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Chapter

Interpretation of Water Quality
Data in uMngeni Basin (South
Africa) Using Multivariate
Techniques
Innocent Rangeti and Bloodless Dzwairo

Abstract

The major challenge with regular water quality monitoring programmes is
making sense of the large and complex physico-chemical data-sets that are
generated in a comparatively short period of time. Consequentially, this presents
difficulties for water management practitioners who are expected to make informed
decisions based on information extracted from the large data-sets. In addition, the
nonlinear nature of water quality data-sets often makes it difficult to interpret the
spatio-temporal variations. These reasons necessitated the need for effective
methods of interpreting water quality results and drawing meaningful conclusions.
Hence, this study applied multivariate techniques, namely Cluster Analysis and
Principal Component Analysis, to interpret eight-year (2005–2012) water quality
data that was generated from a monitoring exercise at six stations in uMngeni Basin,
South Africa. The principal components extracted with eigenvalues of greater than
1 were interpreted while considering the pollution issues in the basin. These
extracted components explain 67–76% of the water quality variation among the
stations. The derived significant parameters suggest that uMngeni Basin was mainly
affected by the catchment’s geological processes, surface runoff, domestic sewage
effluent, seasonal variation and agricultural waste. Cluster Analysis grouped the
sampling six stations into two clusters namely heavy (B) or low (A), based on the
degree of pollution. Cluster A mainly consists of water sampling stations that were
located in the outflow of the dam (NDO, IDO, MDO and NDI) and its water can be
described as of fairly good quality due to dam retention and attenuation effects.
Cluster B mainly consist of dam inflow water sampling stations (MDI and IDI),
which can be described as polluted if compared to cluster A. The poor quality water
observed at Cluster B sampling stations could be attributed to natural and
anthropogenic activities through point source and runoff. The findings could assist
in determining an appropriate set of water quality parameters that would indicate
variation of water quality in the basin, with minimum loss of information. It is,
therefore, recommended that this approach be used to assist decision-makers
regarding strategies for minimising catchment pollution.

Keywords: cluster analysis, multivariate technique, principal component analysis,
uMngeni basin, water quality
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1. Introduction

Water pollution is a global challenge undermining economic growth, health of
millions of people as well as the physical status of the environment in both devel-
oped and developing countries. The current global water scarcity challenge is not
only related to inadequacy in terms of quantity but also related to the progressive
deterioration of quality making water unfit for some given uses such as potability.
The deterioration of water quality is attributed to both natural (precipitation rate,
weathering processes, soil erosion, etc) and anthropogenic (urban, industrial, agri-
cultural activities, etc) factors. Seasonal variations in precipitation, surface run-off,
ground water flow, interception and abstraction strongly affect the river discharge
and the concentrations of water pollutants in a basin [1]. The effect of contaminant
on water depends upon the characteristics of the water itself as well as quantity and
characteristics of the contaminant.

Water pollutants, which are usually introduced through surface runoff or direct
discharge, may in higher concentration result in rivers failing to provide adequate
attenuation of pollutants, resulting in catchments failing to meet minimum compli-
ance of quality for various uses such as potable water production. Furthermore,
water quality deterioration is often a slow process not readily noticeable due atten-
uation effects until an apparent change occurs. Such situations are being exacer-
bated by the rapid increase in the demand for freshwater in many countries
including South Africa. In view of the limited quantity of freshwater resources
worldwide and the effect of anthropogenic activities, protection of these resources
has become a priority [2–4]. It has, therefore, become imperative to monitor the
quality of water in freshwater systems in order to prevent its further deterioration
and thus ultimately ensure its continuous availability in a quality that meets various
uses including potable water production. Pollutants in water can cause acute or
chronic illness in humans especially when polluted water is consumed or when
sewage is used to irrigate vegetables meant for human consumption. In specific
cases this has resulted in loss of lives. For example, as at 2015, the bacterium Vibrio
cholerae caused between 1.3 to 4.0 million infections and 21,000 to 143,000 deaths
worldwide [5].

With concern of the detrimental effects of pollution, various agencies have been
monitoring the quality of raw water within the uMngeni, a 232 km river that is then
treated to serve almost 3.8 million people within and around Durban and Pieter-
maritzburg (South Africa) with potable water [6–10]. The primary objectives of
such monitoring exercise have been to identify water quality problems, describe the
spatio-temporal water quality trends, determine fitness compliance for specific uses
and develop monitoring tools such as water quality indices for enhancing informa-
tion dissemination. Although such monitoring programs are crucial to a better
knowledge of hydrology and pollution problems in catchments such as uMngeni
Basin, they tend to produce large amounts of complicated data-sets of various water
parameters. The data-sets are often difficult to analyse and extract meaningful
information and this makes it difficult to keep the public informed, who are the
custodian of the resource. By keeping the public updated, it makes them more
participatory in policy formulation and decision making regarding protection of the
water resource [11, 12].

The classification and interpretation of monitoring stations are the most impor-
tant steps in the assessment of water quality. Numerous studies have confirmed
multivariate statistical techniques (cluster analysis, principal component analysis,
factor analysis and discriminant analysis) as excellent tools for exploring and
presenting the bulk and complex water quality data-sets [13–15]. These techniques
allow for the determination of spatio-temporal water quality variability,
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classification of sampling stations and the identification of pollution sources
[15–18]. Furthermore, by eliminating subjective assumptions, multivariate tech-
niques tend to reduce biasness when selecting parameters for developing tools such
as water quality index. This ultimately assists in improving the accuracy of such
monitoring tool. Nevertheless, the selection of a multivariate technique to apply
depends on the nature of data-set and research objectives. While there are a number
of multivariate techniques, studies have extensively applied the Principal Compo-
nent Analysis (PCA) and Cluster Analysis (CA) due to their suitability in extracting
information on various situations [15, 19–22].

