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Abstract 
 
We investigate the problem of spatial instability of electrically driven viscous jets with finite 
electrical conductivity and in the presence of either a constant or a variable applied electric field. 
A mathematical model, which is developed and used for the spatially growing disturbances in 
electrically driven jet flows, leads to a lengthy equation for the unknown growth rate and 
frequency of the disturbances. This equation is solved numerically using Newton’s method. For 
neutral temporal stability boundary, we find, in particular, two new spatial modes of instability 
under certain conditions. One of these modes is enhanced by the strength  of the applied field, 
while the other mode decays with increasing . The growth rates of both modes increase mostly 
with decreasing the axial wavelength of the disturbances. For the case of variable applied field, 
we found the growth rates of the spatial instability modes to be higher than the corresponding 
ones for constant applied field, provided  is not too small. 
 
Keywords: Spatial instability, jet flow, electric field, jet instability, flow instability 
 
MSC 2000: 76E25, 76W05 
 
 
1. Introduction 
 
  
This paper considers the problem of spatial instability of a cylindrical viscous jet of fluid with 
finite electrical conductivity and a static charge density and in the presence of an external 
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constant or variable electric field. The investigations of electrically forced jets are important 
particularly in applications such as those to electrospraying [Baily (1988)] and electrospinning 
[Hohman et al. (2001a), (2001b)]. Electrospinning is a technology that uses electric fields to 
produce and control small fibers. The aim is at producing non-woven materials that are 
unparalleled in their porosity, high surface area, and the fineness and uniformity of their fibers.  
Electrospraying is a technology that uses electric field to produce and control sprays of very 
small drops.  The aim is at producing very small drops that are uniform in size and are of charged 
macromolecules in the gas phase.  
    
Without presence of electrical field effects, it is known for several decades that spatially growing 
disturbances are, in general, more appropriate and realized than the temporally growing 
counterparts for the jet flows and other types of free shear flows [Drazin and Reid (1981)].  For 
example, Michalke (1969) studied instability of the free shear layers and found that theoretical 
results based on the spatial instability have better agreement with the corresponding experimental 
results. Later, additional investigations of spatial instability of free shear flows and jets were 
reported by a number of authors including those by Monkewitz and Huerre (1982), Lie and Riahi 
(1988), Tam (1993), Soderberg (2003) and Healey (2008). Soderberg (2003) showed, in 
particular, agreement between the linear spatial instability results and the corresponding 
experimental results. 
    
For the jet flows driven by the electric forces, temporal instability of such flows has been studied 
theoretically by several authors [Hohman et al. (2001a), (2001b); Reneker et al. (2000); Shkadov 
and Shutov (2001), Fridrikh et al. (2003)].  Hohman et al. (2001a) studied the linear temporal 
instability of an electrically forced jet with uniform applied field. The simplified equations for 
the dependent variables of the disturbances that they analyzed were based on the long 
wavelength and asymptotic approximations of the original electro-hydrodynamic equations.  For 
the axisymmetric jets, the authors detected, in particular, two temporal instability modes, and 
they discussed the properties of such instability modes in the various possible limits. Other 
investigations of the problems dealing with the electrically forced jets with applications in 
electrospinning of nanofiber are reported in several papers [Sun et al. (2003), Li and Xia (2004), 
Yu et al. (2004)].  
 
Very recently Riahi (2009) considered electrically forced jets with variable applied field. He 
followed a modeling approach analog to that due to Hohman et al. (2001a) and investigated 
analytically spatial instability of axisymmetric jets under idealistic conditions of either jet of zero 
electrical conductivity or jet of infinite electrical conductivity and subjected to certain 
restrictions on the frequency of the disturbances. He detected two spatial modes of instability 
each of which was enhanced with increasing the strength of the externally imposed applied 
electric field. These modes existed under certain restricted ranges of the axial wave number of 
disturbances, but, in particular, did not exist if the axial wave number was sufficiently small.     
 
