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Abstract  
 
In this paper, we deal with the elastic vibrations of flexible structures modeled by the ‘standard 
linear model’ of viscoelasticity in n-dimensional space. We study the uniform exponential 
stabilization of such kind of vibrations after incorporating separately very small amount of 
passive viscous damping and internal material damping of Kelvin-Viogt type in the model. 
Explicit forms of exponential energy decay rates are obtained by a direct method, for the solution 
of such boundary value problems without having to introduce any boundary feedback.  
 
Keywords: Uniform stabilization; Kelvin-Voigt damping; Standard linear model of 

viscoelasticity; Exponential energy decay estimate  
 
MSC 2000 No.: 35L35, 37L15, 74H55, 93D20  
 
 
1. Introduction and Mathematical Formulation 
 
The mathematical theory of stabilization of distributed parameter system is currently a subject of 
interest in several practical fields. In fact, recent studies on stabilization of mechanical systems 
have gained in importance due to application of vibration control in various structural elements. 
The dynamics of linear vibrations of elastic structure are mathematically governed by the wave 
equation  
 

2( , ) ( , )y x t c y x t                                                                                                      (1)  
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in some suitable domain, where Δ denotes the Laplacian taken in space variable x, prime (′) the 
differentiation with respect to time coordinate t and c > 0 is the constant wave velocity. The 
dynamical equation (1) is formulated on the basis of Hook’s law, in which stress σ is simply 
proportional to strain e, that means σ = Ee, E being the Young’s modulus of the elastic structure. 
But the dynamics of elastic vibrations of flexible structures are actually nonlinear in practice. It 
is rather cumbersome for analytical treatment of a non-linear problem and then the result so 
obtained will not generally in precise form. The linearized mathematical models which describe 
a true physical phenomenon almost accurately to some extent are much sought after purely for 
simplicity and for concise results.  
 
In this paper, we are looking into a more realistic linear model of nonlinear vibrations of elastic 
structure commonly known as the ‘standard linear model’ of viscoelasticity (cf. Fung (1968)), in 
which stress σ is not simply proportional to strain e. In this model, a linear spring is connected in 
series with a combination of another linear spring and a dashpot in parallel and the 
corresponding stress-strain formula of the elastic structure is described by the constitutive 
relation (cf. Fung (1968) and Rabotnov (1980)) 
  

( ).E e e                                                                                                     (2)  
 
Here λ, µ are small constants satisfying 0 < λ < µ. As a result, the dynamics of vibrations of the 
elastic structures are governed more accurately by the third order differential equation  
 

 2( , ) ( , ) ( , ) ( , )y x t y x t c y x t y x t                                                                (3)  

 
than the simple wave equation. Our aim is to study stabilization of the mathematical problem (3) 
in a domain R , under undamped mixed boundary conditions 
 

y =0   on  0 1,     0 on  
y

v
 

    


R R                                                                             (4)  

 
together with the initial conditions 
 

 

0 1 2( ,0) ( ),   ( ,0) ( )  and  ( ,0) ( )  in  ,y x y x y x y x y x y x             (5)  
 
where Ω is a bounded connected set in nR

 
(n ≥ 1) having a smooth boundary Γ = ∂Ω, consisting 

of two parts 0  and 1  such that 10   and 10  =Ø. Here, ν denotes the unit normal of 

Γ pointing towards exterior of Ω and R
 
:= (0, ∞).  

 
Theoretical studies on uniform energy decay at exponential rate of vibrating structures modeled 
by ‘standard linear model’ of viscoelasticity have become extremely important for the purpose of 
design of various material structures. Physically, the partial differential equation (3) occurs in the 
study of vibrations of a elastic structure modeling ‘standard linear model’ of viscoelasticity in a 
bounded domain in nR . The constitutive relation (2) provides the dynamics of vibrations of a 
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real elastic material better than ordinary Hooke’s Law (cf. Fung (1968) and Rabotnov (1980)). 
The boundary conditions considered here are of mixed Dirichlet and Neumann type, and the 
boundary is absolutely free from any action on it. Such kind of boundary conditions was used by 
Gorain (1997), (2006), (2007) to establish uniform stability results of an internally damped wave 
and a nonlinear Kirchhoff wave in a bounded domain in nR . The mathematical model like (3) 
was studied earlier by Bose and Gorain (1998) incorporating a viscous feedback damping on the 
boundary 1 .  