The application of principal component analysis (PCA) for the interpretation of
a large and complex volume of data offers a better understanding of water quality,
the ecological status of the basin being studied, while also allowing for the identifi-
cation of possible factors/sources that influence the surface water systems [16].
Principal Component Analysis (PCA) aims to find combinations for certain vari-
ables to determine indices which describe the variation in the data while retaining
as much information as possible. This reduction is achieved by transforming origi-
nal variables into a new set of variables, known as principal components (PCs).
These PCs, which are uncorrelated with the first few, retain most of the variation
present in the original variables. The PCA technique transforms original variables
into new uncorrelated variable known as principal components (PCs) [23–25]. The
derived few variables can be used to provide a meaningful description of the entire
data-set with a minimal loss of original information. The eigenvalues indicate the
significance of each PC and a greater value, indicating the parameter’s importance
[26]. Correlation of PCs and original variables are given by the loadings [27]. While
loadings reflect the relative importance of a variable within the component, it
should be highlighted that these values does not show the importance of the com-
ponent itself [28].

The PCA has been successfully applied on hydrogeological and hydrogeo-
chemical studies. The application of PCA by Razmkhah, Abrishamchi [29] distin-
guished the anthropogenic and natural polluting activities along Jairood River in
Iran. The results identified 5 factors which explained 85% the variation in water
quality. Mazlum, Ozer [30] applied the PCA to determine factors causing water
quality variability along a tributary, Porsuk, in Turkey. The study identified four
PCs which explained 70% of the total water quality variance. The factors were
related to the discharge of domestic wastewater, nitrification, industrial wastewater
and the seasonal effect. Haag and Westrich [31] applied PCA to analyse the water
quality along Neckar River in Germany based on ten parameters monitored from
1993 to 1998. The four principal components extracted accounting for 72% of total
variance were interpreted as; (i) dilution by high discharge (ii) biological activity,
(iii) seasonal effects and (iv) wastewater impact [31].

The limitations with the PCA technique include ignoring the degree of data
dispersion as well as a weakness in processing nonlinear data. The result of PCA can
also be influenced by uneven sampling interval, missing values or observations
below detection limits of analytical methods, which can be changed during the data
collection period. It is thus important to treat water quality data before modelling in
order to improve the accuracy [32].

On the other hand, cluster analysis (CA) is an unsupervised pattern recognition
multivariate technique which group objects (e.g., water quality variables) based on
either their similarities or dissimilarities [33, 34]. Its objective is to sort cases into
groups or clusters, so that the degree of association is strong between members of
the same cluster and weak between members of different clusters. Most studies
have applied the hierarchical clustering (HC) technique to sequentially category
objects [13, 15, 34, 35]. Based on the hierarchical CA, water quality characteristics of
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each sampling location can be classified depending on pollution level. The results of
a HC analysis are displayed graphically using a tree diagram commonly known as a
dendrogram [13, 14, 36, 37]. The technique firstly groups the objects according to
similarity. These groups are further merged according to their similarities or dis-
similarities and eventually merge into a single cluster as the similarity among the
subgroups decreases. The cluster analysis approach offers a reliable classification of
surface water making it possible to design a future spatial sampling strategy that is
cost-effective, with reduced number of sampling sites without losing any significant
information [38].

2. Study area and water monitoring stations

uMngeni Basin, the study area, is situated in KwaZulu-Natal (KZN) Province,
which lies along the eastern seaboard of the Republic of South Africa (Figure 1).
uMngeni River (the main river in the basin), at 232 km long, is the primary source
of raw water, which is then treated to serve a population of almost 3.8 million (as at
2013), in and around Durban metro as well as the city of Pietermaritzburg (PMB).

Key activities that generate point and non-point pollution within the catchment
include agriculture and animal faming while concentrated urban settlements pro-
vide a variety of supportive economic activities that generate solid and liquid waste.
A consequence of the concentrated development in the catchment area has been the
high levels of pollutants entering the water system, which are eventually flushed
out to sea. The basin receives much of its rain in summer, with occasional snow falls
in some of its high lying areas such as the Drakensberg Mountain [39]. The geology
of uMngeni Basin varies from basalts, granites, sandstones, shale and tillites [40].

Figure 1.
uMngeni Basin, KZN Province, Drakensberg Mountains and South Africa.
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About half of uMngeni Basin sits on top of the Karoo in the KZN part of the
Drakensberg Mountains. The other potion extends east on top of the South African
Coastal Plate (Figure 2).

The 2009 Landuse map (Figure 2) indicates that there are mixed activities,
where cultivation and plantations are located predominantly from central to the
north-west of the basin.

2.1 Water quality monitoring points considered

Six water quality monitoring points shown in Figure 2, namely Midmar Dam
Inflow (MDI) (Upstream point), Midmar Dam Outflow (MDO), Nagle Dam Inflow
(NDI), Nagle Dam Outflow (NDO), Inanda Dam Inflow (IDI) and Inanda Dam
Outflow (IDO) (Downstream point), were considered in this study. The dam inflow
stations were assumed to give a reflection of the pollution activities along the river
course while the dam outflow stations were expected to depict the dilution and
retention effects.