In the present study we first use a method of approach similar to that employed in Riahi (2009) 
to arrive at a mathematical model for the non-idealistic (realistic) electrically driven viscous jets 
with finite conductivity. Next, we consider spatial instability of the jets for externally imposed 
constant or variable applied field.  We then determine a rather lengthy dispersion relation, which 
relates the growth rate of the spatially growing disturbances to the wave number in the axial 
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direction, the frequency and the non-dimensional parameters of the model. We solve numerically 
the dispersion relation for the growth rate and frequency of the disturbances using the Newton’s 
method [Anderson et al. (1984)]. We found a number of interesting results. In particular, for 
temporally neutral case and in contrast to the results in Riahi (2009), we detect two spatially 
growing modes in wider range of values in the axial wave number of disturbances, one of which 
is driven and enhanced by the electric field, while another spatial instability mode decays with 
increasing the strength of the applied field. 
 
      
2.  Formulation and Analysis 
 
We consider a cylindrical viscous jet of fluid with finite electrical conductivity and a static 
charge density, which is subjected by an externally imposed constant or variable electric field. 
We begin with the governing electro-hydrodynamic equations [Melcher and Taylor (1969)] for 
such a jet flow. These equations are for the mass conservation, momentum, charge conservation 
and for the electric potential, which are given, respectively, by 
 

DP/Dt + .u = 0,                            (1a) 
Du/Dt  = P +  · (u) + qE,                                   (1b)     
Dq/Dt +  · (KE) = 0,                         (1c) 
E = ,                           (1d) 

 
where D/Dt  /t + u · is the total derivative, t is the time variable, u is the velocity vector, P 
is the pressure, E is the electric field vector,  is the electric potential, q is the free charge 
density,  is the fluid density,  is the dynamic viscosity and K is the electrical conductivity of 
the jet. 
  
The expression for the internal pressure P in the jet given in the momentum equation (1b) is 
found by balancing across the free boundary of the jet the pressure, viscous forces, capillary 
forces and the electric energy density plus the radial self-repulsion of the free charges on the free 
boundary [Melcher and Taylor (1969)], which lead to the following expression for P  
  

P =   [(   )/(8)]E2(4/)2/,                                                (2) 
 
where  is twice the mean curvature of the interface, /(4) is the permittivity constant in the jet, 
 /(4) is the permittivity constant in the air,  is the surface tension and  is the surface free 
charge. 
    
Following Hohman, et al. (2001a), we consider the fluid jet to be Newtonian and incompressible 
that moves axially, and the ambient fluid is considered to be passive air.  We make use of the 
governing equations (1) in the cylindrical coordinate system with the origin at the center of the 
exit section of the jet’s nozzle, where the jet flow is emitted, and with the axial z-axis along the 
axis of the jet.  We consider the axisymmetric form of the dependent variables where there are no 
variations of the dependent variables with respect to the azimuthal variable and with zero 
azimuthal velocity.  
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Following the proper approximations due to Hohman et al. (2001a) for a thin and long jet in the 
axial direction, we assume the length scale in the axial direction to be large in comparison to that 
in the radial direction and make use of a perturbation expansion in the small jet’ aspect ratio.  
Expanding the dependent variables of the jet in a Taylor series in the radial variable r and using 
such expansions in the governing equations, we end up with relatively simple equations for the 
dependent variables as functions of t and z after we keep only the leading terms.  Following the 
method of approach due to Hohman et al. (2001a), we employ (1d) and Coulomb’s integral 
equation to arrive at an equation for the electric field, which is essentially the same as the one 
given in Hohman et al. (2001a) and will not be repeated here.  We then non-dimensionalize these 
equations using the radius r0 of the cross-sectional area of the nozzle exit at z =0, E0 = {/[(   ) 
r0]}

1/2, t0 = ( r0/)1/2, (r0/t0) and (  /r0)
1/2 as the scales for length, electric field, time, velocity 

and surface charge, respectively.  The resulting non-dimensional equations are then 
 

 (h2)/t + (h2v)/z =0,                                                       (3a) 
  
(h)/t + (hv)/z + [0.5h2 E(z) K*K(z)] = 0,                                   (3b)  
 
v/t + vv/z = (/z){h [1+(h/z)2]0.5  (2h/z2)[1 + (h/z)2]1.5 E2/(8)42} 
                                               + 2 E /(h) + [3*/(h2)](/z)[h2v/z],  (3c) 
 
