unpublished 
data

Ferreira Penna Scientific Station (ECFPn), 
Melgaço, Pará, Brazil

1°42′30” S; 51°31′45” W — — 100 6.25 5 94 ± 61 [50]

(2) Forest fragments

Biological Dynamics of Forest Fragments Project 
(BDFFP), Amazonas, Brazil

2°25’ S; 59°50’ W Remaining isolated forest 
fragments of 1 ha

25 90 0.70 2 4073 ± 3578 unpublished 
data

Biological Dynamics of Forest Fragments Project 
(BDFFP), Amazonas, Brazil

2°25’ S; 59°50’ W Remaining isolated forest 
fragments of 10 ha

25 90 0.70 2 3829 ± 2565 unpublished 
data
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Study area location Latitude and longitude Type of disturbance EA N A D DS Reference

Biological Dynamics of Forest Fragments Project 
(BDFFP), Amazonas, Brazil

2°25’ S; 59°50’ W Remaining isolated forest 
fragments of 1 ha

30 45 1.01 3 1690 ± 2530 [7]

Biological Dynamics of Forest Fragments Project 
(BDFFP), Amazonas, Brazil

2°25’ S; 59°50’ W Remaining isolated forest 
fragments of 10 ha

30 45 1.01 3 1309 ± 787 [7]

Science Grove of the National Institute for 
Amazon Research (INPA), Manaus, Amazonas, 
Brazil

03°08’ S; 60°10’ W Urban fragment of 13 ha,  
with a history of 

selective logging before 
the creation of the 
preservation area

47 30 2.40 5 1264 ± 969 unpublished 
data

Science Grove of the National Institute for 
Amazon Research (INPA), Manaus, Amazonas, 
Brazil

3°05’50”S; 59°59’10” W Urban fragment of 13 ha,  
with a history of 

selective logging before 
the creation of the 
preservation area

47 30 0.24 5 747 unpublished 
data

Mindú Park, Manaus, Amazonas, Brazil 03°07’ S; 59° 05’ W Urban fragment of 31 ha,  
with a history of 

selective logging before 
the creation of the 
preservation area

30 30 0.24 5 633 unpublished 
data

Biological Dynamics of Forest Fragments Project 
(BDFFP), Amazonas, Brazil

2°25’ S; 59°50’ W Remaining isolated forest 
fragments of 100 ha

30 45 1.01 3 576 ± 450 [7]

Petro Set, preservation area, Manaus, Amazonas, 
Brazil

03°04’ S; 59°58’W Urban fragment of 2 
ha intensely altered, 

with a history of 
selective logging before 

the creation of the 
preservation area

40 30 0.24 5 410 unpublished 
data

Federal University of Amazonas (UFAM), 
Manaus, Amazonas, Brazil

03°4.34’ S; 59°57.30’ W Urban fragment of  
800 ha, with a history of 
selective logging before 

the creation of the 
preservation area

55 30 0.24 5 395 ± 68 unpublished 
data
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Study area location Latitude and longitude Type of disturbance EA N A D DS Reference

(3) Forests with logging of wood species

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°36′50” S; 60°12′13” W The area explored in 
forest management, 

clearing of exploration

14 30 0.71 3 2219 unpublished 
data

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°36′50” S; 60°12′13” W Explored area of forest 
management, tractor 

trail

14 30 0.71 3 1561 unpublished 
data

Experimental Genetic Resource Station “José 
Haroldo”, Benevides, Pará, Brazil

01°10’ S; 48°20’ W Old-growth forest with 
logging of wood species

17 25 6.25 8 1427 ± 729 [59]

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°36′50” S; 60°12′13” W Explored area of forest 
management, tractor 

trail

21 30 0.71 3 1274 unpublished 
data

Experimental Genetic Resource Station “José 
Haroldo”, Benevides, Pará, Brazil

01°10’ S; 48°20’ W Old-growth forest with 
logging of wood species

30 25 6.25 8 756 ± 250 [59]

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°36′50” S; 60°12′13” W The area explored in 
forest management, 

clearing of exploration

21 30 0.71 3 711 unpublished 
data

River Capim Farm, Paragominas, Pará, Brazil 03°37′59.9” S; 48°32′46.8” W Logging and woody 
waste

1 120 7.50 5 317 ± 413 [57]