2.1.1 Methods and materials

Multivariate statistical methods have been widely applied in environmental data
reduction and interpretation of multi-constituent chemical and physical biological
measurements. These techniques have been applied to identify factors that influ-
ence water systems, to assist in reliable water resource management as well as
determine rapid solutions for pollution problems [16, 41]. This study applied PCA
and CA techniques to extract information from the raw data regarding the signifi-
cant parameters influencing the variation of water quality at each of the six stations
studied. The Kaiser-Meyer-Olkin (KMO), which test the sampling adequacy, was
used to determine the suitability of water quality data for PCA analysis [42–44].
Kaiser [43] recommended 0.5 as a minimum (barely accepted), values between
0.7–0.8 acceptable, and values above 0.9 as depicting excellence. The current study
employed the PCA technique to determine the most significant parameters that
would explain the variation in water quality.

Figure 2.
Human settlements dominate from the central parts of the basin (PMB and its periphery) up to the Indian
Ocean.
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PCA is a very powerful multivariate statistical analysis technique used to reduce
the dimensionality of a data set consisting multiple inter-related variables, while
retaining data variability [45]. The technique extracts primary information repre-
sentative of the typical characteristics of the water environment from a large
amount of data and then represents it as a new set of independent variables of the
principal component. PCA reduces the dimensionality of a multivariate data-set to a
small number of independent principal components. Each principal component
contains all the variable information, thus reducing the omission of information.

The PCA method is composed of five main operational steps, as follows:

1.The original data matrix is shown in Eq. 1:

X ¼ xij
� �

n ∗ p
¼

x11 ⋯ x1p

⋮ ⋮ ⋮

xn1 ⋯ xnp

2

6

4

3

7

5
(1)

where xij is the originally measured data, n represents the monitoring station,
and p represents each water quality parameter.

2.Standardising the original data with Z-score standardisation formula to
eliminate the impact of dimension (Eq. 2).

xij
⋆ ¼ xij � x j

� �

=s j, (2)

where xij is the standard variable, xj is the average value for jth indicator, and
sj is the standard deviation for the jth indicator.

3.Calculating the correlation coefficient matrix, R, with standardised data and
determining the correlation between indicators (Eq. 3).

R ¼ rij
� �

p⋆p
¼

1
n� 1

X

n

t¼1

xti
⋆
∗ xtj

⋆ i, j ¼ 1, 2⋯, pð Þ (3)

4.Calculating the eigenvalues and eigenvectors of the correlation coefficient
matrix, R, to determine the number of principal components. The eigenvalues
of the correlation coefficient matrix, R, are represented by i (i = 1, 2 _ _ _ n)
and their eigenvectors are ui (Ui = Ui1, Ui2, …………Uin) (i = 1, 2 _ _ _n).
The value corresponds to the variance of the principal component, and the
value of variance is positively correlated with the contribution rate of the
principal components. Further, the cumulated contribution rate of the first
m principal components should be more than 80%, which means that as
explained in Eq. 4:

X

m

i¼1

λ j=
X

n

i¼1

λ j ≥0:80: (4)

The principal component is represented by Eq. 5.

Fi ¼ ui1x
⋆

1 þ ui2x
⋆

2 þ⋯þ uinx
⋆

n i ¼ 1, 2,⋯, nð Þ, (5)

where xi is the standardised indicator variable as shown in Eq. 6:
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x⋆i ¼ xi � xið Þ=si: (6)

5.The obtained principal components are weighted and summed to obtain a
comprehensive evaluation function, as shown in Eq. 7:

F ¼
λ1

λ1 þ λ2 þ … þ λn
F1 þ

λ2

λ1 þ λ2 þ … þ λn
F2 þ …

λn

λ1 þ λ2 þ … λn
Fn (7)

Principal components with an eigenvalue greater than 1 were related to the
major pollution sources in uMngeni Basin. Water quality parameters with loadings
of greater than 0.5 (highlighted in bold in the results tables) were regarded as
significantly influencing water quality variation in uMngeni Basin.

Thereafter, cluster analysis (CA) was applied to determine the spatial similarity
of the six water sampling stations studied. The hierarchy cluster analysis was
employed using the Ward’s method with Euclidean distances as a measure of dis-
similarity [37, 46]. The number of subgroups for analysis were determined by
drawing a line across the dendrogram and examining the main clusters branching
out beneath that line [47]. Determination of the subgroups for analysis was subjec-
tive based on available information regarding pollution activities the along uMngeni
River.

Eight-year (2005–2012) water quality data-sets obtained from then Umgeni
Water was used in this study. Since monitoring generally depends on the pollution
problem at any given time and space, the number and type of parameters moni-
tored at each of the stations varied. As the study was data-driven, a monthly median
was used for in-depth analysis. The adoption of median instead of the mean was in
consideration that the latter is normally influenced by the outliers which are com-
mon in water quality data-sets while the former is resistant. The period studied was
determined in consideration of a criteria explained by Schertz, Alexander [48] and
Lettenmaier, Conquest [49]. These studies reported that at least a five-year monthly
data and two-year monthly data should be sufficient for a defensible monotonic and
step-trend (abrupt shift) study, respectively.