Eb(z) = E  ln()[(/2)(2/z2)(h2E)4(/z)(h)].                                (3d) 

 
Here, v(z, t) is the axial velocity, h(z, t) is the radius of the jet’ cross-section at the axial location 
z, (z, t) is the surface charge, the conductivity K is assumed to be a function of z in the form K = 
K0K(z), where K0 is a constant dimensional conductivity and K(z) is a non-dimensional variable 
function, K* = K0{r0

3/[( )2]}0.5 is the non-dimensional conductivity parameter,  = /  1, * 

= [2/(r0)]
0.5 is the non-dimensional viscosity parameter, Eb(z) is an applied electric field and  

is the inverse of a local aspect ratio, which is assumed to be large.    
 
Next, we consider the electrostatic equilibrium solution, which is referred to here as the basic 
state solution, for the equations (3).  The basic state solutions for the dependent variables of the 
jet designated with a subscript ‘b’, are given by 
 

hb = 1, vb = 0, b = 0, Eb =  /K(z) = {1[80/()]z}.                 (4a-d) 
 
Here,  and 0 are constant quantities and 0 is the background free charge density.  We let  = 
80/() to be a small parameter ( << 1) and consider a series expansion in powers of  for 
all the dependent variables in the case of variable applied field.   
 
In present paper we study the cases where the applied electric field can be either constant ( = 0) 
or variable (  0). We consider each dependent variable as sum of its basic state solution plus a 
small perturbation, which is assumed to be oscillatory in both time and axial variables.  Thus, we 
have 
 

(h, v, , E) = (hb, vb, b, Eb) + (h1, v1, 1, E1).                                    (5a) 
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Here, the perturbation quantities designated with a subscript ‘1’, are given by    
 

(h1, v1, 1, E1) = (h’, v’, ’, E’) exp[it + (s + ik)z],                                (5b) 
 

where (h’, v’, ’, E’) are small constants, i is the pure imaginary number 1 ,  is  the real 
constant frequency, s is the real growth rate of spatially growing disturbances and k is the axial 
wave number. Using (4)-(5) in (3), we linearize the resulting equations with respect to the 
amplitude of the perturbation. We consider the linearized equations to the lowest order in  (for 
variable applied field case) and divide each equation by the exponential function exp[it + (s + 
ik)z].  We then find four linear algebraic equations for the unknown constants h’, v’, ’ and E’.  
To obtain non-trivial (non-zero) values of these constants, the 44 determinant of the coefficients 
of these unknowns must be zero. This leads to the following dispersion relation: 
 

0.5(k2  1  s2 2iks)(k2 – s2 2iks)(iA + 4K*/)  
   + (k2 – s2  2iks){i[12*K*/ + 2/(4)] + 2K*A/}  
    2{4K*/ + [i + 3*(k2  s2  2iks)]A}  
   + (k - is)2{2 iA0[1 + 8 ln(.89k)/(2 + )] + (4K*/)[20

20(s + ik) 
   ×(4 + 1/ln(.89k))/((k - is)2 )]} = 0.                                       (6) 

 
Here, A = 12/[(k - is)2 ln(1/)],  = (k - is)2 ln(.89k) and  = 1/(0.89k) [Hohman et al. 
(2001a)].  
 
 
3.  Results and Discussion 
 
The dispersion relation (6) is investigated for both variable and constant applied field cases.  For 
variable applied field, where   0, we assume that  is small of order about 0.1, and here both  
and  cannot take zero value, so that we set 0  0.1, which turns out to keep the value of  of 
order 0.1 in the range of values of the rest of the parameters that are considered in the present 
study.  For constant applied field case, we set 0 = 0. In this section we describe each of the cases 
that are considered and provide and discuss the corresponding results. 
 