(4) Secondary forests (with evidence of natural and anthropogenic changes)

Biological Dynamics of Forest Fragments Project 
(BDFFP), farm Esteio, Manaus, Amazonas, Brazil

2o24’48” S; 59o 52′21” W With a history of 
abandoned pasture

7 32 1.28 3 8085 [39]

Experimental Genetic Resource Station “José 
Haroldo”, Benevides, Pará, Brazil

01°10’ S; 48°20’ W Abandoned pasture with 
burning history

6 25 6.25 8 2848 ± 537 [59]

Biological Dynamics of Forest Fragments Project 
(BDFFP), Manaus, Amazonas, Brazil (three 
topographic positions: plateaus, slopes, and 
bottomlands)

2°30’ S; 60°10’ W Abandoned pasture with 
history of fires

20 21 2.65 5 2187 ± 1137 [60]
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Study area location Latitude and longitude Type of disturbance EA N A D DS Reference

Experimental Station of Tropical Forestry (EEST), 
Manaus, Amazonas, Brazil

2°36′50” S; 60°12′13” W Blowdown 6 160 5.03 5 704 ± 770 [46]

(5) Agriculture areas

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Agroforestry systems > 5 20 0.45 5 9540 [48]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Agroforestry systems > 5 20 0.45 5 8909 [48]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Cassava cultivation < 5 20 0.45 5 8329 ± 122 [49]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Cassava cultivation < 5 20 0.45 5 7471 ± 203 [49]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Agroforestry systems > 5 20 0.45 5 7173 [48]

Kilometer 2 of the road to Balbina Village (PAS3), 
near the clover on BR-174, Amazonas, Brazil

2°03′57” S; 60°01′20” W Pasture 20 20 0.45 5 6153 ± 75 [61]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Agroforestry systems > 5 20 0.45 5 3320 [48]

km 50 of the BR–174 (PAS2), Manaus to 
Presidente Figueiredo, Amazonas, Brazil

2°03′57” S; 60°01′20” W Pasture 14 20 0.45 5 3209 ± 48 [61]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Cassava cultivation < 5 20 0.45 5 2691 ± 116 [49]

Esteio Farm (PAS1), Manaus to Presidente 
Figueiredo, Amazonas, Brazil

2°03′57” S; 60°01′20” W Pasture 9 20 0.45 5 2593 ± 59 [61]

Manacapuru, Amazonas, Brazil 3°16′20” S; 60°33′07” W Cassava cultivation < 5 20 0.45 5 1962 ± 27 [49]

Kilometer 2 of the road to Balbina Village (PAS4), 
near the clover on BR-174, Amazonas, Brazil

2°03′57” S; 60°01′20” W Pasture 20 20 0.45 5 304 ± 5 [61]

Table 1. 
Details of density, family abundance, and forms of seedlings that emerged from the seed bank in the terra firme forest of the Amazon rainforest. EA: Estimated age at the time of the study; N: 
Number of samples; A: Total area sampled (m2); D: Depth of the sample collected (cm); DS: Density of seedlings (m2) (mean ± standard deviation).
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used in this stydy. The datasets involve different types of land use in the Brazilian 
Amazon rainforest, incluinding (1) old-growth forests, with no evidence of anthro-
pogenic changes in the last 60 years or more; (2) forest fragments with different 
historical changes; (3) forests with logging of wood species; (4) secondary forests 
with evidence of natural and anthropogenic changes and (5) agriculture areas.

Seedling density emerging from soil samples is used in all datasets as an indi-
rect estimate of seed density in the seed bank [51–56]. In addition to the highly 
variation found in the seed banks, even at small distances [20, 54, 55], we see 
variation in the methods of soil sampling and sampled area [56], sampling depth 
and spread of sample in the nursery [15], all of which could influence both density 
and floristic composition. It should be noted that the tropical region lacks seed-
ling identification guides or floras, making this activity largely dependent on the 
expertise of parabotanics and researchers involved in the field. It is well known 
that the seedling stage is one of the most difficult stages to identify, as reflected in 
the floristic composition of the seed bank. Even the division of seedlings into a life 
form, is difficult to position and categorize. To compile a file form database, we 
followed the categories proposed by the authors, but with minor changes. We chose 
to group emerged seedlings into four major categories, i.e., tree, herb, shrub, and 
support-dependent plants, which included lianas, epiphytes, and hemiepiphytes. 
Some species like Miconia serialis DC. can be shrubby to small trees; however, the 
small tree life form is the most common, and this species was placed in the tree 
categories.