3. Results

3.1 PCA analysis results

The Kaiser-Meyer-Olkin (KMO) results for the six stations ranged from 0.610 to
0.786 showing the fitness of the data-sets for PCA analysis. The component matrix
tables shown in the different sections of the results only depict PCs with eigenvalue
of greater than one (1). Only parameters with a correlation coefficient of great than
0.5 (highlighted in bold black) with its respective principal component were con-
sidered as significantly influencing water quality variability at any given station.

3.1.1 Midmar dam inflow (MDI)

Table 1 show the extracted seven PCs with eigenvalues of greater than 1 that
explain 75% of the water quality variation at the Midmar Dam Inflow sampling
station. While considering the high positive correlations of nutrient, metal ion and
organic related parameters with component 1 (Table 2), it can be hypothesised that
20.6% of the water quality variation at this station is a result of both anthropogenic
and natural processes. The nutrient and organic related parameters can be explained
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Midmar dam inflow: total variance explained

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.740 24.955 24.955 5.740 24.955 24.955 4.740 20.607 20.607

2 5.002 21.750 46.705 5.002 21.750 46.705 3.621 15.742 36.349

3 1.903 8.272 54.977 1.903 8.272 54.977 3.011 13.090 49.440

4 1.325 5.760 60.737 1.325 5.760 60.737 1.787 7.771 57.211

5 1.165 5.065 65.802 1.165 5.065 65.802 1.412 6.139 63.350

6 1.103 4.795 70.598 1.103 4.795 70.598 1.390 6.043 69.393

7 1.011 4.394 74.992 1.011 4.394 74.992 1.288 5.598 74.992

Extraction Method: Principal Component Analysis.

Table 1.
Extracted values of the significant components at Midmar dam inflow (MDI).
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by piggery, dairy and maize farming activities surrounding Midmar Dam [6]. Ani-
mal manure enters surface water, both accidentally and deliberately, from house-
holds, villages, communal farms and feedlots. Without treatment, manure runoff
tends to result in algae blooms which can lead to human health problems if con-
sumed. The second component explained 15.7% (Table 1) of the total variance at
MDI and showed a positive correlation to Suspended Solids (SS), iron (Fe) and
turbidity (Table 2). Turbidity and suspended solids can be related to surface runoff
from agricultural activities along uMngeni River whilst Iron (Fe) can be attributed
to weathering processes.

Agriculture, a sector responsible for the usage of 70% of water being abstracted
globally, plays a major role in water pollution [50, 51]. Runoff from agricultural
activities such as agrochemicals, organic matter, drug residues, sediments and saline
drainage into water bodies can lead to nutrient enrichment and eutrophication. The
resultant water pollution poses a risk to aquatic ecosystems, human health and

Component Matrixa

Component

1 2 3 4 5 6 7

Potassium (K) 0.890 �0.094 �0.027 0.111 0.090 �0.054 �0.074

Sulphate (SO4) 0.852 �0.027 �0.213 �0.078 �0.128 �0.018 0.072

Chloride (Cl) 0.824 �0.322 �0.169 �0.099 �0.129 �0.008 �0.071

Total Dissolved Solid 0.743 �0.199 �0.161 �0.197 �0.161 �0.001 �0.106

Nitrate (NO3) 0.666 �0.243 �0.231 �0.097 �0.295 0.049 �0.014

Total Organic Carbon(TOC) 0.662 0.464 0.012 �0.053 0.074 0.003 �0.156

Escherichia coli (E. coli) 0.440 0.356 0.035 0.431 �0.153 0.135 �0.085

Suspended Solid 0.416 0.741 0.005 0.172 0.181 0.113 0.319

Iron (Fe) 0.401 0.713 �0.084 0.037 0.133 �0.101 0.152

Turbidity 0.400 0.692 0.064 0.209 0.190 0.141 0.404

Calcium (Ca) 0.503 �0.687 0.304 0.091 0.266 0.098 0.045

Magnesium (Mg) 0.602 �0.681 0.168 0.025 0.089 0.073 0.009

Sodium (Na) 0.581 �0.666 0.156 0.010 0.207 0.085 0.059

Alkalinity (Alk) �0.036 �0.632 0.451 0.090 0.338 0.157 0.149

Total Phosphate 0.192 0.556 0.415 �0.092 �0.089 0.260 �0.284

Colour 0.246 0.545 0.225 �0.183 0.355 �0.198 0.026

Dissolved Oxygen (DO) �0.048 �0.075 �.591 0.410 0.017 0.262 0.093

Temperature (Temp) 0.230 0.453 0.460 �0.383 0.017 �0.222 �0.137

Silicon (Si) 0.347 0.321 �0.379 �0.460 �0.026 0.059 0.121

pH �0.059 �0.147 �0.433 �0.345 0.550 0.222 �.199

Ammonia (NH3) 0.085 0.160 0.470 �0.089 �0.376 0.619 0.009

Conductivity 0.286 �0.324 0.225 0.099 �0.252 �0.528 0.339

Soluble Reactive Phosphate (SRP) 0.313 0.250 0.019 0.513 0.131 �0.223 �0.599

Extraction Method: Principal Component Analysis.
a7 Components extracted.
Bold: Significant contributors to the respective principal component in their respective there column.

Table 2.
The correlation among the parameters measured and the extracted significant components at MDI.
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productive activities. Poor land management practises and deforestation can also
explain the water quality variation at MDI. It is important for communities to
practise improved land management through planting vegetation such as trees and
plants to cover the ground. The negative relationship of metal ions with component
2 can be explained by the seasonality effect. Increased flow in the wet season turns
to reduce the concentration of mineral salt content in a river system as a result of
the dilution effect.