Before presenting the main results and the corresponding discussion for the present study, we 
explain a connection that we establish between the asymptotic and idealistic results due to Riahi 
(2009), which was carried out for perfect conductivity (K* = ) and variable applied field case, 
and the corresponding present numerical ones for finite but very large conductivity. We also 
thought that such a comparison between the previous idealistic work and the present one under 
such high conductivity regime can serve as a validation for the present numerical code if very 
good agreement is resulted for such limiting case. We, thus, generated computational data for the 
parameter regime in Riahi (2009), where * = 0.333,  = 77.0 and 0 = 0.1, but for cases of very 
large conductivity (K*  105).  
 
The numerical results, for K* > 105 like K* = 107 were found to be almost indistinguishable from 
those for K* = 105.  Figure 1 presents the result for the growth rate s versus the wave number k 
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for the two detected electric modes of instability for infinite conductivity in Riahi (2009) (dashed 
lines) and those found here for K* = 105 (dotted lines). It can be seen that the agreement between 
the present result and the corresponding one in Riahi (2009) is very good. We also checked the 
corresponding values of the strength of the applied field  for both instability modes in the 
present numerical case and found that they agree very well with the corresponding ones in Riahi 
(2009) indicating that both instability modes are enhanced with .   
 
 For the main computation of the present study, we consider the fluid to be a type of liquid, 
which can be used in the experimental investigation for validation of the mathematical modeling 
of the problem such as a type of glycerol in water mixture. For such fluid, we set representative 
values of the parameters to be K* = 19.60, * = 0.61,  = 77.00, and 0 = 0 for constant applied 
field or 0 = 0.10 for variable applied field. We then used (6) to generate data for the growth 
rates and frequencies for different values of  and for both variable and constant applied field 
cases. The results are briefly presented in the following paragraphs.  
 
For  = 1, we found only one mode of instability for both constant and variable applied field 
cases. The growth rates s and the frequencies  of disturbances increase with the axial wave 
numbers k (0 < k < 1) of the disturbances. For constant applied field, the growth rates of the 
disturbances are larger than the corresponding ones for the variable applied field if 0.04  k <1, 
while the opposite holds if 0 < k < .04. For constant applied field, the frequencies of the 
disturbances are larger than the corresponding ones for the variable applied field if 0 < k  0.96, 
while the opposite holds if 0.96 < k < 1. We classify this mode of instability, which also exists 
for  < 1, as a spatial analog of the well-known surface tension driven Rayleigh mode of 
instability that can break-up a liquid jet in air [Rayleigh (1879); Drazin and Reid (1981)]. 
Hereafter, we refer to this mode as spatial Rayleigh mode (SRM).        
 
For  = 1.5, we found SRM to be the only mode of instability for both constant and variable 
applied field cases.  The growth rates s and the frequencies  of the disturbances again increase 
with k. For constant applied field, s is larger than the corresponding one for the variable field if 
0.12  k < 1, while the opposite holds if 0 < k < 0.12. For constant applied field,  is larger than 
the corresponding one for the variable applied field if 0 < k  0.94, but the opposite holds for 
0.94 < k < 1.  
 
For  = 1.8, SRM is again the only detected mode of instability. Here  increases again with k 
for both constant and variable applied fields. However, even though s for constant applied field 
increases again with k, s for variable applied field increases with k only if 0.08 < k < 1 and 
decreases with increasing k in the small domain 0 < k  0.08. For constant applied field, s is 
larger than the corresponding one for the variable applied field if 0.18  k < 1, but the opposite is 
true if 0 < k < 0.18. For constant applied field,  is larger than the corresponding one for the 
variable field if 0 < k  0.92, and the opposite holds if 0.92 < k < 1. 
 
For  > 1.8 and as  increases in this range, the domains in k for which s and  for the constant 
applied field are larger than the corresponding s and  for the variable field, decrease. It is also 
noticed that SRM favors constant applied field case, which corresponds to zero background 
charge density (0 = 0), since the growth rate of disturbances for 0 = 0 is larger than the 
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corresponding one for 0  0 over most of range of values for k. In addition, SRM favors 
relatively larger values of k, where s for zero background charge density is larger than the 
corresponding one for non-zero background charge density. 
 