3. Results

In general, the lower density of seedlings that emerged from the seed bank 
samples was observed in old-growth forests, while the highest density in seedlings 
emerged in agricultural areas (Figure 1). Seedling density in old-growth forests 
had less variability, with numbers varying between 94 and 913 seedlings per m2 
(Table 1). In the other classes of land use, the density of seeds in the soil was found 
to be higher and had high variation (Figure 1 and Table 1).

Figure 1. 
Seedling density (m2) emerged from the seed bank in different classes of land use. The vertical bar shows the 
standard deviation when cited. The datasets used are those described in table 1.
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Figure 2. 
The proportion of seedlings emerged from seed banks of the ten most abundant families according to different 
types of land use. A: Old-growth forests, with no evidence of anthropogenic changes in the last 60 years or more; 
B: Forest fragments with different historical changes; C: Forests with logging of wood species; D: Secondary 
forests with evidence of natural and anthropogenic changes; E: Agriculture areas.
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The type of land use promotes changes in floristic composition (Figure 2). 
Melastomataceae seedlings predominated in all land uses, except for agricul-
tural areas where Rubiaceae seedlings were the most abundant (Figure 2). 
Melastomataceae was represented by the following genera: Aciotis, Adelobotrys, 
Bellucia, Clidemia, Henriettea, Leandra, Maieta, Miconia, and Tococa. Urticaceae 
was the second most abundant family in the old-growth forests and the forests with 
logging of wood species. It was the third most abundant in forest fragments with 
different historical changes (Figure 2). Here, the following genera predominated: 
Cecropia, Coussapoa, and Pourouma, with only Cecropia occurring in agricultural 
areas and with low density. The families Dilleniaceae (Davilla, Doliocarpus, and 
Tetracera), Goupiaceae (Goupia glabra Aubl.), Moraceae (Ficus, Bagassa, Helicostylis, 
and Maquira), and Araceae (Philodendron) were present among the ten most abun-
dant families, but only for old-growth forests (Figure 2). Hypericaceae seedlings, 
as represented by Vismia species, were among the ten most abundant families 
for all types of land use, except for agricultural areas, and, similar to Urticaceae, 
they occurred at low density (Figure 2). Cannabaceae seedlings represented an 
important component in forest fragments. It was represented by a single species, 
Trema micranta (L.) Blume, with wide distribution, and it serves as an indicator of 
degraded areas under anthropic use. The Piperaceae family was among the ten most 
abundant families in the category of intermediate change. It was absent from old-
growth forests and agricultural areas. Cyperaceae and Poaceae were configured as a 
common component of altered areas. Poaceae, however, is not among the ten most 
abundant families for forests with logging of wood species. Solanaceae, as well as 
Rubiaceae, was present in all forest types; however, the latter had greater abundance 
in secondary forests and agricultural areas. Asteraceae (Chromolaena, Rolandra, and 
Vernonia) and Cyperaceae (Cyperus, Rhynchospora, and Fimbristyllis) had greater 
abundance in agricultural areas (Figure 2). Seedlings of Olacaceae (Heisteria) were 
among the ten most abundant families, but only for old-growth forests and forests 
with logging of wood species (Figure 2). Seedlings of Gentianaceae (Coutoubea 
and Irlbachia) were among the ten most abundant families, but only for forests 
with logging of wood species and agricultural areas. Muntingiaceae (Muntingia) 

Figure 3. 
The proportion of seedlings emerged from seed banks divided into life forms according to different types of land use.
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was configured among the ten most abundant families only for forest fragments, 
Icacinaceae (Dendrobangia) only for forests with logging of wood species and 
Verbenaceae (Stachytarpheta) and Ochnaceae (Lacunaria, Ouratea and Sauvagesia) 
only for secondary forests. Euphorbiaceae (Croton), Phyllanthaceae (Phyllanthus) 
and Molluginaceae (Mollugo) were also among the ten most abundant families, but 
only for agricultural areas (Figure 2).