3.1.2 Midmar dam outflow (MDO)

The results in Table 3 indicate that the first seven principal components with
eigenvalues of greater than one (1) account for 73.7% of the total variance in the
water-quality data set at Midmar Dam Outflow station. Component 1 which
explains 27.1% of the total variance at MDO (Table 3) is mainly influenced by
parameters related to human activities (turbidity and ammonia) as well as natural
geological processes (silicon and calcium) (Table 4). Silicon is part of various
essential plant minerals and it is released during weathering processes. Sodium and
potassium which showed a moderate positive correlation to component 5 reflects
the natural processes such as weathering.

3.1.3 Nagle dam inflow

The PCA technique identified five components, which cumulatively explained
67.4% of the total variance at NDI (Table 5). Component 1 which explained 24.7%
of the total variance is significantly affected by parameters (highlighted in bold
black) which normally originate from surface runoff of agriculture areas and efflu-
ent from wastewater treatment plants (Table 6). The pollution of water bodies
when practicing agriculture is mainly due to fertiliser runoff after rainfall, nutrients
(such as nitrogen) that percolate through the soil and contaminated groundwater,
as well as sediment that is eroded from fields and washed into watercourses during
and after rainfall. While studying the limnology of South Africa’s major impound-
ments, Walmsely and Butty [52] described Nagle Dam as a phosphate limited
oligotrophic system.

3.1.4 Nagle dam outflow

Seven significant components which explained 75% of the total variance were
extracted at Nagle Dam Outflow station (Table 7). The first component which
contributed 23% (Table 8) of the total variance is dominated with metal ions which
can be related on natural geological processes such as weathering. The second
component which explains 15.5% of the total variation is dominated by E. coli,
suspended solids and turbidity (highlighted in bold black) (Table 8). These pollut-
ants can be related to the discharge of sewage effluent and runoff from a commu-
nity practicing open defecation.

3.1.5 Inanda dam inflow

At Inanda Dam Inflow station, seven components which explained 76% of the
total variance were extracted (Table 9). Component 1 (Table 10) which is mainly
metal ions and explains 11% of the total variance was comprised of metal ions
(highlighted in bold black) which suggest that geological processes in the area could
be significantly attributing to the water quality variation. The high positive correla-
tion of chloride and component 1 also reflects the effect of anthropogenic pollutants
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Midmar dam outflow: total variance explained

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 6.729 32.044 32.044 6.729 32.044 32.044 5.690 27.096 27.096

2 2.042 9.726 41.770 2.042 9.726 41.770 1.871 8.910 36.006

3 1.759 8.378 50.148 1.759 8.378 50.148 1.794 8.542 44.548

4 1.399 6.660 56.808 1.399 6.660 56.808 1.769 8.424 52.971

5 1.271 6.053 62.861 1.271 6.053 62.861 1.659 7.902 60.873

6 1.196 5.694 68.555 1.196 5.694 68.555 1.508 7.181 68.054

7 1.078 5.133 73.687 1.078 5.133 73.687 1.183 5.634 73.687

Extraction Method: Principal Component Analysis.

Table 3.
Extracted values of the significant components at Midmar dam outflow.
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on this station. Both legal and illegal effluent discharges from industrial areas such
as Willowton, are the predominant pollution sources that affect Inanda Dam [53].
In developing countries, 70 percent of industrial wastes are dumped untreated into
waters, impacting on the usability of the water resource [54].

Given the high positive correlation coefficient of Soluble Reactive Phosphate
(SRP), Suspended Solids (SS), Total Organic Carbon (TOC), Total Phosphate (TP)
and turbidity on the component 2, it can be claimed that pollutants in this group
which explained 9% of the variation in water quality are emanating from agricul-
tural activities (Table 10). The negative correlation noted between dissolved oxy-
gen and component 5 indicates deterioration in the water quality. Since component
5 also exhibited a positive correlation to temperature, it can be deduced that cli-
matic conditions could explain the 7.7% variation noted at this station. Component
6 which is mainly influenced by E. coli suggest the effects of sewage effluent into
the water system. This could be attributed to the effluent from DV Wastewater
Works which treat domestic effluent from Pietermaritzburg.

