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Abstract

In this paper, we get exact solution of the time-fractional advection-dispersion equation with
reaction term, where the Caputo fractional derivative is considered of ordera e(0,2]. The
solution is achieved by using a function transform, Fourier and Laplace transforms to get the
formulas of the fundamental solution, which are expressed explicitly in terms of Fox’s H-
function by making use of the relationship between Fourier and Mellin transforms. As special
cases the exact solutions of time-fractional diffusion and wave equations are also obtained, and
the solutions of the integer order equations are mentioned.

Keywords: Fractional Derivatives; Laplace Transform; Fourier Transform; Mellin Transform;
Fox’s H-function

AMS (2000) No.: 26A33, 49K20, 44A10

1. Introduction

Time fractional partial differential equations, obtained by replacing the first order time derivative
by a fractional derivative (of order0 <« <2, in Caputo sense) have been treated in different
contexts by a number of researchers. Mainardi and Pagnini (2003) studied the time fractional
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diffusion equation and the fundamental solutions (Green functions) by using Fourier-Laplace
transforms. Liu, Anh, Turner and Zhang (2003) considered the time fractional advection
dispersion equation by replacing the first order derivative in time by a fractional derivative of
order a (0 < a <1) and they have used variable transformation, Mellin and Laplace transforms
to achieve a complete solution. Saxena, Mathai and Haubold (2002, 2004a, 2004b, 2006a, 2006b,
2006¢) and Haubold, Mathai and Saxena (2007) used integral transform methods to obtain exact
solutions for the fractional Kkinetic, diffusion and reaction diffusion equations .Other research
articles handling time fractional partial differential equations by using integral transforms can be
found in the literature by a number of authors, see, e.g. the reviews in Mainardi (1996),
Mainardi, Luchko and Pagnini (2001), Mainardi, Pagnini and Saxena (2005), Mainardi and
Pagnini (2007), Mainardi, Pagnini and Gorenflo (2007), Momani and Odibat (2007) and Wang,
Xu and Li (2007) and the references therein.

In this paper we study the time fractional advection dispersion equation with reaction

8°Cxt) _ b 0°C(x.t) b aC(x,t)

v " ot AC(x,t), (1.1)

which describes the transient transport of solutes through a homogeneous soil, where

C: is the solute concentration (ML),

t: is the time (T),

X : is the soil depth (L),

(b > 0): is the pore water velocity (LT ™),

(D > 0): is the dispersion coefficient (L°T ),

(A >0): is the first order reaction rate coefficient (T ), and

a (0<a<2) is the order of the time fractional derivative which is intended in the Caputo
sense.

For a detailed discussion on this fractional derivative, we refer to Podlubny (1999). When « is
not integer (« #1,2), the Caputo fractional derivative is written as

[QC(X,I)} T i 0<a<l

1 t
F(l—oc)-([ (t_T)“

- (1.2)

1 ¢ é ot :
mﬂﬁc(x,r)}w, if l<a<?2

“C(xt)
8t(1

and if « is an integer (a =1,2), the Caputo fractional derivative is identical to the corresponding
partial derivative of integer order.

Now, using the relation (see Gorenflo and Mainardi (1997))
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C(x,t1)-C(x,0), if 0<a<1
0“C(x,t
J“[—(QX )Jz (13)
C(x,t)—C(x,0")—-tC,(x,07), if 1<a<2,
where J* f (t) is the Riemann-Liouville fractional integral operator defined by
W=-—2fe- 10
1“f(x)=——|lt—-7) f(r)dz, (1.4)
)]

then we can eliminate the time fractional derivative in (1.1) and obtain the integro-differential
equation

)1

R e e

-+ﬁC(XJ)}dT, (1.5)
if 0<a<1,and

C(xt)=C(x,0")+tC (x,0")
1

':[(t—r)a_l[D azc;f::,r) b ac(g:,r) +7»C(X,r)}dr,

(1.6)

—+

;1

(o)
ifl<a<?2.