For  = 2, we still found that SRM is the only detected instability mode. Here  increases again 
with k for both constant and variable fields. The growth rate also increases with k for constant 
applied field. However, for variable field, s increases with k in the range 0.32 < k < 1 and 
decreases with increasing k in the range 0 < k  0.32. For constant field, s is larger than the 
corresponding one for the variable field in the range 0.28  k < 1, but the opposite is true in the 
range 0 < k < 0.28. The frequency in the constant field case is larger than the corresponding one 
for the variable field if k is in the range 0 < k  0.92, while the opposite holds if k is in the range 
0.92 < k < 1. 
 
For  = 2.375, we found that for 0 = 0.1,  in addition to SRM, which now exists for relatively 
larger values of k in the range 0.45 < k < 0.95, we detected also a new mode, which is favored for 
relatively small values of k in the range 0 < k < 0.45. Hereafter, we refer to this new mode of 
instability as spatial electric mode (SEM) since it turns that such mode is intensified with 
increasing the strength of the applied field. However, for zero background charge density, SRM 
is still the only instability mode for 0.05 < k < 0.95. The growth rate of SRM for zero 
background charge density is found to be notably smaller than that for SEM, which exists for 
non-zero background charge density and in the domain 0 < k < 0.45, while s for SRM of 0 = 0 is 
higher than the corresponding one for SRM of 0  0 if k is in the range 0.45 < k < 0.95. 
 
For  = 3, both modes SRM and SEM exist for either 0 = 0 or 0  0. Typical results for s 
versus k and  versus k for  = 3 and for both 0 = 0 (solid line) and 0 = 0.1 (dashed line) are 
presented in Figures 2 and 3, respectively. It can be seen from the Figure 2 that for SEM, the 
growth rate for the variable applied field is larger than the corresponding one for the constant 
field. Detailed examination of the generated data for this figure indicates that for SEM and SRM, 
s for the variable field is larger than that for the constant field case if k lies in the ranges 0 < k  
0.84 and 0.98  k < 1, respectively. However, for SRM, s for the constant field case is larger than 
that for the variable field case if k is in the range 0.86  k  0.96. In addition, for SEM and the 
case of non-zero background charge density, s decreases with increasing k for 0 < k  0.08 and 
increases with k for 0.08 < k < 0.84, while for SRM, s increases with k in the range 0.86  k < 1.  
 
In the case of zero background charge density, for SEM, s decreases with increasing k in the 
small range 0 < k < 0.06 and increases with k in the range 0.06  k  0.62, while for SRM, s 
increases with k in the range 0.64  k < 1. It can be seen from the figure 3 that for SEM, the 
frequency for the non-zero background charge density is larger than that for the zero background 
charge density. In addition, for both SEM and SRM and for either constant or variable applied 
field, the frequency increases with k. Detailed examination of the generated data for this figure 
indicate that the frequency for constant field is smaller than that for the variable field case if k 
lies in the range 0 < k  0.64 or in the range 0.86 < k < 1, while the opposite holds if k is in the 
range 0.66  k  0.86.    
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For  = 3.3, both SRM and SEM still exist. Detailed examination of the generated data for this 
case indicate that for variable applied field s increases with k for k in the ranges 0.06 < k  0.74 
(SEM) and 0.84  k  0.90 (SRM) and decreases with increasing k in either 0 < k  0.06 (SEM) 
or 0.76 < k < 0.84 (SRM). For constant applied field, s increases with k in either 0 < k  0.04 
(SEM) or 0.04  k  0.70 (SEM) or 0.76  k < 0.90 (SRM). It is seen that the domain for SEM 
increases, while domain for SRM shrinks considerably. The growth rate for constant applied 
field is larger than that for variable field if k lies in either 0.76  k  0.82 or 0.94  k  0.96, 
while the opposite holds if k lies in 0 < k < 0.76 or 0.82 < k < 0.94 or 0.96 < k < 1. For variable 
field,  increases with k for either 0 < k < 0.74 or 0.84  k  0.94, while for constant field,  
increases with k for 0 < k <0.70 or 0.78  k  0.90 or 0.92  k  0.96. The frequency for the case 
of constant field is larger than the corresponding one for the case of variable field if k is in the 
range 0.80  k  0.82 or k = 0.96, while the opposite holds if 0 < k  0.78 or 0.84  k  0.94. 
 
