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Abstract

In this paper, we investigate both the 2m-point a-ary for any a ≥ 2 and (2m + 1)-point a-ary

for any odd a ≥ 3 interpolatory subdivision schemes for curve design. These schemes include

the extended family of the classical 4- and 6-point interpolatory a-ary schemes and the family

of the 3- and 5-point a-ary interpolatory schemes, both having been established in our previous

papers (Lian [9]) and (Lian [10]).

Keywords: Subdivision; Curve design; Stationary; Refinable functions; a-ary

MSC (2000) #: 14H50; 17A42; 65D17; 68U07

1. Introduction

T
HIS is a continuation of both (Lian [9]) and (Lian [10]). The former was for extending the

classical 4- and 6-point binary interpolatory subdivision schemes for curve design in (Dyn,

et al. [5]) and (Weissman [13]) to a-ary interpolatory schemes for any a ≥ 3, and the latter was

for the 3- and 5-point a-ary interpolatory schemes for any odd a ≥ 3.
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Recall that a function φ ∈ L2(R) is said to be refinable with dilation factor a ∈ Z+, which is

≥ 2, if φ satisfies the two-scale equation

φ(x) =
∑

k∈Z

pkφ(ax− k), (1)

with {pk}k∈Z ∈ `2(R) being φ’s two-scale sequence. The simplest setting of a is 2. (cf., e.g.,

Chui [2] and Daubechies [4]).

A refinable φ is called a scaling function, if, in addition, the family {φ(·−k) : k ∈ Z} generates

a Riesz basis of V φ
0 ⊂ L2(R), meaning there are constants 0 < A ≤ B < ∞ such that

A

(
∑

n∈Z

|an|
2

)2

≤

∥∥∥∥∥
∑

n∈Z

anφ(· − n)

∥∥∥∥∥

2

2

≤ B

(
∑

n∈Z

|an|
2

)2

, ∀ {an}n∈Z ∈ `2(R), (2)

where V φ
0 is the L2-closure of all linear combinations of the integer translates of φ, namely,

V φ
0 = ClosL2 span {φ(· − k) : k ∈ Z} .

By taking the Fourier transforms of (1) both sides,

φ̂(ω) = P
(
e−iω/a

)
φ̂
(ω

a

)
, (3)

P (z) =
1

a

∑

k∈Z

pkz
k, (4)

where P is called the two-scale symbol of φ. The two-scale sequence {pk}k∈Z is normally finitely

supported, meaning it has finitely many nonzero entries. Such a scaling function is said to have

polynomial preservation of order d + 1, denoted by φ ∈ PPd, if

πd ⊂ span V φ
0 , (5)

where πd is the collection of all polynomials of degree ≤ d. It is well-known that (5) is equivalent

to the two-scale symbol P in (4) with the factor (1 + z + · · · + za−1)d+1.

A subdivision scheme corresponding to such a scaling function is given by

λ
(n+1)
ak+` =

∑

j

paj+`λ
(n)
k−j , ` = 0, . . . , a − 1; n ∈ Z+, (6)

where λ
(0)
k , k ∈ Z, are the initial control points. When a = 2, it is called a binary scheme, and

when a = 3, it is called a ternary scheme. For the generic a, it is simply called an a-ary scheme.

The main objective of this note is to extend both results in (Lian [9]) and (Lian [10]) to 2m-point

a-ary (for any a ≥ 2) and (2m + 1)-point a-ary (for any odd a ≥ 3) interpolatory subdivision

schemes, respectively. Our results are stated in Section 2 as Theorem 1 and Theorem 2, with their

proofs given in Section 3. Another “short” way of proving Theorems 1 & 2 is given in Section

4. Two explicit examples, as direct consequences of our elegant formulations, are demonstrated

in Section 5.

2. Main Results

2
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436 Jian-ao Lian

Let aφ2m and aφ2m+1 be the scaling functions with dilation factor a, which correspond the 2m-

and (2m +1)-point interpolatory subdivision schemes for curve design. The smoothness of aφ2m

and aφ2m+1 for all dilation factors a ≥ 2 is important for the convergence of their corresponding

interpolatory subdivision schemes. We do not go to details here. However, for some previous

studies of scaling functions their smoothness with different dilation factors a ≥ 3, the readers

are referred to, e.g., (Chui & Lian [3]), (Han [6]), (Belogay & Wang [1]), (Shui, Bao, & Zhang

[12]), (Peng & Wang [11]).