In order to correctly formulate and solve the Cauchy problem for (1.1), we have to select explicit
initial conditions concerningC(x,0°), if 0<a <1 and C(x,0°) C,(x0"), if 1<a<2.If ¢(x)
and ://(x) denote sufficiently well-behaved real functions defined onR, the Cauchy problem
consists in finding the solution of (1.1) subjected to the initial conditions

C(x0")=¢(x) ,xeR, if O<a<l, (1.7a)
C(x0")=p(x), C(x0")=p(x), xeR,if 1l<a<2 (1.7b)
Now, we give some basic definitions of the Laplace transform and the Fourier transform and

some required formulas. The Laplace transform of a function f(t) on R" is defined by Asmar
(1999) as

o0

((f(t) p)=] (e "dt=f(p) Re(p)>0 (1.8)

0
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and the Laplace transform for the Caputo derivative aatf (t) (0 < <2) isintended to be

o i)

pef(p)-p*tf(0), if O<a<
() (p)-p*"7(07)
1 por ipr=11 (1.9)
p*f(p)-p*f(07)-p £ (07), if l<ax2
and the inverse Laplace transform is written as
5 1 y+io 5
ft)y=¢1f(p),tj=— | e™f(p)dp, y=R : 1.10
®=0{f(p)t] 2 ¢ (p)dp, y=Re(p) (1.10)

The Fourier transform of a function f(x)on R is defined by Mainardi and Pagnini (2003) as
) )= f(x) = [e™ f(tat (1.11)

and its inverse is written as

f(t)=i]8 f(x)e"dx. (1.12)

27

In application of Fourier transforms to physical problems, it is useful to have the formula:

3L (x);x} = (i) T (x), (1.13)
where f®(x)= d;:‘(n(x) and i=+-1.

2. The Green Function

To reduce (1.5) and (1.6) to a more familiar form, we use the following function transform. Let

Clut)=u(¢ opluc) € = u= 25’5 . 2.1)

Then, (1.5) and (1.6) yield the integro-differential equations

https://digitalcommons.pvamu.edu/aam/vol4/iss1/14
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t

w600 s o ZHE) g o, 22)

I'(a) g

for 0<a <1, and

u(C ) (D({)th‘P({;)Jrﬁj'(t—r)"“l[%—ﬁzu(g,rﬂdr, 23

for 1< a <2, where ®(¢)=g{¢VD Jexp(- 1) W(£) = (VD Jexp(- )

and 6% =’ + 1.

Now, applying the Laplace transform with respect to t and the Fourier transform with respect to
¢, then equations (2.2) and (2.3) yield

s pa—l N

U(K, p):mq)(lf), forO<a<l1 (24)
and

2 pa—l R pa_z R

U(K, p)=m®(x)+m‘l’(/c),f0rl<aé2. (25)

By fundamental solutions (or Green functions) of the above Cauchy problems, we mean the
solutions corresponding to initial conditions

GY(¢,07)=05(), for 0O<a<l (2.6a)
G(Z) 07)=0

&(eo)-o(e) | o5

aG(l) 0V =0 , for 1l<a<2, (2.6b)

a a(c’ )_ %G((lz)(g(r):s(g)

where §(¢) is the Dirac-delta generalized function whose Fourier transform is known to be one
(3(; ) =1). Thus, the Fourier-Laplace transforms of these Green functions are

2, a=)
G (x, p)=—F

———, O<a<2, j=12. 2.7
p* +x°+6° . (2.7)
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Applications and Applied Mathematics: An International Journal (AAM), Vol. 4 [2009], Iss. 1, Art. 14
AAM: Intern. J., Vol. 4, Issue 1 (June 2009) [Previously, Vol. 4, No. 1] 181

Note that by making use of the formula [see Asmar (1999)]

_ a;
sl{m;g} 2\/_eN, b>0 (2.8)

and setting a; = p“l, b=p®+6°, weget

-, . a-j @2
GU(g, p)=— P e NP o1, (2.9)

24/ p% +6° -

It is obvious from (2.9) that G?(¢, p)=G(¢, p)/ p. So,

GO )= [, oHr. 2.10)

This means that it is enough to obtain G""(£,t) since the other Green function G'?(£,t) can be

obtained by using (2.10) if Ga (g ,t) is known. Unfortunately, inverting the Laplace transform
from equation (2.9) is problematic.