Tree seedlings predominated in all types of land use in the seed bank, except 
for agricultural areas (Figure 3). Herbs increased in frequency according to land 
use, with a high proportion in the seed bank in agricultural areas. Despite the low 
proportion of seedlings classified as support-dependent plants (lianas, epiphytes, 
and hemiepiphytes) they still showed a higher proportion in the old-growth 
forests. In the seed bank of agricultural areas, a suppression of other life forms 
was observed (Figure 3). In the seed bank of forests with logging of wood species, 
shrubs decreased, while the proportion of tree seedlings increased.

4. Discussion

The seed bank has been the subject of studies in different forest types. However, 
literature surveys carried out in the present study reveal that very few studies 
reporting on the Amazon rainforest have been published. This highlights the need 
to expand research on seed banks in natural and anthropized areas. The data used in 
this chapter account for regions close to the capitals of the states of Amazonas and 
Pará (Table 1), owing to easy access by highways, in addition to universities and 
research institutes with a long tradition in ecological studies.

Changing land use in the Brazilian Amazon threatens the extinction of a 
significant number of species and consequent loss of environmental functions 
and services of the largest tropical forest on the planet [35, 37, 62–64]. Despite 
repeated warnings and concerns of conservationists and the scientific commu-
nity, deforestation continues at an accelerated rate [63, 65]. The replacement of 
the forest by pasture has been the main means of occupation and use of the land, 
as agriculture advances in the region [65–67]. The resilience of the forest and 
natural regeneration depends on several factors. Among them are type and inten-
sity of the initial disorder, recurrence of disorders, topography, soil type, and 
the maintenance of accessible propagation sources [3, 36, 40, 68, 69]. The main 
mechanisms involved in the regeneration of these altered areas occur through the 
seed bank, dispersion of seeds from nearby areas, and vegetative regeneration, 
which includes surviving plants capable of sprouting from both the aerial part 
and the roots [3, 8, 69].

We generally do find a high density of seeds in the altered areas. Nevertheless, 
the type and intensity of disturbances and changes occurring around in forest areas 
contribute to corresponding changes in the floristic composition of the seed bank 
[5]. Moreover, invasive, or ruderal, species are common and cause the impoverish-
ment of the seed bank [70–74]. Thus, understanding the effects of different types of 
land use on the seed bank is fundamentally essential to understand the evolution of 
the landscape, identify obstacles to the restoration of the forest, and, consequently, 
ensure the regeneration of forest environments and maintenance of environmental 
services [41, 64, 65, 69, 70, 74].

Our data support the results of other studies carried out in tropical regions 
where the density of seeds in the topsoil is highly variable [5, 10, 14, 21, 33, 34]. Seed 
density has increased from the old-growth forest to the altered areas (Figure 1). 
The observed variations in seed density in each class of land use (Table 1, Figure 1) 
reflect differences in forest typology, canopy opening, and sampling time among 
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the areas [9, 14, 19, 21]. In addition, intrinsic variations are associated with the seed 
bank [20, 54], as well as methodological differences [15, 52, 56].

The seed bank is characterized by the occurrence and dominance of a limited 
number of botanical families. These families contribute markedly to common 
species and genera in secondary forests or the early stages of forest regeneration. 
Among the ten most abundant families in the seed bank, the presence of a high 
number of seedlings belonging to the Melastomatacea family stands out. This 
family has high diversity in the Neotropics, with approximately 3000 species, being 
composed of shrubs, lianas, herbs, epiphytes, and trees [75]. In the Amazon basin, 
the family is mainly composed of small tree species and shrubs, and it occurs in 
high abundance and diversity in the forest understory [76–78].

The Melastomataceae family is an important component of the seed bank of 
the Amazon rainforest [7, 19, 60], as well as other forest types in the Neotropical 
region [9, 23, 79, 80]. Its high abundance can likely be attributed to the number of 
small seeds produced per individual [18, 81], longevity [82], and photoblastic seeds, 
favoring the recruitment of seedlings in environments with greater luminosity 
[83–86]. The Melastomataceae family is composed of pioneer species that require 
high to low light, as well as species tolerant to shading [86–88]. Given the great 
importance of this family to the seed bank, more detailed studies need to be per-
formed in order to better understand the spectrum and functionality of this group 
in the process of ecological succession.