For aφ2m, we have the following:

Theorem 1. The scaling function aφ2m ∈ PP2m with the smallest support, is determined by the

two-scale symbol aP2m of the form

aP2m(z) =
1

a

∑

k∈Z

(
a

2mpk

)
zk

= z1−am

(
1

a

1 − za

1 − z

)2m

S2m−2(z), (7)

where a
2mpk = 0 for |k| > ma − 1, and

a
2mp−k = a

2mpk =
1

(m − ` − 1)! (m + `)! a2m−1

m−`−1∏

ξ=1

(ξa + k)
m+∏̀

η=1

(ηa − k),

k = `a, `a + 1, . . . , (` + 1)a − 1; ` = 0, . . . , m− 1, (8)

and S2m−2 is a polynomial of exact degree 2m − 2, satisfying S2m−2(1) = 1 and S2m−2(z) =

z2m−2 S2m−2(1/z).

It then follows from (6) and (8) that the 2m-point a-ary interpolatory subdivision scheme is

λ
(n+1)
ak = λ

(n)
k ,

λ
(n+1)
ak+` =

m−1∑

j=−m

a
2mp−aj+`λ

(n)
k+j , ` = 1, . . . , a − 1; n ∈ Z+, (9)

for any dilation factor a ≥ 2. For aφ2m+1 ∈ PP2m+1, we have the following.

Theorem 2. The scaling function aφ2m+1 ∈ PP2m+1 with the smallest support, is determined

from the two-scale symbol aP2m+1 of the form

aP2m+1(z) =
1

a

∑

k∈Z

(
a

2m+1pk

)
zk

= z−ma−(a−1)/2

(
1

a

1 − za

1 − z

)2m+1

S2m(z), (10)

3
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where a ∈ Z+ is odd, a ≥ 3, a
2m+1pk = 0 for |k| > ma + (a − 1)/2, and

a
2m+1p−k = a

2m+1pk =
1

(m − `)! (m + `)! a2m

m−∏̀

ξ=1

(ξa + k)
m+∏̀

η=1

(ηa − k),

k = 0, . . . , (a − 1)/2, when ` = 0;

k = a` − (a − 1)/2, . . . , a` + (a − 1)/2, when ` = 1, . . . , m, (11)

and S2m is a polynomial of exact degree 2m, satisfying S2m(1) = 1 and S2m(z) = z2m S2m(1/z).

Correspondingly, it follows from (6) and (11) that the (2m + 1)-point a-ary interpolatory subdi-

vision scheme is

λ
(n+1)
ak = λ

(n)
k ,

λ
(n+1)
ak+` =

m∑

j=−m

(
a

2m+1p−aj+`

)
λ

(n)
k+j , |`| = 1, . . . , (a − 1)/2; n ∈ Z+. (12)

3. Proofs of Main Results

Proof of Theorem 1.

Analogous to the proof in (Lian [9]), an a-ary 2m-point scheme needs at most 2ma weights,

i.e., the two-scale sequence { a
2mpj}k∈Z of aφ2m has at most 2ma consecutive nontrivial entries.

For PP2m, the two-scale symbol aP2m must have the form

aP2m(z) = z1−am

(
1

a

1 − za

1 − z

)2m

S2m−2(z)

for some polynomial S2m−2 ∈ π2m−2 of exact degree 2m − 2 satisfying S2m−2(1) = 1 and

S2m−2(z) = z2m−2 S2m−2(1/z). It suffices to show that S2m−2 is uniquely determined under the

interpolatory condition

a−1∑

`=0

aP2m(w`z) = 1, |z| = 1, (13)

where {w`}
a−1
`=0 are the a distinct roots of za = 1, namely,

w` = exp

(
−2`πi

a

)
, ` = 0, . . . , a − 1.

First, with S2m−2(z) =
∑2m−2

k=0 skz
k, we define

∞∑

j=0

gjz
j = S2m−2(z)

1

(1 − z)2m
=

2m−2∑

k=0

skz
k

∞∑

`=0

(
2m + ` − 1

2m − 1

)
z`,

4
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so that

gj =

j∑

k=0

(
2m + j − k − 1

j − k

)
sk, j ∈ Z+. (14)

Second, by defining gj = 0 for j < 0,

aP2m(z) = a−2m z1−am (1 − za)2m

[
S2m−2(z)

1

(1 − z)2m

]

= a−2m z1−am

2m∑

k=0

(−1)k

(
2m

k

)
zak

∑

`∈Z

g`z
`

= a−2m z1−am

a−1∑

`=0

z`
∑

j∈Z

∑

k∈Z

(−1)k

(
2m

k

)
ga(j−k)+`z

aj

= a−2m

a−1∑

`=0

z`
∑

j∈Z

∑

k∈Z

(−1)k

(
2m

k

)
ga(j−k)+`z

aj−am+1.