However, we can invert the Laplace transform in equation (2.7) by first rewriting éf)(zc, p) in
the form

2 a-1 1
GW(k p)=—P . . 211
W(x, p) e E (2.11)

1+ 5
p* + K

Now, expanding the second fraction and simplifying, we get

2 1 0 92 m pa—l
GU(x,p)=> —, (2.12)
m:o(p"‘ +K2)

Then, by making use of the inverting Laplace transform formula (see Podlubny (1999))

a-p am+ -1
w{( - )M;t}:t E™(-at”), (2.13)

pe +a m!

https://digitalcommons.pvamu.edu/aam/vol4/iss1/14
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d"E,_ ,(t) & ' J
E '“)(t):—“ﬁ():z _ (iempt (2.14)
is the derivative of the Mittag-Leffler function E,, ,(t), we obtain

E™ (- x2t?). (2.15)

Langlands (2006) has shown that the Fourier inverse of the derivative of the Mittag-Leffler
functions in equation (2.15) can be obtained by first rewriting the derivative in terms of H-
function

EM (- 2t )= Hj;[x t 1(_m’1) } (2.16)

In order to evaluate the inverse Fourier transform of the H-function, we need the following
relationship between Fourier transform and Mellin transform (see Langlands (2006))

M {f(zc); s}: 2F(s)cos£?jM {f(x):1-s}, (2.17)
where the Mellin transform of f(x) is written as
sj=[xf(x (2.18)
0

To find the Mellin transform of equation (2.16), we note that the Mellin transform of Fox’s H-
function is given by Kilbas and Saigo (2004), (see also Srivastava, Gupta and Goyal (1982) and
Mathai and Saxena (1978)).

m n

a,.a, e F(b,- +ﬂjs)1j_[1“(1—aj —ajs)
M{H,’:Q[ax|( : )};s}:a e paiE (ajmjs), (2.19)

j=m+1 j=n+1

when the following conditions are satisfied

Published by Digital Commons @PVAMU, 2009
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q p n p m q
5= PB;-2 ;>0 A=} o;-> a;+3 B;- > B;>0,
j=1 j=1 j=1 j=n+1 j+1 j=m+l

b. l-a.
‘arg(a)‘<& and —min|Re| —- || < Re(s) < min| Re 4l
2 1<j<m Bj 1<j<n a‘j

Another useful identity is [see Oberhettinger (1974)]

M{XVf(axV)s}:la‘(w)’yM{f(x);S+V}, (2.20)
v v

fory >0, a>0.We now invert equation (2.15) by using equations (2.19) and (2.20) along with
equation (2.7) to get

M {Gg)(g,t); S}: i i - 97)m ,ﬁ FG _er@ o +ZJFGJF[1_ZJ . 2.21)

7m0 F(l—s)F(1+ am—Z+0;sj

N R

Comparing with equation (19), we fined by inverting the Mellin transform that

(94
t—alz Y (—Hzt“ )m (1/2,1/2),(0,1/2),(1+am——,al2j

O (1) H22| o . (2.22
G, (é,v) 47Tmz:o mi xH 5| & 1 ( )
E+ m,1/2,(0,1/2),(0,1)
Now, applying the relation [see Srivastava, Gupta and Goyal (1982)]
t -1 o1 1mn v (aj’aj Lp
jx" (t=x)""Hyo| X (t—x) ‘ dx
0 (bl ! Bj )l,q
(1=p:n),(1-0,v), (3.0,
=tPH ;T;Tqiz Zth ( b )Lp (2'23)

(bJ’Bi)l,q (1-p—o,n+v)

to equation (2.10), and eliminating we get

https://digitalcommons.pvamu.edu/aam/vol4/iss1/14
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(24
5 e (o) (1/2,1/ 2),(0,1/2),(2+am——,a/2)

mo ml

> H32‘,32 é/ tfa/Z

. (2.24)

(%+ m,1/2j,(0,1/ 2),(0,1)

3. The Complete Solution and Special Cases

The Green function allows us to represent the solutions of the Cauchy problems through the
relevant integral formulas