Component Matrixa

Component

1 2 3 4 5 6 7

Calcium (Ca) 0.906 �0.100 0.117 �0.076 0.134 �0.065 0.054

Conductivity 0.869 0.028 0.083 0.114 0.030 0.060 �0.050

Magnesium (Mg) 0.856 �0.131 0.109 �0.236 0.171 �0.045 0.039

Alkalinity 0.821 �0.208 0.103 �0.103 �0.092 0.080 0.075

Ammonia (NH3) 0.783 �0.136 0.201 �0.051 �0.181 0.072 �0.036

Turbidity 0.736 0.442 �0.045 �0.171 �0.183 �0.146 0.062

Suspended Solids (SS) 0.679 0.533 �0.039 �0.187 �0.118 �0.163 0.079

Sulphates (SO4) �0.663 0.052 �0.267 0.088 0.314 0.107 0.315

Silicon (Si) 0.613 0.253 0.099 0.390 0.123 �0.164 0.086

Dissolved Oxygen (DO) �0.544 0.260 0.062 �0.368 0.195 �0.143 �0.019

Nitrate (NO3) 0.519 �0.334 0.068 0.130 �0.303 0.288 �0.061

Total Phosphate (TP) 0.205 0.532 �0.285 �0.332 0.016 0.291 �0.048

% NH3% �0.247 0.292 0.791 0.065 0.097 0.314 0.154

pH �0.336 0.463 0.732 0.005 0.061 0.103 0.130

Total Organic Carbon (TOC) 0.212 0.412 �0.169 0.459 �0.116 �0.355 0.306

Potassium (K) 0.399 0.046 �0.1608 0.308 0.605 �0.105 �0.160

Sodium (Na) 0.278 �0.360 0.245 �0.421 0.533 �0.148 �0.084

Chloride (Cl) 0.384 0.277 �0.303 �0.104 0.390 0.211 0.193

Temperature `C 0.320 �0.159 �0.057 0.437 0.209 0.558 0.160

SRP 0.063 0.434 �0.279 �0.095 �0.048 0.488 �0.443

Escherichia coli (E. coli) �0.031 0.230 0.225 0.355 0.127 �0.195 �0.718

Extraction Method: Principal Component Analysis.
a7 Components extracted.
Bold: Significant contributors to the respective principal component in their respective there column.

Table 4.
The correlation among the parameters measured and the extracted significant components at MDO.
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Nagle dam inflow: total variance explained

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 4.960 30.998 30.998 4.960 30.998 30.998 3.962 24.760 24.760

2 2.164 13.523 44.521 2.164 13.523 44.521 2.073 12.957 37.717

3 1.429 8.934 53.455 1.429 8.934 53.455 1.973 12.332 50.049

4 1.161 7.257 60.713 1.161 7.257 60.713 1.558 9.736 59.785

5 1.074 6.710 67.422 1.074 6.710 67.422 1.222 7.638 67.422

Extraction Method: Principal Component Analysis.

Table 5.
Extracted values of the significant components at Nagle dam inflow (NDI).

13 In
terp

reta
tion

of
W

a
ter

Q
u
a
lity

D
a
ta

in
u
M
n
gen

i
B
a
sin

(Sou
th

A
frica

)
U
sin

g
M
u
ltiva

ria
te
…

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.94845



3.1.6 Inanda dam outflow

At Inanda Dam Outflow station, eight components explaining 75% of the total
variance were extracted as depicted in Table 11. We hypothesised that pollutants in
component 1 depicted in Table 12 (11.8% and highlighted in bold black) were

Component Matrixa

Component

1 2 3 4 5

Turbidity 0.822 �0.253 �0.036 �0.214 0.052

Total Phosphate 0.776 �0.084 �0.350 0.307 0.068

Soluble Reactive Phosphate (SRP) 0.757 �0.207 �0.323 0.299 0.080

Suspended Solids (SS) 0.741 0.001 �0.213 �0.333 0.093

Total Organic Carbon (TOC) 0.721 0.099 �0.132 �0.410 0.152

Escherichia coli (E. coli) 0.718 �0.404 0.047 0.273 0.234

Nitrate (NO3) 0.677 �0.278 0.337 �0.076 �0.251

Conductivity 0.662 0.020 0.383 �0.180 �0.336

Temperature 0.566 0.395 0.205 0.131 �0.325

% NH3% 0.363 0.844 �0.137 �0.088 0.152

pH 0.145 0.819 �0.094 0.010 0.228

Scenedesmus 0.160 0.336 �0.119 0.246 �0.283

Nitzschia 0.206 0.153 0.711 �0.130 0.087

Algal count cell 0.253 0.301 0.093 0.486 �0.334

Navicula 0.143 0.016 0.517 0.409 0.612

Ammonia- N (NH3) �0.051 �0.185 �0.106 0.183 �0.206

Extraction Method: Principal Component Analysis.
a5 Components extracted.
Bold: Significant contributors to the respective principal component in their respective there column.

Table 6.
The correlation among the parameters and the significant components at NDI.

Nagle dam outflow: total variance explained

Component Initial eigenvalues Extraction sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 4.832 23.011 23.011 4.832 23.011 23.011

2 3.262 15.532 38.542 3.262 15.532 38.542

3 2.186 10.409 48.951 2.186 10.409 48.951

4 1.879 8.946 57.897 1.879 8.946 57.897

5 1.390 6.618 64.515 1.390 6.618 64.515

6 1.185 5.643 70.158 1.185 5.643 70.158

7 1.072 5.103 75.261 1.072 5.103 75.261

Extraction Method: Principal Component Analysis.

Table 7.
Extracted values of the significant components at Nagle dam outflow.
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mainly contributed by metal ions which reflects the geology of a catchment area.
The positive correlation of sulphate and component 1 reflects the effect of anthro-
pogenic polluting activities. Component 3 (Table 12) is mainly attributable to
agricultural pollutant sources due to moderate positive high correlations with tur-
bidity, nitrate and suspended solids. It is most plausible to suggest that turbidity and
suspended solids is a result of surface runoff due to rainfall. Escherichia coli (E. coli)
which dominates in component 6 normally can be attributed to wastewater treat-
ment plants in Pietermaritzburg.

