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ABSTRACT 

In an earlier publication [Hill and Hasbun, 2018] considered an approximate solution to 

the damped pendulum, named the improved modified method of successive 

approximations (IMMSA), and compared it to an approximation from the work of  

[Johannessen, 2014].  Here, a correction is made to that comparison due to an error 

made in calculating Johannessen’s approximation. 

Keywords: Pendulum,  successive approximation, damped pendulum, analytic 
solution, numerical solution,  matlab, octave 
 

INTRODUCTION 

The damped pendulum system differential equation considered by Hill et al. [Hill and 

Hasbun, 2018] is 
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  . Here g is the acceleration due to gravity, L  is the pendulum’s 

string length, m is the hanging mass at the end of the string, and c is the coefficient due 

to friction.  

Figure 4, in the Hill et al. work, compares two approximations against the MATLAB 

[MathWorks] numerical solution of the above Equation (1). One of the approximations 

is what we called the improved modified method of successive approximations (IMMSA) 

whose results are given by Equations (34-47) [Hill and Hasbun, 2018]. The other 

approximation is that from Johannessen’s work [Johannessen, 2014] and whose 
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approximate solution to the above Equation (1) is given by Equations (57-58) [Hill and 

Hasbun, 2018] with the correction that Equation (58) should instead read 

2 2 2

0 0

1 9 1 9
( ) (1 ( ) ( ) ) ( ( ) ) ( ( ) )

4 64 8 256j j

u m u m u u m u m m u m
 

= + + + − + −  (58’) 

where we rewrite 0u t= , 0( ) exp( 2 )jm u m u= − , 2 2

0/j    − , = , and the rest of 

the approximation is as presented by Hill et al. [Hill and Hasbun, 2018]. Here we note 

that we have introduced the j and the   because, between them, they are the culprit 

that caused the miscalculatuion. In other words, our   of the above Equation (2) 

corresponds to   in Johannessen’s work  [Johannessen, 2014].  

With these corrections, we redo the comparison between the IMMSA and Johannessen’s 

approximation. The results are shown in Figure 1. 

 

 

Figure 1:  Corrected Graph produced by the script of the Appendix.  It compares the IMMSA, Equations 
(25-27, 35, 36, 43, 47) and Equation’s (57-58) of Johannessen’s approximation in Hill et al [Hill and 
Hasbun, 2018] with the corrections made here (Equation 58’)  against MATLAB’s numerical solution. 
The parameters used here are m=1, , , , ,   
[Johannessen, 2014]. 
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DISCUSSION 

The purpose behind this paper is to correct an error made in a previous work [Hill and 
Hasbun, 2018] where Johannessen’s approximation [Johannessen, 2014] was 
miscalculated due to the incorrect use of the parameter j . Furthermore, in Hill et al., 

the accuracy of an approximation was determined by Equation 56 of that work, which 
for the IMMSA remains the same; that is, 0.2617, but the accuracy for the Johannessen’s 
approximation is now 0.0213.  

Finally, the appendix contains the corrected version of the MATLAB code used in 
obtaining the above Figure 1 with the corrections described here. This new code replaces 
the former one presented in Appendix C of our earlier work [Hill and Hasbun, 2018]. 
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APPENDIX 

This is the corrected code (corrects Appendix C of Hill et al. [Hill and Hasbun, 2018]) 
that is used to obtain the plot of the two approximate theoretical solutions, the IMMSA 
and Johannessen’s (our Equation’s (57-58) of Hill et al.) with the corrected Equation 58’ 
of the present work. Both   solutions are compared to the result of the MATLAB’s ODE 
solver in Figure 1 above. The parameters used are as follows: m = 1.0, gamma=0.1,  
c=2*m*gamma, g = 9.8, L = 0.5, psi0=0.0,  psi0’=2*sin(psi_max/2), psi_max =pi/2, 
and    x = 0.6. 
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---------------- Script Listing --------------- 

% IMMSA_and_Johannessen_corrected.m by  J. E. Hasbun (3/2021) 

% This compares the IMMSA, the MATLAB solver, and Johannessen's 

% solutions. 

% This solves the full pendulum with damping numerically using a MATLAB 

% solver as well as solving the approximate form through the 

% by the improved modified method of successive approximation (IMMSA) which 

% is compared to the work of Johannessen (Eur. J. Phys, V38, 035014 

% (2014)). 

