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Abstract 
 
In this paper, we get exact solution of the time-fractional advection-dispersion equation with 
reaction term, where the Caputo fractional derivative is considered of order  2,0 . The 
solution is achieved by using a function transform, Fourier and Laplace transforms to get the 
formulas of the fundamental solution, which are expressed explicitly in terms of Fox’s H-
function by making use of the relationship between Fourier and Mellin transforms. As special 
cases the exact solutions of time-fractional diffusion and wave equations are also obtained, and 
the solutions of the integer order equations are mentioned. 
 
Keywords:  Fractional Derivatives; Laplace Transform; Fourier Transform; Mellin Transform; 

Fox’s H-function 
 

AMS (2000) No.: 26A33, 49K20, 44A10 
 
 
1.   Introduction 
 
Time fractional partial differential equations, obtained by replacing the first order time derivative 
by a fractional derivative (of order 20   , in Caputo sense) have been treated in different 
contexts by a number of researchers. Mainardi and Pagnini (2003) studied the time fractional 
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diffusion equation and the fundamental solutions (Green functions) by using Fourier-Laplace 
transforms. Liu, Anh, Turner and Zhang (2003) considered the time fractional advection 
dispersion equation by replacing the first order derivative in time by a fractional derivative of 
order   ( 10   ) and they have used variable transformation, Mellin and Laplace transforms 
to achieve a complete solution. Saxena, Mathai and Haubold (2002, 2004a, 2004b, 2006a, 2006b, 
2006c) and Haubold, Mathai and Saxena (2007) used integral transform methods to obtain exact 
solutions for the fractional kinetic, diffusion and reaction diffusion equations .Other research 
articles handling time fractional partial differential equations by using integral transforms can be 
found in the literature by a number of authors, see, e.g. the reviews in Mainardi (1996), 
Mainardi, Luchko and Pagnini (2001), Mainardi, Pagnini and Saxena (2005), Mainardi and 
Pagnini (2007), Mainardi, Pagnini and Gorenflo (2007), Momani and Odibat (2007) and Wang, 
Xu and Li (2007) and the references therein.  
 
In this paper we study the time fractional advection dispersion equation with reaction  
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 ,          (1.1) 

 
which describes the transient transport of solutes through a homogeneous soil, where 
 
C: is the solute concentration ( 3ML ), 
t : is the time (T ), 
x : is the soil depth ( L ), 

)0( b : is the pore water velocity ( 1LT ), 

)0( D : is the dispersion coefficient ( 12 TL ), 

)0(  : is the first order reaction rate coefficient ( 1T ), and 
  ( 20   ) is the order of the time fractional derivative which is intended in the Caputo 
sense.  
 
For a detailed discussion on this fractional derivative, we refer to Podlubny (1999). When   is 
not integer ( 2,1 ), the Caputo fractional derivative is written as  
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and if   is an integer ( 2,1 ), the Caputo fractional derivative is identical to the corresponding 
partial derivative of integer order.  
 
Now, using the relation (see Gorenflo and Mainardi (1997)) 
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where  tfJ   is the Riemann-Liouville fractional integral operator defined by  
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then we can eliminate the time fractional derivative in (1.1) and obtain the integro-differential 
equation 
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if 21   . 
 
In order to correctly formulate and solve the Cauchy problem for (1.1), we have to select explicit 
initial conditions concerning  0,xC , if 10    and     0,,0, xCxC t ,  if 21   . If  x  

and  x  denote sufficiently well-behaved real functions defined on , the Cauchy problem 
consists in finding the solution of (1.1) subjected to the initial conditions  
 

   ,0 , , 0 1,C x x x if               (1.7a) 

 

       ,0 , ,0 , , 1 2.tC x x C x x x if             (1.7b) 

 
Now, we give some basic definitions of the Laplace transform and the Fourier transform and 
some required formulas. The Laplace transform of a function )(tf  on   is defined by Asmar 
(1999) as  
 

       0)Re(,
~
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 ppfdtetfptf pt           (1.8) 
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and the Laplace transform for the Caputo derivative 
 

)20(, 
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and the inverse Laplace transform is written as  
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The Fourier transform of a function )(xf on   is defined by Mainardi and Pagnini (2003) as 
  

  




 dttfeftf ti )()(ˆ);(           (1.11) 

 
 and its inverse is written as 
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In application of Fourier transforms to physical problems, it is useful to have the formula: 
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2.   The Green Function  
 
To reduce (1.5) and (1.6) to a more familiar form, we use the following function transform. Let  
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Then, (1.5) and (1.6) yield the integro-differential equations  
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for 10   , and 
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for 21   , where               exp,exp DD  
 
and   22 . 
 