 
Now, for the sake of simplicity, we set 
  
 

: .u y y                                                                                                                   (6)  
 
The equivalent form of the governing differential equation (3) is then 
   

2 2 ( )     u c u c y      
 
in R .                                                                      (7)  

 
The corresponding boundary conditions in (4) become  
 

0 10   on  ,         0    on  
u

u


 
     


R R                                                               (8) 

 
and the initial conditions in (5) reduce to 
  

0 1( ,0) ( )       and       ( ,0) ( )     in ,u x u x u x u x                                                        (9)  

 
where  

 

0 0 1   1 1 2     and        in  ,u y y u y y                                                                (10)  

 
by virtue of (6). The corresponding system (7)–(9) together with the relation (6) is thus 
equivalent to the original system (3)–(5).  
 

There has been extensive work in the last two decades on the problems of boundary stabilization 
for the solution of wave equation in a bounded domain by means of uniform energy decay 
estimate (cf. Chen (1981), Chen and Zhou (1990), Komornik (1991), Komornik and Zuazua 
(1990), Lagnese (1988), Lions (1988) and the references therein). All their investigations have 
shown the stability of wave equation, clamped at one end and a feedback viscous damping at the 
other end. On the contrary, the problem of viscoelastic structure of Kelvin-Voigt model with a 
movable mass and a viscous damper at the held end is treated by Gorain and Bose (1998), (2002) 
for torsional and flexural modes of vibrations.  
 

Recent advances in material sciences have provided new means for the suppression of vibrations 
of elastic structures. The three most common classes of vibration control mechanism are of 
passive, active and hybrid type. In fact, the passive vibration control mechanism plays an 
important role for the suppression of vibrations, which uses resistive device that absorbs 

3
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vibration energy. Viewed in the context of recent developments, we are concerned about uniform 
stabilization of two mathematical problems governed by the following partial differential 
equations and the boundary-initial conditions:  
 

2 22 ( )     u u c u c y         
 
in R .                                                     (11) 

0 10   on  ,         0    on  
u

u


 
     


R R                                                      (12) 

0 1( ,0) ( ),       ( ,0) ( )     in ,u x u x u x u x                                                              (13)  

 
and  
 

2 2 ( ) 2     u c u c y u           in R .                                                   (14) 

0 10   on  ,         0    on  
u

u


 
     


R R                                                      (15) 

0 1( ,0) ( ),       ( ,0) ( )     in ,u x u x u x u x                                                              (16)  

 
where the parameters δ > 0, β > 0 are very small constants and u is related by y according to (6). 
The term 2 u 

 
in (11) is the distributed damping of passive viscous type where as the term 

2 u  in (14) is the internal damping of Kelvin-Voigt type of the structure. In fact, the internal 
material damping mechanism usually non-linear in nature is always present, however small it 
may be, in real materials (cf. Christensen (1971)) as long as the system vibrates. The most 
acceptable two linearized forms of that are incorporated here, for just to avoid the non-linearity.  
 

In this paper, we proceed with the idea as in Gorain (2006) to study separately, the uniform 
stabilization of above two mathematical systems (11)–(13) and (14)–(16). In other words, we 
wish to show exponential decay of the energy functional E: [0, ∞) → [0, ∞) defined by (cf. Bose 
and Gorain (1998))  
 

2 2 2 2 21
( ) [ | | ( ) | | ] ,

2
E t u c u c y dx  



                                                       (17) 

 
for every solution of the systems (11)–(13) and (14)–(16) separately. To establish such a result, 
our approach is to be a direct method by constructing suitable Lyapunov functional related to the 
energy functional E, without going through the literature of semigroup theory (cf. Pazy (1983)).  
 

In the sequel, we use following two inequalities: For any real number  > 0, we have by the 
Cauchy-Schwartz’s inequality 
  
 

2 2 21
| | (| | | | ).

