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Abstract 
 
Large scale quadratic problems arise in many real world applications. It is quite often that the 
coefficient matrices in these problems are ill-conditioned. Thus, if the problem data are available 
even with small error, then solving them using classical algorithms might result to meaningless 
solutions. In this short paper, we propose an efficient generalized Newton-penalty algorithm for 
solving these problems. Our computational results show that our new simple algorithm is much 
faster and better than the approach of Rojas et al. (2000), which requires parameter tuning for 
different problems. 
 
Keywords: Large Scale Ill-Quadratic Problems, Penalty Method 
 
MSC (2000) No.: 90C06, 90C20 
 
 
1. Introduction 
 
Large scale quadratic problems arise in many disciplines like image restoration 
[ Rojas and Steihaug (2002)]. 
                                    

                                 
 
This is a well studied problem and efficient algorithms have been developed to solve various 
forms of , for example see Salahi (2009 a, b).  It is often the case that the problem is ill-
conditioned. Thus, even a small error in problem data might significantly change the solution. 
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Regularization is a technique to deal with such situation and the well known one is the Tikhonov 
regularization [Tikhonov (1963)], which considers the following problem instead of  
 

                                     
 
where  is the so called regularization parameter [Hansen ]. However, in applications like 

image restoration , there are extra nonnegativity constraints on 

 and instead of Tikhonov regularization a bound constraint is added to the problem. Namely, 

we have the following version of : 

 
 , ,            

 
As we see this formulation requires prior information on the solution norm. Obviously  is a 

convex quadratic optimization problem which can be solved using efficient interior-point 
software packages like LOQO [Vanderbei (1999) ]. In Rojas and Steihaug (2002), the authors 

have developed a trust region interior-point algorithm to solve  which itself uses LSTRS 
software package [Rojas et al. (2000)]. However it requires tuning several parameters and fails 
on several problems. In this paper we propose an efficient generalized Newton-penalty algorithm 
to solve . Several well know examples are presented to show the efficiency of the proposed 

algorithm to the one in Rojas and Steihaug (2002).  
 
 
2. Generalized Newton-Penalty Algorithm 
 
In this section we present an efficient algorithm for solving  based on penalty method. To do 

so, let us consider the following problem instead of   
 

 ,                             

 
where  is a large number called penalty parameter  and  
 
 
Lemma 2.1.  
 

The objective function in  is once differentiable.  
 
Proof:  
 
See Hiriat-Urruty (1984). 
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Obviously, the objective function of  has just the first derivative. However, one can define the 
generalized Hessian for this function, which has many properties of regular Hessian [Hiriat-
Urruty (1984)]. The gradient and generalized Hessian of this function are 
 

 
, 

 
where  is a scalar equal to  if  and zero else and  is a diagonal  matrix with 

diagonal element at position  equal to one if  and zero otherwise. Obviously for a 

given , the generalized Hessian is positive semi-definite, thus the objective function in  

is convex. At each iteration of the algorithm we solve  by moving in the Newton like 
direction called generalized Newton until certain stopping criterion is 
met   The detailed algorithm is as follows: 
 
Generalized Newton-Penalty Algorithm 
  
Step 0:  Let  and  be an initial approximation and  

 
Step 1:  While    do 

 Step 1-1: Solve system  .  

 Step 1-2: Let  . 

 Step 1-3: Set ,  and go to step . 

   end while 
  
Step 2: The approximate solution is . 
  
 
Remark 2.1. In practice we consider  instead of 

, where  is a small constant that guarantees the positive 

definiteness of generalized Hessian. In our implementation we use . 
Moreover, this small perturbation of generalized Hessian for ill-conditioned 
problem does not allow the algorithm to give meaningless solution. 

 
 
Remark  2.2.     The main advantage of our algorithm to the algorithm of Rojas et al. (2000) is 

solving an unconstrained convex problem using a Newton like algorithm. It 
involves two parameters, one is the penalty parameter and the other one is the 
regularization parameter. However, their algorithm which uses LSTRS 
software package involves several parameters and they are required to be tuned 
for different problems. 
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Table 1: Comparison of  and  Algorithm 

  

 
 

 

 
               Figure 1: Solution for problem , . 

 
 
3. Numerical Results 
 
In this section we present several numerical examples showing the practical efficiency of our 
proposed algorithm to the algorithm of Rojas and Steihaug (2002). Both algorithms are 
implemented in Matlab  on a Pentium  Laptop with  GB of memory. We should note that at 

each iteration within the algorithm of Rojas and Steihaug (2002) we call LSTRS software 
package to solve the quadratically constrained quadratic problems.  All test problems are taken 
from Hansen (1994).  
 
As we see in Table , our algorithm solves all problems while the algorithm of Rojas  and  
Steihaug  (2002) fails on several problems and is much slower than our algorithm. For all test 
problems we use    as an upper bound for the solution norm, however, Rojas and 

Steihaug (2002) use . Obviously this requires knowing the exact solution norm, while 

for our algorithm even larger bounds do not affect the solution. For those test problems which 
the algorithm of Rojas and Steihaug (2002) failed, we even decreased the bound but still it failed. 
 
In Figures , we have plotted the solutions norm reported in Table . As we see for all four 
problems the solutions norm obtained by our algorithm almost match the exact solutions. For 
problem   in Figure , all cases of both methods are more or less the same, while for 

problem  the algorithm of Rojas and Steihaug (2002) significantly differs from our and the 
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exact solution. In the last two figures, we also have just the results of our algorithm with the 
exact solutions, as the algorithm of Rojas and Steihaug (2002) failed to solve them. 
 
 
4. Conclusions 
 
 
In this short paper, using the penalty method, we have considered a large scale quadratic 
minimization problem as a convex once differentiable unconstrained problem. Then, using the 
concept of the generalized Hessian, a generalized Newton-penalty algorithm is designed to solve 
it. Our computational experiments on several well known ill-conditioned test problems show that 
our algorithm is much faster and reliable than the algorithm of Rojas and Steihaug (2002), which 
uses LSTRS software package at each iteration to solve a quadratically constrained quadratic 
problem. Moreover, their algorithm requires tuning several parameters and fails on several 
problems. 
 
 

 
     Figure 2. Solution for problem . 

 
  Figure 3.  Solution for problem . 

  
 

 
    Figure 4.  Solution for problem . 
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