For  = 3.7, only SEM exists. For the case of variable applied field, s increases with k for 0.06 < 
k  0.94 and decreases with increasing k in 0 < k  0.06, while for the case of constant field, s 
increases with k in 0.04  k < 1 and decreases with increasing k in 0 < k  0.04. The growth rate s 
for the case of variable applied field is larger than the corresponding one for the case of constant 
field if 0 < k < 0.96, and the opposite holds for 0.96  k < 1. The frequency for the case of 
variable field is larger than the corresponding one for the case of constant field if 0 < k  0.90, 
while the opposite holds for 0.90 < k < 1. For the case of variable field,  increases with k in 0 < 
k  0.94 and decreases with increasing k in 0.94  k < 1. For the case of constant field, the 
frequency increases with k in 0 < k < 1. 
 
For  > 3.7, SEM remains the only instability mode that the present spatial model predicts. 
Some typical results for s and  versus k are shown in Figures 4 and 5, respectively, for variable 
applied field (0 = 0.1) and for three values  = 1, 3 and 4. It can be seen from the figure 4 that 
the growth rate for SEM, increases with , while the growth rate for SRM decreases with 
increasing . In addition, for a given k, the growth rate for SEM is larger than that for SRM. We 
found that such results hold in general. It can be seen from the figure 5 that the frequency for 
SEM increases with , while the frequency for SRM decreases with increasing .        
 
Figure 6 presents variations of the perturbation quantities versus axial variable for the spatial 
electric mode and for 0 = 0.1,  = 4,  = 0.1603, t = 1, k = 0.2 and s = 1.3921. Due to the linear 
instability of the problem, we set h’ = 0.1 and determined the other perturbation constants v’, ’ 
and E’ using the procedure described in the previous section. The real parts of the perturbation 
quantities are used to collect the perturbation data for the instability mode for different values of 
z. It can be seen from this figure that most of the perturbation quantities begin to grow spatially 
after their generation at z = 0 and their spatial growth is seen mainly exponential type growth for 
values of z beyond z = 5 or so.  
 
For z > 7.5, the amplitudes of the perturbations like v1 and h1 are sufficiently large that the 
present linear theory ceases to be valid. Figure 7 presents similar types of variations but for 0 = 
0, s = 1.2596 and  = 0.1381. Again it can be seen that, for example, for z > 6.5, the amplitude of 
v1 and h1 are sufficiently large that the linear theory ceases to be valid. Comparing the results 
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shown in the figures 6-7, it can be concluded that spatial instability is more enhanced in the case 
of variable applied field.   
     
 
4.  Concluding remarks 
 
Mathematical modeling and numerical investigation of linear spatial instabilities of electro-
hydrodynamic system for electrically forced slender viscous and finite conducting jet flows with 
externally imposed either constant or variable applied field were carried out. We were able to 
uncover two new instability modes one of which is enhanced with increasing the strength of the 
applied field, while the other one decays with increasing the strength of the applied field. In 
addition, it was found that the spatial instability modes are more effective in the case of variable 
applied field. However, the numerical results for the limiting case of very large conductivity (K* 

 105) for 0 = 0.1 that was compared well with the corresponding results for perfect 
conductivity case [Riahi (2009)], indicated the important role that the background surface charge 
density plays in the perfect conductivity case to suppress the spatial Rayleigh mode which was 
also noted in Hohman et al. (2001a) in the temporal Rayleigh mode of instability case. 
 
The main results of the present study and predictions of the spatial Rayleigh mode and the spatial 
electric mode and their similarities on the way they depend on the strength of the applied field 
with the corresponding ones in the temporal instability counterpart [Hohman et al. (2001a)] for 
realistic and finite conductivity systems, indicate that both cases of the spatial instability on the 
neutral temporal stability boundary (present work) and the temporal instability on the neutral 
spatial stability boundary [Hohman et al. (2001a)] are subjected to the same types of instability 
mechanism.  That is, the Rayleigh mode of instability driven by the surface tension is dominant 
if the externally imposed electric field is sufficiently weak, and the electric mode of instability 
driven by the electric field is dominant if the externally imposed field is sufficiently strong.      
 