2
f g f g


                                                                                  (18) 

 
Let k be the smallest positive constant independent of t (depends only on Ω) satisfying the 
Poincaré inequality (cf. Aubin (1979))  
 
 

4
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2 2| | ,u dx k u dx
 

                                     (19)     

 
for every

0

1 ( )u H  , where 
0

1 1
0( ) { ( ) |   0   on },H u H u        the subspace of the  

classical Sobolev space 1( )H   of real valued functions of order one.  
 

For example, let u(x, t) be a function defined on [0, L] × R
 
with u(0, t)= u(L, t) = 0 for all 

t ,R then Poincaré type Scheffer’s inequality (cf. Mitrinović et al. (1991)) yields                                    
 

22
2

2
0 0

,
L LL u
u dx dx

x
                     (20) 

 

which estimates a value  
2

2

L


  for the constant  k depending on the interval [0, L]. 

 
2. Uniform Stability on Account of Passive Viscous Damping 
 

 
Taking time derivative of (17) and using the governing equation (11), we obtain 
 

 2 2( ) ( ) ( ) ( )( ) 2 ( ) .E t c u u y u u y y dx u dx     
 

                     
  

 
Applying Green’s formula, we get 
  

 

 

2

2 2

( ) ( )

           ( ) ( ) ( ) 2 ( ) .

u y
E t c u d

v v

c y y u y dx u dx

 

   


 

         

           



 
 

 
Using the relation (6) and the boundary conditions (12), we finally obtain 
  

 
2 2 2( ) ( ) | | 2 ( )                .E t c y dx u dx t   

 

          R                                  (21) 

 
Thus, it follows from (21) that ( )E t < 0 for every t R , which implies that energy E of the 
system (11)–(13) is a decreasing function of time and hence as a whole, the system (11)–(13) is 
energy dissipating. Hence, we have  
 

E(t) < E(0)             t R
 
,                                                                                              (22)  

 
where  
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2 2 2 2 2

1 0 1

1
(0) ( ) | | ( ) | | .

2
E u c u c y dx  



                                                      (23) 

 
Remark 2.1:  According to the definition of u0 and u1 in (10), it is clear that E(0) < ∞ for every 

initial data 
0 0

1 1 2
0 1 2( ),   ( )    and  ( )y H y H y L       .  Because, in this case, 

 
2

0| | ,y dx


    2
1| | ,y dx



    and 2
1( )y dx



    

 
and, hence,  

 

0

1 2
0 1( )   and  u ( ).u H L     

 
As the system evolves from its initial state {u0, u1}, the energy E(t) at any time t R  
diminishes from its initial value E(0) driven by the work done by the small passive viscous 
damping. The uniform stability of the system (11)–(13) by means of exponential energy decay 
estimate can be obtained by the following theorem.  
 

Theorem 2.1.: If y = y(x, t) be a solution of the system (11) − (13) with initial values 

0 0

1 1 2
0 1 2( ),   ( )    and  ( )y H y H y L       ,  then the energy E(t) of the system 

decays uniformly exponentially with time, that means 
 

( ) exp( ) (0)           t ,E t M t E 
   R                                                (24)  

 
for some finite reals 1  and 0M   defined later, both dependent on the 

damping parameter δ.  
 

 
Firstly, we establish the following lemma:  
 

 
Lemma 2.1.: For every solution y = y(x, t) of the system (11)−(13), the time derivative of the 

functional Gδ (cf. Bose and Gorain (1998), Gorain (2006), Komornik and Zuazua 
(1990)) defined by 

 
22 2( ) ( ) | |2

cG t uu u y dx   


                                                       (25) 

 
satisfies  

 
2( ) 2 ( ) 2 ( )      .G t u dx E t t





     R                                                        (26) 
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Proof:  
 
If we differentiate (25) with respect to t and replace u

 
by the relation (11), then 

  
 

 2 2( ) ( ) ( )( ) ( ) .G t c u u y y y dx u dx    
 

                  

 
On application of Green’s formula, the above gives  
 

 2 2

2 2

( ) ( ) ( )

              ( ) ( ) ( ) .

u y
G t c u d c u y u dx

v v

c y y dx u dx

    

  
 

 

                 

     

 

 
 