Third, the interpolatory condition (13) now leads to

a1−2m
∑

j∈Z

∑

k∈Z

(−1)k

(
2m

k

)
ga(j+m−k)−1z

j = 1,

which is equivalent to

j+m−1∑

k=0

(−1)k

(
2m

k

)
ga(j+m−k)−1 = a2m−1 δj,0, j = −m + 1, · · · , m − 1. (15)

Fourth, solving the lower triangular system (15), we have

gaj−1 =

(
m + j − 1

2m − 1

)
a2m−1, j = 1, · · · , 2m − 1, (16)

and the coefficients s0, . . . , s2m−2 of S2m−2 can now be evaluated from (14) and (16), namely,

2m−2∑

k=0

(
2m + aj − k − 2

2m − 1

)
sk =

(
m + j − 1

2m − 1

)
a2m−1, j = 1, · · · , 2m − 1. (17)

Solving (17) for s0, . . . , s2m−2 and computing {gj}j∈Z+
by (14), we have

g` =
` + 1

(2m − 1)!

m−1∏

k=1

(
(` + 1)2 − k2a2

)
, ` ∈ Z+. (18)

Finally, by using (7), we arrive at the values of a
2mpk in (8). This completes the proof of Theorem

1.

Proof of Theorem 2.

5

Lian: On a-ary Subdivision for Curve Design III

Published by Digital Commons @PVAMU, 2009



AAM: Intern. J., Vol. 4, Issue 2 (December 2009), [Previously Vol. 4, No. 2] 439

Denote by aP2m+1 the two-scale symbol of aφ2m+1. Completely analogous to the proof of Theo-

rem 1, both aP2m+1 ∈ PP2m+1 and aφ2m+1 having symmetric two-scale sequence { a
2m+1pk}

ma+(a−1)/2
k=−ma−(a−1)/2

lead to

aP2m+1(z) = z−ma−(a−1)/2

(
1

a

1 − za

1 − z

)2m+1

S2m(z)

for a to-be-determined polynomial S2m of exact degree 2m, satisfying S2m(1) = 1 and S2m(z) =

z2m S2m(1/z), where a ≥ 3 is a positive odd integer. Again, by writing S2m(z) =
∑2m

k=0 skz
k,

introducing

∞∑

j=0

gjz
j = S2m(z)

1

(1 − z)2m+1
,

gj =

j∑

k=0

(
2m + j − k

j − k

)
sk, j ∈ Z+. (19)

and defining gj = 0 for j < 0, we have

aP2m+1(z) = a−2m−1

(a−1)/2∑

`=−(a−1)/2

z`
∑

j∈Z

∑

k∈Z

(−1)k

(
2m + 1

k

)
ga(j−k)+`+(a−1)/2z

aj−am.

The interpolatory property yields

∑

k∈Z

(−1)k

(
2m + 1

k

)
ga(j+m−k)+(a−1)/2 = a2m δj,0, j = −m, · · · , m− 1,

which leads to

gaj+(a−1)/2 =

(
m + j

2m

)
a2m, j = 0, · · · , 2m. (20)

Solving the linear system

2m∑

k=0

(
2m + aj − k

2m

)
sk =

(
m + j

2m

)
a2m, j = 0, · · · , 2m, (21)

for s0, . . . , s2m and computing {gj}j∈Z+
for general j by (19), we have

g` =
∑̀

k=0

(
2m + ` − k

` − k

)
sk =

1

22m(2m)!

m−1∏

k=1

(
(2` + 1)2 − (2k − 1)2a2

)
, ` ∈ Z+. (22)

Finally, { a
2m+1pk}

ma+(a−1)/2
k=−ma−(a−1)/2 is obtained as listed in (11).

4. Another “Short” Way of Proving Theorem 1 & Theorem 2

The proofs of our two theorems in Section 3 were direct and clear-cut. We show in this section

another “short” or maybe not so-short way, by using the Taylor expansions of the expression

6
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(
a(1 − z)

1 − za

)m

. For a = 2, see (Daubechies [4]). For a = 3, see (Chui & Lian [3]). For generic

a and multiwavelet setting, see (Lian [8]).

First, for a subdivision scheme generated from a scaling function φ to be symmetric, the two-scale

symbol P of φ has to be reciprocal. For this purpose, P (z) needs to be a function of z + z−1.