3.2 Cluster analysis

Cluster analysis was used to detect similarities among the sampling stations in
the study area. The dendrogram shows that the six sampling stations in the area
studied could be grouped into two significant clusters (A and B) as illustrated by
Figure 3. Such is the case of the relatively large linkage distance at which the two
groups combine, which indicates the Euclidean distances [47]. Cluster A mainly

Component Matrixa

Component

1 2 3 4 5 6 7

% NH3% �.158 .051 .364 .690 .483 �.092 .164

Alkalinity .342 �.099 .339 �.377 .102 .149 .346

Calcium (Ca) .650 �.537 �.454 .154 .103 �.007 .030

Chloride (Cl) .673 �.154 .499 �.032 .055 .037 �.281

Conductivity .782 �.017 .430 �.134 .114 .024 �.039

Dissolved Oxygen (DO) �.496 �.280 .224 �.228 .016 .255 �.213

Escherichia coli (E. coli) .330 .630 �.300 �.071 .287 .227 �.175

Potassium (K) .707 �.235 �.219 .259 �.269 �.213 .031

Magnesium (Mg) .774 �.557 �.120 .036 .126 .087 .050

Sodium (Na) .549 �.591 �.482 .257 .017 �.040 �.050

Ammonia (NH3) �.027 .091 �.381 .117 �.047 .453 .426

Nitrate (NO3) .498 .053 .511 .232 �.337 .048 �.408

pH �.350 �.039 .181 .671 .524 �.032 �.052

Silicon (Si) .442 .404 .255 �.162 .043 .011 .364

Sulphate (SO4) .326 �.363 .139 �.445 .583 .266 .000

Soluble Reactive Phosphate (SRP) .056 .148 �.166 �.385 .302 �.597 �.028

Suspended Solids (SS) .312 .618 �.238 .193 .046 .404 �.197

Temperature .506 .429 .292 .184 �.183 �.177 .441

Total Organic Carbon .489 .497 .031 .116 �.047 �.133 �.031

Total Phosphate (TP) .127 .354 �.303 �.227 .283 �.347 �.130

Turbidity .402 .692 �.282 .006 .084 .109 �.165

Extraction Method: Principal Component Analysis.
a7 Components extracted.

Table 8.
The correlation among the parameters and the significant components at NDO.
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Inanda dam inflow: total variance explained

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 7.005 31.840 31.840 7.005 31.840 31.840 5.946 27.025 27.025

2 2.888 13.127 44.967 2.888 13.127 44.967 2.443 11.104 38.129

3 1.865 8.478 53.445 1.865 8.478 53.445 2.019 9.179 47.309

4 1.427 6.485 59.930 1.427 6.485 59.930 1.922 8.737 56.045

5 1.363 6.196 66.127 1.363 6.196 66.127 1.695 7.704 63.749

6 1.171 5.325 71.451 1.171 5.325 71.451 1.385 6.297 70.046

7 1.012 4.599 76.050 1.012 4.599 76.050 1.321 6.004 76.050

Extraction Method: Principal Component Analysis.

Table 9.
Extracted values of the significant components at Inanda dam inflow.
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consists of four sampling stations that were located mostly in the outflow of the
river (NDO, IDO, MDO and NDI) while Cluster B mainly consist of two stations
mainly dam inflow stations (MDI and IDI). Except for Nagle Dam Inflow, Cluster A
basically comprised of dam outflow stations. These stations can be described as less
polluted due to the dilution and retention effect. On the other hand, Cluster B
composed of dam inflow stations. These stations can be described as more polluted
as a result of activities along the river course. The PC results explained Section 4.1 of
this chapter showed that poor agriculture practises resulting in runoff of agro-
chemicals, organic matter, drug residues, sediments and saline drainage as well as
sewage and industrial effluent discharges are key factors being reflected by the poor
water quality results of the dam’s inflow stations (Cluster B). These practices pose a
risk to aquatic ecosystems, human health and productive activities. The significant
presence of E. coli, suspended solids and turbidity in both Cluster A and B sampling
stations indicates that raw water along uMngeni Basin is not fit for potable use
before treatment.

Component Matrixa

Component

1 2 3 4 5 6 7

% NH3% �0.155 0.269 0.718 0.193 0.209 �0.185 �0.170

Alkalinity 0.746 �0.186 0.182 �0.241 0.254 0.045 �0.065

Calcium (Ca) 0.859 0.215 �0.059 �0.247 0.030 0.093 0.063

Chloride (Cl) 0.911 0.140 0.089 �0.054 0.122 0.024 �0.090

Conductivity 0.889 0.169 0.009 �0.048 0.108 0.027 �0.096

Dissolved Oxygen (DO) 0.313 �0.033 0.128 0.464 �0.640 0.168 0.017

Escherichia coli �0.297 0.400 �0.055 0.080 �0.122 0.538 �0.355

Flourine (F) 0.204 0.307 0.318 0.329 �0.067 0.236 �0.319

Potassium (K) .514 0.496 �0.065 �0.122 �0.012 �0.240 0.116

Magnesium (Mg) 0.734 0.145 0.075 �0.161 0.074 0.411 0.176

Sodium (Na) 0.882 0.174 0.100 �0.017 0.045 0.009 �0.006

Ammonia (NH3) 0.163 0.330 0.194 0.239 �0.195 0.012 0.681

Nitrate (NO3) 0.493 0.194 �0.375 0.336 �0.191 �0.131 0.144

pH �0.075 0.227 0.717 0.019 �0.260 �0.408 �0.102

Silicon (Si) �0.581 0.216 0.178 0.174 0.322 0.192 0.306

Sulphate (SO4
2+) 0.799 .339 0.088 0.076 0.071 0.061 0.005

Soluble Reactive Phosphate (SRP) 0.086 0.553 �0.461 0.396 0.271 �0.278 �0.102

Suspended Solids �.522 0.569 �0.048 �0.382 �0.219 0.006 0.108

Temperature �0.506 0.187 0.303 0.088 0.544 0.184 0.215

Total Organic Carbon (TOC) �0.190 0.557 0.036 �0.516 �0.192 �0.249 �0.049

Total Phosphate (TP) �0.303 0.645 �0.351 0.229 0.227 �0.142 �0.158

Turbidity �0.585 0.620 �0.028 �0.241 �0.184 0.328 �0.010

Extraction Method: Principal Component Analysis.
a7 Components extracted.
Bold: Significant contributors to the respective principal component in their respective there column.