        2 2 2 2 2( ) | | ( ) | | ,u c u dx c y dx  
 

                                                         (27) 

 
by the use of the boundary conditions (12) and the relation (6). Invoking E(t) as defined in (17) 
into (27), the lemma follows immediately.                                                                                
 

 
Proof of Theorem 2.1:  
 
Proceeding as in Gorain (2006) (see also in Bose and Gorain (1998), Gorain (2006), Komornik 
(1991)), we define an energy like Lyapunov functional Vδ: [0, ∞) → [0, ∞) by 
  

Vδ(t)= E(t)+ δGδ(t).                                                                                                (28)  
 

 
With the help of (17) and (25), the above can be written as  
 

2 2 2

2
2 2 2

1 1
( ) ( )

2 2

            | | ( ) | | ( ) | | , 0        t 0.
2

V t u u dx u dx

c
u y y dx

  

     

 



  

            

 


               (29)                         

 
Now, using the inequalities (18) and (19), we can write  

22 2( ) ( )
2

k kcuu dx u u dx E tkc c 

                                                                   (30) 

 
and  

2
2

2
0 ( )            t 0.

k
u dx E t

c




                                                                          (31) 

7

Gorain: Uniform Stabilization of n-Dimensional Vibrating Equation

Published by Digital Commons @PVAMU, 2009



AAM: Intern. J., Vol. 4, Issue 2 (December 2009) [Previously, Vol. 4, No. 2]   321 

 
Again by the relation (6), we can write  
 

2 2 2 2 2

2 2 2 2 2 2

| | ( ) | | | | 2 ( )

         | | | | | | ( ) | |

y u y u y u y

u y u y

  
  

 

             

           

 

         2 2= | | ( ) | |u y
   

 
     

 

 
by the help of the inequality (18). Hence,  
 

2
20 ( ) | | ( )             t 0.

2

c
y dx E t  



                                                              (32) 

 
On account of the inequalities (30), (31) and (32), Gδ (as defined by (25)) can be estimated as  
 

2

2
( ) ( ) ( )            t 0.

k k k
E t G t E t

c c c
 

 
        

 
                                 (33) 

 
Hence, it follows from (28) that  
  

2
2

2
1 ( ) ( ) 1 ( ),             t 0.

k k k
E t V t E t

c c c   
    

                   
            (34) 

 
For smallness of δ, we assume that  
 

c

k
                                         (35) 

 

 
so that (34) yields Vδ(t) > 0 for every t ≥ 0.  
 
Next, differentiating (28) with respect to t and using the expression (21) and the Lemma 2.1, we 
obtain  
 

2 2( ) 2 ( ) ( ) | | , < 2 ( ),          t .V t E t c y dx E t     



         R          (36) 

 
Invoking the right inequality of (34), we obtain the differential inequality 
 
 

( ) ( ) 0,    < 2 ( ),    t ,V t V t t E t           R                                                  (37)  
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where 
  

2

22

2
0,

1 ( )k k
c c



  

 
  

                                                                            (38)  

 
the denominator of ξδ being a quadratic function of the passive viscous damping parameter δ. 
Multiplying (37) by exp(ξδt) and integrating from 0 to t, we obtain the estimate 

 

( ) exp( ) (0)              tV t t V      R .                                                         (39)  

 
Again applying the inequality (34) in (39), we finally obtain for every t  R ,  

 

 
( ) exp( ) (0),              E t M t E                                                                         (40)  

 
where  

 

2

221 ( )
1.

1

k k
c c

k
c

M

  


  
 


                                                                             (41) 

 
Hence, the theorem.                     
 