Urticaceae seedlings consist of Cecropia, Coussapoa, and Pourouma configured 
as an important component in forest types with low land-use intensity, such as old-
growth forests, forest fragments with different historical changes, and forests with 
logging of wood species (Figure 2). The pioneer species of Cecropia stand out for 
colonizing secondary areas that have suffered low impact disturbances, those are 
more important in the succession processes of these areas [39–43].

In the present study, seedlings of tree species predominated in the seed bank, 
except for agricultural areas where herbs predominated (Figure 3). A decrease 
in tree seedlings and an increase in herbs can already be observed in secondary 
forests. Herbs increased density with intensity of disturbance, with low density 
in old-growth forests (Figure 3). In general, the forest seed bank is dominated by 
trees (49% on average), while cultivated areas and secondary forests are dominated 
by herbs (75% on average) [14]. The high density of herbs in secondary forests and 
forest fragments results from the occurrence of anthropized areas around these 
areas [5, 14, 22, 29, 33]. The importance of shrubs and small trees is little studied 
in successional processes in tropical forests. Most studies focus on changes in the 
structure and floristic composition of the woody layer [89–94], but such studies 
exclude many groups that occur in high density in the seed bank, groups which can 
play a relevant role in the mechanisms of ecological succession. These groups also 
respond to different time scales in biological attributes, such as lifetime, reproduc-
tive age, and rate of evolution [95].

Secondary forests in the Amazon may result from the abandonment of areas 
previously used for different purposes, such as shifting agriculture, pastures, 
and mining [63, 65, 96, 97], which rarely originate from natural disorders [46]. 
Abandoned pastures occur after years of grazing and cleaning, usually by fire 
[65, 69]. These areas usually have a seed bank with high density and composition 
mainly consisting of locally produced herb seeds [41, 65, 69]. This seed bank is 
very similar to that with established vegetation cover [39–44], which is not seen in 
old-growth forests [14, 98, 99]. Among the ten most abundant families in the seed 
bank, common herbs from high-impact degraded areas, such as Poaceae, Rubiaceae, 
Asteraceae, and Cyperaceae predominate. However, seedlings of typical families 
from the seed bank of old-growth forests do occur (Figure 2). Floristic composition 
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and seed density in agricultural areas suggest the need to use forest restoration tech-
niques after abandonment, to facilitate and accelerate the return of the forest.

Forest fragments are stretches of forest inserted in a matrix of different types of 
land uses, typically of anthropic origin [38, 100–102]. The areas used in this study 
encompass a variety of forest fragments, requiring a more detailed analysis of the 
characteristics of each. Increase in seed density and changes in the floristic compo-
sition of the seed bank intensify in small fragments inserted in a matrix composed 
of pastures, as well as recurrence of disturbances in these forest fragments [5, 24, 
34, 74, 100]. While large forest fragments over 100 ha have a density and floristic 
composition more similar to the seed bank of old-growth forests, the seed bank also 
contains species typical of anthropized areas [7, 19, 102, 103].

In the areas of forests with logging of wood species, we can find a mosaic of 
altered and unaltered areas [45, 57, 104–110] with marked differences between 
open canopy areas and those that suffered little or no impact [104, 107]. Thus, a 
greater number of seeds are found in the soil in the centers of exploration clear-
ings and tractor trails [45, 57]. Later, with regeneration, seed density declines and 
approaches pre-exploratory conditions [45]. The density, as well as life forms, of 
these areas is closer to that of old-growth forests (Figures 1 and 3). For the three 
most abundant families in the seed bank, floristic composition is very similar to 
that of old-growth forests. On the other hand, in other families, such as Cyperaceae, 
Rubiaceae, and Piperaceae, we see higher density of seedlings characteristic of open 
areas (Figure 2).

The seed bank is directly related to forest resilience which contributes to a large 
number of regenerants, including species of ecological groups not present in the 
arboreal stratum of old-growth forests. This means that dramatic changes in the 
seed bank owing to the use and management of soil will, in turn, promote changes 
in floristic composition and density in a manner that favors the introduction of 
species not commonly found in the seed bank of old-growth forests. Ultimately, 
these conditions cause the impoverishment of the seed bank and consequent loss 
of its functionality. In extreme cases where total suppression of the seed bank has 
occurred, its absence completely alters the successional trajectory [39–44]. The seed 
bank is essential for resilience, forest regeneration, and forest diversity; therefore, 
any changes in its functionality compromise the diversity, regeneration, and 
 maintenance of tropical forests.
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