Now, applying the Laplace transform with respect to t and the Fourier transform with respect to 
 , then equations (2.2) and (2.3) yield 
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By fundamental solutions (or Green functions) of the above Cauchy problems, we mean the 
solutions corresponding to initial conditions  
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where    is the Dirac-delta generalized function whose Fourier transform is known to be one 

(   1ˆ  ). Thus, the Fourier-Laplace transforms of these Green functions are  
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Note that by making use of the formula [see Asmar (1999)] 
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and setting 2,    pbpa j
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It is obvious from (2.9) that         ppGpG /,
~
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~ 12    .  So,  
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This means that it is enough to obtain    tG ,1   since the other Green function    tG ,2   can be 

obtained by using (2.10) if    tG ,1   is known. Unfortunately, inverting the Laplace transform 

from equation (2.9) is problematic.  
 

However, we can invert the Laplace transform in equation (2.7) by first rewriting    pG ,
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Now, expanding the second fraction and simplifying, we get 
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Then, by making use of the inverting Laplace transform formula (see Podlubny (1999)) 
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where 
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is the derivative of the Mittag-Leffler function  tE  , , we obtain  
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Langlands (2006) has shown that the Fourier inverse of the derivative of the Mittag-Leffler 
functions in equation (2.15) can be obtained by first rewriting the derivative in terms of H-
function 
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In order to evaluate the inverse Fourier transform of the H-function, we need the following 
relationship between Fourier transform and Mellin transform (see Langlands (2006)) 
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where the Mellin transform of  f(x) is written as 
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To find the Mellin transform of equation (2.16), we note that the Mellin transform of Fox’s H-
function is given by Kilbas and Saigo (2004), (see also Srivastava, Gupta and Goyal (1982) and 
Mathai and Saxena (1978)). 
 

 
 

   

    



 




























q

mj

p

nj
jjjj

n

j
jj

m

j
jj

s

qq

ppnm
qp

sasb

sasb

as
b

a
axHM

1 1

11,
,

1

1

;
,

,








,    (2.19) 

 
when the following conditions are satisfied 
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Another useful identity is [see Oberhettinger (1974)] 
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Comparing with equation (19), we fined by inverting the Mellin transform that  
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Now, applying the relation [see Srivastava, Gupta and Goyal (1982)] 
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to equation (2.10), and eliminating we get  
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3.   The Complete Solution and Special Cases 
 
The Green function allows us to represent the solutions of the Cauchy problems through the 
relevant integral formulas 
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for 21   . 
 
Now, applying the substitutions in (2.1) allows us to get explicit forms for ),( txC  as 
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Now, if we consider the limiting case 0  (i.e., 0b and 0 ), then we obtain the 
solution of the time-fractional diffusion equation  
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Subject to initial conditions    xxC 0, , directly from equation (3.5) as  
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Similarly, the solution of the time-fractional wave equation  
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with initial conditions    xxC 0,  and     xxCt 0,   can be achieved directly from 

equation (3.6), and after simplifying it can be written as  
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The results of equation (3.9) and equation (3.10) are in full agreement with the results of 
equation (3.10) and equation (4.9) recently obtained by Mainardi and Pagnini (2003) and 
Mainardi, Pagnini and Saxena (2005), respectively. 
 
The integer order advection-dispersion equation is obtained by setting 1  in equation (1.1), 
and its solution yields directly from equation (3.5) as  
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and the solutions of  the integer order diffusion and wave equations can be obtained by setting 
1  in equation (3.9) and 2  in equation (3.11). 
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