  

function IMMSA_and_Johannessen 

clear 

global w0 m c 

 

m=1.0; 

t0=0.0; 

g=9.8; 

L=.5; 

gam=0.1;                      %as used by Johannessen 

c=2*m*gam; 

B=c/(2*m); 

cf=2*pi/360;                  %conversion factor from degrees to radians 

w0=sqrt(g/L);                        

tau0=2*pi/w0;                 %period for the SHO 

tmax=5*tau0;                  %maximum time 

 

%Here are the conditions when psi_max and psi0 are provided 

psi_max=pi/2;                 %maximum angle needed  - radians 

psi0=0.0;                     %initial angle psi=thr - radians 

psi0_p=2*sin(psi_max/2);      %initial psi prime=dtheta0/w0 - radians/sec 

thr=psi0;                     %radians 

dtheta0=w0*psi0_p;            %rad/sec 

th=thr/cf;                    %theta_0 in degrees 

NPTS=500; 

dt=tmax/(NPTS-1); 

t=[0:dt:tmax]; 

                                              

                     %The IMMSA solution 

x=0.6;      %as used here 

 

thr0=-1.4;  %For the amplitude of the IMMSA, for this comparison 

y = fzero(@(y) y_iter(y,x,thr0,dtheta0),1.0);  %solve for y 

A12=y*x*thr0; 

A22=y*(1-x)*thr0; 

om12=sqrt(w0^2*(1-A12^2/8)-B^2); 

om22=sqrt(w0^2*(1-A22^2/8)-B^2); 

del=atan(-(dtheta0+B*thr0)*(A12+A22)/(thr0*(om12*A12+om22*A22))); 

 

%solve for t00 so that theta passes through zero at t=0 in this comparison 

ff=@(tt) A12*cos(-om12*tt+del)+A22*cos(-om22*tt+del);  

t00=fzero(@(tt) ff(tt),-1.5); 

fprintf('thr0=%4.5f, y=%4.5f, t00=%4.5f\n',thr0,y,t00) 

thIMMSA=exp(-B*abs(t-t00)).*(A12*cos(om12*(t-t00)+del)+A22*cos(om22*(t-

t00)+del)); 

 

                     %The Numerical Solution (MATLAB SOLVER) 
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ic1=[thr;dtheta0]; 

[tm,th2m]=ode45(@fderivs,[t0:dt:tmax],ic1);% matlab numerical solution 

Error_thIMMSA=sqrt(sum((thIMMSA(:)-th2m(:,1)).^2)/NPTS); 

 

                     %Johannessen's solution 

beta=gam;                      %Johannessen's beta is our gamma 
gam_j=beta/sqrt(w0^2-beta^2);  %Johannessens gamma (gamma_j here) 
sc1=w0/sqrt(1+gam_j^2); 
u=sc1*t; 
mu0=(sin(psi_max/2))^2; 
mu=mu0*exp(-2*gam_j*u); 
xi=(1+mu/4+9*mu.^2/64).*u+(mu-mu0)/gam_j/8+9*(mu.^2-mu0^2)/gam_j/256; 
[sn,cn,dn]=ellipj(xi,mu); 

thJohann=2*atan(sqrt(mu).*sn./dn); 

Error_thJohann=sqrt(sum((thJohann(:)-th2m(:,1)).^2)/NPTS); 

 

fprintf('Error_thIMMSA=%4.5f, 

Error_thJohann=%4.5f\n',Error_thIMMSA,Error_thJohann) 

 

plot(tm,th2m(:,1)/cf,'bd');  %The MATLAB solver solution 

hold on 

plot(t,thIMMSA/cf,'ko-','MarkerSize',3); 

plot(t,thJohann/cf,'r.') 

 

legend('MATLAB Solution','IMMSA','Johannessen'); 

str=cat(2,'\psi_0=',num2str(psi0,3),', \psi_0\prime=',num2str(psi0_p,3),... 

    ', \gamma=',num2str(gam,3),', \psi_{max}=',num2str(psi_max,3)); 

text(0.5,max(thIMMSA/cf)*(1+0.1),str); 

axis([0 tmax min(thIMMSA/cf)*(1+0.2) max(thIMMSA/cf)*(1+0.3)]) 

xlabel('Time (sec)'); 

ylabel('Amplitude (degrees)'); 

title('Comparison of Solutions'); 

  

function fyzero=y_iter(y,x,thr,thrd) 

global w0 m c 

A1=y*x*thr; 

A2=y*(1-x)*thr; 

B=c/2/m; 

om1=sqrt(w0^2*(1-A1^2/8)-B^2); 

om2=sqrt(w0^2*(1-A2^2/8)-B^2); 

fyzero=y-sqrt(1+((thrd+B*thr)/(om1*x+om2*(1-x))/thr)^2); 

 

function derivs = fderivs(t,z) 

global w0 m c 

% pend2_der: returns the derivatives for the pendulum's full solution 

% The function pen2_der describes the equations of motion for a  

% pendulum. The parameter w0, is part of the input 

% Entries in the vector of dependent variables are: 

% x(1)-position, x(2)-angular velocity 

derivs = [z(2); -w0^2*sin(z(1))-c*z(2)/m]; %the damping case is included now 
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