In regard to the relevance of the spatial instability modes for the jet flows, we note that for 
electrically forced jets, Hohman et al. (2001b) and Shin, et al. (2001) observed experimentally 
axisymmetric excitations and thickening blobs along the axial direction, and instabilities grew as 
they move downstream.  These observations indicate presence of spatially growing disturbances 
in the jet flow. Although spatial instability modes can exist and operate even in the absence of 
the temporal instability modes as demonstrated in the present study, both temporal and spatial 
instabilities may operate independent of one another in the experimental and application cases.  
 
As we referred earlier in the introduction section to the very recent analytical investigation by 
Riahi (2009), that work was for the restricted idealistic cases of zero or infinite electrical 
conductivity cases for electrically driven jet lows. Riahi (2009) considered spatial instability of 
such jet flows with variable applied field and under further restrictions on the frequency of the 
allowed disturbances. He found two spatial instability modes both of which were enhanced with 
increasing the strength of the externally imposed applied field. But, these two modes did not 
exist for disturbances with sufficiently small values of the axial wave number. However, in the 
present realistic case of viscous jet flows with finite electrical conductivity, we applied both 
modeling and numerical method for externally imposed variable or constant applied field to 
determine the growth rates of much wider class of disturbances, which were found to exist in 
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wider range of values of the axial wave number. In addition, the present results indicated that 
although one of the spatial mode of instability was enhanced with increasing the strength of the 
applied field, the other instability mode, which is classified as a spatial and electric analog of the 
well-known Rayleigh mode of temporal instability [Drazin and Reid (1981)], in fact decays with 
increasing the strength of the applied field.         
 
Further extensions of the present study that are planned by the present authors to be investigated 
in future, are the cases of combined temporal and spatial instability case and spatial instabilities 
due to the non-axisymmetric disturbances. As is evident from the well known experiments by 
Taylor (1969) that the electrically forced jets can be non-axisymmetric and whip for sufficiently 
large values of the strength of the electric field, we can expect that spatial instabilities due to the 
non-axisymmetric disturbances can dominate over the axisymmetric ones if  is sufficiently 
large.                     
 
Acknowledgements 
 
The authors would like to thank the referees for useful comments and suggestions that improved 
the quality of the paper. This research was supported by a 2008-2009 research grant from UTPA-
FRC. 
 
 

 
REFERENCES 

 
 
Anderson, D. A., Tannehill, J. C. and Pletcher, R.H. (1984). Computational Fluid Mechanics and 

Heat Transfer, Hemisphere Publishing Corporation, New York, N.Y. 
Baily, A. G. (1988). Electro-Static Spraying of Liquid, Wiley, New York, N.Y.  
Drazin, P. G. and Reid, W.H. (1981). Hydrodynamic Stability, Cambridge University Press, UK. 
Fridrikh, S. V., Yu, J. H., Brenner, M. P. and Rutledge, G.C. (2003).Controlling the fiber 

diameter during electrospinning, Phys. Rev. Lett., 90, 144502. 
Healey, J. J. (2008). Inviscid axisymmetric absolute instability of swirling jets, J. Fluid Mech., 

613, 1-33. 
Hohman, M. M., Shin, M., Rutledge, G. and Brenner, M.P. (2001a). Electrospinning and 

electrically forced jets. I. Stability theory, Physics of Fluids, 13(8), 2201-2220.  
Hohman, M. M., Shin, M., Rutledge, G. and Brenner, M.P. (2001b). Electrospinning and 

electrically forced jets. II. Applications, Physics of Fluids, 13(8), 2221-2236.     
Li, D. and Xia, Y. (2004). Direct fabrication of composite and ceramic hollow nanofibers by 

electrospinning, Nano. Lett., 4, 933-938.    
Lie, K. H. and Riahi, D.H. (1988). Numerical solution of the Orr-Sommerfeld equation for 

mixing layers, Int. J. Eng. Sci., 26, 163-174. 
Melcher, J. R. and Taylor, G.I. (1969). Electro-hydrodynamics: A review of the interfacial shear 

stresses, Annu. Rev. Fluid Mech., 1, 111-146. 
Michalke, A. (1965). On spatially growing disturbances in an inviscid shear layer, J. Fluid 

Mech., 23, 521-544. 