For this reason, the factor

(
a(1 − z)

1 − za

)m

, a requirement for φ ∈ PPm , has to be a function of

z + z−1. This is equivalent to the positive integer (a − 1)m has to be even. Hence, if m is even

then the dilation factor (or sampling rate) a can be any positive integer ≥ 2. However, if m is

odd, a − 1 has to be even. That is why for a (2m + 1)-point subdivision scheme, a has to be

odd. To get ready for the new short proofs of the two theorems, we establish the following:

Lemma 1. For any positive even integer a,

1

za−1

(
1 + z + · · · + za−1

a

)2

= 1 +
(z − 1)2

a2z

[(
a + 1

3

)

+
a−3∑

k=0

(
k + 3

3

)
(za−2−k + z−a+2+k)

]
. (23)

For any positive odd integer a,

1

z(a−1)/2

1 + z + · · · + za−1

a
= 1 +

(z − 1)2

az

[(
(a + 1)/2

2

)

+

(a−5)/2∑

k=0

(
k + 2

2

)
(z(a−3)/2−k + z−(a−3)/2+k)

]
. (24)

The proof of Lemma is straightforward. We are now in the position of the new proofs of Theorems

1 & 2.

Another “Short” Proof of Theorem 1.

When the polynomial preservation is of even order, we can write

aP2m(z) =
1

a

∑

k∈Z

(
a

2mpk

)
zk = z−(a−1)m−n

(
1

a

1 − za

1 − z

)2m

S2n(z), (25)

for some reciprocal polynomial S2n. Then the interpolatory condition (13) yields

z−nS2n(z) =

[(
a

1 + z + · · · + za−1

)2

za−1

]m

−
a−1∑

`=1

(
1 − z

1 − w`z

)2m

w
−(a−1)m−n
` S2n(w`z). (26)

It follows from Lemma 1 that for either even a or odd a, the first term in (26) is a function of
(1 − z)2

z
and the last a − 1 terms in (26) have the factor

(
(1 − z)2

z

)m

. Hence, the minimum

7
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degree of n is m− 1, and z−(m−1)S2m−2(z) is the mth order Taylor polynomial of
(

a

1 + z + · · · + za−1

)2m

z(a−1)m (27)

in terms of the variable t = −
(1 − z)2

z
. More precisely, by using Lemma 1, when a is even,

(
a

1 + z + · · · + za−1

)2m

z(a−1)m =

[(
a

1 + z + · · · + za−1

)2

za−1

]m

=
1(

1 +
(z − 1)2

a2z

[(
a + 1

3

)
+

a−3∑

k=0

(
k + 3

3

)
(za−2−k + z−a+2+k)

])m , (28)

and when a is odd,
(

a

1 + z + · · · + za−1

)2m

z(a−1)m =

[
az(a−1)/2

1 + z + · · · + za−1

]2m

=
1



1 +
(z − 1)2

az

[(
(a + 1)/2

2

)
+

(a−5)/2∑

k=0

(
k + 2

2

)
(z(a−3)/2−k + z−(a−3)/2+k)

]


2m .(29)

In other words, the exact expressions of aP2m(z) are formed from either the Taylor polynomials

of (28) for even a or the Taylor polynomials of (29) for odd a. This completes the short proof

of Theorem 1.

Another “Short” Proof of Theorem 2.

When the polynomial preservation is of odd order, the dilation factor a has to be odd as well,

and we can write

aP2m+1(z) =
1

a

∑

k∈Z

(
a

2m+1pk

)
zk

= z−(2m+1)(a−1)/2−n

(
1 + z + · · · + za−1

a

)2m+1

S2n(z), (30)

for some reciprocal polynomial S2n. Again, the interpolatory condition (13) leads to

z−nS2n(z) =

[
az(a−1)/2

1 + z + · · · + za−1

]2m+1

−

a−1∑

`=1

(
1 − z

1 − w`z

)2m

w
−(a−1)(2m+1)/2−n
` S2n(w`z). (31)

Therefore, n ≥ m, and z−mS2m(z) is the (m + 1)st order Taylor polynomial of

(
az(a−1)/2

1 + z + · · · + za−1

)2m+1

(32)

8
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in terms of the variable t = −
(1 − z)2

z
. This completes the short proof of Theorem 2.

For convenience, we fix

t = 2 − z − z−1 = −
(1 − z)2

z
(33)

in the sequel, so that the Taylor expansions are in terms of t. For example, it is easy to see, by

using t in (33), that for a = 2, 3, 4, and 5, the expressions we need for Taylor expansions in t

are
(

2

1 + z

)2

z =
1

1 −
t

4

; (34)

3z

1 + z + z2
=

1

1 −
t

3

; (35)

(
4

1 + z + z2 + z3

)2

z3 =
1

1 −
t

16
(20 − 8t + t2)

; (36)

5z2

1 + z + z2 + z3 + z4
=

1

1 −
t

5
(5 − t)

. (37)

5. Demonstration by Two Explicit Examples

We demonstrate our elegant formulations in this section by giving two explicit examples as direct

consequences of Theorems 1 & 2.