Remark 2.2.: This result shows that the solution of the system decays uniformly exponentially 

with time, for every initial data 
0 0

1 1 2
0 1 2( ),   ( )    and  ( )y H y H y L       .  As 

the system is uniformly stable, it is controllable in particular, from an arbitrary 
initial state to a desired final state in the energy space. Again, the expression for ξδ 
in (38) as a function of passive damping parameter δ shows that decay rate will be 

maximum for 
2

c

k
  , satisfying the restriction given by (35). Because  

 
2

2

2

2

2
22

2(1 )
,

1 ( )

k
c

k k
c c

d

d



   



    

                                   (42) 

 

that implies 
2

2
0  and 0

d d

d d
  
 

     for 
2

c

k
  . The corresponding maximum 

value of ξδ is given by 
  

2
(max)

(2 2 1)

c

k c
 


 

                                                           (43) 

 
and the value of Mδ is, then,  
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(2 2 1)

( 2 1)

k c
M

k


 



.                                                             (44) 

 
In practical cases, the value of the passive damping parameter δ is much smaller 

than its upper bound 
c

k
   given in (35).  

 
3. Uniform Stability on Account of Internal Damping of Kelvin-Voigt Type 

 
 

If we differentiate (17) with respect to time t and use the governing equation (14), then 
  

 2( ) ( ) ( ) ( )( ) 2 .E t c u u y u u y y dx u u dx     
 

                       
 

 
Applying Green’s formula, we have from above  

 

 

2

2 2

( ) ( ) 2

           ( ) ( ) ( ) 2 | | .

u y u
E t c u d u d

v v v

c y y u y dx u dx

  

   
 

 

               

            

 

 
 

 
Using the boundary conditions in (15) and the relation (6), we finally get  
 

2 2 2( ) ( ) | | 2 | |  <0,           .E t c y dx u dx t   

 

           R                   (45)  

 
The negativity of right hand side of (45) shows that this system also is an energy dissipating and 
thus the system (14)–(16) is a non-conserving. So naturally, the question arises as to whether, the 
solution of this system also decays with time uniformly or not. An affirmative answer can be 
found by the following theorem.  

 

Theorem 3.1.: If y = y(x, t) be a solution of the system (14) − (16) with initial values 

0 0

1 1 2
0 1 2( , , ) ( ) ( ) ( ),y y y H H L        then the solution of the system decays 

uniformly exponentially with time, that means,  t  R , the energy E(t) 
satisfies the result  

 
( ) exp( ) (0),E t M t E                                                                       (46)  

 
for some reals Mβ > 1 and ξβ > 0 defined later, dependent on the damping 
parameter β.  
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Before establishing the theorem, we now prove the following lemma.  
 

 
Lemma 3.1.: For every solution y = y(x, t) of the system (14)−(16), the time derivative of the 

functional Gβ (cf. Bose and Gorain (1998), Gorain (2006), Komornik and Zuazua 
(1990)) defined by  

 
22 2( ) | | ( ) | |2

cG t uu u y dx   


                                                 (47) 

 
satisfies 

 
2( ) 2 | | 2 ( ),       ,G t k u dx E t t





      R                                                (48) 

 
where k is a constant defined by (19).  
 

Proof:  
 
A differentiation with respect to t of (47) gives  
 

   

 2

2

( ) ( ) ( )( )

             ( ) 2 ( )

G t c u u y y y dx

u u u u u dx

    






            

        




 

 
by the use of (14). Applying Green’s formula, we have 
 
 

   

 2 2

2 2

( ) ( ) 2 ( )

              ( ) ( ) ( )

u y u
G t c u d u d c u y u dx

v v v

c y y dx u dx

     

 
  

 

                     

     

  

 
 

     2 2 2 2 2( ) | | ( ) | | ,u c u dx c y dx  
 

                                           (49)  

 
where we have used the boundary conditions (15) and the relation (6). After introducing E(t) in 
(49), the lemma follows immediately.                                                                                          
 
 
Proof of Theorem 3.1:  
 
Proceeding as in the last section, we consider an energy like Lyapunov functional Vβ : [0, ∞) → 
[0, ∞) by  
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    ( )V t E t G t

k 


                  (50) 

          

 

2 2
2

2

2
2 2 2

1

2 2

| | ( ) | | ( ) | |  0,    t 0
2

u u dx u dx
k k

c
u y y dxk

 

    

 



    
 

             

 


    (51) 

 
by the use of (17), (47) and the inequality (19).  
 
Now, according to the previous section, we can estimate three terms of Gβ in (47) as  
 

   
( )

k
uu dx E t

c

  ,                                                                                                (52) 

 

   2
2

2
0 | | ( )            u dx E t

c




                                                                            (53) 

 
and  
 

2
20 ( ) | | ( ).             