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 4 [2009], Iss. 2, Art. 1

https://digitalcommons.pvamu.edu/aam/vol4/iss2/1



AAM: Intern. J., Vol. 4, Issue 2 (December 2009) [Previously, Vol. 4, No. 2] 259 

Monkewitz, P. A. and Huerre, P. (1982). Influence of the velocity ratio on the spatial instability 
of mixing layers, Phys. Fluids, 25(7), 1137-1143. 

Rayleigh, L. (1879). On the instability of jets, Proc. London Math. Soc., 10, 4-13. 
Reneker, D. H., Yarin, A. L. and Fong, H. (2000). Bending instability of electrically charged 

liquid jets of polymer solutions in electrospinning, J. Appl. Phys., 87, 4531-4547. 
Riahi, D. N. (2009). On spatial instability of electrically forced axisymmetric jets with variable 

applied field, Appl. Math. Modeling, 33, 3546-3552. 
Shin, Y. M., Hohman, M. M., Brenner, M. P. and Rutledge, G.C. (2001). Experimental 

characterization of electrospinning: the electrically forced jet and instabilities, Polymer, 
42(25), 9955-9967.  

Shkadov, V. Y. and Shutov, A.A. (2001). Disintegration of a charged viscous jet in a high 
electric field, Fluid Dyn. Res., 28, 23-39. 

Soderberg, D. L. (2003). Absolute and convective instability of a relaxational plane liquid  
jet, J. Fluid Mech., 439, 89-119.  
Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H. and Greiner, A. (2003). Compound core-

shell polymer nanofibers by co-electrospinning, Advanced Materials 15, 1929-1932.  
Tam, C. K. W. and Thies, A.T. (1993). Instability of rectangular jets, J. Fluid Mech., 248, 425-

448 
Taylor, G. I. (1969). Electrically driven jets, Proc. Royal Soc. A, 313, 453-475. 
Yu, J. H., Fridrikh, S. V. and Rutledge, G.C. (2004). Production of sub-micrometer diameter 

fibers by two-fluid electrospinning, Advanced Materials 16, 1562-1566 
 
    

 0.2 0.4 0.6 0.8 1.0
k

0.5

1.0

1.5

2.0

S

 
Figure 1.  A comparison of the numerically computed results for the growth rate S versus the wave number k for 

very large conductivity K*=105 (dotted lines) and the asymptotic results due to Riahi (2009) for K*= 
(dashed lines). The values of the other parameters in this comparison are  =0.333,  =77.0 and 0 = 0.1.   

11

Orizaga and Riahi: Spatial Instability of Electrically Driven Jets

Published by Digital Commons @PVAMU, 2009



260  Orizaga and  Riahi  

 
Figure 2.  The growth rate s versus the axial wave number k for constant applied field (solid lines, 0=0.0) and for 

variable applied field (dashed lines, 0 = 0.1). Here, K*= 19.60, *=0.61,  =77.0 and  =3.0. 
 

 
Figure 3. The same as in the figure 2 but for the frequency  versus k                          
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Figure 4.  The growth rate s versus the axial wave number k for variable applied field for three values of  = 1 (thin 

solid line), 3 (dashed line) and 4 (thick solid line). 
 

                          
Figure 5.  The same as in the figure 3 but for the frequency  versus k 
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Figure 6.  Perturbation quantities h1 (thin solid line), v1 (dashed line), 1 (thick solid line) and E1 (dotted line) versus 

the axial variable z for  = 4, 0=0.1, t=1, k = 0.2, s=1.3921 and  = 0.1603. 
 
 

         
Figure 7. The same as in the figure 6 but for 0 = 0, s = 1.2596 and  = 0.1381.  
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