Example 1. 8-point binary interpolatory: m = 4, a = 2.

It follows from (18), (17), and (8) that

{g0, · · · , g6} =

{
−

5

16
, 0,

9

16
, 0,−

33

16
, 0,

429

16

}
;

{s0, · · · , s6} =

{
−

5

16
,
5

2
,−

131

16
, 13,−

131

16
,
5

2
,−

5

16

}
;

{2
8p−7,

2
8p−5, · · · ,

2
8p7} =

{
−

5

2048
,

49

2048
,−

245

2048
,
1225

2048
,
1225

2048
,−

245

2048
,

49

2048
,−

5

2048

}
,

so that, by using (9), the 8-point binary interpolatory scheme is given by

λ
(n+1)
2k = λ

(n)
k ,

λ
(n+1)
2k+1 =

3∑

j=−4

2
8p−2j+1λ

(n)
k+j (38)

9
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=
1

2048

[
− 5

(
λ

(n)
k−4 + λ

(n)
k+4

)
+ 49

(
λ

(n)
k−3 + λ

(n)
k+3

)

−245
(
λ

(n)
k−2 + λ

(n)
k+2

)
+ 1225

(
λ

(n)
k−1 + λ

(n)
k+1

)]
, n ∈ Z+. (39)

The subdivision scheme in (38)–(39) can also be established by (26), with m = 4 and a = 2,

or by using the cubic Taylor polynomial expansion of (34), with t in (33). More explicitly, it

follows from

z−3S6(z) =
3∑

k=0

(
4 + k − 1

k

)(
t

4

)k

=
3∑

k=0

(
3 + k

k

)(
1

2
−

1

2

z + z−1

2

)k

(40)

that

2P8(z) =

[
1

z4

(
1 + z

2

)8
]

z−3S6(z)

=

[
1

z4

(
1 + z

2

)8
]

3∑

k=0

(
3 + k

k

)(
1

2
−

1

2

z + z−1

2

)k

, (41)

which also yields the subdivision scheme in (38)–(39).

Example 2. 7-point ternary interpolatory: m = a = 3.

Again, it follows from (22), (21), and (11) that

{g0, · · · , g6} =

{
−

28

9
, 0,

35

9
,
44

9
, 0,−

91

9
,−

151

9

}
;

{s0, · · · , s6} =

{
−

28

9
,
196

9
,−

553

9
,
779

9
,−

553

9
,
196

9
,−

28

9

}
;

{3
7p−10,

3
7p−9, · · · ,

3
7p10} =

{
−

28

6561
, 0,

35

6561
,

80

2187
, 0,−

112

2187
,

−
350

2187
, 0,

700

2187
,
5600

6561
, 1,

5600

6561
,

700

2187
, 0,−

350

2187
,

−
112

2187
, 0,

80

2187
,

35

6561
, 0,−

28

6561

}
.

Hence, it follows from (12) that the 7-point ternary interpolatory scheme is given by

λ
(n+1)
3k−1 =

3∑

j=−3

3
7p−3j−1λ

(n)
k+j

=
1

6561

[
35λ

(n)
k−3 − 336λ

(n)
k−2 + 2100λ

(n)
k−1 + 5600λ

(n)
k

−1050λ
(n)
k+1 + 240λ

(n)
k+2 − 28λ

(n)
k+3

]
, (42)

λ
(n+1)
3k = λ

(n)
k , (43)

λ
(n+1)
3k+1 =

3∑

j=−3

3
7p−3j+1λ

(n)
k+j

10
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=
1

6561

[
− 28λ

(n)
k−3 + 240λ

(n)
k−2 − 1050λ

(n)
k−1 + 5600λ

(n)
k

+2100λ
(n)
k+1 − 336λ

(n)
k+2 + 35λ

(n)
k+3

]
, n ∈ Z+. (44)

Similar to (40)–(41) in Example 1, (42)–(44) can also be established by applying (30), with

m = a = 3, or, with t in (33), by using the cubic Taylor polynomial expansion of (35). More

explicitly, it follows from

z−3S6(z) =
3∑

k=0

(
7 + k − 1

k

)(
t

3

)k

=
3∑

k=0

(
6 + k

k

)(
2 − z − z−1

3

)k

that

3P7(z) =

(
1 + z + z2

3z

)7

z−3S6(z)

=

(
1 + z + z2

3z

)7 3∑

k=0

(
6 + k

k

)(
2 − z − z−1

3

)k

,

which also generates the subdivision scheme in (42)–(44).
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