Table 10.
The correlation among the parameters and the significant components at IDI.
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Inanda dam outflow: total variance explained

Component Initial eigenvalues Extraction sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.575 25.342 25.342 5.575 25.342 25.342

2 2.597 11.804 37.146 2.597 11.804 37.146

3 2.066 9.390 46.536 2.066 9.390 46.536

4 1.582 7.192 53.728 1.582 7.192 53.728

5 1.360 6.183 59.911 1.360 6.183 59.911

6 1.217 5.534 65.445 1.217 5.534 65.445

7 1.135 5.161 70.606 1.135 5.161 70.606

8 1.009 4.589 75.194 1.009 4.589 75.194

Extraction Method: Principal Component Analysis.

Table 11.
Extracted values of the significant components at Inanda dam outflow.

Component Matrixa

Component

1 2 3 4 5 6 7 8

Magnesium (Mg) 0.903 �0.053 �0.074 �0.034 �0.141 0.023 0.013 �0.014

Sodium (Na) 0.881 0.007 �0.096 �0.078 �0.102 0.030 �0.107 �0.029

Calcium (Ca) 0.877 �0.033 0.056 0.108 �0.146 0.174 �0.189 0.000

Chloride (Cl) 0.841 �0.050 �0.031 0.029 0.071 0.170 0.257 0.001

Potassium (K) 0.800 �0.076 �0.093 �0.100 �0.138 �0.411 �0.045 �0.011

Conductivity 0.671 �0.096 �0.186 0.042 0.241 0.182 0.046 �0.131

Alkalinity 0.664 �0.334 �0.367 0.268 0.138 0.059 �0.009 0.158

Sulphate (SO4) 0.612 0.374 0.080 �0.262 �0.118 0.055 0.095 �0.324

% NH3% 0.165 0.816 �0.177 �0.033 �0.212 �0.037 �0.011 0.376

pH 0.212 0.781 �0.046 �0.084 �0.295 0.039 �0.090 0.310

Temperature 0.027 0.596 �0.134 �0.120 0.347 �0.151 0.470 0.041

Turbidity 0.327 0.099 0.785 0.153 0.143 �0.057 0.028 0.046

Nitrate (NO3) �0.009 0.192 0.721 0.039 �0.279 0.294 �0.290 �0.197

Suspended Solids 0.325 0.347 0.531 0.121 0.317 �0.194 0.170 �0.178

Ammonia (NH3) 0.271 �0.384 0.430 �0.071 �0.094 0.011 0.004 0.290

Total Phosphate (TP) �0.008 �0.226 0.106 �0.636 �0.032 0.172 �0.051 0.217

Soluble Reactive
Phosphate (SRP)

0.017 �0.366 0.232 �0.605 �0.017 �0.043 0.160 0.371

Flourine (F) 0.469 �0.136 �0.003 �.103 0.538 �0.089 �0.300 0.130

Dissolved Oxygen (DO) 0.041 �0.213 �0.176 0.398 �0.508 0.042 0.083 0.045

Escherichia coli (E coli) �0.094 0.149 �0.026 0.171 0.282 0.832 0.139 0.199

Silicon (Si) 0.095 �0.283 0.327 0.458 �0.161 �0.146 0.524 0.300
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4. Conclusions

Understanding the primary effects of anthropogenic activities and natural fac-
tors on river water quality is important in the study and efficient management of
water resources. Hence, the PCA method assisted in the identification of significant
parameters influencing water quality variations at the six stations studied in
uMngeni Basin. The PCs extracted suggest that pollution sources along uMngeni
Basin can be attributed to geological processes, sewage effluent, agricultural runoff
and surface runoff pollutants. The findings could assist in reducing the number of
parameters being monitored at any station and thus ultimately reducing the associ-
ated cost monitoring cost. It is recommended that, effluents be treated before
discharge into the river. Additionally, it is recommended that buffer zone policies
be enforced.

The result of the cluster analysis should also assist in categorising sampling sites
according to pollution levels. Classification of sampling stations based on pollution
level can assist in the designing of an optimal sampling strategy, which could reduce
the number of sampling stations and associated costs. This study highlights the
usefulness of multivariate statistical assessment such as PCA and CA in analysing
complex databases, especially in the identification of pollution sources and to better

Component Matrixa

Component

1 2 3 4 5 6 7 8

TOC �0.047 0.169 0.064 0.407 0.283 �0.203 �0.496 0.363

Extraction Method: Principal Component Analysis.
a8 Components extracted.
Bold: Significant contributors to the respective principal component in their respective there column.

Table 12.
The correlation among the parameters and the significant components extracted at IDO.

Figure 3.
Dendrogram of the stations along uMngeni basin.
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comprehend the spatial and temporal variations for effective river water-quality
management. It is worthwhile to conclude that PCA and CA are better tools for
better understanding concealed information about parameter variance and datasets.
The study recommends the application of PCA and CA for interpreting bulk surface
water quality data-sets.
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