0

u(¢.t)= [GI(y.)o(¢ ~yhy, O<ax<t, (3.1)
u(.t)= [0y 0 - y)+ 6P (y ¥ - ye, 1<asz2. 32)

So, substituting equations (2.22) and (2.24) in (3.1) and (3.2), respectively, we get

—al2 o« (_92'[“ )m

t
1t =
u(;’ ) A mzzo m!
(3.3)
) (1/2,1/2),(0,1/2),(1+am—%,a/2j
x [ H3Z| yt” . - @(S-y)dy,
- (Tm,l/zj,(o,l/z),(o,l)
for 0<a <1, and
(1/2,1/2),(0,1/2),(1+am—%,a/2]
HiT |yt ®(¢-y)

(%+ m,1/ 2),(0,1/2),(0,1)

(1/2,1/2),(0,1/ 2),(2+am—%,a/2j
HHZZ |yt

(%+ m,l/2j,(0,1/2),(0,1)
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forl<a<2.

Now, applying the substitutions in (2.1) allows us to get explicit forms for C(x,t) as

xb

o e o (-0
dr = ml!

C(x,t)=

(1/2,1/2),(0,1/2),(1+ am—%,a/Zj (35)

XT H2Z |yt -w(x—ﬁy)e%ydy,

6+ m,1/ 2),(0,1/2),(0'1)

for0O<a <1, and

e oo o (—0%t°)"

4 = m!

C(x,t)=

(1/2,1/2),(0,1/ 2),(1+ am—%,a/Zj
H;,SZ y t—a/2

o(x-Dy

e2P'dy,  (3.6)

(%+ m,1/ 2),(0,1/ 2),(0,2)

(l/2,1/2),(0,1/2),(2+am—%,a/2)
H22| y e

1 vlx0y)

(T m,1/ 2}(0,1/ 2),(0.2)

2
forl<a <2 and 6? :b—+ﬂ.
4D

Now, if we consider the limiting case & -0 (i.e., b—>0andA — 0), then we obtain the
solution of the time-fractional diffusion equation

8°Cxt) _ b 9°C(x,t)
ot” ox?

. O<a<l. (3.7)

Subject to initial conditions C(x,O*)z ¢(x) , directly from equation (3.5) as

https://digitalcommons.pvamu.edu/aam/vol4/iss1/14
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o
-al2 2 1/2,1/2),(0,1/2),|1-—,a /2
C(x,t):t4 [H22 yt“’Z\( ).(0.1/2) ( 2 j -¢(x—\/5y)dy. (3.8)
o (1/2,1/2),(0,1/2),(0,1)
Making use of the known property of the Gamma function I'(1—z)I'(z) = S_: and simplify,
in 7z
then equation (3.8) can be written as
t—a/2 © _ﬁ
C(x,t)= ; Jij yt =/ (1 2,0:/2) -¢(x—\/5y)dy. (3.9)
Similarly, the solution of the time-fractional wave equation
a 2
0"C(x.t) _ 0 C(f't), l<a<2, (3.10)
ot” OX

with initial conditions C(x,0")=g(x) and C,(x,0")=w(x) can be achieved directly from
equation (3.6), and after simplifying it can be written as

—al2 © o
C(x,t):t > [HY| yte (1_3'0[/2) -¢(X—x/5y)1y

- (01)

1-a/2 » (04
+t 5 _[Hlllo ytfalz (Z—F,T/ZJ V/(X—\/By}iy (311)
o 01

The results of equation (3.9) and equation (3.10) are in full agreement with the results of
equation (3.10) and equation (4.9) recently obtained by Mainardi and Pagnini (2003) and
Mainardi, Pagnini and Saxena (2005), respectively.

The integer order advection-dispersion equation is obtained by setting « =1 in equation (1.1),
and its solution yields directly from equation (3.5) as

xb

Ce ot e (o) F L, @/2172)(0172) 2y
Clx1)= 4 ZO m! XIH?"{yt | (01/2),(02) ]¢(X_\/By)e v

—00

(3.12)
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and the solutions of the integer order diffusion and wave equations can be obtained by setting
a =1 inequation (3.9) and « =2 in equation (3.11).
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