2

c
y dx E t  



                                                                 (54) 

 
Hence, (47) yields the estimate 
  

2

2
( ) ( ) ( ),             0,

k k
E t G t E t t

c c c
 

 
        

 
                                      (55)  

 
and so Vβ defined by (50) can be estimated as 
  
 

2

2

1 2
1 ( ) ( ) 1 ( ),             0.E t V t E t t

k c kc k c k


  
    

           
    

                           (56) 

 
Now, if we impose a restriction on β by  
 

   c k  ,                                                                                                                         (57)  
 
Then, it follows from (56) that Vβ(t) > 0 for every t ≥ 0. Next, differentiating (50) with respect to 
t and using (45) and the Lemma 3.1, we obtain  
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2
V (t)< ( ).             .E t t

k
    R  

 
With the help (56), the above yields the differential inequality 
 

  ( ) ( ) 0,               V t V t t       R ,                                                                    (58) 

 
where 
 

2

2

2

21
0,

1 ( )
k

kc k c k



  



 

  
                                                                               (59) 

 
the denominator of ξβ being also a quadratic function of the Kelvin-Voigt damping parameter β. 
Multiplying (58) by exp(ξβt) and integrating over (0,  t), we obtain  
 

   
( ) exp( ) (0),               V t t V t      R .                                                             (60)  

 
Finally, invoking the inequality (56) in (60), we get the result (46), where 
 

   

2

2

211 ( )
1.

1
kc k c k

c k

M
 

 

  
 


                                                                            (61)  

 
Hence, the theorem.                                                                                                                      
 
 
Remark 3.1.: The result of the theorem 3.1 implies that the solution of the system (14)–(16) also 

converges uniformly to zero as time t → +∞, at exponentially rate ξβ for every 
initial data 

0 0

1 1 2
0 1 2( ),   ( )    and  ( )y H y H y L       .  Hence, it is controllable 

in particular, from an arbitrary initial state to a desired final state in the energy 
space. Again, from the expression for ξβ in (59) as a function of the damping 
parameter β, we have  
 

2

2

2

2

22

2
21

(1 )
.

1 ( )

k c k

kc k c k

d

d




 


 



    

                                                               (62) 

Thus, exponential decay rate ξβ will be greatest when 
2

c k   (the second order 

derivative of ξβ being negative for this β), satisfying the restriction (57), although 
the actual value of β in practical cases is much smaller than its upper bound c k . 
The corresponding maximum value of ξβ is then given by  
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2
(max)

(2 2 1)

c

k c
 


 

                                                     (63) 

 

and for this 
2

c k  , the value of Mβ becomes 

  

(2 2 1)
.

( 2 1)

k c
M

k


 



                                                                           (64) 

 
Thus, we see that the values found in (63) and (64) are identical corresponding to 
those values (43) and (44) obtained in the previous section.  

 
 
4. Conclusions 

 

This study explicitly deals with uniform exponential stabilization of a class of vibration problems 
modeling ‘standard linear model’ of vicoelasticity in bounded domain in nR . To achieve the 
explicit forms of the results, we incorporate separately very small amount of two damping 
mechanism – one is of passive viscous damping and the other is of internal damping of Kelvin-
Voigt type, without having to introduce any boundary damping. The results are valid even if one 
of the parts 0  or 1  and is empty. The procedure adopted here is direct method by constructing 

energy like suitable Lyapunov functional V. However, one may imagine such type results by the 
application of semigroup theory (cf. Pazy (1983)). The significant outcomes in this study are that 
the possible maximum exponential decay rates in two systems i.e., ξδ(max) and ξβ(max) are the 
same, although the values of ξδ and ξβ according to (38) and (59) are different. Similar result is 
found for the corresponding Mδ and Mβ according to (44) and (64). Since the formulation (3) is 
more general than the simple wave equation (1), the mathematical theory developed here can be 
realized for a class of elastic vibrations of flexible structures in n-dimensional space satisfying 
the model equation (11) or (14), such as the vibrations of elastic strings, beams, plates etc. The 
investigation is motivated by such considerations.  
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